LOW-TEMPERATURE HIGH PRECISION MEASUREMENTS OF LINE MIXING and COLLISIONAL INDUCED ABSORPTION IN THE OXYGEN A-BAND

ERIN M. ADKINS, MÉLANIE GHYSELS, DAVID A. LONG, JOSEPH T. HODGES, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.

Because of the constant mixing ratio of molecular oxygen (O_2) within the Earth’s atmosphere, the O_2 A-band is commonly used in satellite and remote sensing measurements as a measure of the airmass. A recent collaborative effort has produced a self-consistent integrated spectroscopic model for the O_2 A-Band that simultaneously accounts for high-order line-shapes, line mixing (LM), and collisional induced absorption (CIA). This model has improved OCO-2 mission retrievals of dry air CO$_2$, however, limitations in existing spectroscopic models still lead to airmass dependent biases. Currently, model development is limited by a lack of high resolution experimental data at low temperatures and in the R-branch. To address this, measurements of the entire O_2 A-band were recently made with a variable-temperature cavity ring-down spectrometer (CRDS) over a range of temperatures, pressures, and molar fractions. Because of the limited dynamic range of the CRDS system, at high molar fractions of O_2 saturation can occur at the line cores of strong transitions. Therefore, a range of molar fraction O_2 samples were employed. Low mole fraction data, which was unaffected by saturation provided information on the temperature dependence of high-order line-shape parameters. Conversely, high molar fraction data provided information on LM and CIA effects that dominate absorption in the troughs between saturated transitions. By combining this high-resolution experimental data, that covers both the entire O_2 A-Band as well as a range of temperatures, with existing datasets, these results aim to improve on LM and CIA models for the next iteration of the global O_2 A-Band model.