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Abstract

Electrification is an increasing trend ang vehicle systems such as aircrafts, heavy
machinery, and civilian transportation. Battery electric vehicles (BEVs) are one such development
that use a battery pack tgenerate electrical energysed to propel the vehicle and power its
auxiliaries Howe\er, the battery packlso generatethermal energy as a byproduct which affects
the electrical performanceof the battery pack.The inherent coupling between electrical and
thermal performance creates a challenge in design and control of these compdexs.syst
Furthermore, phaseut of common refrigerants drives interest in L@frigerant, an
environmentally friendly and safe alternative. However, these vapor compression systems operate
transcritical, thus requiring novel control techniqué&his thesis deelops a framework for
architecture and control design of BEV subsystems. The foundation of this process is the
development of mukdomain models.

Models for thetranscritical vapor compression system #mel vehiclecabin are derived
from a first princples analysis. A model for a battery pack is derifrech an equivalent circuit
electrical model and conservation of energy thermal mod&ll. of the models capture dynamic,
nonlinear behaviors important for control development and understanding oingobptwen
variables. Additionally, the modetse scalable anable to be parameterizédorder to represent
many variation®f system architectures.

An air-cooled cabin andaiir-cooled battery pack configuration is demonstrated in -open
loop and closedloopsimulationsFor closed loop simulation,raodel predictive controllgMPC)
is compared to baseline decentralized, proportiamagral controllersThe model predictive
control makes control decisions based on the minimization of a cost functibméights the
regulation of specific variables (such as temperature of the battery pack and cabin) and power
consumption of the actuators. It will be shown that the MPC, in the face of disturbances, is able to

maintain outputs within their bounds while soming less energy than baseline controllers.
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Chapllenrt roducti on

This thesis investigates the impact of mdibmain modeling of battery electric vehicle
(BEV) thermal and electrical systenam architectureand control design to improve vehicle
performance. Electrification of vehiclgystems is an incasing trend andraditional design
approaches are no longer suitable for achiewrficle performance andattery longevity
requirements Traditional approaches desigiectrical systems first and thesequentiallya
themal management system. This sediamapproachresuls in mismanaged thermal behayior
therebycausing inefficiencies and failure of systerikerefore, it is important to integrate the
electrical and thermal system design to understand the coupling between the two domains and to
develop robust controllers for thermal managemenhis thesis will explore how multiple
subsystems of a BEV can be modeled with compatible frameworks such that they can be simulated
together to capture the dominant system dynamics. Additionatlye performance foa
decentralized control approa¢br thermal managememtf two significant loads in a BEV is
compared to a centralized model predictive contkiPC) approachlt will be shown that the
MPC controller can achieve thermal regulation with respect to destaes, while also consuming

less power.

1.1 Motivation

Greenhouse gas emissions hdweenshown to impact climate, ecosystems and society in
many ways including more severe weather patterns, increased ocefyn anilichanges in crop
growing seasongl]. The Center for Clima and Energy Solutions providédat in 2008 the
transportation sector contributed 27% of gi@enhousgas emissiong90% of which is C0Q).
Light-, medium and heawyduty vehiclesare the largest contributty these emissions, generating

78% of thetotal transportatiorsector® CO, emissiong2]. The U.S. Environmental Protection



Agency regulations are requiring mytthase improvements wehiclefuel economyin orderto

reduce fossil fuel consumption, reduce grbense gasmissions and reduce fywices[3]. This

has resulted in the transition from internal combustion engine vehicles to hybrid electric vehicles
and to battery electric vehicldsurthermore, many governments are incentivizing battery electric
vehicles more than hybrids with tax waivers, subsidies, rebates, etc. to further push for zero
emission vehiclefd]. Due to these governmental regulations and incentives, the battery electric
vehicle market has been growing faster than the hybrid electric vehidketnas suppeed by

Figure 1.2 In fact, he battery electric vehicle car stock is increasing at an increasing rate in the
U.S. and globallyThis thesis will focus on battery electric vehiclecause they are foreseen to
dominate the electric vehicle market.

Additionally, refrigerants used in vapor compression cycles for air conditioning and
thermal management contribute goeenhousegas emissions. Hydrofluorocarbon R134aa
common vehicle refrigerant, bhias high global warming potentidGBWP). GWP is a relative
measure of the amount of heat trapped by a gas in the atmosphere, compared to carbon dioxide.
Since the concentration of different gases decay at different ttedaseasure of GWP is in terms
of time spancommonly a 108/ear time span is considejetR134a has a GWBf 1430(factor
by which it is more harmfuhian CO2)over 100 yearsBy 2021, R134avill not be permittedin
newly produced vehiclas the U.S[5]. CO, refrigerant(R744) is a strong candidate becaitse

global warming ptential is 1 (by definition) and is safe, natal, economic and sustainable.

US Green House Gas Emissions )
Transportation

Sector — 27%

Figure 1.1 Portion of US greaen-house gas emissions generated by the transportation sector
and the portion within that percentage that is generated by light medium, and heavyduty

vehicles
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Figure 1.2 Battery electric vehicleand plug-in hybri d electric vehiclestock for 20162016
[4]. © OECDI/IEA 2017 Global EV Outlook 2017|EA Publishing, License: www.iea.org/t&c

1.1.1 BEV Range Challenges and Opportunities

Battery electric vehicleange(distance between charginig) an importantperformance
metric for market acceptabilityThe range is impactebdy two major factorsl) the battery
capacity which limits its capabte range and 2) power consumption oduxiliaries Battery
chemistry and size constrainise( dimensional and weight constrajngge examples of factors
that limit the battery capagitHowever, another significant variable thatiuencesthe available
capacity is the operating temperatuvehich will be further described in the next section.
Additionally, the available capacity for propulsion is reduced by the power consumption of
awxiliary units. The heating, ventilation and air conditioning (HVAC) unit has the potential to

consume the most and have a significant impact on range.



1.1.1.1 Battery Operating Temperature Range

Discharging
Power Limit

Optimal operating

Sluggish electro-
chemistry
I i

Degradation

temp range

0C 15C 35C Temperature

Figure 1.3 Effects of operating temperature on battery power limit during discharge of Li

lon battery. Adapted from [6].

The performance and life of a battery pack is depenoleoperating temperature. Figure
1.3 shows that the power limit of the battery during disghas maximized between 35 C
Below this temperature rangie battery exhib#sluggish electrehemistrydue to the increase
in internal resistance of each cell. The increase in internal resistance limits the battery power
capability Additionally, ebove 35 Cthe battery experienceggradation thagignificanty affects
the life of the battery[6] compared battery power loss with respect to climate and showed that
Phoenix (average temperature: @} experiences apgximately50% power loss over 15 years,
in contrast with Minneapolis (average temperature: 8 C) which experiences ~30% power loss over
the same period’hese ¢mperature effects on capacity determine the frequency in Wigaser
has to recharge their tbary and replace their battery pack.

The mainageing mechanisms below 25 C ahee to Lithium platingwhen metallic
Lithiumforms on the negative electrode. Above 25€,dominant ageing mechanigmeactions
between the electrode and electraligading to the formation of solid electrolyte interphase (SEI)
layers, and dissolution from the cathodé$ Referenced7], [8] provide more detaibbout
temperature dependent ageing mechanisms. From this evidence, it is cledhetinal

management of the battery pack is esseimtialectric vehicles



1.1.1.2 Power Consumption of Heating and Cooling

The HVAC wit consumse 1-5 kW of power, relative to traction motors that require4Z0
kW [9]. Furthermore, urban driving often entails frequent periods of idle in which the
heating/cooling may be running continuously and discharging the battery even when the traction
motor is not drawing currenReferencg10] investigated energy consumption with consideration
to topography, infrasucture, traffic and climate arfdundthat topography and climate hatee
greatest impact on energy consumptiénergy efficient HYAC systems would benefit the range
of BEVSs.

1.1.2 CO2 Refrigerant Challenges and Opportunities

Due to the low critical temperature of @@nd high critical pressure, the vapor
compression system will operate transcritical and dt pigssures. The evaporator pressures are
typically between 46,000 kPa and gas cooler pressure betweE®00 kPa. These pressures are
5-10 times greater than the operating pressure of an R134a dydtenTherefore, the same
components for an R134a system cannot be used@a» system because they are not designed
to withstand that high pressure. However,,@@scomparativelygreater volumetric refrigeration
capacity, whickprovides the benefit of small®CS componers. Although CQ refrigerantdoes
not have the benefiof beinga O64d m@p ref ri gerant f gthe sgstems t i ng
components will be more compatttus using less space in the vehicle.

Table 1.1 R-134a and R744 refrigerant properties [11]

R-134a R-744 (CQy)
GWP(-) 1430 1 (by definition)
Critical Pressure(MPa) 4.07 7.38
Critical TemperaturdC) 101.1 31.1
Refrigeration Capacity (kJfp | 2868 22545

CQOe refrigerant has demonstrated comparable performance to traditional R134a systems.
Tesst carried out foracompact VG using R134a and G(Oproviding the same cooling capacity,
showedthat the CQ system hadetter coefficient of performance (cycle efficienty) 40%at
ambient temperatures below 40 Above 40 C the coefficient of performance (COP) was 10%
below the RB4a baselind12]. Additionally, the properties of COmake it suitable for high



capacity heat pump operatifi8][14], which wauld be more energy efficient tha&lectric heaters
[15]. Compared to traditional refrigerantSQ; is an alternativéhat provides theopportunity for

asmalle VCS, with high performanceooling and heatingandlow global warming potential

1.2 Transcritical Vapor Compression System

Due to the thermodynamic properties of JR744), a vapor compression system (VCS)
using this refrigerant will often operate above the critical temperature and pressure of the fluid and
therefore is consided a transcritical VCSIn a subcritical VCS there are four standard
componentsthe evaporator, condenser, compressor and expansion device. The low pressure, low
temperature fluid absorbs heat from the secondary fluid (air) of the cooled space, and then the
compressor elevatdise fluid to a high pressure and high temperature. Through the condenser, heat
is rejected to the ambient air and then the pressure is reduced through the expansion device. In
transcriticalsystemsthe condenser igferred to aa gas cooler because fhéd through the heat
exchanger isinglephasesupercritical fluid.CO; cycles often operate transcritical because the
critical temperature of COs 31.1C (87.98 F). In a cooling cycle, the heat is rejected to the
ambient air, which can easily exces critical temperaturd=igure 1.4 shows a comparison of
the subcritical cycle of R134a and the transcritical cyc@@fwith thefour standardomponents.

An internal heat exchangertigically usedfor the CQ cycle to improve the coefficient
of performance (COR)or efficiency,while maintainingsafer operating conditions includirag
lowerheatrejection pressure and superheated fluid entering the compfESkdre internal heat
exchanger allows the refrigerant exiting the gas cooler armqbetar to exchange energy (Figure
1.5 and Figure 1.6 The COP improves because the refrigerant from the gas cooler is further
cooled before the pressure is reduced through the expansion, tlestieby increasing the coofjin
output of the evaporator.
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Figure 1.6 Diagram of a COztranscritical vapor compression system components

1.2.1 Modeling

Extensive modelingfforts forsubcritical systems amevailable intheliterature[17]. The
same approaches used for modeling subcritical componentsodrealsed for transcritical cycles
as detailed by Rasmussen et a[1i8]. However, Rasmussen uses a single control volume for the
gas cooler and the internal heat exchanger, assuming lumpecdensafar the entirety of the heat
exchanger. This work improves upon this approach and discretizes the gas cooler and internal heat
exchanger to achieve higher fidelity modefsdditionally, the models of Rasmussen were
validated for a relatively small mge of inputs and outputs, whereas this work will study a larger

range of inputs for control purposes.

1.2.2 Control

This section highliglsthecontributionsof the available literature ragding control of CQ
vapor compression systemis has been reported that it is imperative tmtcol the high side
pressure becaugienas the most significant impact on the CJQ®]i [24]. Referencg19] suggests
a controller on only the highide pressure based on a correlation between optimum didgh
pressure and gas cooler outlet temperateerence[21] suggests a more detailed optimal high
side pressure correlation that is a function of the gas cooler outlet temperature, the evaporator

pressure and comgssor efficiency. Botlil9] and[21] recommend simultaneous control of the



compressor speed and expansion valve aperture to achieve cooling load requirements and operate
at the optimal heat rejection pressure. The results fi@halso suggests that increasing the
evaporator air flow rate results in an increase of cooling capacity angbd&compressor work

remains almost constant.

Similarly, [24] suggests that their exists an optimal combinatiofEBY openingand
compressorspeedto achievethe optimal gas cooler pressurand COP Reference[23]
experimented witltontrollingthe gas cooler pressure by reguigtsystem charge, gas cooler fan
speed and EEV opening. Of tbentrolledvariables, it was found that the normalized charge had
the greatest influence on the C@#llowed by outdoor fan spegdnd then the EEV opening.

Behr published the improvementsethmade in their contrdtructurefor a CQ system
from first to second generatig@5]. In the first generation (Figurk7), a variable displacement
compressolis contolled to regulate the evaporator temperature via low side pressure and an
electronic expansion valve regulsteehigh side pressure for COP. Tiirst generation controller
required three temperature sensors, two pressure sensors, and an electrosiorexpive. To
reduce complexity and cqosBehr developeda secondgeneration controller (Figur&.8). In
contrast,t utilizes two temperature sensors, one pressure sensor and a cheaper fixed orifice tube
with bypass.The compressor regulatéise evapormr temperature via the high side pressure
(instead of the low side pressure in the first generatiodthere is noaCOP control. The fixed
orifice tube with bypass passively controls the high side pressure. fBehd the second
generatiorcontrol approeh to provide good evaporator temperature reference tracking.

Referencd20] compared the performance of an adafedr first generatiorontroller
with their version of aimplified controller.The simplified configuration usestwao-stage orifice
expansion valvéhatoperates passively based on the pressure difference across the valve. The test
controller uses one ISO loop to regulate the evaporator temperatoye controlling the
compressarThe COP is improved by use of the evaporator temperature set point, which is
determined by a supervisory caolter (Figurel.9). However, it was found that with use of the
contollable valve, the cycle COP was up to 15% better than with the passive valve.

Many of the works discussed have provided valuable suggestionsadifigarand actuators
to control based on opdaop behavior, but have not extended these results in elospd
Referencef25] and[20] proposed controller structures but do not offer much transparency in the

underlying formulations. Additionally, they do not include control of the evaporator fan, a third



controllable actuator. This thesis intends to propose a few control strategiesntnak €each of

t he availabl e

actuator s:

compressor ,

v al

vV e

structure and formulation will be provided, along with an assessment of performance tradeoffs.
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Figure 1.8 Behr second generation C@Qvapor compression system contralAdapted from
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1.3 Objectives

The objective of this research is to improve the range of battecgyriel vehicles. To
achieve this goalthis work aims to: 1) develop a modeling framework for cooling architecture
and control design, and 2) develop adeed controllers to manage thermal constraints of the
battery pack and cabin while minimizing power consumption.

Integrateable modelsare developed for a GQranscritical vapor compression system,
battery pack and cabin. The models are modular andidealallowing for design of various
system architectures by dragging and dropping compoim@ota graphical user environment
Furthermore, models capture electrical and thermal behewvamderto analyze the coupling of
the systems and develop robaoshtrollers.

Controllers are designed to manage the cabin and battery pack thermal loads
simultaneously and minimize power consumptidhis will improve the range oBEVs by
maintaining the battery in the optimal temperature range and reducing powemgobios of the
cooling systemBaseline controllers using decoupled control loaps compared toa more
advanced model predictive control method.

1.4 Organization of Thesis

The remainder of this thesis is orgamizes follows. Chapter 2 presents the mathematical
modeling of the battery electric vehicle subsystems and-lmognresponses of each subsystem.
Chapter 3 demonstratdge capabilities to parameterize and combine subsysternsate a variety
of system dsigns. Operloop simulation results are provided for an@oled cabin, aicooled
battery pack systenand an akcooled cabin, liquiecooled battery pack systenChapter 4
introduces decentralized baseline controllers for cabin and battery pack temgesgulation.
Chapter 5 provides the introduction to model predictive control and its implementation on the air
cooled cabin, aicooled battery pack system. It also includes thegs® for system identification
of linear modelsfor the subsystems. Thehapter demonstrates the benefits of MPC through

illustrative smulation case studies. Chapteprésents conclusions and areas for future work.
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Chap2&%yrstem Model i ng

This section details the dynamic modeling for each subsydietranscritical vapor
compression system, 2) battery pack, and 3) cdlie.models are develop&mlbemodular and
scalable foease of system architecture desi@penloop behavior of each subsystem is
provided for model verificationThe reader shouldote that the models have not been validated
with physical data. As such, the results presented throughout the thesis should be considered for
their qualitative input. Due to the modeling approaches used, it is expected that the models
capture the dominamehaviors. However, determining system specific results would necessitate
extensive subsystem and system validation. This validation work falls within the next steps as
described in Chapter 6.

2.1 Transcriti cal Vapor Compression System

The models included in this work can be found in the Thermosys To{#Bdxhat was
developed by the University of Illinost UrbanaChampaign (UIUCkand CU Aerospace. Each
componeh (heat exchanger, compressor, eis.jnodeled individually, bu¢ach is modular and
able to be connecteslith other components to creatarious VCS configurationg.his modeling
framework consists of flow devices and pressure devices. Flowesewmclue compressorand
valves they receive a pressure signal from the upstream and downstream component (typically a
heat exchanger) and transmit a mass flow rate signal to those adjacent components. The pressure
devices include heat exchangers; they recaiveass flowrate signal from the upstream and
downstream component (typically a compressor, pump or valve) and transmit a pressure signal to
those adjacent components this section, the modeling approaches for transcritical VCS
components are describeflhe dynamics of theactuating components, i.eonmpressor and
expansion valvarefast in comparison tthe dynamics of the heat exchangers; therefore, these
components are modeled with algebraic relationships, whereas the heat exchangers are modeled
dynamcally with governing differentiabquationg18].

13



2.1.1 Compressor

A variable speedfixed displacementompressor is modeledith pressuranputs from
adjacent components. Theodeloutputs a refrigerant mass flow rate and enthalpy. User defined

volumetric and isentropic efficiency maps that are a function of compressor speed and pressure
ratio account for losses.

m=wVr / (21)

static 1 Y
hout = /7_ shout isen -"hin(/7 k 1_)
; (2.2)

A first order filter on the enthalpy improves the accuratthe enthalpyue to the large thermal

capacitane of the compressor shdhat is unaccounted for otherwigY].

%zi(

dt ¢ houl 'hout) (23)

where:t is determined experimentalty estimated

2.1.2 Electronic expansion valve

An electronic expasion valve (EEV) model is developed based on a correlation fit to
Bernoul | i 0s anexpansion facof2®. wi t h

m=g AY,/2r, . B X (2.4)

wherec, is the mass flow coefficient determined empiricatyan expansion factor, and the

pressure differerdl ratio. The expansion factaccounts for changes in density as the fina/es

through the expansion devif29] and the pressure differentialiaaiccounts for flow patterns.

Y=1-X/(3 B/R)

(2.5)
&P - P,
[ iR R, <
X :I m n
’I‘ <, IfF?n_Fzyutzl:@
f P (2.6)
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where DP, is the pressure differential that corresponds to the critical mass flow rate (flow is

choked). The mass flow coefficient was determined empirical[28yto be

é f -1-4971éP _ 08131
CD - 1.107520.4436 in 8 InXP in,s 0
clins =+ [ in - (27)

2.1.3 Heat Exchangers

Heat exchangers are modeled using conservation equationgvgiliflygig assumptions
[18], [27], [30]:
1. The refrigerant flows through a long, thimiform horizontal tube
2. Refrigerant flows only in the longitudinal direction
3. Axial conduction is negligible
4. Momentum change and viscous friction in the refrigerant are negligible (the heat exchanger
is isobaric)
As a result, conservation of refrigerantssarefrigerant energy and wall energy can be applied to
each controvolume of the heat exchanger, Equati@r@s2.10 respectively.

&+ﬂ =9)
Asr Ho R (2.8)

u(rh P), , (wh, _
. . pa (T, T) 29

rc M, _ -
(A p)wth pa(T -T) PAT W) 210

There are two common methods in the literature to discretize heat exchatmdrstinct control
volumes:moving baindary (MB) and finite voluméV) lumped parameter methods. The moving
boundary method can decrease computational cost while maintaining high accuracy phasdti

heat exchangers, such as evaposaad condensers, because the heat exchanger cavidezldi

into control volumedasedon thenumber of fluidphase present in the heat exchanger at each
time step The length of each control volume changes with time and average properties are used
for each volume. However, for singhhase heat exchangers, such as the gas cooler andlintern
heat exchangethe MB method would result in only one volume with lumped parameters. This

would be very inaccurate in the case of supercritical fluid because the pressure and temperature
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are independent properties. For example, the temperature oéftigeenant will have a large
gradient over the length of a gas cooler compared to a condbases operating completely
within two-phase where the temperature is at saturation across the length. Therefore, the FV
approach is preferred for singhhaseheat exchangers:or these reasons, the evaporaind
liquid-to-liquid heat exchangenodek usethe MB approach and the gas cooler and internal heat
exchanger usehe FV approach.The general approach is to convert the partial differential
equations (PD§) of (2.8-2.10 to ordinary differential equations (ODES) by integrating over the
length of each control volume.

REFRIGERANT REFRIGERANT
IN t%eq ouT

a. Finite Volume AIROUT

* AIR IN

REFRIGERANT
IN

REFRIGERANT
ouT

Sl'PERIIEATEIn -T\\'O-Pll.\SE SUBCOOLED

S T

AIROUT

b. Moving Boundary

Figure 2.1 Heat exchanger tube discretization for (a) finite volume approach, (b) moving
boundary approach [30]

2.1.3.1 Moving Boundary Approach

With use of the moving boundary approach, the length of control volumes are states. In
order to integrate ovVver(2.1d)reamaggedn (.13, provigds the , Lei
formulation for the integral of a PDE with time dependent linfitssis applied to the PDEs (2.8
2.10).

%

£ e = 1(xx () 4(x() - o) 2 ) FRE d o1

16



o o= R0 10004 00) Hor s o)

To fully describe the heat exchanger requires the wall temperature of each fluid region, two
refrigerant propertiefor each regiorfpressure of the heat exchangessumed constams, one of

the two properes of the refrigerant for each region), and the length of each ré@jtbough one
region can be determined algebraicallf/p superheabr subcooledegion exsts, the refrigerant
property stateschosenare pressure and enthalgdf.a two-phase regiorexists, the efrigerant
propertystates chosen are the pressure and mean void fraction. Mean void fpaoti@es a
simplifying estimation of theatio of vapor to liquid in the twphase region in order to determine

lumped parameters for that volurf#], [30]. Given all three fluid regions are considered, then

T

w,2

T

there exists 9 stategP T, vs Z1 2 he @ hy andz;=1-2 -,.To

w,1

implement this approach requires switching logideéterminevhich phases are present in the heat
exchangerand use the correct set of equations. This will be described in more detail in the

evaporator modeling section.

2.1.3.1.1 Evaporator

In the case of an evaporative heat exchanges, dissumed to operate three modes:
entirely two-pha®, entirely superheatedor two-phase and superheated fluithis resultsn 6

statesgP T,

w,1

-I\-N,Z Z; & rEH and22:1-g.

Table 2.1 Evaporator states for three modes of operation

TP+SH TP SH
B T T2z & hu [ BR T G R T M
Evaporator| z, =1 - 2 z, =1 z,=1
T,=2T,, +2T,, T, =T T, =T,

Mode 1: 2Zones

This section will derive the equations for 2 zone operation of the esapdoased on the
conservation equations (22810) First, each equation is integrated spatially over the length of
each zone.

Conservation of Refrigerant Mass
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g &«  « (2.13)
Ltotal ell(/’ AS
i ﬁx 9 (2.14)
Conservation of Refrigerant Energy
L ep(r Agh PAQ p(rmh) L
e . el it AU (215
Joa €U(7 A -P p(rmh) Ly
n § Atut A&S)"' FL{ P, (T, T)] d> (2.16)
Conservation of Wall Energy
b u(r ol _ kb .
N M dx= e (T -T) ba(T B d 217
Adtotal P(7 ACpT) _ Lo
A4 e {7 T va(T B o 218
Then Ejuation 2.12 is applied to the first teohEquations 2.12.18.
Conservation of Refrigerant Mass
Ats ggt em de *‘—1 dst1 g-lmll SH mln 0 (219)
Atsggt gNL Otalrdx S '{, dst1 g-lm out mP SH 0 (220)

Conservation of Refrigerant Energy

A (rh-Paxcgm B % Smab M BEA L D oo

A:eg_ n(fh P dxg fh -F)‘ at l] r.‘Iﬁout ,out rﬁ? SHO @z!'otal 19‘ ﬁ( L ;E)

(2.22)

Conservation of Wall Energy
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(2.24)
Recall, thatfor each volume we are assumitumped parameterand that at the boundary,
r|L1 = andh|Ll =h, , the densityand enthalpyof saturated vapointegratingand usingthe
product rule on thdirst term of Equatiors 2.19-2.24 results in Euations 2.258.30 Note that
Lw=L t,andfml =0 4 Kie = 4,
Conservation of Refrigerant Mass

dr
TV

dl—1 ri]r,in - Mp_ gy

E ® A (225

2 rr_ILP SH ™ rnr out
(Low- L )Olt £r, )st1 v (2.26)

Conservation of Refrigerant Energy

d(rlhl_ P)+( r_hr,inhjn - mP—SH k,' +As‘urle 41( -l;/,l 'T])
dt

A, (227

L1 r1h1 - Crl/)c:j_l_tl

dl—1 n]LP SHhv rn'outhout +A§url‘(1 Zl) afZ( w2 -E2)

d(r,h,- P)
-L)——— h
(Llotal Ll) dt -(rv \Y Ehz) dt Aés
(2.28)
Conservation of Wall Energy
dTW,:L A L1 'fgunzlé a,l(Tr,l- TA/J) + a‘ﬁTa :I\-N])
L e T, B I AC, (2.29)
dTw,z = 1 21)8 ‘?Z(Trz - w,z) +aéé-|; -I\-ﬁz)
(L[otal - Ll) dt -grw L w,2 %T fA,s ] (230)

Lastly, Equations 2.282.30are normalized by the total length of the heat exchaqg;er: Z,.
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Conservation of Refrigerant Mass

dr,
4 dt M

dz M- Mesy
dt Y, (2.31)

total

_,\972 d-z M. 6™ M ou
(1-z)=5 £ ¢ - v (2.32)

total

Conservation of Refrigerant Energy

5 d(r.h- P)+(
dt

1

dz, r_hr,inhjn - Me sy N HALZ al( T 'Tl)
- )= v (2:33

total

( 2hz P) dz mTP SHhv mr th ¢ TA n‘(l Zl) a(Z( 2 -Ez)
1- N 7 - 1 out' | ou u W 3
( Zl) -( m 2 ) dt \40tal
(2.34)
Conservation of Wall Energy
A A%urleg al(Tr 1° -I\-N]) + aéTa :I\-N])
w,1 - 1 - B . B B
zZ, + grw,l Tw||_1 %uf? r\40tal Cp (235)
dTw,z 1 A&_urf(l' Zl)é a,z(Tr,z --I\_N,Z) +a‘3ﬂ; Tlez) '
(1- z,) pm &Ll Tz %dZT NG (2.36)

Next, we will use Huation 2.31 (or 2.32) to solve foi,,_ g, andsubstitute into 2.32 (or 2.31),

2.33 and 2.34. This is because the intermedia-
on a physical system and it is challenging to calculate.

It is also important to simplify the equations to be in terms of the states that we desire (and
could measure on a physical systeRgferbackto Table 2.Xfor the chosen state$Sherefore, in
the superheated equations, the density dévawill be rewritten in terms of pressure and

enthalpy (Equation 2.37).

dr, _dr dP&ﬂ
dt  dPf, dt dh|, dt

(2.37)
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And in the two phase zone thensityand enthalpy derivativeglefined from mean void fraction

(Equations 2.32.39),will be rewritten in terms of pressure and mean void frac{lbguations

2.40-2.41).
r2 = _gv /"(1 T) g (238)
hz:gh/ {+(1 __)bf f

g+ g, r (2.39)

drzzﬂ d_P 4_d 2 @
dt dP|, dt dy|, dt (2.40)

dP _dh

dt dP dt dgp dt (2.41)

With these substitutionshe six Ejuations 2.32.36 become the 5 uations (2.42.46) (one

less equation becauskswmlving for the intermediate mass flow rate).

3 : .
[r- 52 +é15—" +zéﬁ" g S L
dt g “dP|, “dP|, gt g > dh, got & @l gdt

g
M~ M (242
in ou
\/total
_‘ 0 gp & _ _Jren €4 i h 94
[flhl /’h,] 'E 1%11&3[‘ + dF“ 1- 8 2mzd_hz Eat g 2"1_2@]’.: E_dt g 1§hl_zg_‘L i gt}g?_dt
m,inhjn' mpulb +Am‘ 1 ‘?,1( -\l;,l -rr])
Vtotal
(2.43)
A dgp € & K, Ogh,
gr.(h- h) Zwmh” 1-gi- & gh ) T .
% drl, Gt ¢ éé% dhs %a (2.44)
rnr,out(h/ h) +'§urf 2 ‘?z( -51,2 T?)
\/total
dT,, o Awziga(T,-T) + 4T, T.)
vt ois
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T & &urfzzga,z(-rr,z' Twz) + &T, Tm?) |
T m,c (2.46)

p

To provide the sixth equation to solve for all of the states, we definesardy mean void fraction

state with the use of anrer minimization equation, duation 2.47, wheré& is chosen so that this
dynamic is much faster than the other dynamics of the system. The dynamic mean void fraction is
tracking he instantaneous mean void fraction. Mean void fraction and its equations are described
in further detail iN27].

dg dg,.. dP _ _

—= - ek :k(-gtrack -y

dt dt dt (2.47)
Finally, the air otlet temperature from the evaporator is calculated using the-iN&ttiod. The
NTU (Equation2.48) is used to calculate the htansferred from the heat exchanger wall to the

air (Equation2.49), and then the outlet air temperature is calculatdefjogition 2.50.

1 aa&urf
NTU rha,in Cp,a (248)
Q. =My Cp,a(-l;,in -Ti €T R)exp( NTY)z, (2.49
- a Qa,i
j=1
Ta,out - rha’m Cp,a -Fra in (250)

Similarly, state equations can be derived for the other two modes of operatotwmphase or
only superheat. These derivations arepténbecause there are no intermediate mass flowrates;
therefore, the three equatioase used to solve for the three state variablasthermore, this
approach can be extended to other nplttase heat exchangers, such as aflwd plate

evaporator (hjuidto-liquid heat exchanger).

2.1.3.2 Finite Volume Approach

The finite volume (FV) approach discretizes the heat exchangenirtguivalent sized
volumes. Similar to the moving boundary approach, each volume considers conservation of
refrigerant mass, conservation of refrigerant energy and conservation of wall energy. The steps for
the FV approach aif&0]:
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1. Discretize the heat exchanger im@qual sized volumes, each with an average thermodynamic
state at timée (Figure2.1)

2. Integrate over the length of eanhvolume

3. Choose independent state variables and reduce the conservation equations

Each control volume assumes lumped parameters and an average state. Because the control
volumes are not based on fluid phase, a volume can include two phases, butakevdh an
average state that lies witheme phase or the other. Consequently, caatfmnal issues can arise
due to discontinuity of the heat transfer coefficient between fluid phifaaesontrol volume is
switching back and forth between phasHse discontinuity results from the use of different heat
transfer correlations for eachifiphase. To remedy the issueMdder lookup table is generated

for heat transfer coefficients for a randerass flow rates, pressur@det enthalpies, and enthalpy
differences and then a smoothing function is applied to remove the disconfiguiyes2.2-2.3).

P =3900 kPa, A H = 20 kJ/kg, mfr =.01 kg/s

Original Curve
35 f | |=—Modified Curve | |

Heat Transfer Coefficient [kW/m2K]

0
100 200 300 400 500 600
Enthalpy [kJ/kg]

Figure 2.2 Original and modified evaporator heat transfer coefficient profile for COz
refrigerant P=3900 kPa, m=.01 kg/s andDH = 20 kJ/kg
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P=3900 kPa, A H = 20 kJ/kg

(KW/m2K)

Heat Transfer Coefficient

Enthalpy 0o 0

Mass Flow rate [kg/s]

Figure 2.3 Evaporator heat transfer coefficient smoothed profile for a range of enthalpy
and mass flow rate values, P=3900 kPa amiH =20 kJ/kg

2.1.3.2.1 Internal Heat Exchanger

This section will discuss how the finite volume (FV) approach can be applied for the
internal heat exchanger. The internal heat exchanger operatesniterflow. Furthermore, it is
assumed the high pressure side is supercritical single phase fluid and that the low pressure side can
be twophase fluid, superheated fluid or both. The conservation of refrigerant mass and energy
eguations can be applied the highpressure and loypressure fluid flows separatelyirst, the
conservation guations (2.8.10) are integrated over the length of the control volume. Since the

control volume lengths are not changing with time, the integration is simpler.

0.

r : OP m_
5 P T (251)
Conservation of Refrigerant Energy
FReU(r A | HM ﬁx 0

g Ht (2.52

Wr,i . . .

ASDX -Hn,i,out m,i,in 0
ot (2.53

Conservation of Refrigerant Mass
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it B

\ulr m _ =X
guanea pum g = ' J{Ppa (T ] b (254)

urh P,

it D 4( I')ruout (_ I)r,ijn :Xml(;\rl rT)

(2.55
Note: A DX is the volume of the contralolume, V,,, and Dx *p is the surface area of the
refrigerant tube, A, ,,. Choosing pressure and enthalpy as state variables the eqtatieash

control volumeare as follows:

Conservatio of Refrigerant Energy

Ao ~ . o ~ . g
ch %HL 8 Pr +;£T 8 h,i l;I:I:Tt],i in m out
&Pl 7 ¢ Pl s g (2.56)
Conservation of Refrigerant Mass
Bu| 6 9 4 0 9
A ohi-1 8 Qae—h ohi A W
ecHh ¢ T g (2.57)

=(mh),, Am, A (T F)

Finally, conservation of wall energy is codsred with heat transfer from each fluid flohhere
is no secondary fluid (i.e. air) for an internal heat exder sincesach refrigerant side is
exchanging energwith the wall

Conservation of Wall Energy

Ry, ol _ xR
A = TAERe(Te T Paw(Te B gh (258)

1.
~a{re) ADx = B4 (T, E)  %0Be( T T)

(2.59
Note: r A Dxis the mass of wall for #t control volume. Equation 2.59 simplified b 2.6Q
(me)W o -Ev '%un‘ cﬂrLPu( r,LP,i _-!;/,i) %m,cv ar,HP,i( T,HP,i -\Eu) (260)

In order to extend this to multiple volumes, the intermediate mass flow rates become part of the
state vector. Wit volumes there will besn+ 2 states that can belsed with three generalized

equations:
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(pr,LP h,LP,l h,LP,N m,l;z h;]N-lN)T = 'ﬁﬁ ¥ (261)

(Pr,HP h,HP,l hHP,N M, o mN'lN)T = Y (2.62

(Tr = Tun) = A (2.63

A first order filter is placed upon the mass flow rate states to improve numerical robustness and
speed of simulation.

drn — }(mstat _m)

dt ¢ (2.64)

2.1.3.2.2 Gas Cooler

The derivation of the gas cooler is very similar to that of the internal heat exchanger, except
that instead of two refrigerant fluid sides, thereny@ne refrigerant flow and the secondary fluid
is air. The gas cooler refrigerant is assumed to always be supercritical fluid. The gas cooler
conservation of refrigerant mass and energy are the sathe mternal heat exchangenq(i&tions
2.142.15). The conservation of wall energy is modified to inclulde heat transfer from the air

resulting in Equation 2.65
(mCP)w,cv -|;w = %urf,cﬁ r,i(-lr—,i '-\I;I,i) stirf ,cv aa( -l; -Ew) (265)

The equations describingd heat transfer to the air waveeviausly described with guations
2.482.50.

2.1.4 System Performance

To build an entire vapor compression cycle in simulation, each component mmodel
connected and refrigerant states are ghbséveen adjacent components. The system behavior is
verified by applying step inputs astepdisturbances to the system.

First, the impact of increasing the compressor speed and valve oEguce 2.4) are
verified. Dynamic outputs of interest ahetpressures (evaporator and gas cooler), evaporator air
outlet temperature, and cooling capac®pmpressor speed and valwpeningare controllable
inputs that directly impact the VCS pressusad the mass flow rate tiferefrigerant through the
cycle The evaporatorpressure and refrigerant flowrate both impact the evaporator air outlet
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temperature and cooling capacifgvaporator pressure and refrigerant saturation temperature
increase and decrease jointly. If the evaporator pressure and sat@aip@ngture increase, then
there is a smaller temperature differential between the air inlet temperature and the refrigerant
temperaturgthus having a decreasing effect on the cooling capacity. Addlfipmacreased
refrigerant flowratewill increasecoding capacity and decreased flowrate will decrease cooling
capacity.The results of the step change in compressor spea@bmdopening are shown in Figure

2.5. When the valve is opengthe evaporator pressure increases (negative impact on cooling
capady), and simultaneously the refrigerant flow rate increases (positive impact on cooling
capacity). In this case, the cooling capacity experiences a net increase. Next, the compressor speed
increaseswhich increases the pressure ratio of the system,thatecreasing the evaporator
pressure(positive impact on cooling capacitwhile increasing the refrigerant mass flow rate
(positive impact on cooling capacityhs expected, the cooling capacity increases significantly
and the evaporator air outlet temgteire decrease$hese results match the opéwop behavior

of simulation results di31] andexperimentatata from[32].

Second, the impact of increasing a disturbance is verified. The gas cooler inlet air
temperature isteppedFigure2.6)and the dynamic responses of the pressure, evaporator air outlet
temperature and cooling capacity are observdelgare2.7. The increase in gas cooler inlet air
temperature shifts the pressures of the evaporator and gas cooler pressure inubalpestton.

The increase in evaporator temperature has a negative impact on cooling capacity as previously
discussed. Since there is no change in the refrigerant mass flow rate or flowrate of air across the
evaporator, the net impact is a reduction inlie@ capacity and increased evaporator air outlet
temperatureThe simulation results of the impact of the gas cooler inlet air temperature are

supported by experimental date[119].
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Step Inputs
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Figure 2.4 Step inputs to compressor and valve for opetoop verification of transcritical
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Figure 2.5 Selected VCS outputédynamic responseto step inputs of Figure2.4
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Figure 2.6 Step disturbance of gas cooler inlet air temperaturéor open-loop verification of

transcritical VCS
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Figure 2.7 Selected VCS outputédynamic responseto stepdisturbances of Figure2.6

2.2 Battery Pack Modeling

The goal of this section is to develop a battery pack model that calptuineelectrical and
thermal behaviofor use incontrol designElectrochemical and etualent circuit are the main
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methods for modelingell electrical behavioand there are tradeoffs between complexity and
computational load. Electrochemical (first principle) models represent transport, kinetic and
thermodynamic phenomena with a set ohlimeear partial differential equation83]. These
models provide accuracy, but often contain a large set of unknown peranad are
computationally heavy. As noted h$4], this makes them unsuitable for control applications.
Equivalen circuit modelause a network of voltage sources, resistors and capacitors to describe the
cell behavior. The duglolarization (DP) model has shown to be an accurate equivalent circuit
modeland identified parameters are availafdean A123 26650 LiFeP{xell [34]. [35] found

that the parameters are dependemboth state of charge andamgerature of the cell. Likewise,

heat generation is dependent on the electstzk Therefore, it is necessary to have a thermal

model coupled with the electatmodel(Figure2.8).

—» Electrical Model

Thermal Model j+—

Figure 2.8 Coupling between celkelectrical and thermal modes. Q: heat generation, T:cell
mean temperature Adapted from [34]

Local heat generation within the cell is dependent on activation, concentration and ohmic
losses resulting in a complex expresqi@d]. A simplified form that neglects ohmic losse=san

represent the local heat gestgon and be coupled with the DP electrical model.
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2.2.1 Electrical Model

The dual polarization equivalent circuit is shroin Figure2.9. It consists of an opetircuit
voltage sourceinternal resistance and two RC pairs. One RC pair represents a fast polarization

dynamic and the other represents a slow polarization dynamic.

L R R, Vo
mn + out
Vocr it C c 1 Cs
1 2

Figure 2.9 Dual polarization equivalent circuit with ground capacitance Reprinted from
[37]

In order toallow the cell model to be electrically modulbetoutput voltage of the ced
made to be atate governed bydtiation 2.66 The ground capacitan€g is assumed to be very

small (orders of magnitude smaller than the fastestesystynamic)o that it does not interfere

with the other system dynamics. The input cur:
to Figure2.9 (Equation 2.6)7 The state of charge (SOC) is defirmstthecumulative current drawn

from the batteryelativeto the battery capacitythereforethe time derivativas represented by

Equation 2.68 The voltage dynamic of the RCipmais governed by uatiors 2.69-2.70derived

from KsgCuodntdaw 0

c_:(3-\7out = Tin -l out (266)

1 ,- - -  _ _

Iin :—_( ocv -k/in Vout \4._ \/2)'
Ro (2.67)
soc= "l
b (2.68)
7= o

RC G (2.69)



RC G @79

The inputs to the system are the input voltage and demanded current and the states gpaithe RC
voltages, the outputoltage and state of charg&Quation2.71-2.72.

2 in Iout E (271)

(2.72)

2.2.2 Thermal Model

The cell ismodeled as a"@ order system with corand surface temperature stat€he
core generates heat and then heat is transferred to the cell surface by conduction. Additionally,
cell-to-cell conduction and convection to a cooling fluid is inclugethe themal circuit (Figure
2.10. The cell internal heat generatjatependent on electrical current and voltagedescribed
by Equation 2.73 which characterizes joule heating, energy dissipation from electrode over
potentials and entropic heatingConservabn of energy is analyzed for the temperature stafe
the cell and described bygHations 2.74€.76

Qgen = I_in (\70cv -\7T) T|n-|- m£

M 2.73)

Tsurf i Tci

Cc |Tc i = YQeni —
R (2.74)

C T = Tsun‘,i-l +Tsurf,i 4 -2Tsurf,i _!_-I::,i :I;urf,i _Ifl J -Eurf J

surf,i “surf,i Raxt Rnt R (275)
i = i1 R..C, (2.76)
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Figure 2.10 Thermal model for n cells Reprinted from [37]

2.2.3 Model Reduction

The cell model derived in the previous two sections has 7 states. A battery pack large
enough for a battery electric vehicle would require thousands of cells resultingpisiedwith an
excessively large number of staté&s reduce the nunel of states, a module modsldeveloped
that includes the following assumptions:

1. The cells have the same initial conditions
2. There exist no thermal gradients in the module (lumped temmpee)

The number of cells in series and parallsl, and Np respectively, are additional parameters

defined for the module model. The output voltage dynamic is based on the total current through
the module & seen in Figur2.11and described by Equati@77. The cell dynamicggoverning

the state of charg®C voltagesand heat generatios based on the currethdwing through each

cell describd by Equatior2.78

Electrical Current through Module

— N

Iin:(NS%m)((Nsvocv) -k7in \70ut (Ns\_{) (I_\JSY{)) (277)

Electrical Currentiirough each Row
L= ey (M) ¥, Voo (RN) (W) 278
(NSRnt) (2.78)
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Figure 2.11 Representation of edctrical circuit of a battery module

Lastly, the equation for the convective heat transten themoduleto thecooling fluid isscaled

to account for the number of ce(.79.

_,_Ns N p(T urf, i~ Tﬂ, 1)

S|

TR TE R..Cy, (2.79

2.2.4 System Performance

The model verification for the battery is done in two steps: 1) verification of state behavior
with free convection, and 2) verification of state behavior ¥atised convection. To verify the
model captures the dynamic behavior of the battery temperature and voltage, a battery module,
was discharged at different rates in simulation and compared to available data in literature. The
simulated battery module consisof a matrix of 30 cells in parallel and 14 cells in series. As
mentioned in the modeling description, it is assumed that each cell is thermally and electrically
uniform. Each cell has a nominal voltage of 3.3 V and a capacity of 2.3 Ah, therefor@dhle m
has a total capacity of about 70 Ah. The module is discharged at 0.5C, 1C, 3C, and 5C (35 A, 70
A, 210 A, 350 A resectively) to match the experiment conducted [Bg]. The simulation is
carried out until the depth of discharge is about 90% (sfatearge is 10%). The average voltage
of each cell is plotted in Figuiz12and theaverage temperatucé each cell is pltted in Figure
2.13 The data from theimulations closelynatcheghe data of[38], in termsof curvature and
magnitude.However, itshould be noted th§®8] providesdata foranLi[NiMnCo] Oz pouch cell

in contrast to the LiFeP£ylindrical cell modeled in this thesis. Therefdtes not expectethat
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the results wildirectly overlap. But, it is clear that the models developed in this work capture the
samebehaviorof a physical battery.

Next, the lehavior of the battery module with forteonvection is verified. Figur2.14
shows the cell surface and core temperature states, and cell voltage as a result of a step input to the
battery fan speeincrease from 0% fan speed to 80%} expected, the dace temperature
responds fastdo the increased coolingnd the core temperature cools on a slower time scale due
to its larger thermal capacitance. Furthermeéne, module voltage decreased as a result of the
decreased average cell temperature wherttloling was applied.

—0.5C
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Voltage [V]
w w
w =

w
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31

3 1 1 L L ]
0 20 40 60 80 100

DOD %

Figure 2.12 Battery module output voltage relative to discharge rate
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Figure 2.13 Battery module output average temperature relative to discharge rag
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