RECOGNITION VIA SPARSE REPRESENTATION: ROBUSTNESS, OCCLUSION, AND FEATURE SELECTION

John Wright, Allen Yang, Arvind Ganesh and Yi Ma

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign
Recognition via Sparse Representation: Robustness, Occlusion and Feature Selection

John Wright, Allen Yang, Arvind Ganesh, and Yi Ma

1308 West Main Street
Urbana, Illinois 61801-2307

UILU-ENG-07-2205
DC-228

This technical report combines two commonly-themed submissions to ICCV 2007. The two papers reconsider several fundamental problems in recognition from the perspective of sparsity. The representation sought by recognition systems is inherently sparse, since the test image should ideally be interpreted only in terms of training images of the same object. Our algorithms exploit this sparsity, classifying a test image based on a sparse representation in terms of the training images, computed via \(l_1 \)-minimization.

The first of the two papers investigates the implications of this framework for feature selection. We show that, in agreement with the theory of compressive sensing, if sparsity is properly enforced, the choice of features is no longer critical. What is critical is that the number of features is sufficient and that the sparse representation is properly found. In this context, highly accurate recognition is possible using severely down sampled images or even randomly generated features!

The second paper shows how robust recognition in the presence of occlusion can also be cast as a sparse representation problem. Here, our algorithm represents the test image as a sparse linear combination of the training images, plus a sparse error due to occlusion. The representation is efficiently and effectively computed by \(l_1 \)-minimization. We investigate the implications of this framework for the engineering of recognition systems showing how to predict how much occlusion the algorithm can tolerate, and how to choose the training data to maximize robustness.
Recognition via Sparse Representation: Robustness, Occlusion and Feature Selection

John Wright∗† Allen Yang† Arvind Ganesh Yi Ma

April 13, 2007

Abstract

This technical report combines two commonly-themed submissions to ICCV 2007. The two papers reconsider several fundamental problems in recognition from the perspective of sparsity. The representation sought by recognition systems is inherently sparse, since the test image should ideally be interpreted only in terms of training images of the same object. Our algorithms exploit this sparsity, classifying a test image based on a sparse representation in terms of the training images, computed via \(\ell_1 \)-minimization.

The first of the two papers investigates the implications of this framework for feature selection. We show that, in agreement with the theory of compressive sensing, if sparsity is properly enforced, the choice of features is no longer critical. What is critical is that the number of features is sufficient and that the sparse representation is properly found. In this context, highly accurate recognition is possible using severely downsampled images or even randomly generated features!

The second paper shows how robust recognition in the presence of occlusion can also be cast as a sparse representation problem. Here, our algorithm represents the test image as a sparse linear combination of the training images, plus a sparse error due to occlusion. The representation is efficiently and effectively computed by \(\ell_1 \)-minimization. We investigate the implications of this framework for the engineering of recognition systems, showing how to predict how much occlusion the algorithm can tolerate, and how to choose the training data to maximize robustness.

∗John Wright and Yi Ma would like to thank Heung-Yeung Shum, Xiaoou Tang and the many researchers at Microsoft Research Asia for useful and informative discussions on face recognition. The authors would also like to thank Yoav Sharon for discussions on polytope geometry and the equivalence breakdown point.
This work was supported by NSF CAREER IIS-0347456, NSF CRS-EHS-0509151, NSF CCF-TF-0514955, ONR YIP N00014-05-1-0633. Yi Ma was also partially supported by UC Berkeley as a visiting professor.
†John Wright, Arvind Ganesh and Yi Ma are affiliated with the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. email: {jnwright,abalasu2,yima}@uiuc.edu
‡Allen Yang is affiliated with the Department of Electrical Engineering and Computer Science, UC Berkeley. email: yang@eecs.berkeley.edu