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ABSTRACT

Regression test selection (RTS) aims to speed up regression testing by rerunning only tests

that are affected by code changes. RTS can be performed using dynamic or static analysis

techniques. A recent study showed that static and dynamic RTS can perform similarly for

some medium-sized Java projects. However, the results also showed that static RTS can be

sometimes unsafe, missing to select some tests that dynamic RTS selects, and reflection was

the only cause of unsafety among the evaluated projects.

In this thesis, we investigate five techniques—three purely static techniques and two hybrid

static-dynamic techniques—to make static RTS safe with respect to reflection. We imple-

mented four of these reflection-aware techniques as extensions to one reflection-unaware (RU)

static RTS technique in a tool called STARTS. We evaluated the fifth technique but did not

yet fully implement it. To assess reflection-aware SRTS techniques, we measured benefits

and costs of four implemented reflection-aware techniques by comparing their end-to-end

times with the RU technique and with RetestAll—the latter runs all tests after every code

change. We also compared safety and precision of all five static RTS techniques relative to

Ekstazi, a state-of-the-art dynamic RTS technique.

Our results on 805 revisions of 22 open-source Java projects show that all reflection-aware

techniques we evaluated can make static RTS safe with respect to reflection, but their costs

vary widely. The best purely static technique in our study is based on border analysis with

minimal border methods which avoids analyzing JDK and saves, on average, 14.1% of the

end-to-end time of RetestAll. Furthermore, the results show that a hybrid technique based

on per-test analysis is very promising in terms of safety and precision. On the other hand,

the worst techniques were based on string analysis; these techniques are imprecise and often

lead to selecting to re-run all tests. Taken together, these results show the need for more

research into purely static techniques for making static RTS reflection aware.
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CHAPTER 1: INTRODUCTION

Regression testing [42] reruns tests after every code change to check against regression

bugs that occur when code changes break previously working functionality. Regression

testing is an important activity during software evolution, and successful software systems

spend most of their lifespan in a maintenance phase during which they continuously undergo

different kinds of changes. However, running all tests in a test suite after every change—often

called RetestAll—can be quite expensive both in terms of disrupting programmers’ workflow

(programmers have to wait for test results) and requiring machine time (potentially many

tests or long-running tests need to be run). For example, we found out from a recent private

communication with a Huawei engineer that the regression test suite for one Huawei product

takes over seven weeks to run. Other companies, such as Google and Microsoft, have also

publicly reported their ever-growing costs of regression testing and some steps they are

taking to reduce such costs [11, 12,15,17,31,39].

Regression test selection (RTS) [14, 22, 23, 32, 33, 35–37, 43] is a way to reduce regression

testing costs by rerunning only affected tests whose pass/fail behavior may flip as a result of

code changes. In other words, RTS saves the time that would have been spent on needlessly

running the tests whose behavior cannot flip. An RTS technique first finds the dependencies

that each test requires; then, given a code change, the technique selects, as affected, all

tests for which at least one dependency changed. It is desirable that an RTS technique be

safe [36], i.e., select to rerun all affected tests, so that it does not miss to catch any regression

bug. Additionally, an RTS technique is precise if it selects to rerun only affected tests.

RTS can collect dependencies statically or dynamically, and previous research has mostly

focused on dynamic approaches [14,33,37,42,43]. Recently, both Ekstazi [13,14] (the state-

of-the-art dynamic RTS technique for Java) and STARTS [22, 23] (a purely static RTS

technique) demonstrated that, for both dynamic and static RTS, performing RTS at the

class level gave a better end-to-end speedup over RetestAll than performing RTS at the

method level. Ekstazi instruments the test code and the code under test to collect class-

level test dependencies while running the tests. Practitioners have started to adopt the

Ekstazi tool [13] and integrated it in the build systems of some open-source projects, like

Apache Camel [1], Apache Commons Math [2], and Apache CXF [3].

Despite the recent progress and adoption, dynamic RTS has some limitations due to its

reliance on dynamic test dependency collection [9]. For example, in cases of exceptions

or non-exhaustive thread-schedule exploration, dynamic RTS may miss to collect complete

coverage, resulting in unsafe RTS. The overhead of dynamic dependency collection may
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also be prohibitive in resource-constrained settings where dynamic coverage collection can

cause tests to exceed tight time bounds (e.g., real-time systems), or in environments where

storing and updating of coverage information would be too costly (e.g., ultra-large software

ecosystems like those at Google and Microsoft). Static RTS does not suffer from these

problems of dynamic analysis, because static RTS uses static analysis to over-approximate

the test dependencies for safe RTS. Static RTS performs its analysis at compile time and

does not need to instrument the code or to run the tests for its analysis.

A recent study [22] showed that static RTS [5, 20, 35] can perform similarly as dynamic

RTS at the class level for some medium-sized Java projects. Static RTS does not require

instrumenting code and running tests to find test dependencies, but instead computes test

dependencies statically. Specifically, at the class-level, static analysis over-approximates

test dependencies by constructing and traversing an inter-type relation graph (IRG) [33], in

which nodes are types (e.g., Java classes, interfaces, enums, etc.) and edges represent use

or inheritance relationships among nodes. The results showed that static, class-level RTS

has a similar performance as Ekstazi. However, static RTS was not always safe; in a small

number of cases, it missed to select some tests that Ekstazi selected. The only observed

cause of unsafety in those experiments was reflection [22].

Reflection is widely used in object-oriented programming languages and allows applica-

tions to examine or modify their runtime behavior in a manner not possible with compile

time. For example, in Java, one class, A, can pass the name of another class as a string,

"B", to some API which creates instances of B which can then be used by instances of A at

runtime. The standard Java library methods for dynamically creating instances of B from

instances of A are Class.forName and Class.newInstance; they allow creating objects that

represent classes and creating instances of those classes, respectively. Although reflection is

a powerful feature that makes code more extensible, it poses significant challenges for any

static analysis [8, 21, 26–30, 41]. In particular, for reflection-unaware (RU) static class-level

RTS, the IRG would not contain the reflective edges, such as from A to B (unless A happens

to also have a compile-time static dependency on B). Thus RU technique could miss to select

some test that is affected by code changes.

Many open-source Java projects use reflection either directly in their own source code

or via third-party libraries on which they depend. Our analysis shows that 43.7% of the

1,000 most-forked Java projects on GitHub invoke some reflection API directly in their

source code projects. Other researchers have also confirmed the wide-spread use of reflection

among Java projects; Li et al. [27] reported that 87.6% of 500 randomly chosen Android

apps use reflection, and Landman et al. [21] found that analyzing reflection is necessary

for 77.9% of the 457 Java projects sampled from Ohloh/OpenHub. It is therefore critical
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that static RTS techniques handle reflection to be safe in practice. The problem we address

is to investigate reflection-aware (RA) techniques for static RTS, which can (statically or

dynamically) recover reflective edges that RU techniques may miss, and add them to the

IRG, at the lowest possible cost in terms of the end-to-end time.

We investigate five RA techniques that make static RTS as safe as dynamic RTS with

respect to reflection. Three techniques are purely static—Näıve Analysis, String Analysis,

and Border Analysis— and the other two are hybrid static-dynamic—Dynamic Analysis and

Per-test Analysis.

Näıve Analysis recovers reflective edges by adding an IRG edge from each class using

reflection to all other classes in the project. String Analysis [10] statically approximates

class names as string values at reflection API method call sites to determine the potential

target classes in the project code, third-party libraries, and the Java standard library (JDK)

classes. Border Analysis recovers reflective edges without performing expensive analysis of

the JDK, based on our discovery that the imprecision of String Analysis is due to its analysis

of the JDK. The key idea in Border Analysis is to identify (manually or automatically), a

priori, so called border methods—methods in the JDK which, when invoked, will eventually

lead to the invocation of some reflective API. Subsequently, only non-JDK classes need to

be analyzed to build the IRG. Our lightweight static analysis finds classes that invoke a

border method and marks these classes as potentially able to reach all other classes in the

IRG. Border Analysis improves the imprecision of Näıve Analysis and String Analysis by not

including JDK classes in its IRG; commonly used JDK classes that invoke reflection APIs

are not approximated to reach all other classes.

Dynamic Analysis is a hybrid approach that uses reflective edges that are dynamically

recovered while running all the tests to augment the statically constructed IRG; the key

idea in Dynamic Analysis is to perform very lightweight instrumentation of test executions

to record target classes at reflection sites in one program version [8, 41], and then add the

recovered reflective edges to the IRG that is used for performing RTS on the next version.

Dynamic Analysis is not a purely static approach; dynamically recovered reflective edges are

combined with statically computed dependencies to make for safer RTS. Finally, Per-test

Analysis is a modification of Dynamic Analysis. Whereas Dynamic Analysis collects reflec-

tive edges from the execution of all tests together, Per-test Analysis collects the reflective

edges for each test class individually.

We measured the benefits and costs of these reflection-aware techniques relative to rerun-

ning all tests after every change (i.e., RetestAll) and to RU static RTS [22] (henceforth called

RU Analysis). RU Analysis is the baseline on which the reflection-aware techniques are built,

and is implemented in the publicly available tool, STARTS [23, 40]. We compare the safety
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and precision of various static techniques against Ekstazi, and also compare the end-to-end

time of all static RTS techniques against RetestAll. We evaluated the reflection-aware tech-

niques on 805 revisions of 22 open-source Java projects, which are a mix of projects from

recent studies of static RTS and “reflection-heavy” projects that make more use of reflection

than the projects used in studies of static RTS [22,23,32].

The results showed that Näıve Analysis and String Analysis were completely ineffective;

they made static RTS safe but at the cost of always rerunning all the tests after every

code change, and were slower than RetestAll, partly because they also analyze JDK classes.

Border Analysis and Dynamic Analysis are as safe as Ekstazi on our experimental subjects,

but they solve the reflection-related safety issues of RU Analysis at widely varying costs in

terms of precision and end-to-end time. Normalized to RetestAll, Border Analysis (59.7%)

and Dynamic Analysis (66.7%) select to run more tests than both Ekstazi (22.7%) and

RU Analysis (38.9%). Per-test Analysis (40.0%) performs the best with regards to precision

while being as safe as Ekstazi. To measure cost, we evaluated the reflection-aware static RTS

techniques in both an online mode (where the time to collect test dependencies is included

in the end-to-end time) and an offline mode (where the time to collect test dependencies is

not included). The offline mode of Border Analysis performed the best among the reflection-

aware RTS techniques that we evaluated; on average, Border Analysis was 12.9 percentage

points (pp) slower than RU Analysis, but saves 14.1% of RetestAll time. We did not measure

the time to execute Per-test Analysis, because we only evaluated the benefit that this analysis

can provide but did not have an actual implementation to evaluate its cost.

Beyond evaluating which tests are selected by various techniques, an additional technical

contribution of this work is to evaluate the test dependencies that are computed by various

techniques. (We consider transitive and not just direct dependencies in the IRG.) Evaluating

test dependencies provides more insights into (potential) test-selection behavior of RTS

techniques—it can help to understand why a technique selects or misses to select a test. To

the best of our knowledge, no prior study of RTS [42], including the most recent study of

static RTS [22], evaluated the impact of computed test dependencies to understand whether

static RTS happens to be safe. Evaluating test dependencies can help to understand whether

static RTS happened to be safe in prior studies in the presence of reflection because (1) test

dependencies are not (largely) under-approximated by missing reflective edges, or (2) test

dependencies are under-approximated, but the selection is accidental because actual code

changes do not frequently touch dependencies that are only reachable via reflection. In

brief, there was no previous evaluation of test dependencies that an RTS technique may be

missing. Our evaluation of test dependencies revealed that with RU Analysis, many tests

miss some dependencies that Ekstazi finds, showing that reflection-unaware static RTS can
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potentially miss to select many tests. However, interestingly, we find that much fewer tests

are actually missed by RU Analysis. Moreover, we find that Border Analysis, our best purely

static reflection-aware RTS technique, as well as Dynamic Analysis and Per-test Analysis,

which are hybrid static-dynamic techniques, do not miss any test dependency that Ekstazi

finds.

This thesis makes the following contributions:

? Reflection-Aware Static RTS. We are the first to investigate techniques to make static

RTS as safe as dynamic RTS with respect to reflection. Three of the techniques that

we evaluated—Border Analysis, Dynamic Analysis, and Per-test Analysis—are as safe as

Ekstazi; our current implementations also confirm that two—Border Analysis and Dynamic

Analysis—are faster than RetestAll, and we also expect Per-test Analysis to be faster, but

we do not have an actual implementation for it.

? Analysis of RTS at the Level of Dependencies. We present the first analysis of RTS

in terms of test dependencies and not just tests. While using RU Analysis leads to many

tests missing some test dependencies, making RU Analysis reflection-aware through Border

Analysis, Dynamic Analysis, and Per-test Analysis leads to no tests missing dependencies.

? Implementation. We implemented four reflection-aware static RTS techniques as exten-

sions to RU Analysis, which is publicly available in a Maven-based tool STARTS [23,40].

? Empirical Study. We present an empirical study of reflection-aware static RTS on 805

revisions of 22 open-source Java projects. The results showed that three of our techniques,

Border Analysis, Dynamic Analysis, and Per-test Analysis, can make static RTS safe with

respect to reflection at acceptable costs.
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CHAPTER 2: BACKGROUND

In this chapter, we provide background on static regression test selection (SRTS) and

reflection. We also show, by means of a motivating example, how the reflection unaware

(RU) static RTS technique can be unsafe due to its inability to handle reflection. Recall

that an RTS technique is unsafe if it fails to select tests that depend on changed parts of

the code.

2.1 STATIC REGRESSION TEST SELECTION

Researchers have proposed SRTS techniques that track dependencies at different granu-

larity levels [5,20,33,35]. Legunsen et al. [22] recently performed an extensive study of SRTS

techniques that track dependencies at both class and method levels. The experimental re-

sults showed that method-level SRTS based on method call graphs is more imprecise/unsafe

and costly than class-level SRTS based on the class-level dependencies. Moreover, the class-

level SRTS was comparable to the state-of-art class-level dynamic RTS (DRTS) technique,

Ekstazi [14], on some medium-sized projects. Therefore, we focus on improving class-level

SRTS. The idea of class-level SRTS originates from the notion of firewall [24], which aims to

identify code modules that may be impacted by code changes. Kung et al. [20] extended the

firewall concept to handle object-oriented language features, e.g., inheritance, and proposed

the concept of class firewall. Later on, Orso et al. [33] generalized class firewall to the Java

language with interfaces.

Given a set of changed classes, a class firewall computes the set of classes that may be

impacted by the changes, thus building a “firewall” around the changed classes. Formally,

a type (e.g., a class or interface) τ is impacted by a changed type τc iff τ can transitively

reach τc via a sequence of (use or inheritance) edges, denoted as τc ∈ τ ◦E∗, where ∗ denotes

the reflexive and transitive closure, E denotes the set of all edges in the program’s IRG, and

◦ denotes the relational image. Then, given a program with a set of changed types Tc, the

class firewall can be defined as any type that can transitively reach any changed type, i.e.,

firewall(Tc) = Tc ◦ (E−1)∗, where −1 denotes the inverse relation. Given any two program

versions together with the regression test suite T , after the class firewall computation, the

class-level SRTS directly returns all the test classes within the class firewall as the selected

tests, Ts: Ts = T ∩ firewall(Tc). In theory, class-level SRTS should be safe since it selects

all tests that could be impacted by the code changes. However, according to the previous

work [22], edges that can only be reached via reflection are missing from the IRG, causing
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the reflection-unaware SRTS to miss to select some impacted tests.

2.2 REFLECTION

The main feature of reflection that is relevant to the class-level SRTS is that reflection

allows code to construct instances of a class from its name or bytecode representation. The

name of the class (whose instance is to be constructed via reflection) can be computed

dynamically without statically referencing the class name. The static analysis used in the

reflection-unaware class-level SRTS (described in Section 2.1) can fail to detect the use of

classes constructed through reflection, making reflection-unaware class-level SRTS poten-

tially unsafe.

In Java, the methods in the reflection API (i.e., reflection methods) that are relevant for

class-level SRTS are those that return Java Class objects either from string input represent-

ing the name of the class or from some bytecode representation that defines the class. The

returned Class can be used to create instances at runtime. From our manual inspection of

the JDK reflection API, we identified four core reflection methods through which all class-

related reflection usage eventually happens: Class.forName(), ClassLoader.loadClass(), C

lassLoader.findSystemClass(), and ClassLoader.defineClass(). The first three of these

core reflection methods take a String name and return the Class represented by that name.

The fourth core reflection method takes a byte array and returns the Class defined by that

byte array. We find that all other possible uses of reflection eventually need some Class from

these four reflection methods. Therefore, focusing on detecting usages of these four methods

suffices to detect all reflection usages for class-level SRTS.

2.3 MOTIVATING EXAMPLE

Figure 2.1 presents a code snippet showing example code and tests. In the example, L is a

standard JDK class; A1, A2, A3, and A4 are classes within the application, and classes T1, T2,

T3, and T4 form the regression test suite. Suppose that class A4 is changed (marked in a gray

background). Using the reflection-unaware analysis (RU Analysis) in the basic class firewall

technique, we find that the changed class A4 has test class T4 as its only static dependent

because T4.t4() directly creates a new instance of A4. Figure 2.2(a) shows the static IRG

based on RU Analysis, where T4 would be the only test class affected by this change, and

is included in the class firewall (gray area in Figure 2.2(a)). However, selecting only T4 is

unsafe, as more tests also depend, via reflection, on the changed class A4. In the example,
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1 //library code
2 class L {
3 void m() {} //empty method
4 void m(String s) {L.refl(s);...}
5 static Class refl(String s) {...} // reflection API
6 }
7
8 //source code
9 class A1 extends L {

10 void m1(){m(’’A4’’);}
11 void m1(boolean b){
12 L.refl(’’A’’+getNum(b));
13 ...}
14 private String getNum(boolean b){
15 return b?’’1’’:’’3’’;}
16 }
17 class A2 {
18 void m2() {} // empty method
19 }
20 class A3 {
21 static void m3(){
22 (new L()).m();}
23 }
24 class A4 {...} //changed code

1 //test code
2 class T1 {
3 void t1() {
4 A1 a1 = new A1();
5 a1.m1();
6 a1.m1(true);
7 }
8 }
9 class T2 {

10 void t2() {
11 A2 a2 = new A2();
12 a2.m2();
13 }
14 }
15 class T3 {
16 void t3() {
17 A3.m3();
18 }
19 }
20 class T4 {
21 void t4() {
22 A4 a4 = new A4();
23 }
24 }

Figure 2.1: Example code
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Figure 2.2: Illustration for various reflection-aware analyses

T1.t1() creates an instance of A1 and invokes A1.m1(), which invokes L.m(), which in turn

uses the reflection API (L.refl()) to construct an instance of A4. As such, T1 also depends

on A4, but since RU Analysis is reflection-unaware, it fails to select T1, and is thus unsafe.

8



CHAPTER 3: REFLECTION-AWARE SRTS

We describe the five techniques that we used to augment RU Analysis to become reflection-

aware. Essentially, the statically-constructed IRG used in RU Analysis misses reflective

edges. Therefore, techniques to make SRTS reflection-aware involve recovering potential

reflective edges into the IRG, after which the SRTS algorithm proceeds normally. Recovering

missing reflective edges can be done statically or dynamically.

3.1 STATIC REFLECTION DETECTION

We first characterize three purely static reflection-aware techniques that can be used to

make SRTS safer with respect to reflection.

3.1.1 Näıve Analysis

The simplest, but the most imprecise approach to detecting reflective edges is to treat each

class that invokes a reflection method as having edges to all other classes in the IRG. For

ease of presentation, we represent an edge to all classes as an edge to the special node, ∗. The

example in Figure 2.1, shows that A1 and L both use the reflection method L.refl(String).

Thus, we add to the IRG edges from A1 and L to ∗ in the IRG. The IRG containing additional

reflective edges from Näıve Analysis is shown in Figure 2.2(b). There, all test cases that

reach A1 and L, namely T1 and T3, now also can reach A4, and are thus also in the class

firewall (shown in gray), in addition to T4. However, T3 does not use reflection, and does

not depend on T4 which changed. Thus, T3 should not be selected. In fact, experiments

showed that for projects in our data-set, Näıve Analysis always selects all test classes for

every change.

3.1.2 String Analysis

String Analysis [10,19,25] is a purely static analysis technique that can be directly applied

to approximate potential target classes in reflective edges, based on the String-valued class

name passed to reflection methods. For example, in Figure 2.1, String Analysis can be used

to determine that the reflection invocation site (Line 4) in class L can only receive the name,

“A4”. Also, for the reflection site in A1 (Line 12), String Analysis approximates the class

name to match the regular expression, “A1|A3”. Based on these String Analysis results, as
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shown in Figure 2.2(c), reflective edges from L to A4 and from A1 to A3 are added to the

IRG (a potential edge from A1 to A1 can be ignored because self-edges have no effect for

SRTS). Thus, when A4 changes, String Analysis, in addition to T4, would correctly select T1,

which reaches L that can, in turn reach A4 in the IRG. However, String Analysis will also

imprecisely select T3 because analyzing the JDK classes (e.g., L) results in many commonly-

used internal JDK classes reaching classes in the client code. In this example, although T3

just uses L without using the reflection method L.refl(), it still gets selected.

In sum, using String Analysis to recover reflective edges can make SRTS safe but also im-

precise because it over-approximates. During our initial experiments, we found that String

Analysis incurs large imprecision because it analyzes the internals of the JDK. More specif-

ically, String Analysis often cannot resolve the exact names of classes used as arguments

at reflection method call sites in the internals of the JDK without also including addi-

tional usage context from those reflection sites. To illustrate, consider JDK internal class,

java.lang.Class, which uses reflection method to manipulate the Java class that it repre-

sents. Statically, it is not known what the exact class being manipulated is. Therefore,

String Analysis can only determine that java.lang.Class can depend on any class, i.e.,

∗. Almost all commonly-used classes in Java (e.g., java.lang.String, java.lang.Integer)

utilize methods from java.lang.Class which are not necessarily reflection methods. Unfor-

tunately, adding an edge from java.lang.Class to ∗ in the IRG leads every class to depend

on ∗, with the implication that all test classes are selected for any code change.

3.1.3 Border Analysis

The severe imprecision of String Analysis for recovering reflective edges happens because

most commonly-used classes in the JDK transitively reach classes that are connected to ∗
in the IRG. We propose Border Analysis, which avoids analyzing classes in the JDK, while

still being safe. Our intuition is that not all methods from the internal JDK, when invoked,

can lead to reflection usage. Rather, only a subset of methods internal to the JDK, which

we call border methods, can lead to the use of reflection. The idea in Border Analysis is to

first identify a set of border methods within the JDK. Then, only add edges from non-JDK

classes (i.e., client code or third-party libraries) that invoke a border method to ∗ in the IRG

(such classes can potentially reach any other class). Note that Border Analysis takes as input

border methods that are identified offline a priori and avoids subsequent analyses of the JDK

internals during the test selection process. Border methods can be identified through manual

inspection or automatically, based on heuristics. For the example in Figure 2.2, methods

L.m(String) and L.refl(String) will be identified as border methods, since invoking both of
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them from non-JDK classes may potentially lead to the execution of the reflection method,

L.refl(String). As shown in Figure 2.2(d), additional reflective edges are added from A1

to all other classes because it is the only class invoking the identified border methods in

the example. This way, tests T1 and T4 are precisely selected, without analyzing the JDK

internals.

Before rerunning any of our experiments to evaluate Border Analysis, we performed a

one-time experiment to identify what are the border methods to use for each project. We

determined border methods automatically by instrumenting the execution of all tests in

the earliest version of each of our evaluation subjects to capture and process the call stack

whenever one of the four reflection methods is executed. Recall the four reflection methods

from Section 2.2: Class.forName(), ClassLoader.loadClass(), ClassLoader.findSystemC

lass(), and ClassLoader.defineClass(). The call stack at the point of executing any of

these four methods is processed as follows: we find the last method in the stack from a

non-JDK class to call a method in a JDK class. This method from a JDK class that is

called by the last non-JDK method is returned as a border method. Since we observed

the border methods captured in this way to always lead to reflection in at least one calling

context, we approximate that all border methods detected this way will lead to reflection

usage in all calling contexts and should be used in Border Analysis for subsequent versions

of that project. We acknowledge potential imprecision because the border methods that we

identified in this manner might only lead to reflection in some, but not all, calling contexts.

Note that our collection of border methods was performed once and offline. We envisage

that developers may perform such identification of border methods from time to time as

their code bases evolve. Finally, some automatically-identified border methods are such that

they can only add edges to the IRG that RU Analysis would already find. We therefore

also evaluated minimal Border Analysis, a variant of Border Analysis which uses a manually

identified subset of border methods (which we call minimal border methods) that do not lead

to finding edges that RU Analysis already finds. We provide more details on our manual

process for identifying minimal border methods in Section 4.3.

3.2 HYBRID STATIC-DYNAMIC REFLECTION DETECTION

Next, we describe two hybrid static-dynamic techniques that also make SRTS safe with

respect to reflection.
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3.2.1 Dynamic Analysis

Reflective edges can also be obtained through Dynamic Analysis, as was done in the

previous work on reflection analysis for other testing or analysis tasks [8, 41]. The idea is

to execute the tests while instrumenting only the aforementioned four reflection methods to

record the class that is constructed by each invocation of the reflection methods. Then, for

each invocation of a reflection method, we add an edge to IRG from the class which invoked

the reflection method to the class constructed by the reflection method.

The example in Figure 2.2, shows that instrumenting reflection methods during test exe-

cutions helps discover that test T1 executes class L which uses reflection to target class A4.

Test T1 also executes class A1 that uses reflection to target class A1. We add these recovered

edges to the IRG, shown in Figure 2.2(e), and SRTS determines that T1, T3, and T4 should

be selected when A4 changes. Although Dynamic Analysis is a hybrid static-dynamic RTS

approach, it can lead to more precise test selection than with Näıve Analysis and String

Analysis. Dynamic Analysis uses very lightweight instrumentation; it only instruments call

sites of the four reflection methods. However, Dynamic Analysis still suffers some imprecision

because it does not keep track of the test classes during whose execution each invocation of

a reflection method occurred. In the example from Figure 2.2, Dynamic Analysis finds only

from executing T1 that there is an exact reflective edge from L to A4, but the recovered edge

from L to A4 is added to the IRG on which reachability for all tests is computed. Therefore,

when SRTS finds that T3 can reach L, Dynamic Analysis imprecisely determines that T3 can

also reach A4.

3.2.2 Per-test Analysis

Per-test Analysis improves the imprecision of Dynamic Analysis. Dynamic Analysis is

imprecise because it combines reflective edges recovered during the execution of all test

classes together in the same IRG, leading nodes for certain test classes to have spurious paths

to some changed class. In other words, once a reflective edge recovered by Dynamic Analysis

is added to the IRG, it is no longer possible to distinguish the test class whose execution

necessitated the edge. Thus, the transitive closure of the augmented IRG may now include

unnecessary dependencies for some test classes. Per-test Analysis reduces the imprecision of

Dynamic Analysis by only adding reflection edges to the IRG when computing dependencies

for the test class during whose execution those reflective edges were recovered. Reflective

edges computed during the execution of each test class are used to find dependencies only

for that test class—these edges are not added to the same IRG that is used for computing
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dependencies for all tests. In Figure 2.2(e), Dynamic Analysis selects to rerun T1, T3, and

T4 because it added the reflective edges recovered from executing all tests to the IRG. More

precisely, Dynamic Analysis adds an edge from L to A4 to the IRG, which spuriously makes

T3 transitively dependent on A4. On the other hand, Per-test Analysis does not have the edge

from L to A4 in the IRG when computing the dependencies for T3, but this edge is added

to the IRG only when computing dependencies for T1 (Figure 2.2(f) labels the reflective

edge with the test that exercises that edge). The result is that Per-test Analysis does not

imprecisely select T3 when A4 changes.
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CHAPTER 4: IMPLEMENTATION

We implemented four reflection-aware techniques as extensions to the Maven plugin for

RU Analysis in the publicly available STARTS tool [40]. We only evaluated the benefits of

Per-test Analysis; we did not yet implement Per-test Analysis. In this chapter, we describe

the RU Analysis plugin that we extend, and we provide details about our extensions to

STARTS. The evaluation of Per-test Analysis is described in the next chapter.

4.1 RU ANALYSIS IN STARTS

The RU Analysis Maven plugin in STARTS implements the class firewall technique de-

scribed in Section 2.1. It works in three main steps: (i) Change Computation: The

bytecode comparison feature of Ekstazi [14] is used to compute, as changed, only bytecode

files where some non-debug-related information changed; (ii) Graph Construction: The

bytecode from all program code and third-party dependencies is parsed with jdeps [18] to

quickly discover dependency relationships among classes in the program, which are then

used to construct the IRG; and (iii) Graph Traversal: Given the IRG and the nodes that

changed since the last version, find the affected tests as all test classes whose nodes in the

IRG can transitively reach to the changed nodes. For each of the reflection-aware techniques,

we merely extend the graph construction step to recover reflective edges, as described below,

and add such edges to the IRG that it constructs. We did not change the other two steps.

4.2 STRING ANALYSIS

For String Analysis, we use an existing tool, JSA [10], to analyze reflection call sites in

both the application code for each project and in the external libraries; all classes that could

be loaded into the JVM during test execution need to be analyzed. All Java projects share

the same internal Java libraries during class loading. Therefore, to speed up string analysis

experiments, we performed String Analysis offline, only once a priori (before performing any

of our experiments) for all the internal JDK classes and all third-party, non-JDK dependen-

cies. We cache the reflective edges recovered by String Analysis to be reused during RTS.

Finally, we extended STARTS to reuse these edges during String Analysis experiments for

each project, and only perform String Analysis for the classes in the project itself.
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4.3 BORDER ANALYSIS

Recall that border methods can be collected manually or automatically, and we collect

border methods for each project once, before running test selection experiments. To collect

border methods, we executed the tests in the initial version of each project with a Java Agent

attached to the JVM in which the tests are executed. Java Agent instruments the four

reflection methods described in Section 2.2: Class.forName(), ClassLoader.loadClass(),

ClassLoader.findSystemClass(), and ClassLoader.defineClass(). The instrumentation

analyzes the stack trace at each invocation of such methods to determine the border method,

which is the method to invoke one of the four reflection methods, as described in Section 3.1.3.

The Java Agent outputs the collected border methods in a ShutdownHook, which is invoked

upon JVM shutdown, after all tests have been executed. In our experiments, we collected

border methods per subject program in the oldest version among the set of versions that we

chose for each subject program. The border methods from each project are then reused in the

experiments for all the versions of that program. This automated way of collecting border

methods may not detect all possible border methods, because it is limited by the coverage

of the tests in the initial version. However, we note that it is sufficient for making SRTS

safe until the test coverage changes significantly enough, at which point the developers may

rerun analysis to update the border methods. Additionally, developers could also run the

analysis to update the border methods periodically during off-peak periods, e.g., overnight

or during weekends.

The list of border methods is input to STARTS, and used to perform Border Analysis

as follows. First, RU Analysis is done to create an initial IRG. Then, for each class in the

project, STARTS uses ASM [4] to statically find invocations of border methods. Next, for

any class that STARTS finds to invoke a border method, STARTS creates an edge from that

class to ∗. Finally, these recovered reflective edges are added to the initial IRG, and the

augmented IRG is used to perform RTS. Internal JDK classes are not added to the IRG for

Border Analysis.

Border Methods Used: For each project, we evaluated Border Analysis using two sets

of border methods—(1) the full border methods that are obtained directly from instrumen-

tation, and (2) a smaller subset of minimal border methods that we obtained from manually

filtering out border methods that lead to unnecessarily adding reflective edges to ∗ when

RU Analysis can already determine the concrete nodes involved. We selected the minimal

border methods in an attempt to reduce the imprecision that can result from using the

larger set, at the risk of potentially being more unsafe. To create the set of minimal border

methods, we manually inspected the full set of border methods and kept only those that
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we think will always create reflective edges that RU Analysis does not already capture. We

extended STARTS to allow users to supply the set of border methods as inputs, and ran all

our experiments in this way.

Two collaborators manually inspected the full border methods to select minimal border

methods and double-checked the selections. We divided the subject programs into two

groups, each of which was assigned to one collaborator for inspection. Each collaborator

then double-checked the other’s selections to ensure that there was sufficient justification for

removing a method from the set of full border methods. An example of a border method

that we did not include in the set of minimal border methods is java.lang.Enum.valueOf(),

which uses reflection to find the Class of its String argument but merely connects an Enum

to its declared values—a dependency that RU Analysis already captures.

4.4 DYNAMIC ANALYSIS

To recover reflective edges in Dynamic Analysis, STARTS performs very lightweight in-

strumentation during test executions in each version. The instrumentation is similar to that

used for finding border methods (Section 4.3), except that the instrumentation for Dynamic

Analysis records the Class returned from an invocation of one of the four reflection meth-

ods (Section 2.2). Once a Class is discovered as being returned from the invocation of a

reflection API method call, STARTS records a reflective edge from the calling class to the

returned Class. These reflective edges are collected during test execution and written to

disk in a ShutdownHook that is invoked when the JVM shuts down after running all tests.

The recovered reflective edges are then used by STARTS to augment the initial IRG from

RU Analysis, and the final IRG used to perform RTS. Dynamic Analysis has the benefit that

there can be no edge to ∗ in the recovered reflective edges—the exact Class returned from

invocations of reflection methods are known at runtime. The instrumentation for Dynamic

Analysis is more lightweight than the one used in a DRTS technique like Ekstazi [14] because

it only instruments the four reflection methods as opposed to instrumenting all classes.
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CHAPTER 5: EVALUATION

Our goal is to evaluate whether reflection-aware SRTS techniques can be safe (and still

be faster than RetestAll). We first address the two research questions which are related to

whether reflection-aware SRTS techniques are safe:

• RQ1: What is the safety and precision of the tests selected by reflection-aware SRTS,

compared with Ekstazi?

• RQ2: What is the safety and precision of the test dependencies computed by SRTS,

compared with Ekstazi?

Chapter 1 discussed why it is important to study not only tests selected but also the

test dependencies computed. Answering RQ1 and RQ2 (sections 5.2 and 5.3), we find that

reflection-aware SRTS techniques are safe. We then proceed to address the following research

questions which are related to how much faster SRTS techniques are relative to RetestAll:

• RQ3: How many tests do reflection-aware SRTS techniques select compared with RetestAll,

Ekstazi, and RU Analysis?

• RQ4: What is the end-to-end time of reflection-aware SRTS techniques compared with

RetestAll, Ekstazi, and RU Analysis?

• RQ5: What is the impact of reflection-aware SRTS techniques on the size of the IRG

computed by SRTS?

We do not show any detailed results for Näıve Analysis and String Analysis, because we

found them to be too imprecise and much slower than RetestAll (Section 3.1.2).

5.1 EXPERIMENTAL SETUP

Evaluation Projects: We evaluated all RTS techniques on 805 revisions of 22 open-source,

Maven-based, Java projects selected from GitHub. The projects are a mix of 12 projects

from the study by Legunsen et al. [22] (selected because their tests run longer than 20s, on

average, across all revisions), and 10 additional projects that use reflection (selected because

they contain classes that directly invoke Class.forName(), and because we could compile

and successfully run the tests in these projects without any of our analyses in 50 of their

500 most recent revisions). To answer the RQs in more detail, we split the 22 projects in

our study into two groups: (i) 11 small projects, for which the end-to-end time of running

all the tests takes between 20s and 60s on average, and (ii) 11 big projects, for which the

end-to-end time of running all the tests takes longer than 60s, on average.
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Note that for RTS evaluation, the end-to-end time of running tests is a more important

factor than the size of the codebase.

Running Experiments: All experiments involving SRTS, both reflection-aware and reflection-

unaware, were performed using STARTS [40] (Section 4). For dynamic RTS, we used Ek-

stazi [13, 14]. Both STARTS and Ekstazi are publicly available. We automated the run of

tests across all the revisions of all the projects in our study. All timing experiments were

performed on Amazon EC2 “m4.xlarge” instances with four 2.3 GHz Intel Xeon E5-2686 v4

or 2.4 GHz Intel Xeon E5-2676 v3 processors, 16 GB of RAM, 100GB of SSD storage, and

running Ubuntu 16.04.03 and Oracle Java 1.8.0 144-b01. We ran all versions of each project

in the same EC2 instance. We also compared some timing ratios from EC2 with our runs

on a quiet machine and found EC2 to be giving highly accurate ratios.

Simulating Per-test Analysis: We simulated Per-test Analysis, because we did not yet

fully implement it in STARTS. We performed our simulation in the following manner. First,

we collected test dependencies by running Ekstazi on all versions of each project. Ekstazi

saves dependencies for each test class in a separate file on disk. Second, we used STARTS

with RU Analysis to build the IRG. Finally, we computed the dependencies of each test class

as all nodes reachable in the IRG from all dependencies that Ekstazi found for that test class.

By computing reachability from all dependencies that Ekstazi found, our simulated Per-test

Analysis recovers any reflective edges that were missing in the IRG computed from RU

Analysis. Also, in our simulation of Per-test Analysis, we do not add any edges to the IRG

that is used to compute dependencies for all test classes (which is the source of imprecision in

Dynamic Analysis). Rather, the nodes reachable from each dependency that Ekstazi found

for a test class are simply returned as the dependencies for that test class.

5.2 RQ1: TEST-LEVEL SAFETY AND PRECISION

Table 5.1 shows the comparison of the test-level safety and precision of reflection-aware

SRTS with (i) RU Analysis (to see whether reflection-awareness makes RU Analysis safer),

and (ii) Ekstazi (to check whether reflection-awareness makes SRTS as safe as Ekstazi with

respect to reflection). Recall that a technique is safe if it selects to rerun all affected tests

and precise if it selects to rerun only the affected tests. In the absence of a ground truth for

safety and precision in RTS, we compared the safety violations and precision violations of

SRTS against Ekstazi, as defined by Legunsen et al. [22]: “Let E be the set of tests selected

by Ekstazi and T be the set of tests selected by another technique on some version. Safety,

respectively precision, violations are computed as |E\T |/|E∪T |, respectively |T \E|/|E∪T |,
and measure how much a technique is less safe, respectively precise, than Ekstazi; lower
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percentages are better. We consider the union of tests selected by both Ekstazi and the

technique to avoid division by zero in cases where Ekstazi does not select any test but an

SRTS technique selects some tests.” In Table 5.1 (and all subsequent tables), we represent

Ekstazi as X, RU Analysis as RU , Border Analysis with full border methods as Bf , Border

Analysis with minimal border methods as Bm, Dynamic Analysis as D, and Per-test Analysis

as P . Columns X-RU , X-Bm, X-Bf , X-D, and X-P show the safety violations of the

five SRTS techniques. Columns RU -X, Bm-X, Bf -X, D-X, and P -X show the precision

violations.

Concerning safety violations, Table 5.1 shows that RU Analysis has an average safety

violation of 5.7% across all projects. RU Analysis is reflection-unaware, missing to select

some affected tests and therefore unsafe relative to Ekstazi; the X-RU column shows the

degree to which RU Analysis is unsafe. For Border Analysis, with full border methods

and minimal border methods, the average safety violations across all projects are the same,

2.8%. Dynamic Analysis appears unsafe as well. However, our inspection shows that these

three reflection-aware techniques are as safe as Ekstazi, although it would appear from Ta-

ble 5.1 that the SRTS techniques are unsafe for the aws-sdk-java project. Our manual

inspection shows that these safety violations in aws-sdk-java are actually caused by im-

precision in Ekstazi. In other words, Ekstazi was imprecise, and the test classes seemingly

“missed” by the SRTS techniques need not be selected. More specifically, these classes do

not contain any test methods of their own but only contain nested test classes that, in

turn, contain test methods. Ekstazi does not currently track the JUnit runner for such test

classes (org.junit.experimental.runners.Enclosed) and always selects to run these test

classes, even when no code changes. We reported this issue to the Ekstazi developers. We

leave it as future work to inspect OpenMrs.

The precision violations are higher for reflection-aware SRTS than for reflection-unaware

RU Analysis, showing that reflection-awareness amplifies the inherent imprecision of SRTS.

In particular, reflection-awareness causes many more tests to be selected: where RU Analysis

has an average precision violation of 27.4%, Border Analysis with minimal border methods

has 49.4%, Border Analysis with full border methods has 50.2%, and Dynamic Analysis

has a precision violation of 48.6%. Although reflection-aware SRTS improved test-level

safety issues of RU Analysis, it also incurs a high cost due to the increased imprecision. In

contrast, Per-test Analysis has an average precision violation of 28.1%, which is similar to

RU Analysis. Since we did not implement Per-test Analysis, we did not measure its end-

to-end time. A possible approach to measuring time would be to run each test separately

to collect its reflective edges to use them to compute dependencies in IRG. However, that

would incur a high cost and would not be comparable with the other techniques.
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Table 5.2: Average percentage (%) of ALL test classes selected by RTS

Project SHAs ALL
Selected [%]

RU Bm Bf D P

commons-codec 50 52.0 7.5 20.0 21.0 50.0 7.5
commons-email 50 17.4 21.2 44.9 44.9 50.0 21.2
incubator-fluo 50 25.1 30.6 56.5 56.5 47.5 30.6
commons-compress 50 118.3 29.7 50.5 52.2 74.0 29.7
retrofit 50 49.6 51.4 54.1 58.3 57.8 51.4
commons-collections 50 160.0 16.0 55.2 58.1 60.0 16.0
commons-lang 50 147.7 23.8 63.6 63.6 68.0 23.8
commons-imaging 50 72.6 56.2 65.5 75.5 82.0 56.2
graphhopper 50 128.5 45.4 50.5 52.2 57.5 45.4
robovm 50 32.2 22.1 50.3 50.3 49.0 22.1
ninja 50 103.7 32.6 82.3 82.3 87.0 45.4

Average(SMALL) 50.0 82.5 30.6 54.0 55.9 62.1 31.8

commons-math 50 446.3 17.0 43.6 43.6 44.0 17.0
commons-io 50 99.4 16.0 21.6 22.0 60.1 16.0
HikariCP 28 29.8 85.6 93.9 93.9 100.0 85.6
undertow 9 231.0 79.8 97.3 100.0 100.0 85.8
OpenMrs 23 268.1 38.6 94.2 94.6 94.8 41.1
OpenTripPlanner 17 136.0 65.6 84.1 94.5 94.1 65.6
commons-pool 21 20.0 42.1 49.3 49.3 61.9 42.1
Activiti 20 321.0 48.3 53.7 53.7 53.7 48.3
aws-sdk-java 20 172.1 15.8 26.2 28.9 30.7 17.3
mapdb 7 166.1 83.1 99.5 99.5 100.0 83.4
accumulo 10 341.0 28.2 57.0 58.1 45.6 28.3

Average(BIG) 23.2 202.8 47.3 65.5 67.1 71.3 48.2

Average(OVERALL) 36.6 142.6 38.9 59.7 61.5 66.7 40.0

5.3 RQ2: DEPENDENCY-LEVEL SAFETY AND PRECISION

We computed dependency-level safety violations in a manner slightly different from the

test-level safety violations. At the dependency level, safety violation is the percentage of

all tests for which there is a non-zero number of dependencies computed by Ekstazi but

not by a SRTS technique. (At the test level, we consider the percentage of only selected

tests.) Table 5.1 shows (Dep Diff column) the dependency-level safety violations of RU

Analysis and the reflection-aware RTS technique that we found to select the fewest tests:

Border Analysis with minimal border methods. There, X-RU shows the average percentage

of all tests for which Ekstazi finds some dependency that RU Analysis did not find, and

X-Bm shows the average percentage of all tests for which Ekstazi finds some dependency

that Border Analysis with minimal border methods did not find.

We can see that there were only four (out of 22) projects where RU Analysis did not

have a safety violation at the dependency level. For all other projects, RU Analysis misses
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dependencies for a large percentage of tests, up to 51.8% for HikariCP. In contrast with

what the literature reported [22], it is clear that reflection-unawareness can potentially lead

to many more affected tests being missed during RTS, which shows how unsafe RU Analysis

can really be. The table also shows that, at the dependency level, Border Analysis with

minimal border methods is actually as safe as Ekstazi, except in two projects, undertow and

aws-sdk-java, which have mostly very small percentage of tests with a dependency-level

safety violation. Our manual inspection of undertow found the tests with dependency-level

safety violations to miss the same dependency, io.undertow.testutils.DebuggingSlicePool,

which is a class in undertow itself. Further inspection revealed that the issue is due to test-

order dependency [7, 44]. Specifically, undertow has many tests that are run with a custom

JUnit runner defined by the undertow developers, which adds a new RunListener that uses

an instance of the DebuggingSlicePool to the RunNotifier passed from JUnit to the custom

runner. This RunNotifier is used later even by the basic JUnit runner, so when later tests

are run by the regular JUnit runner, the added RunListener is still invoked (even when

it is unnecessary as the test is not run by the custom runner), causing Ekstazi to add a

dependency from those tests to DebuggingSlicePool. As such, we determine that tests with

a missing dependency on DebuggingSlicePool are not missing a true dependency, as Ekstazi

does not find a dependency on DebuggingSlicePool for those same tests when the test-run

order is changed so that they are run before tests that are run with the custom runner. The

dependency-level safety violations in aws-sdk-java was also due to test-order dependency.

5.4 RQ3: SELECTION RATES

Table 5.2 represents the average percentage of tests selected that resulted from using

different RTS techniques in our evaluation. The table shows, for each project, the average

total number of tests (ALL) across all the revisions (SHAs) and the percentage of tests

selected by each technique in the project (Selected [%] column). The numbers in Selected

[%] (Table 5.2) are averaged across all revisions in each project. The overall averages are

shown in the Average(OVERALL) row.

The results in Table 5.2 show that reflection-awareness for SRTS comes at the cost of

selecting more tests than RU Analysis, which is already more imprecise than Ekstazi (Ta-

ble 5.1). Overall, on average, Border Analysis with minimal border methods selects 59.7%,

Border Analysis with full border methods selects 61.5%, and Dynamic Analysis selects 66.7%

of all tests. Border Analysis with minimal border methods performs the best out of all purely

static reflection-aware SRTS techniques in terms of selection numbers and percentages. On

the other hand, Per-test Analysis selects at the rate similar to the selection rate of RU
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Table 5.3: Average % of RetestAll time (RTA[s]) for RTS in “online” mode
(on[%]) and “offline” mode (off[%])

Project RTA[s]
X RU Bm Bf D

on[%] off[%] on[%] off[%] on[%] off[%] on[%] on[%]

commons-codec 22.0 52.1 54.3 56.5 68.0 70.6 67.6 70.8 99.2
commons-email 24.7 66.9 60.7 63.0 67.7 70.3 65.2 68.5 104.3
incubator-fluo 27.4 92.5 116.4 141.3 122.5 157.1 121.9 156.6 210.2
commons-compress 28.8 55.2 73.5 78.8 90.5 95.9 90.4 95.9 121.5
retrofit 30.1 88.1 90.9 103.3 92.4 106.7 92.5 107.0 248.4
commons-collections 30.6 53.7 67.8 71.5 83.9 87.7 84.4 88.0 105.5
commons-lang 33.8 49.7 60.6 64.7 90.3 95.0 90.1 95.0 112.6
commons-imaging 40.9 75.4 83.9 87.6 93.5 97.5 93.4 97.4 114.9
graphhopper 52.9 69.2 79.3 85.0 85.2 95.7 85.7 96.2 133.9
robovm 52.9 96.1 106.2 111.9 111.2 119.8 111.5 120.2 122.1
ninja 58.4 142.2 84.5 105.6 108.0 135.4 111.6 136.5 254.0

Average(SMALL) 36.6 76.5 79.8 88.1 92.1 102.9 92.2 102.9 147.9

commons-math 118.5 35.2 39.4 40.4 58.6 59.9 58.8 59.9 65.0
commons-io 135.3 26.4 31.5 32.0 36.1 36.6 36.4 36.9 74.1
HikariCP 162.0 98.9 95.4 97.3 100.0 102.0 99.8 101.8 119.5
undertow 187.1 74.0 89.7 93.9 102.4 107.8 102.9 108.2 111.7
OpenMrs 207.9 75.4 51.1 55.4 99.1 105.4 97.8 104.7 127.0
OpenTripPlanner 271.5 70.1 95.2 98.3 103.3 106.7 103.6 107.1 104.8
commons-pool 310.2 48.3 61.1 61.3 65.5 65.8 65.7 65.9 65.7
Activiti 312.9 46.8 62.7 63.9 67.2 68.8 67.0 68.6 76.6
aws-sdk-java 337.2 39.5 59.9 60.4 65.8 66.6 66.2 66.9 69.0
mapdb 367.3 92.9 95.2 97.1 107.5 109.8 106.4 108.5 577.3
accumulo 639.4 34.6 47.9 53.2 71.8 81.3 71.9 81.6 78.2

Average(BIG) 277.2 58.4 66.3 68.5 79.8 82.8 79.7 82.7 133.5

Average(OVERALL) 156.9 67.4 73.0 78.3 85.9 92.8 86.0 92.8 140.7

Analysis, 40.0%, while still being as safe as Ekstazi.

5.5 RQ4: TIME SAVINGS FROM REFLECTION-AWARE SRTS

Table 5.3 shows the time savings obtained from performing RTS on all evaluated projects.

For each project, the table shows the average time to run all tests across all revisions

(RTA[s]), and also shows for each RTS technique (on[%] column), the average end-to-end

RTS time—the time to compile, compute changes, analyze dependencies to find affected

tests, execute the selected tests, and update the test dependencies for the test selection on

the next revision (“online” mode)—as the percentage of RTA[s]. For the purely static tech-

niques, it also shows the time as a percentage of RTA[s] for an “offline” mode (off[%]). The

off[%] columns do not include the time to update the test dependencies, while the on[%]
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columns include this time. The upper part of Table 5.3 shows the results for the 11 small

projects where the end-to-end time to run all tests is between 20s and 60s, on average. The

lower part of the table shows the results for the 11 big projects where the average end-to-end

time to run all tests is greater than 60s.

For small projects, the results in Table 5.3 show that RTS, particularly SRTS, does not

save as much time compared to RetestAll—the SRTS techniques are more often slower than

RetestAll for these small projects. This slowdown shows that small projects do not benefit

from RTS. The savings from RTS are greater for the big projects. Ekstazi saves the most

time among all RTS techniques, but the purely static SRTS techniques, on average, are faster

than RetestAll for these big projects. Dynamic Analysis is slower than RetestAll on average,

partly because of its imprecision, which results in selecting to run all tests in three of the

big projects. RU Analysis takes 68.5% of RetestAll time, but is reflection-unaware. For the

reflection-aware SRTS techniques, Border Analysis with minimal border methods is slightly

more precise than Border Analysis with full border methods, but they have essentially the

same end-to-end running time: 82.8% of RetestAll time. We did not measure the time for

Per-test Analysis because we only performed simulations using the data from Ekstazi.

An RTS technique not only selects what tests to run for the current project revision but

also needs to update test dependencies for the next revision. Updating test dependencies

can be easily done in the background for purely static SRTS, as measured in the “offline”

mode. For dynamic (or hybrid) RTS, an offline mode is less practical, because it would

have a higher total machine-time cost, requiring that tests be run twice: once without

instrumentation to provide faster feedback to the developers and once with instrumentation

to collect dependencies for the next revision [14]. We measure the time to perform RTS for

RU Analysis and Border Analysis without including the time to update dependencies. In

this offline mode, the time savings improves for all the purely SRTS techniques as seen in

the average rows for the off[%] columns in Table 5.3. Although the SRTS techniques still

run slower than Ekstazi, the offline modes are faster than online modes, and Border Analysis

performs the best, with minimal border methods taking on average 85.9% of RetestAll time

across all projects.

5.6 RQ5: DEPENDENCY GRAPH RESULTS

As an internal measure of the complexity of the projects that are analyzed for SRTS, we

compute the number of nodes and edges in the IRGs constructed for each SRTS technique.

The IRGs constructed by RU Analysis have, on average across all projects, 28889.1 nodes and

324401.5 edges. The graphs used for RU Analysis contain nodes from both the program’s
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classes and classes from the third-party libraries that the program depends on. This is

different from the implementation used in the study by Legunsen et al. [22], which only

tracked classes in the program’s code—a choice justified by the fact that their technique is

reflection-unaware and external dependencies that do not change could not make it more

unsafe with respect to reflection. Classes from third-party dependencies are included in

graphs used in RU Analysis to study dependency-level safety and precision, and provide an

initial IRG on which other reflection-aware SRTS techniques can be built. This larger graph

partly explains the bigger difference in relative performance of RU Analysis and Ekstazi in

terms of end-to-end time, compared with the difference that Legunsen et al. [22] reported.

Adding reflective edges to the IRG increases the number of nodes reachable from the

tests in the IRG, allowing SRTS techniques to explore more edges and reach more classes.

Dynamic Analysis adds the largest number of extra nodes and edges, having 165419.7 and

1897009.5, respectively, on average. This is expected because Dynamic Analysis tracks the

internals of the JDK and therefore finds many classes that are reachable through reflection.

Border Analysis IRGs have, on average, 39215.7 nodes and 443717.7 edges, when performing

Border Analysis with minimal border methods, and 39215.9 nodes and 445393.1 edges, when

performing Border Analysis with full border methods. The trend in the sizes of the IRGs

correlates with the selection rates of the various RTS techniques, showing that techniques

with fewer/more nodes and edges in their IRG select fewer/more tests to run. Also, observe

that the IRG sizes for Border Analysis are essentially the same, regardless of whether one

uses minimal border methods or full border methods—a trend that is also correlated with

the fact that both techniques have about the same test-selection rates and end-to-end test-

running time.
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CHAPTER 6: RELATED WORK

Dynamic RTS techniques have been intensively studied in the literature. Rothermel et

al. [36, 37] proposed one of the first dynamic RTS techniques for C programs based on

detailed basic-block-level analysis. Harrold et al. [16] and Orso et al. [33] later proposed to

handle object-oriented features and adapt the basic-block-level RTS for Java programs. In

recent years, researchers have started to investigate coarser-grained dynamic RTS analyses

due to the increasing software size. For example, Ren et al. [34] and Zhang et al. [43] studied

method-level dynamic RTS. Recently, Gligoric et al. [14] proposed the class-level dynamic

RTS technique, Ekstazi, and demonstrated that Ekstazi can have even shorter end-to-end

testing time than existing method-level dynamic RTS due to the lower overhead of coarse-

grained analysis.

Static RTS techniques [20,35] are not as well studied, and their effectiveness and efficiency

were largely unknown before the recent work by Legunsen et al. [22]. In that work, they

evaluated the effectiveness of static RTS and compared it against the dynamic RTS in

Ekstazi. The experiments showed static RTS to be comparable to dynamic RTS. However,

there were cases where static RTS was unsafe and failed to select some tests that Ekstazi

selects; all the cases were due to reflection. In this work, we focus on the issue of reflection

and its influence on static RTS. We propose techniques to handle reflection in static RTS,

by statically analyzing strings or border methods, or by dynamically collecting reflective

dependencies.

Many researchers have studied the impacts of reflection in modern programming languages

on static analysis [6, 8, 26, 27, 27–29, 29, 30, 38, 41]. However, none of the existing studies

investigate the impacts of reflection in the context of RTS. In other words, we are the first

to address the reflection issue for safe static RTS. The most related previous work [8, 41]

studied how to perform static analysis and refactoring in the presence of reflection. Bodden

et al. [8] proposed instrumenting reflection sites to dynamically record when classes invoke

reflection and what classes they depend on through reflection. We adopt the same in our

Dynamic Analysis, except we apply it to SRTS. The results show that Dynamic Analysis

performs worse than our Border Analysis.
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CHAPTER 7: CONCLUSION

We proposed and empirically studied five reflection-aware RTS techniques—Näıve Anal-

ysis, String Analysis, Border Analysis, Dynamic Analysis, and Per-test Analysis. We com-

pared all these techniques with Ekstazi, a dynamic RTS technique, and a baseline reflection-

unaware static RTS technique, RU Analysis. The experimental results on 805 revisions of 22

open-source GitHub Java projects demonstrate that all our reflection-aware techniques make

static RTS safe with respect to reflection, but their costs vary widely—Näıve Analysis and

String Analysis select every test for every studied project; the pure static Border Analysis

is the best purely static reflection-aware RTS technique, and its end-to-end time is 18.5pp

higher than that of Ekstazi. The hybrid static-dynamic technique, Dynamic Analysis, is

safe, but with high imprecision and end-to-end time 40.7% higher than RetestAll; Per-test

Analysis has the best safety/precision trade off—it is as safe as Ekstazi and, on average, it

selects to rerun a similar number of test as RU Analysis. Furthermore, we also performed

the first detailed safety/precision analysis at the test dependency level. The analysis results

demonstrate that RU Analysis could be unsafe in practice, indicating the importance of

building reflection-aware static RTS techniques.
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