Phase-controlled dual-comb coherent anti-Stokes Raman spectroscopic imaging

Haoyun Wei¹, *, Kun Chen², Tao Wu¹ and Yan Li¹

1. Department of Precision Instrument, Tsinghua University, Beijing, China
2. Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA

*email: luckiwei@mail.tsinghua.edu.cn

Jun. 19, 2018
Advantage of CARS imaging

• Intrinsic vibrational contrast, label-free imaging.
• Coherent signal accumulation, high-speed imaging.
• 3D sectioning capability.
• Near-infrared excitation, allowing deep penetration.

CARS tissue imaging of fresh mouse skin

https://bernstein.harvard.edu/research/cars-why.htm

Multiplex/Broadband vs Narrowband CARS

- Narrowband CARS
 - High speed ~ 6.4 μs
- Narrowband

How to achieve broadband and high-speed CARS microscopy simultaneously?

- Broadband CARS
 - Broadband range
 - Low speed ~ 3.5 ms

Evans C L, et al. PNAS, 2005
Phase-controlled pulse for CARS excitation

Femtosecond pulse

Picosecond pulse

\(E_p(t) e^{-i\omega_p t} \)

\(E_p(t) e^{-i\omega_p t - \alpha t^2} \)

Second-order phase control

Chirp by glass rod

Sellmeier dispersion formula

\[
n^2(\lambda) - 1 = \frac{B_1 \lambda^2}{\lambda^2 - C_1} + \frac{B_2 \lambda^2}{\lambda^2 - C_2} + \frac{B_3 \lambda^2}{\lambda^2 - C_3}
\]

\(\phi_2 = \frac{\lambda^3}{2\pi c^2 \frac{d^2n}{d\lambda^2}} L \)

Chirp by grating pairs

Concentrate optical power into a single Raman vibrational mode -> Spectral Focusing

Tsinghua university Group of Interferometry & Spectroscopy
Spectral focusing CARS

- Two broadband femtosecond pulses
- Same chirp

High sensitivity: Concentrate most of the optical power into a single molecular vibration

Broadband detection: Scanning delay-time can excite different molecular vibrations

High resolution: Flexible and precise control of Linear mapping between delay time and IFD

Tsinghua university Group of Interferometry & Spectroscopy
Spectral focusing CARS

UTS Motorized Linear Stages, Newport

Tsinghua university Group of Interferometry & Spectroscopy

Broadband CARS spectra of olive oil

- Travel Range 2 mm
- Maximum Speed 20 mm/s
- Measurement time >100 ms/pixel
From mechanical scanning to optical scanning

◆ Mechanical motion

<table>
<thead>
<tr>
<th></th>
<th>Mechanical</th>
<th>Optical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning speed</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>Scanning stability</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Enable dynamics analysis</td>
<td>limited</td>
<td>yes</td>
</tr>
</tbody>
</table>

◆ Dual-comb optical scanning

\[
\text{Comb1 } f_{\text{rep}}
\]

\[
\text{Comb2 } f_{\text{rep}} + \delta f_{\text{rep}}
\]

Dual-comb asynchronous optical sampling
Principle of phase-controlled dual-comb CARS

◆ Dual-comb asynchronous optical sampling
 -> motionless configuration
 -> High speed scanning

Yb-dope fiber
Comb 1 f_r
100 MHz

Yb-dope fiber
Comb 2 $f_r+\Delta f$
100 MHz-1kHz

◆ Phase-controlled dual-comb
 -> Same chirp
 -> Spectral focusing CARS excitation

Tsinghua university Group of Interferometry & Spectroscopy
Dual-comb CARS experimental system

- The amount of Chirp: 52000 fs2
- Chirp parameter: 3.03×10^{-6} fs$^{-2}$
- Pump pulse: (43 fs) 4.01 ps
- Stokes pulse: (79 fs) 2.21 ps

K. Chen, T. Wu, T. Chen, HY. Wei and et al., Optics Letters, 42(18), 2017

Tsinghua university Group of Interferometry & Spectroscopy
Dual-comb CARS experimental system

◆ Dual-comb Source

Comb 1: frep~100 MHz±100kHz
center wavelength ~1050 nm
pulse width ~65 fs

Comb 2: frep~100 MHz±100kHz
center wavelength ~1060 nm
pulse width ~43 fs

Rubidium atomic clock

Frequency standard source

Tsinghua university Group of Interferometry & Spectroscopy
Dual-comb CARS experimental system

- Generation of Stokes Beam
Dual-comb CARS experimental system

Data acquisition and processing

\[\delta f_r = 100 \text{Hz} \]

Retinoic acid (RA)

Tsinghua university Group of Interferometry & Spectroscopy
Dual-comb CARS microscopy

High-speed broadband CARS microscopy

CARS 3D imaging for mixture of β-carotene and retinoic acid (RA)

- Imaging size: 100 μm × 100 μm × 20 μm
- Pixel size: 1 μm × 1 μm × 1 μm
- Spectral span: 1100-1700 cm⁻¹
- Spectral measurement time: 0.5 ms
- Spectral resolution: 12 cm⁻¹
- Pixel refresh rate: 1200 Hz
- Imaging speed: 8.3 s/frame
Dual-comb CARS microscopy

- High-speed broadband CARS microscopy

CARS 3D imaging for mixture of β-carotene and retinoic acid (RA)

- Imaging size: 100 μm x 100 μm x 21 μm
- Pixel size: 1 μm x 1 μm x 1 μm

Tsinghua university Group of Interferometry & Spectroscopy
Performance of spectral focusing dual-comb CARS microscopy
Performance of spectral focusing dual-comb CARS microscopy

- Repetition frequency difference δf_r
- Refresh rate δf_r
- Delay time step $\Delta \tau = \frac{\delta f_r}{f_r^2}$
- Real delay time $\tau_{real} = \frac{1}{f_r}$
- Effect delay time $\tau_{eff} = \tau_{pump} + \tau_{Stokes}$
- Effect measurement time $t_{eff} = \frac{\tau_{eff}}{\Delta \tau} \cdot \frac{1}{f_r} = \tau_{eff} \frac{f_r}{\delta f_r}$
- Spectral step $\Delta \Omega = \Delta \tau \cdot \alpha = \frac{\delta f_r}{f_r^2} \cdot \alpha$
- Duty cycle $dc = \frac{t_{eff}}{t_{real}} = \tau_{eff} \cdot f_r$

Experiment results

Simulated results

Tsinghua university Group of Interferometry & Spectroscopy
Conclusion

The proposed dual-comb CARS technique enables high speed and broadband measurement

◆ Advantages
 - High-speed and Multiplex nature
 - Motionless and Synchronization-free
 - The SNR of CARS spectrum is not significantly decreased when increase refresh rate
 - Refresh rate (δf_r) is proportional to the square of repetition frequency (f_r)
 ——1GHz combs may achieve up to hundreds of kHz refresh rate
 while the resolution and SNR remain the same in theory

◆ Disadvantages
 - Low duty cycle $\sim 6 \times 10^{-4}$
 - Low pulse energy utilization
Acknowledgement

• Supported by the State Key Laboratory of Precision Measurement Technology & Instrument of Tsinghua University and the Tsinghua University Initiative Scientific Research Program.
Thanks for listening!