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Abstract

Maude is an equational and rewriting logic specification tool. It allows
a unique and simple way of specifying concurrent programs and lends itself
nicely to verification. This senior thesis focuses specifically on patterns
for creating distributed algorithms in Maude, and after applying these
patterns to several classical algorithms, it builds up to the consensus al-
gorithm Raft, which has not previous been implemented.

Maude has limited support for communication between processes on
separate machines. This paper develops a “middleware” that enables a
straightforward approach for transforming a model into an implemen-
tation, allowing correct-by-construction working implementations of dis-
tributed systems. The design and usage of this middleware will be exam-
ined, especially with the use of case studies. Ideally, this will allow easier
development of future distributed systems in Maude, without having to
worry about socket-level coding.
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1 Introduction

1.1 Problem Description

The development of correct distributed systems can be challenging due to the
difficulties with predicting all the non-deterministic interactions and because
they are much harder to test than sequential systems. Maude, through the use
of rewrite rules, provides a very high-level method to simply and intuitively
model distributed systems. Furthermore, it can use model-checking to verify
properties of such systems.

However, there is often be a gap between the formal model of a system and its
implementation. The implementation may not faithfully implement the model
and could introduce bugs. Consequently, the correctness guarantees from the
model may not actually extend to the implementation as desired. Minimizing
this gap is therefore valuable because it reduces the risk of bugs and allows the
guarantees from the model to also apply to the implementation.

1.2 Technical Approach and Case Studies

Maude has built-in support for TCP/IP sockets. In principle, this means that
it is possible to transform a Maude model of a distributed system into a dis-
tributed implementation. Some case studies that demonstrate this possibility
have been developed [3, 4, 5], but Maude support for transforming formal Maude
specifications into distributed systems is still quite limited and the process is
not straight-forward. In particular, there are difficulties bridging the gap be-
tween the levels of communication by TCP/IP sockets and higher-level message
communication between distributed Maude objects.

The main goal of this thesis is to significantly ease the difficulties of trans-
forming from the model to a correct-by-construction distributed implementation
by:

1. Developing a middleware for users that simplifies the implementation of
message communication between Maude objects via TCP/IP sockets.

2. Presenting a methodology where

• Distributed systems are first specified in Maude

• Formal properties are then verified by model-checking, and

• A distributed implementation of that system is semi-automatically
derived from the model and the middleware.

A series of case studies help demonstrate this methodology, beginning with
some well-known distributed algorithms and culminating with a new Maude
specification and distributed implementation of a simplified version of the recent
Raft consensus algorithm [7].
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1.3 Outline

The rest of this thesis is organized as follows. Section 2 gives an overview
of Maude and some of its patterns that will be used. Section 3 presents the
design of the new middleware that facilitates a user in deriving a distributed
implementation from a Maude model. Section 4 builds a sample client-server
model, where a client request the factorial of a number, and the server returns
it. Section 5 models and implements the two-phase-commit protocol, whereby a
coordinator sends a commit to a multitude of cohorts based on how they respond
to a vote. The case study in section 6 models, verifies, and builds a distributed
implementation of the Raft consensus algorithm. Lastly, section 7 summarizes
the methodology demonstrated in the case studies, and adds some concluding
remarks and future directions. Appendix A works out in detail transforming a
ring leader election protocol, showing each step of the methodology in detail.

2 Maude Overview

2.1 Rewrite Rules

A basic understand of Maude is already assumed, but a brief overview is given
below. In Maude, a module defines syntax and semantics of terms. The syn-
tax defines what expressions are valid and what types they evaluate to. The
semantics of a module is defined by a combination of equations and rules that
define how to simplify and evolve those terms. Both rules and equations can
be marked as conditional, where they can only be applied if some condition is
true. Modules can use other modules, making it easier to decompose tasks.

There are two important aspects of syntax - sorts and operators. A sort is
a type of data. For example, some default sorts are Bool, Nat, or String, for
boolean, natural numbers, or strings respectively. If one sort is a subsort of
another sort, then any term of the former sort is also a term of the latter sort.
This subsorting is the same notion of set inclusion for the corresponding set of
terms. An operator in Maude has a name, some number of operands given by
their sort, and a resulting sort. If there are no arguments, then that opera-
tor is also called a constant. An operator can also have additional attributes,
such as associative, commutative, or have an identity element, which is useful
for expressing some properties that cannot be defined with oriented equations.
Checking the syntax of a term in Maude can be done with the parse command.
As an example, a basic syntax of the natural numbers might include two sorts,
naturals and non-zero naturals, as well as a constant 0, successor function, and
addition. In Maude, this could be defined as:
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fmod NAT-SYNTAX is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat .

op s : Nat -> NzNat .

op + : Nat Nat -> Nat .

endfm

Equations are defined by writing some left-hand side term equals some right-
hand side term. Each of these terms may contain some variables; however, there
are some conditions to allow these equations to be executable. To evaluate a
term using an equation, the term is matched to the left hand side of the equation,
and the right hand side is substituted. To evaluate a term in a module, equations
are applied until no more can be applied.

In general, it will also be important that the equations also satisfy the
Church-Rosser property and are terminating, which is a key difference com-
pared to rules. This essentially means that any term can be evaluated down to
only a single unique term using the equations; these fully evaluated terms define
the initial algebra of the functional module in the intuitive form of the so-called
canonical term algebra. To compare two terms, such as if s(s(0)) + s(s(0)) =
s(s(s(0))) + s(0) (e.g. 2 + 2 = 3 + 1), both sides are simplified completely
and compared syntactically. Reducing a term with equations can be done with
the red command. For example, the equations for the natural numbers defined
before could be:

fmod NAT-EQ is

inc NAT-SYNTAX .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

The last important aspect of modules are rules. The previous two examples
are functional modules, defined with fmod and endfm. More general systems
modules can contain both equations and rules and are defined with mod and
endm. Rules are similar to equations, in that they describe how to modify a
term. However, in general there are little restrictions put on rules, and they
are not intended to capture equality in a system. Rules capture transitions
between states, especially allowing them to capture non-determinism. A system
module can have both rules and equations. Before a term is evaluated with a
rule, it is fully simplified with equations. It is possible that multiple rules can
be applied to a term, in which case one of them is chosen non-deterministically.
To see some rewriting of a term, the rew command can be used. To search every
possible rewriting, the search command can be used.
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2.2 Concurrent Object Programming

There is a very useful pattern in Maude programming to capture concurrent
object-based programming. Core Maude supports this pattern with the CON

FIGURATION module in prelude.maude:

mod CONFIGURATION is

sorts Attribute AttributeSet .

subsort Attribute < AttributeSet .

op none : -> AttributeSet [ctor] .

op _,_ : AttributeSet AttributeSet ->

AttributeSet [ctor assoc comm id: none] .

sorts Oid Cid Object Msg Portal Configuration .

subsort Object Msg Portal < Configuration .

op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

op <> : -> Portal [ctor] .

endm

An object has an object id, class id, and some set of attributes. The
attributes of a class need to be defined through operators that evaluate to
Attribute; this is equivalent to defining the fields of an object. The Msg sort
for messages is defined, but as with an Attribute, operators that evaluate to
Msg need to be defined. A message is a way to enable objects to communicate
with each other. A common syntax, and one used throughout this paper, is
given by:

op msg_from_to_ : MsgCont Oid Oid -> Msg [ctor] .

Hence, a message is some contents of sort MsgCont that has a source and
destination. A portal is a special kind of object that will be further described
later. A set of objects and messages make up a configuration, also sometimes
referred to as the object pool. Rules are defined on objects of a certain class
id; typically, a rule will involve consuming or sending a message in the pool and
possibly modifying some internal state. The frew (fair rewrite) command is the
best choice to evolve objects because it ensures that no objects will be starved.
It is very similar to the rew command, but attempts to apply rules fairly to all
objects.

2.3 Sockets and Buffering

Maude sockets are external objects that enable a Maude process to send and
receive messages to and from an external environment. Rewriting is done using
the erew command, for external rewrite. It is similar to the frew command,
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except that it also allows messages to be exchanged with external objects. The
portal object is a special object that must be in the object pool to allow external
rewrites, and is defined as:

sort Portal .

subsort Portal < Configuration .

op <> : -> Portal [ctor] .

The sockets are IPv4 TCP, and come in both client and server variants. A
basic overview is given here, although full details and examples are in the Maude
manual [4]. Ignoring error handling, a client socket is created by first rewriting
createClientTcpSocket with a specified address and port. Once the socket
is created, this operator is removed and createdSocket is added to replace it.
Data can be sent with send or received with receive, which are replaced with
sent and received respectively when successful. The server socket is similar;
however, it must listen for clients before data can be sent or received.

One major drawback with Maude sockets is that they are unbuffered. When
a message is sent, it may be broken up into multiple packets. However, when
the receive socket receives the data, one call to receive may only return some
subset of the data. This can make them extremely difficult to use, as it requires
knowing the end of the data being sent and reading multiple times until the end
can be found. This is not always possible.

Instead, the Maude book introduces BufferedSockets, and is included in
the provided code buffered-socket.maude. The code from the book had a
bug in the closedSocket rule which is corrected in the provided code. Buffered
sockets follow the exact same syntax as regular sockets, except that the first
letter of each operator is capitalized, so acceptClient becomes AcceptClient

and so on. Whenever a message is sent across a buffered socket, a # separator
is appended to the end. When a buffered socket reads, it reads from the socket
multiple times and stores the cumulative result until the # separator is found
and the entire block of data is returned. As result, it is important that any data
being sent does not contain this symbol. The middleware described in the next
section exclusively uses buffered sockets because of the benefit of not worrying
about data being split across multiple reads.

3 The Middleware

3.1 Overview

The middleware in the module MW in mw/mw.maude is a tool to make it as easy
as possible to enable Maude objects on multiple machines to communicate with
each other. The motivation behind this simplicity is to minimize the possibility
of any errors being introduced. Originally, Mobile Maude (described in All
About Maude) was considered. However, this requires understanding a much
more complicated system and modifying the original code too much to be as
useful. Instead, the middleware presented here is designed to be an object that

8



sits in the object pool in each Maude process and automatically consumes and
sends messages that are destined for objects on other processes as well as read
and introduce messages from other processes. Note that loading the middleware
causes the trace to be enabled; this allows output to be shown to the console
while it runs. Remove the line at the top that enables trace if not desired.

3.2 Design

A variety of design choices motivated the final implementation. A few of those
are outlined here.

The first key decision was how to handle sending and receiving messages.
Many network architectures can be modeled as a server and client, where the
server starts listening for connections, a client connects, then the two com-
municate over that single connection. It would be straightforward and possibly
reduce errors if there was a client version and a server version of the middleware.
For the first couple examples, this would work fine. Instead, the middleware
acts as both a client and a server. It initializes a server socket that listens for
incoming connections and creates a new socket for each connection received, as
well as create a client socket for each process it sends to. As a result, for two
nodes to communicate, they require opening two connections. However, the
middleware does not need to remember what nodes have connected to it, and
the user does not have to differentiate between a server and client node.

A more extreme variation of the previous design is to not only create two
connections between every pair of nodes, but also create a socket for every single
message sent that lives only for the duration of the message. This requires an
absolute minimal amount of storage by the middleware, since it does not even
need to store any sockets. However, this does not give any added benefit to
the user, and could possibly have too much overhead for systems with many
messages.

Only strings can be sent over a socket, not generic message objects. So,
there needs to be a way to convert from strings to messages and from messages
back to strings. For this, the QID-LIST-STRING module from mobile-maude-

centrailzed.maude is used, which can convert a string to a list of quoted
identifiers and vice versa. To convert a message to a string, the META-LEVEL

module is used to parse the message to a list of quoted identifiers, which are
then converted to a string. A reverse process is used for the other direction:

eq to-string(M) = qidListString(metaPrettyPrint(

upModule(’MESSAGE, false), upTerm(M), none)) .

eq to-msg(S) = downTerm(getTerm(metaParse(

upModule(’MESSAGE, false), stringQidList(S), ’Msg)),

error(S)) .

A module must be specified for the metalevel to use to parse. Here, the
MESSAGE module is used, since messages are being converted. In general, there
will be user specified objects that need to be converted, and somehow the mid-
dleware needs to know their syntax. To do this, the middleware will assume a
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module called INTERFACE is already defined when it is loaded. This interface is
required for specifying any user-defined syntax for messages; in particular, any
syntax that is required to specify object ids (sort Oid) or message contents (sort
MsgCont). The MESSAGE module protects this module, which is then protected
by MESSAGE-EXT which handles conversion.

3.3 Implementation

As described before, the MESSAGE module protects an INTERFACE module that
should already be loaded. This INTERFACE module should extend the CON

FIGURATION module in the prelude that defines objects, configurations, and
messages. This MESSAGE module with the QID-LIST-STRING module described
before are used by the MESSAGE-EXT module that allows converting between mes-
sages. Lastly, the LOC module defines the sort Loc and the operator ip-port,
which takes in an IP as a string and a natural number as a port to create a Loc.
This Loc is used to define where a socket should be created to send a message.

The bulk of the interesting work is in the MW module, which defines the Mw

class. The middleware has three attributes: obj-to-loc, loc-to-socket, and
building-socket. obj-to-loc is a map from object ids to locations, and is
static and specified by the user when they initialize the middleware. This map
tells the middleware where the destination object is located. loc-to-socket

is a map that takes in a location object and returns the Oid of a socket. This
starts as empty, but as sockets are created to send messages, they will be stored
here to avoid having to recreate them. Note that this two-map design allows for
messages that are destined for different objects at the same location to reuse the
same socket. Lastly, the building-socket attribute contains either a location
or none, and indicates whether a socket is being built. For simplicity, only one
socket can be constructed at a time.

Some of the rules are described below. They will use the following variable
set:

var Motl : Map{Oid, Loc} .

var Mlts : Map{Loc, Oid} .

vars ServerSocket Socket Client O : Oid .

vars IP DATA : String .

var N : Nat .

var L : Loc .

var M : Msg .

var A : AttributeSet .

To initialize the middleware, the user must pass in a port to run it on
and a mapping of objects to locations. It opens a server socket and starts as a
Mw-no-server object, so no other rules apply until the server socket was opened
successfully. It also creates a portal to allow communicating:
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rl [init-mw] :

init-mw(N, Motl) =>

<>

< mw : Mw-no-server | obj-to-loc : Motl, loc-to-socket : empty,

building-socket : none >

CreateServerTcpSocket(socketManager, mw, N, 5) .

The rules for accepting messages are relatively straightforward. This server
socket continually accepts clients. When a client is accepted, it starts accepting
for another client and receives on the client accepted. Note that buffered sockets
are used, so one Receive is guaranteed to correspond to one message, regardless
of message length. When data from a client is received, the data is converted
to a message and added to the pool, and the middleware listens to the client for
more messages:

rl [received] :

Received(mw, Client, DATA)

< mw : Mw | A > =>

< mw : Mw | A >

Receive(Client, mw)

to-msg(DATA) .

The rules for sending messages are a little more complicated, since they need
to keep track of open sockets. If a message M is in the pool, and the destination of
that message is mapped to a location that maps to a socket, then that message
is converted to a string and sent:

crl [consume-message-socket-exists] :

M

< mw : Mw | obj-to-loc : (O |-> L, Motl), loc-to-socket :

(L |-> Socket, Mlts), A > =>

< mw : Mw | obj-to-loc : (O |-> L, Motl), loc-to-socket :

(L |-> Socket, Mlts), A >

Send(Socket, mw, to-string(M))

if (dest(M) == O) .

If no socket is being made and there is a message in the pool where the
location of the destination does not have a socket built yet, then that socket
starts being created:

crl [build-socket] :

M

< mw : Mw | obj-to-loc : (O |-> L, Motl), loc-to-socket : Mlts,

building-socket : none, A > =>

< mw : Mw | obj-to-loc : (O |-> L, Motl), loc-to-socket : Mlts,

building-socket : L , A >

CreateClientTcpSocket(socketManager, mw, ip(L), port(L))

M

if (dest(M) == O) /\ (Mlts[L] == undefined) .
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No other sockets will be created during this time. Once that socket is created,
it is saved for future use:

rl [created-socket] :

CreatedSocket(mw, socketManager, Socket)

< mw : Mw | loc-to-socket : Mlts, building-socket : L, A > =>

< mw : Mw | loc-to-socket : (Mlts, L |-> Socket),

building-socket : none, A > .

4 Factorial Server

4.1 Overview

A typical setup is a client requesting data from a server. In this example, a
client requests the factorial of a number from a server. If the server has already
computed the result, it returns it. Otherwise, it computes the result, stores it,
and returns it. The server starts with an empty memory. To start a server and
two clients that are requesting 100!, run

frew init-client(1, 100, ser) init-client(2, 100, ser)

init-server .

The server will only compute the result once.

4.2 Modeling

The original code can be found in fact/original.maude, and contains both the
client and server code. The client code only has one rule, for initialization. The
server uses the modules MEM and FACTORIAL to store the results and compute the
factorial respectively. MEM defines the sorts Pair and Mem. A Pair is a mapping
of one natural to another, and Mem is a associative and commutative set of pairs
with identity nomem. It has two rules, [cache-result] and [send-response].

4.3 Distributed Implementation

First, the server and client code are split from each other, and placed into
ex-server.maude and ex-client.maude. While not strictly necessary, this
makes the example slightly more realistic, since a client and server running on
separate machines should not require the other to operate. Also, the MESSAGE

module is removed, since the code would be replicated in the middleware.
Next, the INTERFACE module is created in interface.maude. This module

is responsible for including any syntax that may go into a message being sent
through the middleware, in particular, object ids and message contents. It must
extend CONFIGURATION and define the sort MsgCont:
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mod INTERFACE is

ex CONFIGURATION .

pr NAT .

sort MsgCont .

op i : Nat -> MsgCont [ctor] .

op cli : Nat -> Oid [ctor] .

op ser : -> Oid [ctor] .

endm

Lastly, the extra modules SERVER-EXT and CLIENT-EXT are added to include
equations to initialize the middleware with the server and client. For this exam-
ple, there are two clients running on ports 8888 and 8890, while the server runs
on port 8889. All of the examples will only be shown running on localhost for
ease of demonstrating, but have also been tested on separate computers. The
server needs to know the location of both the clients, while the clients only need
to know the location of the server:

mod SERVER-EXT is

pr SERVER .

pr MW .

op init : -> Configuration .

eq init = init-server init-mw(8889,

(cli(1) |-> ip-port("localhost", 8888),

cli(2) |-> ip-port("localhost", 8890))) .

endm

mod CLIENT-EXT is

pr CLIENT .

pr MW .

op init1 : -> Configuration .

op init2 : -> Configuration .

eq init1 = init-client(1, 100, ser)

init-mw(8888, ser |-> ip-port("localhost", 8889)) .

eq init2 = init-client(2, 100, ser)

init-mw(8890, ser |-> ip-port("localhost", 8889)) .

endm

To run this example, start three Maude processes on the same machine. In
one of them, load ex-server, and in the other two load ex-client. In the server,
run erew init, and in one of the clients run erew init1 and in the other erew
init2.

5 Two-Phase Commit

5.1 Overview

Two-phase commit, or 2PC, is a commit procedure for a network that ensures
a change is made to a system only if every node can accept it. There is a single
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coordinator and multiple cohorts. During the voting phase, the coordinator
sends a request to all of the cohorts to vote yes or no, and each of the cohorts
responds. During the commit phase, either the coordinator sends a rollback
request to all the nodes, or tells the nodes to commit the changes. In either case,
the cohort responds once it has done the appropriate action. This example is
mostly adapted from the Formal Modeling and Analysis of Distributed Systems
reference.

5.2 Modeling

The model is found in 2pc/original.maude. There are four modules: INTER

FACE, COORDINATOR, COHORT, and 2PC. While there are quite a few rules, they
are straightforward and commented with their task. The INTERFACE module
contains the types of messages that can be sent as well as a special multicast
message. The possible message contents are QueryCommit, VoteYes, VoteNo,
Commit, Rollback, and Ack. The first three are used for the voting stage and the
latter three are used for the commit stage. Multicasting is a useful pattern where
an object can generate a message for a variety of nodes at once by evaluating
out to a set of messages for each object in the destination set. Originally, it was
going to be a a part of the middleware tool, but this would have required the
user to understand the middleware specification more than desired. To define
multicasting, a OidSet is also defined:

sort OidSet .

subsort Oid < OidSet .

op multicast_from_to_ : MsgCont Oid OidSet -> Configuration .

op none : -> OidSet [ctor] .

op _,_ : OidSet OidSet -> OidSet [ctor assoc comm id: none] .

var M : MsgCont .

vars O O2 : Oid .

var OS : OidSet .

eq multicast M from O to none = none .

eq multicast M from O to (O2 , OS) = (msg M from O to O2)

multicast M from O to OS .

The COORDINATOR module defines the Coord class. A coordinator can be
in six phases: Start for initialization, CommitRequest during the voting phase,
CommitSend and RollbackSend for the commit phase, and Failed and Success

for after the commit phase. Other than phase, a coordinator has the attributes
cohorts and receivedACK. The attribute cohorts is just the set of cohort
object ids, and receivedACK is the set of cohort object ids that have voted yes
or sent an acknowledgement.

The COHORT module defines the Cohort class. The only attribute is DB which
can be Start, Prep, or Commit. The database starts in the start state, transi-
tions to prep after the voting phase, then either transitions to start or commit
depending on whether the coordinator decided to rollback or commit.
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5.3 Verification

There are two basic properties to check. First, it should be impossible for a
cohort to end in a Prep state, and it should be impossible for two cohorts to
ever be in a Commit and Start state simultaneously. These can be checked
respectively by ensuring the following commands have no solutions:

search [1] init(3) =>! C:Configuration

< O:Oid : Cohort | DB : Prep > .

search [1] init(3) =>* C:Configuration

< O:Oid : Cohort | DB : Commit >

< O2:Oid : Cohort | DB : Start > .

5.4 Distributed Implementation

As in the factorial example, the first step is to split the code into the cohort
and coordinator code, which are in cohort.maude and coord.maude. Next, the
INTERFACE is extracted out into its own file. In it, only the operators required
for parsing a message are included:

mod INTERFACE is

ex CONFIGURATION .

pr NAT .

sort MsgCont .

op cohort : Nat -> Oid [ctor] .

op coord : -> Oid [ctor] .

ops QueryCommit VoteYes VoteNo Commit Rollback Ack :

-> MsgCont [ctor] .

endm

The multicast code was moved into the coordinator file, since only it used
multicast. The syntax definition for a message was deleted, since that is defined
in the middleware. The 2PC module to handle initialization was also deleted,
since each file needs to be initialized differently. To use the interface, both
the coord and cohort files needs to load theinterface file. After that, the
middleware should be loaded. Any modules that use the message syntax should
protect the MESSAGE module.

Lastly, the middleware needs to be initialized. The original file used a
2PC module that handled initialization. Instead, the COORDINATOR-INIT and
COHORT-INIT modules were defined in their respective files. They initialize the
coordinator on port 8800 and three cohorts on ports 8801, 8802, and 8803:
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mod COORDINATOR-INIT is

pr MW .

pr COORDINATOR .

op cohorts : -> OidSet .

eq cohorts = cohort(1), cohort(2), cohort(3) .

op cohorts-map : -> Map{Oid, Loc} .

eq cohorts-map = cohort(1) |-> ip-port("localhost", 8801),

cohort(2) |-> ip-port("localhost", 8802),

cohort(3) |-> ip-port("localhost", 8803) .

op init-coord : -> Object .

eq init-coord = init-mw(8800, cohorts-map)

< coord : Coord | phase : Start, cohorts : cohorts,

receivedACK : none > .

endm

mod COHORT-INIT is

pr MW .

pr COHORT .

var N : Nat .

op init-cohort : Nat -> Object .

eq init-cohort(N) =

init-mw(8800 + N, coord |-> ip-port("localhost", 8800))

< cohort(N) : Cohort | DB : Start > .

endm

The coordinator is started by rewriting init-coord. A cohort is started by
rewriting init-cohort(N), where N ranges from 1 to 3. All cohorts must be
started before the coordinator, as the coordinator will try to send them mes-
sages.

6 Raft

6.1 Overview

The most interesting example to consider is Raft, a distributed consensus al-
gorithm recently proposed by Ongaro and Ousterhout. Essentially, a complete
network of nodes wants to maintain some consistent internal state machine,
such as a database. A command sent to any of the nodes should be replicated
across the servers. Raft has never been specified or verified in Maude, and was
originally designed to be a simpler and easier to understand variation of Paxos,
making it a prime candidate to try to specify in Maude. In this specification,
some assumptions were made to make Raft easier to model and verify, which
will be described later. More details, including design choices and proof of cor-
rectness, can be found in the paper “In Search of an Understandable Consensus
Algorithm”. The three key sections are leader election, log replication, and
safety.

16



Every node is able to communicate with every other node and is either a
leader, a follower, a candidate, or an offline node. Each node maintains a log,
or ledger, which is a list of index, term, and command triplets. In Maude, this
is modeled as:

sorts Command Entry Ledger .

subsort String < Command .

subsort Entry < Ledger .

op entry : Nat Nat Command -> Entry [ctor] .

op empty : -> Ledger [ctor] .

op _;_ : Ledger Ledger -> Ledger [ctor assoc id: empty] .

The index and terms are monotonically increasing counters from 0. Index
increases with each entry added, and term is only increased when an election
occurs. Each message between nodes is tagged with the term of the sender, so
out-of-date nodes and messages can be identified. Essentially, whenever a node
receives a message from a leader with a higher term, it immediately becomes a
follower. In normal operation, the leader periodically sends heartbeat messages
out to all the other nodes, including the index and term of the leader’s most
recent entry. The follower responds with whether it already has that entry or
not. If not, the leader and follower communicate until they find the last entry
where they agree, and the leader sends all the entries past that point and the
follower overrides existing entries until they are in sync.

When the leader goes offline, one of the follower nodes will timeout and start
an election by increasing its term, becoming a candidate, voting for itself, and
sending a vote request to all the other nodes. During any term, a node will only
vote once, on a first-come-first-serve basis. The last entry log is sent with this
vote request, since there is a requirement that a node will only vote for another
node if the candidate’s log is at least as up to date as the voter’s log. A log is
more up to date than another log if its latest entry has a higher term or has the
same term and a higher index. In Maude:

op compare-log : Entry Entry -> Bool .

eq compare-log(E1, E2) = term(E1) < term(E2) or

(term(E1) == term(E2) and index(E1) <= index(E2)) .

A candidate wins the election if it receives a majority of votes. If it starts
receiving heartbeats from a leader with a higher term, it becomes a follower. If
it times out, and does not receive a majority of votes such as by a split vote,
then it will start a new election.

Once an entry of the current term is contained on a majority of nodes, it can
be shown that it will always remain in the network, due to the way elections
are handled. The leader should try to identify such entries and commit them,
so they are applied to the state machine and their result returned if necessary.
During the heartbeat process, the latest message in each follower log is known,
and so entries in a majority of nodes can also be known. This furthest committed
entry information is passed to the followers in the heartbeat, so the followers
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can apply it and all previously uncommitted commands to their state machine
as well.

6.2 Simplifications

The complete raft specification relies heavily on the use of timing. Every node
contains an election timer, and if that timer ever reaches zero, it will start a new
election by notifying all the the other nodes and voting for itself. This timer
resets every time the node receives a heartbeat message from the leader. So, if
the leader goes down, a node will start an election.

Raft mitigates the risk of multiple nodes starting elections and voting for
themselves by randomly selecting the timer duration. This immediately poses
two difficulties for Maude: randomization and timing. Maude has some ways to
model timing, but no built-in way to use an actual timer needed for implementa-
tion. Similarly, Maude can generate random numbers, but this poses a massive
difficulty for verification, since it is not feasible to search every possible random
result. Additionally, randomized election timeouts help avoid split votes. If
there are two candidates for a term, the vote could be split, and neither win. To
limit the risk of the split vote repeating, each candidate waits a random amount
of time before deciding to start another election. This is difficult to model for
the same reason as before.1

To circumvent this, there is no heartbeat system in the model, and only one
candidate is possible at a time. Instead, when a leader goes offline, it will notify
its neighbor to start the election process. If that neighbor fails to become leader,
it will tell the next neighbor, and so on. There are other drawbacks to removing
the heartbeats, which were also responsible for syncing log entries of followers
and specifying entries to commit. Instead, when a leader adds an entry to its log,
it immediately sends its entire logs to all the followers, and the follower simply
sets it log to be the one sent. The heartbeat system would eventually sync up
the logs, just with more messages of smaller size. The large number of messages
would cause verification slowdown, so this system works more effectively. The
leader waits to hear back from all the nodes before deciding whether to commit.
If a majority of nodes respond affirmatively, indicating that they updated their
log, the leader stops waiting and sends a commit message to all other nodes.
Otherwise, it repeats until a majority of nodes respond affirmatively.

Removing dropped messages is the last key abstraction. If a node goes down
and cannot respond to messages, this will be learned by the system due to time.
For example, the leader will know that a follower went down because it is not
responding to heartbeats. To remove this time aspect, instead when a node
goes down, it will respond in a negative way and will not update its state. For
example, if an offline node is told to become leader, it will simply pass the

1Modeling time and randomization in Maude is possible using probabilistic rewrite rules,
described in [1]. It is also possible to perform statistical model-checking verification for Maude
modules with probabilistic feature using the PVeStA tool [2]. However, the generation of
distributed implementations from their probabilistic Maude specifications is outside the scope
of this Thesis.
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message to its neighbor. If it is asked to vote in an election, it just votes no.

6.3 Modeling

Under these simplifying assumptions, Raft is then modeled in Maude. This
section will lay out many of the important aspects. The full specification of the
provided code can be found in raft.maude . In total, there are ten modules.
These define the nodes and a special object called the client that is responsible
for coordinating the deaths of nodes and sending queries. While the nodes can
communicate as a complete graph, they also have connections to one of their
neighbors to form a ring, which will be useful for sending a message to exactly
one recipient. For example, no matter which node receives a query from the
client, it will pass the query around until the leader receives it and applies it.
This section will go over these modules and highlight a couple of the rules.

The LEDGER module defines the sorts Command, Entry, and Ledger. Here,
a command is just a string, although in the future it could represent a more
complicated object, such as a database command. An entry is a triplet of a
term, index, and a command, and a ledger is a sequence of entries. This module
also defines some helper functions for accessing parts of the ledger and entry.

The MESSAGE module defines the kinds of messages that can be sent to each
other with the MsgCont sort. Query, Die, or Live comes from the client and
tells a node to add a command, go offline, or come back online. The rest
of the commands are tagged with the term of the sender. SetLog goes from
leader to follower and tells a follower to update its log, which then responds
with SetLogResponse. Commit tells a follower to commit all entries up to a
specified entry. BecomeLeader tells a node to become a leader for a specified
term. A candidate sends RequestVote out to all nodes, which then responds
with Vote. The MULTICAST module is a helper module to send a message to
multiple recipients at once.

The NODE module defines class names, object names, and attributes of all the
nodes, as well as an equation for cleaning up older messages. The class names
are FollowerNode, LeaderNode, OfflineNode, and CandidateNode, and the
only object names are node(N) for any natural number N. The class of an ob-
ject changes as the state of the object changes. Each node has some attributes
that it maintains; note that some are not relevant unless in the right state. The
currentTerm attribute stores the current term for the node. The attributes log
and committed store the current ledgers that have been received and committed
respectively. Here, committed is also serving as a kind of state in a basic state
machine, where the only operation is to add an entry. The neighbors attribute
store all other nodes in the graph. The waiting attribute is a Bool indicating
whether the node is waiting for some responses back, such as an election re-
sult. The attribute next-neighbor is the neighbor of the node when the nodes
are treated as a ring. Lastly, the attributes majority, number-neighbors,
number-yes, and number-response all keep track of any election or vote re-
sults.

LEADER defines a leader node. Primarily, a leader receives queries, sends
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them to the followers, gets a response, then commits. The query rule is shown
below. When a leader receives a query and is currently not waiting for any
election results, it increases its index by 1, adds its entry to its log, broadcasts
the SetLog message to its neighbors, then goes to waiting until it hears back:

crl [query-leader] :

(msg Query(C) from cli to lea)

< lea : LeaderNode | currentTerm : term, log : led ,

neighbors : fols, waiting : false, number-yes : N1,

number-response : N2, AS > =>

< lea : LeaderNode | currentTerm : term, log : led’,

neighbors : fols, waiting : true , number-yes : 1 ,

number-response : 0 , AS >

(multicast SetLog(term, led’) from lea to fols)

if led’ := led ; entry(index(head(led)) + 1, term, C) .

When the client tells the leader to die, it responds with DIE to let the client
know it is offline, becomes offline, and tells the next node to try to become a
leader:

rl [die] :

(msg Die from cli to lea)

< lea : LeaderNode | currentTerm : term,

next-neighbor : fol, AS > =>

< lea : OfflineNode | currentTerm : term,

next-neighbor : fol, AS >

(msg Die from lea to cli)

(msg BecomeLeader(term + 1) from lea to fol) .

OFFLINE defines the rules for a node that is offline. Importantly, it never
updates its internal state. It deletes any unneeded message, responds in the
negative for any requests, and passes any queries or leader requests forward to
its neighbor.

FOLLOWER is the most usual state and also contains the most rules. It passes
on any query to its neighbor, so a query will eventually make it to the leader.
When it gets a SetLog from the leader, it sets its log ledger and returns true.
When it receives a Commit message, it updates its committed ledger if necessary,
by committing all entries in its long up to the received entry. If the log does
not contain the entry or the committed log already contains the entry, then it
does nothing (except update the term if needed):

crl [cant-commit-follower] :

(msg Commit(new-term, E) from lea to fol)

< fol : FollowerNode | currentTerm : term,

log : led, committed : comled, AS > =>

< fol : FollowerNode | currentTerm : new-term,

log : led, committed : comled, AS >

if (new-term >= term) and ((not contains(led, E)) or

(contains(comled, E))) .
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Because a leader can go offline and come back as a follower in the same
term, it needs to delete any excess SetLogResponse or Vote messages that
might remain in the pool. A follower can become a candidate and broadcast out
request votes. Lastly, when a follower receives a ReqestVote from a candidate,
it votes by comparing the latest entry sent to it with the latest entry in its own
log:

crl [follower-vote] :

(msg RequestVote(new-term, E2) from lea to fol)

< fol : FollowerNode | currentTerm : term,

log : led ; E1, AS > =>

< fol : FollowerNode | currentTerm : new-term,

log : led ; E1, AS >

(msg Vote(new-term, compare-log(E1, E2)) from fol to lea)

if (new-term >= term) .

Next, the CANDIDATE module defines the rule for a candidate. When created,
a candidate will send out request votes to all nodes. It tallies the votes that it
receives. Once all the votes are collected, if a majority voted affirmatively, then
the candidate becomes a leader and sends a SetLog to all nodes to get them up
to date. If it fails, then it notifies its neighbor to start the election process. If it
is sent DIE by the client, then it goes offline and tells the next node to become
a leader.

NODE-INIT contains all the equations and syntax needed for initializing a
ring of nodes and an individual node. Reducing node-init(i, k) initializes a
node of index i in a ring of k total nodes. Reducing init-ring(k) initializes a
ring of k nodes by initializing each node in the ring:

op init-ring : Nat -> Configuration .

op init-ring : Nat Nat -> Configuration .

eq init-ring(N) = init-ring(0, N) .

eq init-ring(N, N) = none .

eq init-ring(N1, N2) = init-node(N1, N2)

init-ring(N1 + 1, N2) [owise] .

Four helper functions are used to define a node: make-neighbors, add-one-
modulo, get-majority, and get-minority. The function make-neighbors gen-
erates a set of all other node object ids in the pool. The function add-one-

modulo adds one to the index of the node modulo the total number of objects,
which is used to make the ring structure. The function get-majority just re-
turns what a majority means for some number, so returns 3 for 5, 4 for 7, and
so on. Lastly, the function get-minority returns a minority for a number, so
2 for 5, 3 for 7, and so on. When a node is initialized, it starts in term 0 as a
follower with a dummy entry at the start of it log and committed ledgers.

The last module SIMUL defines a client object that handles sending requests
to the network and coordinating node deaths, since only a minority of nodes
should be offline at any time. To allow the execution to terminate, it also
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contains a gas attribute that stores how many more nodes can fail and come back
online during the lifetime of the execution. A client maintains what a minority
of nodes is, what object ids are currently known alive, and what object ids are
currently known dead. At any point, the client can tell a known alive node to
die, and a known dead node to come online. Once it receives confirmation from
the object that it has updated its state, it marks the object as known dead or
alive correspondingly. If a minority of nodes are already not known alive, it
will not kill any additional nodes. Every time a node is told to go offline, gas
is decreased by 1, and no more nodes will be sent offline if gas is 0. When
the client is initialized, three queries ("cmd1", "cmd2", and "cmd3") are sent to
node 0 at the same time, as well as a request for node 0 to become leader:

op init-client : Nat Nat -> Configuration .

eq init-client(s N, g) =

(msg BecomeLeader(1) from client to node(0))

(msg Query("cmd1") from client to node(0))

(msg Query("cmd2") from client to node(0))

(msg Query("cmd3") from client to node(0))

< client : Client | gas : g, num : get-minority(s N),

live : make-neighbors(s N, N), fail : none > .

To initialize the model, the client is initialized and the ring is initialized.
The first parameter is the number of nodes and the second is the amount of gas.

op init : Nat Nat -> Configuration .

eq init(N, g) = init-client(N, g) init-ring(N) .

One additional step was taken, called abstraction by invisible transitions,
where some subset of rules are replaced with equations to reduce the number
of states [6]. This will allow fewer states to be explored during search, but
requires proving that the modification will not hide any important details. Dur-
ing rewriting, all terms are reduced with equations before any rules are applied.
Ideally, rules capture any non-deterministic aspect, since a term can be rewrit-
ten using any matching rule. This comes at the cost of additional states during
the search in verification.

For example, one rule is that a node will simply delete any message intended
for it that is from a previous term. A rule will only apply to an object and
message if the term of the object is at most the term of the message. But
because the term of any object is increasing, a message from a previous term will
never be relevant, and so can safely be deleted. If this consumption is modeled
by a rule, it introduces non-determinism where it is not necessary, since it does
not really matter when the message is consumed as its consumption will always
be side effect free. Making this consumption an equation reduces the number
of states, since every combination and order of message consumption does not
need to be considered. The expression get-term(cont(M)) gets the contents of
a message M and then gets the term number of those contents:
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ceq

(M)

< O : C | currentTerm : N, AS > =

< O : C | currentTerm : N, AS >

if N > get-term(cont(M)) /\ dest(M) == O .

6.4 Verification

Verification in Maude is relatively straightforward using the search command,
and this simplicity is the motivation behind using Maude. With proper verifica-
tion, the middleware allows a simple, correct by construction implementation.
More extensive verification is certainly possible than what is done here. This
is mostly to demonstrate the concept. The search command will perform a
breadth-first-search from the starting state to a matching end state that satis-
fies some condition. Verification is not only desired for certain Raft guarantees,
but also as a helpful debugging tool.

For example, one basic desired property is that in any state reached from a
starting state, if there is a message in the soup, more rewrites should be possible.
This is not a special requirement for Raft, but instead something that should
be true for this implementation. The following command checks this:

search [1] in SIMUL : init(3, 1) =>! M:Msg C:Configuration .

[1] causes the search to stop after it finds any matching state, rather than
finding all of them. SIMUL is the name of the module being tested. init(3,

1) is the starting state, and expands out to a Raft configuration containing
three nodes where 1 failure is allowed to occur at any point in time. The
exclamation in =>! indicates that only final states should be considered. Lastly,
a configuration will match with M:Msg C:Configuration if there is any message
in the state. This takes a couple hours to run on a regular desktop computer, but
returns that there are no solutions. While developing the implementation, the
first few times this ran, solutions were found, indicating bugs in the preliminary
versions. The show path command in Maude with the state number for the
solution will show the rewrites that caused that state to be reached, making
it a very useful debugging tool. This particular example of model-checking
verification helped find messages that were not being consumed correctly.

The three key properties to verify are election safety, log matching, and state
machine safety. Note that each of these are being verified in the init(3, 1)

initial state described before, where there are three nodes with 1 failure possible.
While larger states give more trust that the system is correct, due to the state
space explosion caused by concurrency the runtime becomes unwieldy. Election
safety checks that there can only be one leader at a time, and is simply checked
by looking for any configuration (final or not) with two leader objects:

search [1] init(3, 1) =>* C:Configuration

< O1:Oid : LeaderNode | AS1:AttributeSet >

< O2:Oid : LeaderNode | AS2:AttributeSet > .

As desired, this returns no matches. Log matching checks ensures if two
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logs are the same at some index and term, then all logs up to that point are
equal. State machine safety ensures that once a particular entry is committed,
no other node can commit a different command for that entry and term. Log
matching can be checked with the following command, and replacing “log” with
“committed” can check state machine safety:

search [1] init(3, 1) =>* C:Configuration

< O1:Oid : C1:Cid | log : L11:Ledger ;

entry(ind:Nat, term:Nat, C1:Command) ; L12:Ledger,

AS1:AttributeSet >

< O2:Oid : C2:Cid | log : L21:Ledger ;

entry(ind:Nat, term:Nat, C2:Command) ; L22:Ledger,

AS2:AttributeSet >

such that C1:Command =/= C2:Command or

L11:Ledger =/= L21:Ledger .

In every state, this checks for every pair of objects and for every matching
index and term in their log whether the command for that entry is different
or whether any previous entry is different. Because no solutions are found, log
matching is satisfied. Swapping log with committed shows state machine safety
as well.

6.5 Distributed Implementation

Given the verified model, very few steps are actually required to turn this into a
distributed implementation when using the middleware. Even though the model
is quite complex, no more actual work is needed to make it use the middleware,
as long as the original source is designed well. Copy the model into its own file,
node.maude, and apply the steps.

The first step is extracting out the interface. The syntax required for serial-
izing a message - the contents, labeled MsgCont, as well as object ids - are put in
their own file interface.maude in a module INTERFACE, and the original lines
are deleted. load interface is added to the top of the file. Because the syntax
was deleted from the original modules, any module using the syntax previously
needs to add pr INTERFACE . to continue using the syntax. It is safe to protect
the syntax, since no equations or rules are declared in the interface.

Next, the middleware needs to be initialized. Add load ../mw/mw (or what-
ever the path to the middleware file is) to the top of the file. Make sure it is
loaded after the interface, since the middleware requires the interface module to
be loaded already. The middleware needs to be initialized at the time that the
object is initialized. Recall that the middleware requires a port for the server to
run on, and then a mapping of object ids to locations, given by IP address and
port numbers. Rather than hard-coding the mapping, it will be easier to define
helper functions that implement these maps. Port 8700 will be the port where
the client runs, and 8800 + N will be the port that node N runs on. The module
IP-MAP will define remove-from, that takes an object and map and removes the
object from the map, and get-ip-map, which takes a natural for the number of
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nodes and returns the map where the client maps to port 8700 and each node
maps to its corresponding port on localhost:

mod IP-MAP is

pr MW .

var N : Nat .

var O : Oid .

var M : Map{Oid, Loc} .

var L : Loc .

op remove-from : Oid Map{Oid, Loc} -> Map{Oid, Loc} .

eq remove-from(O, (M, O |-> L)) = M .

op get-ip-map : Nat -> Map{Oid, Loc} .

eq get-ip-map(0) = client |-> ip-port("localhost", 8700) .

eq get-ip-map(s N) = get-ip-map(N), node(N) |->

ip-port("localhost", 8800 + N) .

endm

The middleware should not try to send objects to its own IP, and so this
object should be removed from the map. So, for a node with index i and total
nodes N, the middleware should be initialized as:

init-mw(8800 + i, remove-from(node(i), get-ip-map(N)))

Similarly, for a client for N nodes, it should be initialized as:
init-mw(8700, remove-from(client, get-ip-map(N)))

Lastly, the init-node and init-client code is modified to also create
the middleware. The unneeded code for init-ring is also removed. To test
running locally, start multiple Maude processes with node.maude loaded. In
three of them, execute erew init-node(N, 3), where N goes from 0 to 2. Note
that the nodes have to be initialized first, so the client can send messages. In
one of them, after the nodes are initialized, run erew init-client(3, 2), to
start a client that can communicate with the three nodes and allows two nodes
to fail. The sockets should send and receive messages until no more rewrites are
possible, at which point they will each contain some log and committed entries
that are consistent with each other.

7 Summary and Conclusion

7.1 Summary of Methodology

Creating a semi-automatic methodology for transforming a Maude model into
a distributed implementation is important to minimize the number of imple-
mentation decisions the user has to make which can introduce bugs. While
each model will presents its own challenges when converting to a distributed
implementation, the steps can broadly be categorized as follows:

1. Choose a distributed algorithm to implement. Keep in mind that those
with randomness or timing may be more difficult to verify. Consider
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changing certain aspects of the algorithm to reduce the number of states,
such as reducing the number of messages sent.

2. Formally define the model of the distributed algorithm in Maude. Follow
the concurrent object programming pattern by extending CONFIGURATION,
where objects communicate using messages to each other. For simplicity,
ensure messages are formed by the operator msg from to or msg to where
the contents of a message have sort MsgCont, as this will help when adding
the middleware later. It will also be useful to define a separate module
for initializing any necessary objects. Placing this in its own module will
help because this code is likely to be changed the most when creating the
distributed implementation. Avoid the use of # in anything that may be
a part of a message, as this can break the middleware because of its use
of buffered sockets.

3. Verify important properties of the model using model-checking in Maude.
This can be done using the search command, which searches from some
starting state for some final or intermediate state that satisfies some prop-
erty. For verifying LTL temporal logic properties, it is likewise possible to
use the Maude LTL model-checker [4]. For models with large numbers of
states, consider changing initialization parameters to reduce the number
of states. For example, reduce the number of nodes in the network, or for
models simulating failure, reduce the number of failures that can occur.

4. Optionally, split the source code into separate files so that each process
will only have the rules and operators that it requires. For example, in a
client-server architecture, split the client code and server code into their
own files. This will allow each one to be modified independently more
easily.

5. Extract the interface into its own file, typically called interface.maude.
This interface should define the sort MsgCont and include all syntax neces-
sary to parse any message. It should also extend the CONFIGURATION
module, which defines the Oid sort. Hence, all operators that may be in-
cluded in a message content or object id should be moved to this module.
Modify the existing code to load this file and include the module where
necessary.

6. Load the middleware file after the interface is loaded. This middleware
file defines a MESSAGE module that defines the message syntax that should
be used. In step 2, the model should have defined the operators message
from to and/or message to for objects to use to send messages to each
other. However, the middleware code also defines these operators, so these
previously defined operators should be deleted to avoid confusion, and any
modules that use this syntax should protect the MESSAGE module that was
loaded with the middleware. This step should be done for each file if the
source code is split over multiple files.
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7. Rewrite the initialization code to also initialize the middleware. In the
initialization module, protect the module MW. The middleware needs to be
initialized with the port it should listen on and a map from object ids to
locations, defined by an IP and a port. To test locally, just use the IP of
"localhost" for each object.

8. To run the distributed implementation, start a Maude process for each
node in the network. Load the file containing the code by using load

filename. Use the erew command to rewrite the initialization state that
was defined. Make sure the nodes are started in an order so that no node
tries to communicate with a node that is not started yet, such as a client
trying to connect to a server that is not running, as this will cause errors.

See appendix A for an example of a model of ring-leader election trasformed
to a distributed imlementation in detail following these steps. There are some
other useful ideas to keep in mind:

• Rework the algorithm to avoid timing and randomization if it becomes
a verification issue. Even though Raft makes use of timing and random-
ization, this thesis developed a Raft model without the use of either by
making some observations about their role and changing the algorithm to
not require them.

• Use port numbers that correspond to object ids. For many of these ex-
amples, each object was given an index as some natural number. For
example, when running locally, the port number for object with index N

would be 8800 + N. This ensures that multiple objects do not try to open
the same port.

• Use verification also as a debugging tool. While a distributed algorithm
may have certain guarantees for correctness, a particular model of that
algorithm may have additional properties that should be true. For exam-
ple, the Raft model in this thesis had the property that there should be
no messages in the pool in any final state, even though Raft itself makes
no such guarantee. By failing to verify this property in preliminary mod-
els, bugs in those models were exposed. The Maude command show path

state-number can show the sequence of rewrites and states that led to
some state, further helping debugging.

• Multicasting is a useful pattern where one objects sends a message to a set
of nodes. Even though the message operator defined in the middleware can
only send a message to one destination, it is a common case that an object
wants to send a message to multiple nodes at once. To do this, create an
operator multicast from to where the destination is a set of nodes, and
include equations that cause this to expand to a set of messages.

• Reduce the number of states by using abstraction by invisible transitions.
Rules are intended to capture non-determinism in a system, although
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sometimes they may cause non-determinism to appear in a system where
it is not necessary. For example, in the Raft case study, all nodes should
delete messages from older terms. But because term number in nodes is
increasing and the term number of a particular message never changes, re-
placing the rule to delete these older messages with a similar equation does
not actually change the outcome of the model, and making this change
reduces the number of states since the degree of non-determinism in the
model is reduced.

7.2 Future Considerations

For the future, more features of the middleware can be created. For example,
the middleware could be expanded to include more than just TCP sockets, such
as files. Other objects could directly query the middleware, such as getting a list
of all objects that it knows about. The middleware could become less static, so
if an object is created in a new location, it can create a new socket for it. If an
object moves from one process to another, the middleware could be updated with
its new location. Middlewares on different processes could communicate about
what objects they know about, to avoid each location having to be initialized
with the location of all objects. The middleware could be smarter about how
it sends messages, such as sending multiple messages at once or avoiding trying
to send a message that has a destination of the location of the middleware.

Additionally, new distributed systems can be implemented, or the Raft
model shown here could be greatly extended. Due to not having used any
real-time or probabilistic features in the Maude model, the Raft model is some-
what limited. For example, the leader election process is greatly simplified,
and issues such as split votes are not considered at all. Developing distributed
systems that use randomization or timing would help create more realistic and
usable implementations.

7.3 Conclusion

This thesis serves as an introduction to modeling, verifying, and implementing
distributed algorithms in Maude. It is essential to verify distributed algorithms,
and modeling in Maude and then using the methodology and middleware de-
scribed here to transform the model into a distributed implementation minimizes
the risk of bugs being introduced. Through four case studies, the patterns and
design of the middleware were demonstrated, as well as patterns of creating
distributed systems in Maude.
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[1] Gul Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based speci-
fication language for probabilistic object systems. Electr. Notes Theor. Com-
put. Sci., 153(2):213–239, 2006.

28



[2] M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model-checking
and quantitative analysis tool. in Proc. CALCO 2011, Springer LNCS 6859,
386–392, 2011.
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A An Example of the Methodology: Ring Leader
Election

To fully demonstrate the methodology, this section works out the 8 steps out-
lined in the conclusion for transforming from a Maude model to a distributed
implementation.

Step 1: Choose a distributed algorithm to implement. For this, ring Leader
Election is used, based on an exercise from the Formal Modeling and Analysis
of Distributed Systems reference. Leader election involves a network of nodes
attempting to designate one of them as a leader, usually satisfying some criteria.
This is a common mechanism in distributed networks, and a different one was
looked at in Raft. In ring leader election, each node only knows about one other
neighbor. Each node has a value associated with it, and the node with the
highest value should become leader and let all other nodes know.

Step 2: Formally define the model of the distributed system in Maude. This
model can be found below, or in the provided code in leader/original.maude.
In ring leader election, one of the nodes receives a message to start the election,
which passes its own identifier and value to the next node. Each node compares
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the value to its own value, and decides to propagate the previous candidate or
itself. After the first pass around the ring, it passes a second time around the
ring, and each node updates its known leader with the leader passed around.

The NODE-SYNTAX and NODE-RULES modules define the Node class. A node
can be in one of the phases start, waiting, or finished. A node is in the
start phase before it receives the first pass, in waiting after it receives the
first pass, and in finished after it receives the second pass. It has three other
attributes: value, leader, and next. The attribute value is the value being
compared for leader, leader is the object id of the expected leader, and next

is the next node in the ring. The RANDOM module is also protected since it is
used to generate a random value for each node. The [start-election] rule
causes the node to pass around the best message with its own value and id. The
[vote-best] and [vote-self] rules cause a node to propagate the candidate
around, this candidate being either the existing candidate or itself if its value
is higher. After the first pass, the [propagate-results] rule causes a node to
share the best leader with all the other nodes.

mod NODE-SYNTAX is

ex CONFIGURATION .

pr NAT .

sort MsgCont .

op node : Nat -> Oid [ctor] .

op best : Oid Nat -> MsgCont [ctor] .

op startelection : -> MsgCont [ctor] .

op Node : -> Cid [ctor] .

op msg_to_ : MsgCont Oid -> Msg [ctor] .

sort Phase .

op start : -> Phase .

op waiting : -> Phase .

op finished : -> Phase .

op next :_ : Oid -> Attribute [ctor] .

op value :_ : Nat -> Attribute [ctor] .

op leader :_ : Oid -> Attribute [ctor] .

op phase :_ : Phase -> Attribute [ctor] .

op init : Nat -> Configuration .

endm

30



mod NODE-RULES is

pr NODE-SYNTAX

vars O O2 O3 : Oid .

var A : AttributeSet .

vars N N2 : Nat .

var P : Phase .

--- start the election process

rl [start-election] :

(msg startelection to O)

< O : Node | next : O2, value : N, phase : start, A > =>

< O : Node | next : O2, value : N, phase : waiting, A >

(msg best(O, N) to O2) .

--- once the election is over, just propagate the

--- result and send the message to the next node

rl [propagate-results] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, phase : waiting, leader : O2, A >

=>

< O2 : Node | next : O3, phase : finished, leader : O, A >

(msg best(O, N) to O3) .

--- if the previous candidate is better, propagate

crl [vote-best] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, value : N2, phase : start, A > =>

< O2 : Node | next : O3, value : N2, phase : waiting, A >

(msg best(O, N) to O3)

if N > N2 .

--- if self is better, propagate self

crl [vote-self] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, value : N2, phase : start, A > =>

< O2 : Node | next : O3, value : N2, phase : waiting, A >

(msg best(O2, N2) to O3)

if N <= N2 .

endm
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mod NODE-INIT is

pr NODE-RULES .

pr RANDOM .

op init-node : Nat Nat -> Configuration .

---- initialize node N pointing to node N2

eq init-node(N, N2) =

< node(N) : Node | next : node(N2), value : random(N),

phase : start, leader : node(N) > .

op init-ring : Nat -> Configuration .

op init-ring-helper : Nat Nat -> Configuration .

eq init-ring(N) = (msg startelection to node(0))

init-ring-helper(0, N) .

ceq init-ring-helper(N, N2) = init-node(N, N + 1)

init-ring-helper(N + 1, N2) if N < N2 .

eq init-ring-helper(N, N) = init-node(N, 0) .

endm

Step 3: Verify important properties of the model using model-checking in
Maude. There are three important properties to check. First, in any final state,
no node should be in the waiting state. Next, all nodes should agree on the
leader. Lastly, there should not be a node with a higher value than the leader.
As usual, each of these should have no solutions.

search init-ring(5) =>! C:Configuration

< O:Oid : Node | phase : waiting, A:AttributeSet > .

search init-ring(5) =>! C:Configuration

< O1:Oid : Node | leader : L1:Oid, A1:AttributeSet >

< O2:Oid : Node | leader : L2:Oid, A2:AttributeSet >

such that L1:Oid =/= L2:Oid .

search init-ring(5) =>! C:Configuration

< L1:Oid : Node | leader : L1:Oid, value : N1:Nat ,

A1:AttributeSet >

< O2:Oid : Node | value : N2:Nat, A2:AttributeSet >

such that N2:Nat > N1:Nat .

Step 4: Optionally, split the source code into multiple files. This is not
necessary, as there is only one type of node. If, for example, this were a client-
server architecture, splitting this code might be useful so the client and server
code are in separate files.

Step 5: Extract the interface into its own file. For this, the file inter

face.maude is created. Any syntax that may go into parsing a message must
be moved from the source file to this interface file. For this example, the
operators to move are node, best, and startelection. So, the contents of
interface.maude are:
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mod INTERFACE is

ex CONFIGURATION .

pr NAT .

sort MsgCont .

op node : Nat -> Oid [ctor] .

op best : Oid Nat -> MsgCont [ctor] .

op startelection : -> MsgCont [ctor] .

endm

The modules NODE-RULES and NODE-INIT can stay unchanged, but the fol-
lowing code should replace the NODE-SYNTAX module:

load interface

mod NODE-SYNTAX is

pr INTERFACE .

pr NAT .

op Node : -> Cid [ctor] .

op msg_to_ : MsgCont Oid -> Msg [ctor] .

sort Phase .

op start : -> Phase .

op waiting : -> Phase .

op finished : -> Phase .

op next :_ : Oid -> Attribute [ctor] .

op value :_ : Nat -> Attribute [ctor] .

op leader :_ : Oid -> Attribute [ctor] .

op phase :_ : Phase -> Attribute [ctor] .

op init : Nat -> Configuration .

endm

Step 6: Load the middleware file. In the source file, the middleware should
be loaded, and the message syntax of the middleware defined in MESSAGE should
replace the message syntax used by the model. Hence, the lines load ../mw/mw

(or whatever the path to the middleware is) and pr MESSAGE . should be
added, and the line op msg to : MsgCont Oid -> Msg [ctor] . should be
deleted, since the rules should use the operator with the same name defined by
the MESSAGE module. If this example used a different syntax for messages, this
syntax would need to be changed in each rule to follow the syntax defined in the
middleware. However, because the middleware and this example use the exact
same syntax for messages, conveniently none of the rules need to change. The in-
terface file and the modules NODE-RULES and NODE-INIT can remain unchanged,
but the syntax module should be replaced with:
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load interface

load ../mw/mw

mod NODE-SYNTAX is

pr INTERFACE .

pr MESSAGE .

pr NAT .

op Node : -> Cid [ctor] .

sort Phase .

op start : -> Phase .

op waiting : -> Phase .

op finished : -> Phase .

op next :_ : Oid -> Attribute [ctor] .

op value :_ : Nat -> Attribute [ctor] .

op leader :_ : Oid -> Attribute [ctor] .

op phase :_ : Phase -> Attribute [ctor] .

op init : Nat -> Configuration .

endm

Step 7: Rewrite the initialization code to also initialize the middleware. For
this example, node N will run on localhost on port 8100 + N. Each middleware
only needs to know the location of the next object in the ring. Because it is no
longer necessary to initialize a ring, the code for initializing a ring in NODE-INIT

can be deleted. The code for init-node is otherwise mostly unchanged, except
for also initializing the middleware. So, the NODE-INIT module is replaced with:

mod NODE-INIT is

pr NODE-RULES .

pr RANDOM .

pw MW .

op init-node : Nat Nat -> Configuration .

---- initialize node N pointing to node N2

eq init-node(N, N2) =

init-mw(8100 + N, node(N2) |->

ip-port("localhost", 8100 + N2))

< node(N) : Node | next : node(N2), value : random(N),

phase : start, leader : node(N) > .

endm

At this point, the source code is finished, and can also be found in leader/

node.maude. The contents of this file should be:
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load interface

load ../mw/mw

mod NODE-SYNTAX is

pr INTERFACE .

pr MESSAGE .

pr NAT .

op Node : -> Cid [ctor] .

sort Phase .

op start : -> Phase .

op waiting : -> Phase .

op finished : -> Phase .

op next :_ : Oid -> Attribute [ctor] .

op value :_ : Nat -> Attribute [ctor] .

op leader :_ : Oid -> Attribute [ctor] .

op phase :_ : Phase -> Attribute [ctor] .

op init : Nat -> Configuration .

endm
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mod NODE-RULES is

pr NODE-SYNTAX

vars O O2 O3 : Oid .

var A : AttributeSet .

vars N N2 : Nat .

var P : Phase .

--- start the election process

rl [start-election] :

(msg startelection to O)

< O : Node | next : O2, value : N, phase : start, A > =>

< O : Node | next : O2, value : N, phase : waiting, A >

(msg best(O, N) to O2) .

--- once the election is over, just propagate the

--- result and send the message to the next node

rl [propagate-results] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, phase : waiting, leader : O2, A >

=>

< O2 : Node | next : O3, phase : finished, leader : O, A >

(msg best(O, N) to O3) .

--- if the previous candidate is better, propagate

crl [vote-best] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, value : N2, phase : start, A > =>

< O2 : Node | next : O3, value : N2, phase : waiting, A >

(msg best(O, N) to O3)

if N > N2 .

--- if self is better, propagate self

crl [vote-self] :

(msg best(O, N) to O2)

< O2 : Node | next : O3, value : N2, phase : start, A > =>

< O2 : Node | next : O3, value : N2, phase : waiting, A >

(msg best(O2, N2) to O3)

if N <= N2 .

endm
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mod NODE-INIT is

pr NODE-RULES .

pr RANDOM .

pr MW .

op init-node : Nat Nat -> Configuration .

---- initialize node N pointing to node N2

eq init-node(N, N2) =

init-mw(8100 + N, node(N2) |->

ip-port("localhost", 8100 + N2))

< node(N) : Node | next : node(N2), value : random(N),

phase : start, leader : node(N) > .

endm

Step 8: Run the distributed implementation. To run the distributed imple-
mentation of ring leader election with four nodes, open four separate processes
in the same directory as node.maude. In the first one, execute:

load node .

erew init-node(0, 1) .

In the second,

load node .

erew init-node(1, 2) .

In the third,

load node .

erew init-node(2, 3) .

In the last,

load node .

erew (msg startelection to node(3)) init-node(3, 0) .

It should even be visually apparent that messages are being sent around the ring
twice from the terminal output. Make sure the first three processes are running
before the fourth is executed, as otherwise a node may try to communicate with
a node that is not online, causing errors.
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