The ν_2 and ν_5 fundamental bands of thionyl chloride (SOCl$_2$) were measured in the 420 cm$^{-1}$ - 550 cm$^{-1}$ region using the FT-Far-IR spectrometer exploiting synchrotron radiation on the AILES beamline at SOLEIL. A straightforward line-by-line analysis is complicated by the high congestion of the spectrum due to both the high density of SOCl$_2$ rovibrational bands and the presence of the strong ν_2 fundamental band of sulfur dioxide produced by hydrolysis of SOCl$_2$ with residual water. To overcome this difficulty, our assignment procedure for the two isotopologues $^{32}\text{S}^{16}\text{O}^{35}\text{Cl}_2$ and $^{32}\text{S}^{16}\text{O}^{35}\text{Cl}^{37}\text{Cl}$ alternates between a direct fit of the spectrum, via a global optimization technique, and a traditional line-by-line analysis. The global optimization, based on an evolutionary algorithm a, produces rotational constants and band centers that serve as useful starting values for the subsequent spectroscopic analysis. This work also helped to identify the pure rotational submillimeter spectrum of $^{32}\text{S}^{16}\text{O}^{35}\text{Cl}_2$ in the $\nu_2 = 1$ and $\nu_5 = 1$ vibrational states. A global fit gathering all the data of SOCl$_2$ from the microwave, submillimeter, and far-infrared spectral regions b c has been performed d, showing that no major perturbation of rovibrational energy levels occurs for the main isotopologue of the molecule.

cM. A. Martin-Drumel et al., J. Chem. Phys., 144(8), (2016), 084305