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ABSTRACT

A. Lascoux and M.-P. Schützenberger introduced Schubert polynomials to study the coho-

mology ring of the complete flag variety F l(Cn). Each Schubert polynomial corresponds

to the class defined by a Schubert variety Xw ⊆ F l(Cn). Schubert polynomials are in-

dexed by elements of the symmetric group and form a basis of the ring Z[x1, x2, . . .]. The

expansion of the product of two Schubert polynomials in the Schubert basis has been of

particular interest. The structure coefficients are known to be nonnegative integers. As of

yet, there are only combinatorial formulas for these coefficients in special cases, such as the

Littlewood-Richardson rule for multiplying Schur polynomials.

Schur polynomials form a basis of the ring of symmetric polynomials. They have a combi-

natorial formula as a weighted sum over semistandard tableaux. In joint work with A. Yong,

the author introduced prism tableaux. A prism tableau consists of a tuple of tableaux, po-

sitioned within an ambient grid. With A. Yong, the author gave a formula for Schubert

polynomials using prism tableaux. We continue the study of prism tableaux, detailing their

connection to the poset of alternating sign matrices (ASMs).

Schubert polynomials can be interpreted as multidegrees of the matrix Schubert varieties

of Fulton. We study a more general class of determinantal varieties, indexed by ASMs. More

generally, one can consider subvarieties of the space of n × n matrices cut out by imposing

rank conditions on maximal northwest submatrices. We show that, up to an affine factor,

such a variety is isomorphic to an ASM variety. The multidegrees of ASM varieties can be

expressed as a sum over prism tableaux.

In joint work with A. Yong and R. Rimányi, the author studies representations of quivers

and their connection to the dilogarithm identities of M. Reineke. We give a bijective proof

to establish an identity of generating series. This bijection uses a generalization of Durfee

squares. From this identity, we give a new proof of M. Reineke’s identities in type A.
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CHAPTER 1

INTRODUCTION

1.1 The Flag Variety

Fix an n-dimensional vector space V over C. A complete flag is a nested sequence of

subspaces of V

V1 ⊆ V2 ⊆ · · · ⊆ Vn = V so that dim(Vi) = i for all i = 1, . . . , n. (1)

The complete flag variety F l(V ) is the set of complete flags in V .

We follow [KM2005] for conventions on flag varieties. Fix an ordered basis and identify

elements of V with row vectors in Cn. Let GL(n) be the general linear group of n × n
invertible matrices over C. An element M ∈ GL(n) defines a complete flag as follows. Let vi

be the ith row of M and let Vi = 〈v1, . . . , vi〉 be the span of the first i rows of M . Since M

is invertible,

V1 ⊆ V2 ⊆ · · · ⊆ Vn = Cn

is a complete flag. Replacing vi with cvi (with c 6= 0) does not change the resulting flag.

Nor does replacing vj with vj + cvi whenever i < j. In other words, two matrices define the

same flag whenever they are related by a sequence of downwards sweeping row operations.

We may interpret this in the language of homogeneous spaces. Let B−,B+ ⊆ GL(n) be the

subgroups of lower and upper triangular matrices respectively. Lower triangular matrices

act on GL(n) by left multiplication. This action corresponds to downward sweeping row

operations. As such, we may identify F l(Cn) with the quotient B−\GL(n). The group B+ acts

on GL(n) by right multiplication. This action descends to the quotient F l(C) = B−\GL(n).

The B+ orbits on F l(C) are called Schubert cells.

The symmetric group Sn is the set of bijections from {1, 2, . . . , n} to itself. Each per-

mutation w ∈ Sn defines a flag as follows. Write ei for the ith standard basis vector. Then

E
(w)
i := 〈ew(1), ew(2), . . . , ew(i)〉
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and we define E(w) to be the flag

E
(w)
1 ⊆ E

(w)
2 ⊆ · · · ⊆ E(w)

n .

For each Schubert cell Ω, there is a unique w ∈ Sn so that E(w) ∈ Ω. Write Ωw for this cell.

The flag variety decomposes as a disjoint union of Schubert cells

F l(Cn) =
⋃
w∈Sn

Ωw. (2)

This is called the Bruhat decomposition of the flag variety. The closure Xw := Ωw is called

a Schubert variety. Each Schubert variety defines a class σw = [Xw] in the cohomology

ring H∗(F l(Cn),Z). Furthermore, {σw : w ∈ Sn} is a Z-linear basis for H∗(F l(Cn),Z). As

such,

σu ∪ σv =
∑
w

Cw
u,vσw with Cw

u,v ∈ Z. (3)

The structure coefficient Cw
u,v counts the number of points in the intersection of three

generically translated Schubert varieties. Therefore, Cw
u,v is a nonnegative integer. A central

open problem in Schubert calculus is to give a combinatorial rule for Cw
u,v. This has been

achieved in special cases, such as the Littlewood-Richardson rule [LR1934].

The expansion in (3) can be reformulated in an algebraic setting via the Borel isomorphism:

H∗(F l(Cn),Z) ∼= Z[x1, x2, . . . , xn]/ISn (4)

where ISn is the ideal generated by the symmetric polynomials with no constant term.

A. Lascoux and M.-P. Schützenberger introduced Schubert polynomials to study this iso-

morphism [LS1982]. Schubert polynomials {Sw : w ∈ Sn} have a recursive definition using

divided difference operators. See Section 2.4 for details. The explicit isomorphism in (4) is

given by mapping σw to the coset in Z[x1, x2, . . . , xn]/ISn which contains Sw.

Schubert polynomials have nonnegative, integer coefficients. Numerous combinatorial

explanations for this positivity have been studied. For instance, there are Kohnert dia-

grams (see [Koh1990] and [Ass2017]), compatible sequences [BJS1993], and balanced tableaux

[FGRS1997], among many others. We will recall the pipe dream formula, which has its ori-

gin in the pseudo-line configurations of [FK1996] and was further studied in [BB1993] and

[KM2005]. In Chapter 3, we use pipe dreams to resolve a conjecture of R. Stanley regarding

two term Schubert polynomials. We show that Sw(1, 1, . . .) = 2 if and only if w contains

the pattern 132 exactly once.

If v ∈ Sn is a Grassmannian permutation, then Sv is a Schur polynomial. Schur polyno-
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mials form a basis for the ring of symmetric polynomials. They have been studied through

the development of a theory of tableau combinatorics (see [Man2001] and [Ful1997]). Each

Schur polynomial is a generating series over a set of semistandard tableaux. See Section 2.3

for this definition.

In joint work with A. Yong, the author defined prism tableaux, a generalization of semistan-

dard tableaux [WY2018]. The authors used prism tableaux to provide a new combinatorial

formula for Sw. In [Wei2017a], the author studied a more general class of prism tableaux and

detailed their connection to alternating sign matrices. The main results from this direction

of research will be summarized in the next section.

1.2 Prism Tableaux and Alternating Sign Matrices

An alternating sign matrix1 (ASM) is a square matrix with entries in {−1, 0, 1} so that

(A1) the nonzero entries in each row and column alternate in sign and

(A2) each row and column sums to 1.

Let ASM(n) be the set of all n × n ASMs. The enumeration of ASMs has drawn much

interest, the sequence for n ≥ 1 being

1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, . . . . (5)

There is a closed form expression for (5). The celebrated alternating sign matrix conjecture

of W. H. Mills–D. P. Robbins–H. Rumsey [MRR1983] asserts that

#ASM(n) =
n−1∏
j=0

(3j + 1)!

(n+ j)!
.

The original proof was given by D. Zeilberger [Zei1996]. A second proof was given by

G. Kuperberg [Kup1996] using the six-vertex model of statistical mechanics. See Proofs and

Confirmations: The Story of the Alternating-Sign Matrix Conjecture, by D. Bressoud, for the

link between ASMs and hypergeometric series, plane partitions, and lattice paths [Bre1999].

Each A = (aij)
n
i,j=1 ∈ ASM(n) has an associated corner sum function

rA(i, j) =
i∑

k=1

j∑
`=1

ak`. (6)

1The text in this section first appeared in work of the author [Wei2017a, Section 1].
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Corner sum functions define a lattice structure on ASM(n); say

A ≤ B if and only if rA(i, j) ≥ rB(i, j) for all 1 ≤ i, j ≤ n. (7)

Restricted to permutation matrices, (7) is the Bruhat order on the symmetric group Sn.

A. Lascoux and M.-P. Schützenberger showed that ASM(n) is the smallest lattice which

contains Sn as an order embedding [LS1996, Lemme 5.4].

Fix tuples of partitions and positive integers

λ = (λ(1), . . . , λ(k)) and d = (d1, . . . , dk) so that di ≥ `(λ(i)) for all i. (8)

Here `(λ) denotes the length of λ (see Section 2.2). We associate to each (λ,d) an ASM,

denoted Aλ,d, which is the least upper bound of a list of Grassmannian permutations. For

any ASM, there exists some (λ,d) so that A = Aλ,d. In Section 6.2 we describe two

combinatorial procedures to take a pair (λ,d) and produce a specified ASM.

Following [Wei2017a], a prism tableau for (λ,d) is a k-tuple of reverse semistandard

tableaux, with shapes and labels determined by the pair (λ,d). We write Prism(λ,d) for

the set of minimal prism tableaux for (λ,d) which have no unstable triples. These terms are

defined in Section 6.1. Each prism tableau has an associated weight monomial wt(T ). Let

Aλ,d =
∑

T ∈Prism(λ,d)

wt(T ). (9)

Call Aλ,d an ASM polynomial.

If λ = (λ) and d = (d), the polynomial Aλ,d is the Schur polynomial sλ(x1, . . . , xd). This

follows immediately from the definition of sλ as a weighted sum over semistandard tableaux.

The purpose of [WY2018] was to provide a prism formula for Schubert polynomials. We

prove the following generalization.

Theorem 1.1. Aλ,d =
∑

w∈MinPerm(Aλ,d)

Sw.

Here, MinPerm(A) denotes the set permutations above A in ASM(n) which have the mini-

mum possible length. Our proof of Theorem 1.1 is purely combinatorial; we give a bijection

between Prism(λ,d) and the set of facets of a union of the subword complexes of [KM2004].

Each Schubert polynomial is a weighted sum over the facets of its corresponding subword

complex [FK1996, BB1993, KM2005]. In Section 6.4, we define a map from the set of all

prism tableaux for (λ,d) to a simplicial complex ∆(Qn×n, Aλ,d), which is itself a union sub-

word complexes. Restricted to Prism(λ,d), this map is a bijection onto the set of maximal
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dimensional facets in ∆(Qn×n, Aλ,d) (see Theorem 6.3).

The polynomial Aλ,d also has a geometric interpretation; it is the multidegree of an alter-

nating sign matrix variety. Write Mat(n) for the space of n×n matrices over an algebraically

closed field k. Given M ∈ Mat(n), let M[i],[j] be the submatrix of M which consists of the

first i rows and j columns of M . We define the alternating sign matrix variety

XA := {M ∈ Mat(n) : rank(M[i],[j]) ≤ rA(i, j) for all 1 ≤ i, j ≤ n}. (10)

If w ∈ Sn, then Xw is a matrix Schubert variety as defined in [Ful1992].

ASM varieties are stable under multiplication by the group of invertible, diagonal matrices

T ⊂ GL(n). There is a corresponding Zn grading and multidegree

C(XA; x) ∈ Z[x1, . . . , xn].

Whenever w ∈ Sn, we have Sw = C(Xw; x). This was shown in [KM2005] and is equivalent

to earlier statements in the language of equivariant cohomology [FR2003] and degeneracy

loci [Ful1992]. We show Aλ,d is the multidegree of the ASM variety XAλ,d
.

Theorem 1.2. Fix λ and d as in (8). Then

C(XAλ,d
; x) = Aλ,d.

The irreducible components of XA are always matrix Schubert varieties. Theorem 1.2

follows from Theorem 1.1 and the additivity of multidegrees.

We also discuss the explicit connection of prism tableaux to the Gröbner geometry of XA.

Let z = (zij)
n
i,j=1 be the generic n× n matrix. Define the ASM ideal by

IA := 〈minors of size rA(i, j) + 1 in z[i],[j]〉. (11)

It is immediate that IA provides set-theoretic equations for XA. For any A ∈ ASM(n), IA is

radical. This follows from the Frobenius splitting argument given in [Knu2009, Section 7.2].

We make the connection to ASM varieties explicit.

Proposition 1.1 ([Knu2009]). Fix any antidiagonal term order ≺ on k[z].

(I) The essential (and hence defining) generators of IA form a Gröbner basis under ≺.

(II) IA is radical and its initial ideal is a square-free monomial ideal.

(III) The Stanley-Reisner complex of init(XA) is ∆(Qn×n, A).
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Since Prism(λ,d) is in weight preserving bijection with the facets of maximum dimension

in ∆(Qn×n, Aλ,d), this yields a second proof of Theorem 1.2.

1.3 Partition Identities and Quiver Representations

We now describe joint work with R. Rimányi and A. Yong found in [RWY2018]. Define the

quantum dilogarithm series

E(z) =
∞∑
k=0

(−z)kqk
2/2

(1− q)(1− q2) · · · (1− qk)
∈ Q(q1/2)[[z]]. (12)

In each term of (12), the denominator may be written more compactly using the q-shifted

factorial,

(q)k = (1− q)(1− q2) · · · (1− qk). (13)

This has an interpretation in terms of partitions; the reciprocal of (q)k is the generating

series for partitions with at most k parts [And1984, Theorem 1.1].

There are many interesting identities among quantum dilogarithms. We highlight the

following, which specializes to the pentagon identity of Rogers’ dilogarithm.

Theorem 1.3 ([Sch1953] [FV1993], [FK1994]). Suppose x and y are formal q commuting

variables, with yx = qxy. Then

E(x)E(y) = E(y)E(−q1/2xy)E(x). (14)

M. Reineke extended (14) to give a family of identities, one for each Dynkin quiver (see

[Rei2010] and [Kel2011]). The quantum pentagon identity corresponds to the quiver which

has two vertices connected by a single edge.

In Chapter 9, we show that Theorem 1.3 can be proven using the combinatorial tool of

Durfee rectangles. We give a proof of M. Reineke’s identity in type A by proving related

identities using iterated Durfee rectangles on multipartitions.

1.4 Organization

The main body of this thesis is as follows. We review the relevant background material

regarding Schur polynomials and Schubert polynomials in Chapter 2. In particular, we

describe combinatorial rules for these polynomials, the semistandard tableau model for Schur
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polynomials and the pipe dream model for Schubert polynomials. In Chapter 3 we prove a

conjecture of R. Stanley regarding the number of monomials in a Schubert polynomial. The

content of this chapter is found in [Wei2017b].

Our focus in Chapter 4 is on the poset structure of the set of alternating sign matrices.

We present a generalization of the Rothe diagram to ASMs. This in turn, gives a new inter-

pretation of the bijection between ASMs and antichains of bigrassmannian permutations. In

Chapter 5, we review generalities relating to Coxeter groups, the Bruhat order, and subword

complexes. We prove if wJ is a minimal length coset representative for w in a parabolic

subgroup W/WJ , then any reduced word for w contains wJ as a subword exactly once (see

Proposition 5.3).

Chapter 6 is work which appears in the preprint [Wei2017a]. Prism tableaux were intro-

duced in joint work with A. Yong [WY2018]. We consider generating series over sets of prism

tableaux. These polynomials expand as a multiplicity free sum of Schubert polynomials. In

Chapter 7, we use prism tableaux to give a formula for the multidegrees of ASM varieties,

which generalize matrix Schubert varieties.

In Chapter 8 we review background on the representation theory of quivers. Chapter 9

is joint work with R. Rimányi and A. Yong [RWY2018]. We discuss a specific connection

between type A quiver representations and the quantum dilogarithms identities of M. Reineke

[Rei2010]. We give a bijective proof of a related identity and use this to provide an elementary

proof of M. Reineke’s dilogarithm identities in type A.
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CHAPTER 2

SCHUR POLYNOMIALS AND SCHUBERT
POLYNOMIALS

2.1 Permutations and the Rothe Diagram

We follow [Man2001] as a reference. Let Sn be the symmetric group of permutations

on {1, 2, . . . , n}. We will most commonly represent permutations in one-line notation,

i.e. w = 4721635 is the permutation which maps 1 to 4, 2 to 7, 3 to 2, and so on. We

will sometimes use cycle notation. For instance, we can write 4721635 as a product of dis-

joint cycles (27563)(14) = (14)(27563). In particular, we are interested in the factorization

of a permutation as the product of transpositions tij := (i j) or simple transpositions

si := (i i+ 1). 

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0



A permutation matrix is a matrix with entries in {0, 1} so

that each row and column has exactly one nonzero entry. Encode

w ∈ Sn as the unique n×n permutation matrix which has a 1 in

the (i, w(i)) entry for each 1 ≤ i ≤ n. The permutation matrix

for w = 4721635 is pictured to the right. Observe that

(w(i), i) = (w(i), w−1(w(i))).

Since this holds for all i, taking the transpose of the permutation matrix for w produces the

permutation matrix for w−1.

An inversion of w is a pair i < j so that w(j) > w(i). Call (i, j) an inversion pair for

w. There is a descent at position i of w if w(i) > w(i + 1). This is equivalent to saying

(i, i+ 1) is an inversion pair. The length of a permutation records the number of inversions,

`(w) = #{(i, j) : 1 ≤ i < j ≤ n and w(j) > w(i)}. (15)

The sign of w is

sgn(w) = (−1)`(w). (16)
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Write

w0 = n n− 1 n− 2 . . . 1 (17)

to denote the longest permutation in Sn.

In 1800, H. Rothe developed a visual way to study the inversions of a permutation

[Rot1800]. The Rothe diagram of a permutation is the set

D(w) := {(i, j) : 1 ≤ i, j ≤ n, w(i) > j, and w−1(j) > i}. (18)

From (18), it follows that

D(w−1) = D(w)t. (19)

We may visualize D(w) as the complement of hooks in an n× n grid.

Label cells using matrix conventions, i.e. (i, j) is the cell which is i rows

from the top and j columns from the left. For each i = 1, . . . , n, place

a black dot in position (i, w(i)). Then, strike out all boxes to the right

and below each of the plotted points. The boxes which remain form

D(w). For example, D(4721635) is pictured to the right.

The essential set of a permutation w consists of the southeast most boxes in each con-

nected component of the diagram

Ess(w) := {(i, j) ∈ D(w) : (i, j + 1), (i+ 1, j) 6∈ D(w)}. (20)

In the example above, the essential boxes of D(4721635) are shaded in dark gray. Each

permutation has an associated rank function rw, where

rw(i, j) := #{k : 1 ≤ k ≤ i and w(k) ≤ j}. (21)

Equivalently, rw(i, j) counts the number of 1’s in the permutation matrix of w which sit

weakly northwest of the (i, j) entry. Fulton showed that each permutation is uniquely de-

termined by the restriction its rank function to the essential set [Ful1992, Lemma 3.10].

Lemma 2.1. (I) Elements in D(w) are in bijection with inversions of w. Explicitly, if

(i, j) ∈ D(w) then (i, w−1(j)) is an inversion pair.

(II) There is a descent at position i of w if and only if (i, j) ∈ Ess(w) for some 1 ≤ j ≤ n.
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Proof. (I) By (18), if (i, j) ∈ D(w) then

w(i) > j = w(w−1(j)) and w−1(j) > i.

As such, (i, w−1(j)) is an inversion pair. Conversely, if (i, j) is an inversion pair, then by

definition

i < j = w−1(w(j)) and w(i) > w(j).

Therefore, (i, w(j)) ∈ D(w).

(II) If w has a descent at position i, then (i, i + 1) is an inversion pair. By the argument

above, (i, w(i + 1)) ∈ D(w). Whenever j ≥ w(i + 1), we have that (i, j) 6∈ D(w). In

particular, any box in the ith row of D(w) which is weakly to the right of (i, w(i+ 1)) does

not have any box directly below it in D(w). For instance, the right most box in the ith row

of D(w) is an essential box.

Conversely, suppose (i, j) ∈ Ess(w). Then (i, j) ∈ D(w) but (i + 1, j) 6∈ D(w). Since

(i+ 1, j) 6∈ D(w), we have

w(i+ 1) ≤ j or w−1(j) ≤ i+ 1.

Case 1: Suppose w(i+ 1) ≤ j.

Since (i, j) ∈ D(w), we have w(i) > j. Therefore,

w(i+ 1) ≤ j < w(i)

and there is a descent in position i.

Case 2: Suppose w−1(j) ≤ i+ 1.

Since (i, j) ∈ D(w) we have w−1(j) > i. As these are integers,

w−1(j) ≥ i+ 1. (22)

Since w−1(j) ≤ i+ 1, using (22) yields

w−1(j) ≤ i+ 1 ≤ w−1(j).

Therefore i+ 1 = w−1(j) and so w(i+ 1) = j. Since w(i) > j = w(i+ 1), there is a descent

at position i.
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As an immediate consequence of Lemma 2.1, we have

`(w) = #D(w). (23)

Permutations are uniquely determined by the number of boxes in each row of D(w). Let

cw(i) := #{j : (i, j) ∈ D(w)}. (24)

The code2 of w is the sequence

cw = (cw(1), cw(2), . . . , cw(n)). (25)

For instance c4721635 = (3, 5, 1, 0, 2, 0, 0).

Write N = {0, 1, 2, . . .} for the set of nonnegative integers and Z+ = {1, 2, . . .} for the set

of positive integers. A weak composition is a sequence α = (a1, a2, . . . , an) with ai ∈ N.

If weak compositions of different lengths agree on all nonzero entries, we consider them to

be the same. Let δ = (n− 1, n− 2, . . . , 0). Say α ⊆ δ if ai ≤ δi for 1 ≤ i ≤ n.

Lemma 2.2. (I) The map w 7→ cw defines a bijection from Sn to weak compositions α

such that α ⊆ δ.

(II) There is a descent at position i of w if and only if cw(i) > cw(i+ 1).

Proof. See [Man2001, Proposition 2.1.2].

There is a natural inclusion ι : Sn → Sn+1 given by

ι(w(i)) =

w(i) for all 1 ≤ i ≤ n and

i when i = n+ 1.
(26)

It will sometimes be convenient to consider permutations as elements of the infinite sym-

metric group

S∞ =

( ∞⋃
n=1

Sn

)/
∼, (27)

where ∼ is the equivalence relation generated by w ∼ ι(w). More simply, S∞ is the set of

permutations of Z+ which fix all but finitely many numbers. We sometimes write w ∈ Sn to

emphasize that w has a representative in Sn, i.e. w(i) = i whenever i > n.

2Often, cw is called the Lehmer code of w, after D. H. Lehmer [Leh1960]. However, cw made an earlier
appearance in 1888 in work of C.-A. Laisant [Lai1888] who encoded permutations as elements of the factorial
number system. The correspondence between permutations and factorial numbers is bijective.
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The permutations w and ι(w) have the same set of inversions. As such, the length, diagram,

essential set, and descents of a permutation are all stable under ι and are well defined on

classes in S∞. Furthermore, cι(w) is obtained from cw by appending a zero. Therefore,

they are the same as weak compositions. As such, the bijection in Lemma 2.2 extends to a

bijection from S∞ to the set of all weak compositions.

2.2 Grassmannian and Bigrassmannian Permutations

In this section we explain the connection between Grassmannian permutations and parti-

tions. Parts of this section first appeared in [Wei2017a, Section 2.2]. A partition is a weakly

decreasing sequence of nonnegative integers λ = (λ1, λ2, . . . , λk). Each λi is called a part of

λ. The length of a partition `(λ) is the number of nonzero parts. We consider partitions to

be the same whenever they agree on all nonzero parts.

We represent a partition visually as a Young diagram, a collection of left

justified rows of boxes so that the bottom row has λ1 boxes, the next has λ2,

and so on. For example, the Young diagram of λ = (5, 5, 3, 2, 1) is pictured

to the right. We use the French convention; the longest row is situated at

the bottom of the Young diagram. Write a × b for the partition whose Young diagram has

a rows of length b.

If a permutation has a unique descent, it is called Grassmannian. Let Gn denote the set

of Grassmannian permutations in Sn. If u ∈ Gn, write des(u) for the position of its descent.

A permutation is bigrassmannian if both it, and its inverse, are Grassmannian. Write Bn
for the set of bigrassmannian permutations in Sn.

If u ∈ Gn with k = des(u), then let λ(u) = (cu(k), cu(k − 1), . . . , cu(1)). We will show

shortly that λ(u) is a partition. Visually, the Young diagram of u can be obtained by left

justifying the boxes of D(u).

Example 2.1. Let u = 1247356. The diagram D(u) is pictured below.

From this picture, we see that cu = (0, 0, 1, 3, 0, 0, . . .). As such, λ(u) = (3, 1).

Lemma 2.3. (I) If u ∈ Gn, then λ(u) is a partition and λ(u) ⊆ des(u)× (n− des(u)).
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(II) The map u 7→ (λ(u), des(u)) defines a bijection between Gn and pairs (λ, d) with

λ ⊆ d× (n− d) and λ 6= ∅

i.e. nonempty partitions with λ1 ≤ n− d and `(λ) ≤ d.

Proof. (I) Fix u ∈ Gn and let k = des(u). By Lemma 2.2, since u has a unique descent, its

code is of the form

cu(1) ≤ cu(2) ≤ . . . ≤ cu(k) and cu(i) = 0 whenever i > k.

Since λ(u) ⊆ δ, we have λ1 = cu(k) ≤ n−k. Furthermore, λ(u) has at most k parts. Therefore,

λ(u) ⊆ k × (n− k).

(II) Since the map w 7→ cw is injective, the map u 7→ (λ(u), des(u)) is also injective. There

are
(
n
k

)
−1 Grassmannian permutations with a descent at position k. To see this, notice that

if u ∈ Gn then u is uniquely determined by picking des(u) numbers from the set {1, 2, . . . , n}.
Sorting this list from least to greatest gives the first des(u) entries of u in one-line notation.

We exclude the choice {1, 2, . . . , k} which corresponds to the identity since the identity has

no descents. There are also
(
n
k

)
− 1 nonempty partitions constrained to a k × (n − k) box.

Since the source and the target are equinumerous, the injection u 7→ (λ(u), des(u)) is a

bijection.

Write [λ, d]g for the Grassmannian with λ([λ,d]g) = λ and des([λ, d]g) = d. If λ = (0) is the

empty partition, then for any d, we let [λ, d]g = id.

If u ∈ Bn then D(u) has a unique essential box. In particular, this implies D(u) is a

rectangle. Elements of Bn are naturally labeled by triples of integers (i, j, r) which satisfy

the following conditions:

(B1) 1 ≤ i, j,

(B2) 0 ≤ r < min(i, j), and

(B3) i+ j − r ≤ n.

Let Ir denote the r × r identity matrix. Then write

[i, j, r]b :=


Ir

Ii−r

Ij−r

In−i−j+r

 (28)
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for the (unique) bigrassmannian encoded by this triple. In the case r = min(i, j), let [i, j, r]b

be the identity permutation.

There are multiple labeling conventions for bigrassmannians in the literature (see e.g.

[LS1996], [Rea2002], [Kob2013]). We have chosen ours so the following properties hold.

Lemma 2.4. Let u = [i, j, r]b ∈ Bn. Then the following hold.

(I) Ess(u) = {(i, j)}.

(II) ru(i, j) = r.

(III) des(u) = i.

(IV) λ(u) = (i− ru(i, j))× (j − ru(i, j)).

Proof. Lemma 2.4 is immediate from (28).

In Section 4.3, we will review the role of Bn in terms of the Bruhat order on the symmetric

group. Bigrassmannian permutations form the set of basic elements of this poset [LS1996].

2.3 Schur Polynomials

We follow [Man2001] as a reference on symmetric polynomials. There is a natural action of

Sn on Z[x1, . . . , xn] by permutation of indices. Given w ∈ Sn and f ∈ Z[x1, . . . , xn], define

w · f(x1, . . . , xn) := f(xw(1), . . . , xw(n)). (29)

A polynomial in Z[x1, . . . , xn] is symmetric if it is invariant under the action of Sn. Write

Λn := {f : w · f = f for all w ∈ Sn} (30)

for the ring of symmetric polynomials.

A polynomial is alternating if tij · f = −f for all 1 ≤ i < j ≤ n. Equivalently, an

alternating polynomial has the property that w · f = sgn(w)f . Recall, that δ = (n− 1, n−
2, . . . , 1, 0). Define

aλ+δ = det(x
λj+n−j
i )ni,j=1. (31)

Immediately, from definition, we see that aλ+δ is alternating; exchanging xi and xi+1 has the

effect of swapping columns in the determinant. The special case aδ is called the Vander-
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monde determinant. The Schur polynomial is the ratio

sλ :=
aλ+δ

aδ
. (32)

Any alternating polynomial is divisible by the Vandermonde determinant. As such, sλ is

actually a polynomial. Furthermore, as a ratio of alternating polynomials, sλ is symmetric.

An additional property of Schur polynomials is more mysterious from the perspective of (32);

the coefficients of the monomials in sλ are nonnegative integers.

Schur polynomials play an essential role in the theory of symmetric functions; they form

a Z-linear basis of Λn.

Proposition 2.1. The set {sλ : λ has at most n parts} is a basis for Λn.

Proof. See [Ful1997, Section 6.1].

As such, we may expand the product of two Schur polynomials in the Schur basis

sλsµ =
∑
ν

cνλ,µsν . (33)

The structure coefficients cνλ,µ in (33) are called Littlewood-Richardson coefficients.

Littlewood-Richardson coefficients are always non-negative integers. A significant achieve-

ment in algebraic combinatorics was the development of Littlewood-Richardson rules for

computing cνλ,µ [LR1934].

A semistandard tableau of shape λ is a filling of the Young diagram of λ with non-

negative integers so that

(I) along rows (from left to right) the labels are weakly increasing and

(II) along columns (from bottom to top) the labels strictly increase.

More often, we will consider reverse semistandard tableaux. These are fillings of a Young

diagram so that

(I) along rows (from left to right) the labels are weakly decreasing and

(II) along columns (from bottom to top) the labels strictly decrease.

Write SSYT(λ, n) (or RSSYT(λ, n)) for the set of semistandard (or reverse semistandard)

tableaux of shape λ, filled with labels from the set [n].
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Example 2.2. Below are two fillings of the Young diagram of λ = (4, 4, 2, 1).

T =

7
5 7
4 4 6 6
2 2 5 5

T ′ =

1
3 1
4 4 2 2
6 6 4 3

Notice that T ∈ SSYT(λ, 7) and T ′ ∈ RSSYT(λ, 7).

Each tableau has a weight monomial

wt(T ) :=
∞∏
i=1

xmii (34)

where mi is the number of times that the label i appears in T .

The Schur polynomial sλ(x1, x2, . . . , xn) is a weighted sum over elements of SSYT(λ, n).

Theorem 2.1 ([Lit1938, Theorem VI]).

sλ(x1, x2, . . . , xn) =
∑

T∈SSYT(λ,n)

wt(T ). (35)

For the discussion in Chapter 6, it is more convenient to use reverse semistandard tableaux.

Lemma 2.5 shows that this is a harmless change of convention.

Let Φn(T ) be the tableau obtained by replacing the labels in T of value i with n − i + 1

for all 1 ≤ i ≤ n. For instance, returning to Example 2.2, notice that Φn(T ) = T ′.

Lemma 2.5. The map

Φn : SSYT(λ, n)→ RSSYT(λ, n) (36)

is a bijection. Furthermore, if w0 is the longest permutation in Sn, then

wt(Φn(T )) = w0 · wt(T ). (37)

Since sλ is symmetric, combining Theorem 2.1 and Lemma 2.5 yields

sλ =
∑

T∈RSSYT(λ,n)

wt(T ). (38)

Example 2.3. If λ = (3, 1) then sλ(x1, x2) = x1x
3
2 + x2

1x
2
2 + x3

1x2. Conflating tableaux with

their weights, we could have expressed this as

sλ(x1, x2) =
2
1 2 2

+
2
1 1 2

+
2
1 1 1

.
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Alternatively, using reverse semistandard tableaux, we see

sλ(x1, x2) =
1
2 2 2

+
1
2 2 1

+
1
2 1 1

.

Both models give an expression for sλ.

2.4 Schubert Polynomials

We now recall facts about the Schubert polynomials of A. Lascoux and M.-P. Schützenberger.

Parts of this section first appeared in [Wei2017b]. The divided difference operator ∂i acts

on f ∈ Z[x1, x2, . . .] by ∂i(f) := f−si·f
xi−xi+1

. Divided difference operators satisfy the following

relations.

Lemma 2.6. (I) ∂i ◦ ∂i+1 ◦ ∂i = ∂i+1 ◦ ∂i ◦ ∂i+1

(II) ∂i ◦ ∂j = ∂j ◦ ∂i if |i− j| > 1.

(III) ∂i ◦ ∂i = 0.

Schubert polynomials are defined recursively. For the longest permutation, w0 ∈ Sn, we set

Sw0 = xn−1
1 xn−2

2 · · ·xn−1. If w(i) < w(i+ 1), then wsi covers w in the weak Bruhat order.

In this case, set Sw := ∂i(Swsi). The polynomials {Sw : w ∈ Sn} are called Schubert

polynomials. If si1 · · · sik is any reduced expression for w−1w0, then

Sw = (∂i1 ◦ · · · ◦ ∂ik)(Sw0). (39)

Thus, as a consequence of Lemma 2.6, Schubert polynomials are well defined.

Example 2.4. Consider the diagrams below.

321

231 312

213 132

123

@
@@

�
��

�
��

@
@@

s1 s2

s2 s1

s1 s2

∂1 ∂2

∂2 ∂1

∂1 ∂2

x2
1x2

x1x2 x2
1

x1 x1 + x2

1

@
@@

�
��

�
��

@
@@
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On the left, are the covering relations in the weak Bruhat order on S3. On the right, the

corresponding Schubert polynomials are shown.

Schubert polynomials are stable under the inclusion ι : Sn ↪→ Sn+1, i.e. Sw = Sι(w). As

such, we index Schubert polynomials by elements of S∞.

Theorem 2.2. {Sw : w ∈ S∞} is a basis for Z[x1, x2, . . .].

Proof. See [Man2001, Proposition 2.5.4].

Schubert polynomials directly generalize Schur polynomials. In particular, Sw is a Schur

polynomial if and only if w is Grassmannian (or the identity). In this way, the Schubert

basis is a lift of the Schur basis for the inclusion Λd ↪→ Z[x1, x2, . . .].

Theorem 2.3.

sλ(x1, . . . , xd) = S[λ,d]g(x1, x2, . . .). (40)

Proof. See [Man2001, Proposition 2.6.8].

Schubert polynomials have nonnegative integer coefficients and can be written as a weighted

sum over pipe dreams. Pipe dreams appear in the literature under various names; they are

the pseudo-line configurations of S. Fomin and A. N. Kirillov [FK1996] and the RC-graphs

of N. Bergeron and S. C. Billey [BB1993]. They were studied from a geometric perspective

by A. Knuston and E. Miller [KM2005].

Identify Z+ × Z+ with the semi-infinite grid. We use matrix notation, i.e. (i, j) indicates

the ith row from the top and the jth column from the left. A pipe dream is a tiling of this

grid with a finite number of +’s (pluses). The rest of the cells are filled with ’s (elbows).

For simplicity, we will sometimes draw the elbows as dots.

We identify each pipe dream with a subset of Z+×Z+ by recording the coordinates of the

pluses. Associate a weight monomial to P

wt(P) =
∏

(i,j)∈P
xi.

Equivalently, the exponent of xi counts the number of pluses which appear in row i of P .

We may interpret P as a collection of overlapping strands, using the rule

that a strand never bends at a right angle. The +’s indicate the positions

where two strands cross. Each row on the left edge of Z+×Z+ is connected

by some strand to a unique column along the top, and vice versa. If the ith

row is connected to the jth column, let wP(i) := j. There exists some n so

that wP(i) = i for all i > n, so wP ∈ S∞. In practice, we identify wP with its representative
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in some finite symmetric group. For example, if P is the pipe dream pictured to the right,

then we write wP = 15324.

If #P = `(wP) then P is reduced. Let

Pipes(w) := {P : wP = w and P is reduced} (41)

denote the set of reduced pipe dreams for w.

Theorem 2.4 ([BB1993, FK1996]).

Sw =
∑

P∈Pipes(w)

wt(P). (42)

There are two pipe dreams which have an explicit description in terms of w. Recall

cw(i) = #{j : j > i and w(j) < w(i)}. (43)

Then the bottom pipe dream is

Bw = {(i, j) : j ≤ cw(i)}. (44)

Graphically, Bw is obtained from D(w) by replacing each box with a plus and then left

justifying within each row. We define the top pipe dream as the transpose of the bottom

pipe dream of w−1:

Tw := Btw−1 .

By (19), Tw is obtained from D(w) by top justifying pluses within columns.

In [BB1993], N. Bergeron and S. C. Billey gave a procedure to obtain any pipe dream in

Pipes(w) algorithmically, starting from Bw. A ladder move is an operation on pipe dreams

which produces a new pipe dream by a replacement of the following type:

· ·
+ +

+ +
...

...

+ +

+ ·

7→

· +

+ +

+ +
...

...

+ +

· ·

In the above picture, the columns and rows are consecutive. If P 7→ P ′ is a ladder move,

then P ∈ Pipes(w) if and only if P ′ ∈ Pipes(w). In other words, Pipes(w) is closed under
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ladder moves [BB1993]. Furthermore, Pipes(w) is connected by ladder moves.

Theorem 2.5 ([BB1993, Theorem 3.7]). If P ∈ Pipes(w), then P can be obtained by a

sequence of ladder moves from Bw.

We will sometimes restrict focus to a special type of ladder move. A simple ladder move

is a replacement of the following form:

· ·
+ ·

7→
· +

· ·

For nice classes of permutations, such as Grassmannian permutations, Pipes(v) is connected

by simple ladder moves. This observation can be used to give an explicit bijection between

RSSYT(λ, d) and Pipes([λ, d]g); see for instance [Kog2000] and [KMY2009]. We use this

bijection in Section 6.4.

20



CHAPTER 3

SCHUBERT POLYNOMIALS AND 132-PATTERNS

This chapter is motivated by a conjecture of R. P. Stanley [Sta2017, Conj. 4.1] concerning

Schubert polynomials. It is based on work which first appeared in [Wei2017b].

3.1 Specializations of Schubert Polynomials

We are interested in the following specialization of a Schubert polynomial:

νw := Sw(1, 1, . . . , 1). (45)

Immediately from (42), νw = #Pipes(w). Here, we show that the permutations for which

νw = 2 are characterized by permutation pattern containment. Let

P132(w) := {(i, j, k) : i < j < k and w(i) < w(k) < w(j)}. (46)

Write ηw := #P132(w). If ηw ≥ 1 then w contains the pattern 132. We prove that ηw

provides a lower bound for νw.

Theorem 3.1 (The 132-bound). For any w ∈ Sn, νw ≥ ηw + 1.

As a corollary, we obtain the following conjecture of R. P. Stanley [Sta2017, Conj. 4.1].

Corollary 3.1. νw = 2 if and only if ηw = 1.

Proof. Let w ∈ Sn. If ηw = 0 then νw = 1 [Mac1991, Chapter 4]. If ηw = 1 then νw = 2

[Sta2017, Section 4]. Otherwise, ηw ≥ 2. Then we apply Theorem 3.1 and obtain

νw ≥ ηw + 1 ≥ 3.

As such, νw = 2 if and only if ηw = 1.

The outline of the proof is as follows. In Lemma 3.4, we show that any sequence of ladder

moves connecting Bw to Tw must contain only simple ladder moves. We use this special
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structure to count the exact number of pipe dreams in any such sequence, providing a lower

bound for #Pipes(w).

3.2 Proof of Theorem 3.1

We start by interpreting ηw as a weighted sum over D(w).

Lemma 3.1.

ηw =
∑

(i,j)∈D(w)

rw(i, j).

Proof. Suppose (i, j, k) ∈ P132(w). Then w(j) > w(k) and w−1(w(k)) = k > j. By (18), we

have (j, w(k)) ∈ D(w). Furthermore, i ≤ j and w(i) ≤ w(k). Then by (21),

#{` : (`, j, k) ∈ P132(w)} ≤ #{` : ` ≤ j and w(`) ≤ w(k)} = rw(j, w(k)).

Then

ηw ≤
∑

(i,j)∈D(w)

rw(i, j). (47)

On the other hand, suppose (i, j) ∈ D(w). Then

w(i) > j = w(w−1(j)) and w−1(j) > i.

Take

k ∈ {k : k ≤ i and w(k) ≤ j}.

Since (i, j) ∈ D(w), we must have k < i and w(k) < j. Then

k < i < w−1(j) and w(k) < w(w−1(j)) < w(i)

and so

(k, i, w−1(j)) ∈ P132(w).

As such, if (i, j) ∈ D(w),

#{` : (`, i, w−1(j)) ∈ P132(w)} ≥ rw(i, j).

Therefore,

ηw ≥
∑

(i,j)∈D(w)

rw(i, j). (48)
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Then combining (47) and (48) gives

ηw =
∑

(i,j)∈D(w)

rw(i, j).

If P ∈ Pipes(w), let aP := (aP(1), . . . , aP(n)) where

aP(k) = #{(i, j) ∈ P : i+ j − 1 = k}. (49)

Equivalently, aP(k) is the number of pluses that occur in the kth antidiagonal of P .

Lemma 3.2. Suppose there is a path of ladder moves from P to Q:

P = P0 7→ P1 7→ · · · 7→ PN = Q. (50)

Each ladder move in (50) is simple if and only if aP = aQ.

Proof. (⇒) Assume each Pi 7→ Pi+1 is a simple ladder move. Then Pi+1 is obtained from

Pi by moving a single plus to a new position in the same antidiagonal. As such, aPi = aPi+1

for each i. Therefore aP = aQ.

(⇐) We prove the contrapositive. Suppose there is a nonsimple ladder move in the sequence

(50). It acts by removing a plus from the ith antidiagonal and replacing it in the jth

antidiagonal with i < j. In particular, we may pick j to be the maximum such label. By

the maximality, no plus moves into the jth antidiagonal from a different antidiagonal. Then

aP(j) > aQ(j) and so aP 6= aQ.

Fix an indexing set I. A labeling of a pipe dream is an injective map LP : P → I. Suppose

P 7→ P ′ is a simple ladder move. Then P ′ inherits a labeling from P as follows:

LP ′(i, j) =

LP(i, j) if (i, j) ∈ P

LP(i+ 1, j − 1) otherwise.

Since P 7→ P ′ is a simple ladder move, P ′ is obtained from P by adding some (i, j) to P
and removing (i+ 1, j− 1). Therefore, LP ′ is well defined. If there is a path of simple ladder

moves from P to Q, then Q inherits the labeling LQ from LP inductively.

Lemma 3.3. Let LP be a labeling. Suppose Q can be reached from P by simple ladder

moves. Then Q inherits the same labeling from P regardless of the choice of sequence.

Proof. Suppose P 7→ P ′ is a simple ladder move. Then within any antidiagonal, both pipe

dreams have the same set of labels in the same relative order. Iterate this argument along
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a path of simple ladder moves from P to Q. Then, in each antidiagonal, P and Q have

the same set of labels, still in the same relative order. As such, the labeling is uniquely

determined and independent of the choice of path.

Lemma 3.4. (I) The map

(i, j) 7→ (i, j − rw(i, j))

is a bijection between D(w) and Bw.

(II) The map

(i, j) 7→ (i− rw(i, j), j)

is a bijection between D(w) and Tw.

(III) Bw and Tw are connected by simple ladder moves.

Proof. (I) Suppose ` > i and w(`) < w(i). Then since w−1(w(`)) = ` > i and w(i) > w(`),

by (18), we have (i, w(`)) ∈ D(w). Therefore,

w(`) ∈ {j : (i, w(j)) ∈ D(w)}.

If (i, `) ∈ D(w), then w(i) > ` = w(w−1(`)) and w−1(`) > i. Then

w−1(`) ∈ {j : j > i and w(j) < w(i)}.

Therefore, the two sets are in bijection and

#{j : (i, j) ∈ D(w)} = #{j : j > i and w(j) < w(i)} = cw(i).

Then the ith row of D(w) has as many boxes as there are pluses in the ith row of Bw.

Let j1 < j2 < · · · < jcw(i) be the sequence obtained by sorting the set {j : (i, j) ∈ D(w)}.

j` − rw(i, j`) = j` −#{k : k ≤ i and w(k) ≤ j`}

= #{k : k > i and w(k) ≤ j`}

= #{j : (i, j) ∈ D(w) and j ≤ j`}

= `.

Therefore (i, j`) 7→ (i, `). Since 1 ≤ ` ≤ cw(i) the map is well defined. This holds for any

` ∈ {1, . . . , cw(i)} so the map is surjective. By definition, j` = j`′ if and only if ` = `′, giving

injectivity. Therefore, this is a bijection.
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(II) Let φ be the map defined by (i, j) 7→ (j, i). Restricted to D(w), φ is a bijection between

D(w) and D(w−1). By the definition of Tw, the restriction

φ : Bw−1 → Tw

is also a bijection.

Let ψ : P(w−1)→ Bw be the map in (I). Then the composition

D(w)
φ−→ D(w−1)

ψ−→ Bw−1
φ−→ Tw

is a bijection. Computing directly,

φ(ψ(φ(i, j))) = φ(ψ(j, i))

= φ(j, i− rw−1(j, i))

= (i− rw−1(j, i), j).

Applying (21),

rw−1(j, i) = #{k : k ≤ j and w−1(k) ≤ i}

= #{` : w(`) ≤ j and w−1(w(`)) ≤ i}

= #{` : ` ≤ i and w(`) ≤ j}

= rw(i, j).

Therefore, φ(ψ(φ(i, j))) = (i− rw(i, j), j).

(III) By Theorem 2.5, there is a path of ladder moves from Bw to Tw. Applying (49) and the

bijections in parts (I) and (II),

aBw(k) = #{(i, j) ∈ D(w) : i+ (j − rw(i, j))− 1 = k}

= #{(i, j) ∈ D(w) : (i− rw(i, j)) + j − 1 = k}

= aTw(k).

By Lemma 3.2, the path uses only simple ladder moves.

In light of the previous lemma, we may label the pluses of Bw using the map (i, j) 7→
(i, j − rw(i, j)), i.e. we refer to the plus which is the image of (i, j) as +(i,j). Likewise we

label Tw using the map (i, j) 7→ (i− rw(i, j), j).

Lemma 3.5. The above labeling of Tw is the same as the labeling it inherits from Bw.
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Proof. It is enough to show that within any given antidiagonal the labels in Bw and Tw
are the same and have the same relative order. If (i, j) ∈ D(w), then +(i,j) is in position

(i, j−rw(i, j)) in Bw and in position (i−rw(i, j), j) in Tw. Since i+j−rw(i, j) = i−rw(i, j)+j,

they are in the same antidiagonal.

Now consider the rth antidiagonal in Bw. Suppose the sorted list of pluses from top to

bottom is

+(i1,j1),+(i2,j2), · · · ,+(ik,jk).

Since the map from D(w) is by left justification, we must have i1 < i2 < · · · < ik. As

i` + j`− 1 = r for all `, it follows that j1 > j2 > · · · > jk. Since the map from D(w) to Tw is

by top justification, the sorted list of pluses from top to bottom must also be

+(i1,j1),+(i2,j2), · · · ,+(ik,jk).

Therefore, the labeling which Tw inherits from Bw coincides with the labeling determined by

the map (i, j) 7→ (i− rw(i, j), j).

We conclude with the proof of the 132-bound.

Proof of Theorem 3.1. By Lemma 3.4, there is a path of simple ladder moves connecting Bw
to Tw, say

Bw = P0 7→ P1 7→ · · · 7→ PN = Tw. (51)

Let ni,j = #{k : Pk 7→ Pk+1 moves +(i,j)}. By definition, Pk 7→ Pk+1 moves exactly one

plus, labeled by an element of D(w). Therefore,

N =
∑

(i,j)∈D(w)

ni,j. (52)

Claim 3.1. If (i, j) ∈ D(w) then ni,j = rw(i, j).

Proof. By Lemma 3.5, +(i,j) must move from position (i, j − rw(i, j)) in Bw to position

(i − rw(i, j), j) in Tw. At each step +(i,j) remains stationary or it moves up a row and one

column to the right. Therefore, +(i,j) must move exactly i− (i− rw(i, j)) = rw(i, j) times to

go from row i to row i− rw(i, j).
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Then

ηw =
∑

(i,j)∈D(w)

rw(i, j) (by Lemma 3.1)

=
∑

(i,j)∈D(w)

ni,j (by Claim 3.1)

= N (by (52)).

Each Pi in the sequence (51) is distinct. Therefore,

#Pipes(w) ≥ N + 1.

Therefore

νw = #Pipes(w) ≥ N + 1 = ηw + 1.
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CHAPTER 4

ALTERNATING SIGN MATRICES

In this chapter, we introduce alternating sign matrices and study them from a poset theoretic

perspective. Parts of this chapter first appeared in [Wei2017a].

4.1 Rothe Diagrams for ASMs

Recall, an alternating sign matrix (ASM) is a square matrix with entries in {−1, 0, 1}
so that the nonzero entries in each row and column alternate in sign and sum to 1. We

start by presenting a generalization of Rothe diagrams to ASMs. Following [MRR1983], say

A = (aij)
n
i,j=1 ∈ ASM(n) has an inversion in position (i, j) if∑

(k,l):i<k and j<l

ailakj = 1. (53)

Let

D(A) := {(i, j) : (i, j) is an inversion of A} ⊂ [n]× [n] (54)

be the Rothe diagram of A. We represent D(A) graphically. Our convention is to visually

indicate the ASM by placing a black dot for each 1 in A and a white dot for each −1. The

essential set Ess(A) consists of the southeast most corners of each connected component

of D(A),

Ess(A) := {(i, j) ∈ D(A) : (i+ 1, j), (i, j + 1) 6∈ D(A)}.

Example 4.1.

A =


0 0 0 1

0 1 0 0

1 −1 1 0

0 1 0 0

 D(A) =

The boxes of the diagram of A are shaded gray. The essential boxes are dark gray.
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The sum in (53) factorizes

∑
(k,l):i<k and j<l

ailakj =

(
n∑

k=i+1

akj

)(
n∑

l=j+1

ail

)
=

(
1−

i∑
k=1

akj

)(
1−

j∑
l=1

ail

)
. (55)

See [BMH1995]. By conditions (A1) and (A2) the factors in the RHS of (55) product are

always 0 or 1. In order for (i, j) to be an inversion, both must be 1. Visually, this amounts

to striking out hooks to the right and below each black dot which stop just before they

encounter a box which contains a white dot. The boxes which remain are the elements

of D(A). If w is a permutation matrix, D(w) and Ess(w) coincide with the usual Rothe

diagram and essential set, as defined in Section 2.1. Notice that D(A) is similar to the ASM

diagram defined by A. Lascoux [Las2008]. However, our conventions on inversions differ; we

include the set of negative inversions.

Any ASM is uniquely determined by the restriction of the corner sum function to its

essential set. This generalizes the statement for permutations from [Ful1992, Lemma 3.10].

Our proof follows by showing that the essential set encodes an antichain of bigrassmannian

permutations, from which the ASM in question can be recovered. See Proposition 4.2.

Recall that the length of w ∈ Sn is the number of inversions. Equivalently `(w) = #D(w).

Say

deg(A) = min{`(w) : w ∈ Sn and w ≥ A}. (56)

In general deg(A) 6= #D(A). See the following example.

Example 4.2. Suppose A is the ASM whose diagram is pictured below.

D(A) = rA =


0 0 1 1

0 1 1 2

1 1 2 3

1 2 3 4

 r3412 =


0 0 1 1

0 0 1 2

1 1 2 3

1 2 3 4


Since r3412 < rA we have 3412 ≥ A. Therefore

deg(A) ≤ `(3412) = 4 < #D(A).

By checking all w ≥ A, the reader may verify that deg(A) = 4.
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4.2 Preliminaries on Posets and Lattices

We follow [LS1996] and [Rea2002] as references. A partially ordered set (or poset) is a set

P equipped with a binary relation ≤ which satisfies the axioms of reflexivity, antisymmetry,

and transitivity. If a ≤ b and a 6= b we write a < b. Given a, b ∈ P we say b covers a if

a < b and whenever a ≤ c ≤ b, we have c = a or c = b.

An element a ∈ P is minimal in P if whenever b ∈ P so that b ≤ a we have a = b.

Similarly, a ∈ P is maximal in P if whenever b ∈ P so that b ≥ a we have a = b. Write

MIN(P) for the set of minimal elements in P and MAX(P) for the maximal elements.

The join of S ⊆ P (when it exists) is the least upper bound of S. Similarly, the meet is

the greatest lower bound. The join and meet are denoted ∨ and ∧ respectively.

An element a ∈ P is basic if a 6= ∨S whenever a 6∈ S. The set of basic elements in P is

called the base of P . Let P(S) denote the power set of S, that is the set of all subsets of

S. There is a natural poset structure on P(S) by inclusion of sets. Given any subset C ⊆ P ,

define πC : P → P(C) by πC(a) = {c ∈ C : c ≤ a}. The base is characterized by the following

property.

Proposition 4.1 ([LS1996, Proposition 2.4]). Let B be the base of a finite poset P. The

projection πB is an order isomorphism onto its image. Furthermore, if any C ⊆ P has this

property, then B ⊆ C.

As a consequence, any element a ∈ P is uniquely encoded by the set πB(a). Furthermore,

a = ∨πB(a) (see [Rea2002, Proposition 9]). In particular, a = ∨MAX(πB(a)).

A lattice L is a poset in which every pair of elements has a join and a meet. Basic

elements in a lattice are also known as join-irreducibles and have the characterization

that they cover a unique element. A sublattice of L is a subset L′ ⊆ L which is itself a

lattice and has the same operations of join and meet as L.

Assume S is a totally ordered set and I some indexing set. Let

SI := {(ai)i∈I : ai ∈ S for all i ∈ I}.

There is a natural partial order on SI by entrywise comparison. Explicitly, if a = (ai)i∈I

and b = (bi)i∈I in SI , then

a ≤ b if and only if ai ≤ bi for all i ∈ I.

Write

max(a,b) := (max(ai, bi))i∈I and min(a,b) := (min(ai, bi))i∈I .
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Lemma 4.1. (I) SI is a lattice with a ∨ b = max(a,b) and a ∧ b = min(a,b).

(II) If a subset of SI is closed under joins and meets, then it is a sublattice of SI (and

hence is itself a lattice).

Proof. Since SI is a Cartesian product of lattices, (I) is immediate. Likewise, (II) follows

from the definition of a sublattice.

A lattice is complete if every subset has a join and meet. Any finite lattice is auto-

matically complete. The Dedekind-MacNeille completion of P is the smallest complete

lattice which contains P as an order embedding. Any finite poset has the same base as its

Dedekind-MacNeille completion [Rea2002, Proposition 28].

4.3 The Dedekind-MacNeille Completion of the Symmetric Group

Recall rA(i, j) =
∑i

k=1

∑j
`=1 ak`. Write

R(n) := {rA : A ∈ ASM(n)}.

For convenience, define rA(i, j) = 0 whenever i = 0 or j = 0. Then

aij = rA(i, j)− rA(i, j − 1)− rA(i− 1, j) + rA(i− 1, j − 1) (57)

recovers the (i, j) entry of A [RR1986]. As such, the map A 7→ rA defines a bijection between

ASM(n) and R(n). The following lemma characterizes corner sums of ASMs.

Lemma 4.2 ([RR1986, Lemma 1]). Let A be an n × n matrix. Then A ∈ ASM(n) if and

only if the following conditions hold:

(R1) rA(i, n) = rA(n, i) = i for all i = 1, . . . , n and

(R2) rA(i, j)− rA(i− 1, j) and rA(i, j)− rA(i, j − 1) ∈ {0, 1} for all 1 ≤ i, j ≤ n.

Lemma 4.3. R(n) is a distributive lattice with join and meet given by rA∨rB = max(rA, rB)

and rA ∧ rB = min(rA, rB), respectively.

Lemma 4.3 follows from Lemma 4.1 by verifying that (R1) and (R2) are preserved under

taking minima and maxima.3 Consequentially, ASM(n) inherits the structure of a lattice

3The lattice of ASMs was initially studied by N. Elkies, G. Kuperberg, M. Larsen, and J. Propp
[EKLP1992]. The definition in ibid is in terms of height functions, which are in obvious order reversing
bijection with corner sum matrices. The order on ASM(n) can also be defined using monotone triangles; this
perspective was used in [LS1996].
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from R(n).

Example 4.3. The lattice of 3× 3 ASMs is pictured below.

1 0 0

0 1 0

0 0 1



0 1 0

1 0 0

0 0 1


1 0 0

0 0 1

0 1 0



0 1 0

1 −1 1

0 1 0



0 0 1

1 0 0

0 1 0


0 1 0

0 0 1

1 0 0



0 0 1

0 1 0

1 0 0



Notice that in this case, there is only one ASM which is not a permutation matrix. Restricting

the order to permutation matrices produces the Bruhat order on S3.

Lemma 4.4 ([LS1996, Lemma 5.4]). The Dedekind-MacNeille completion of Sn is isomor-

phic to ASM(n). The base of the Sn, and hence ASM(n), is Bn.

In [LS1996], A. Lascoux and M.-P. Schützenberger also found the base for type B Coxeter

groups. M. Geck and S. Kim determined the base for all finite Coxeter groups [GK1997].

Let

bigr(A) = MAX(πBn(A)) (58)

be the maximal bigrassmannians in πBn(A). Then as a consequence of Lemma 4.4 and

Proposition 4.1

A = ∨πBn(A) = ∨bigr(A). (59)

We also define

Perm(A) := MIN({w ∈ Sn : w ≥ A}) (60)

and

MinPerm(A) := {w ∈ Perm(A) : `(w) = deg(A)}. (61)

32



Example 4.4. Let A be the ASM whose diagram is pictured below.

By direct verification, we may compute Perm(A) = {3412, 4123}. Since `(3412) = 4 and

`(4123) = 3, we have MinPerm(A) = {4123}.

4.4 Corner Sums and Bigrassmannians

In this section, we discuss the specific connection of bigr(A) to Ess(A). Furthermore, we

review known facts about bigrassmannian permutations and the Bruhat order.

The definition of Ess(A) generalizes Fulton’s definition of the essential set of a permutation

matrix. However, there is another characterization in terms of corner sum matrices. This is

taken as the definition elsewhere in the literature, for example see [For2008] or [Kob2013].

We prove these definitions are equivalent.

Lemma 4.5. Ess(A) = {(i, j) : rA(i, j) = rA(i − 1, j) = rA(i, j − 1) and rA(i, j) + 1 =

rA(i+ 1, j) = rA(i, j + 1)}.

Proof. By (55), if (i, j) ∈ D(A) if and only if
∑i

k=1 akj = 0 and
∑j

l=1 ail = 0. Since

rA(i, j)− rA(i− 1, j) =

j∑
l=1

ail and rA(i, j)− rA(i, j − 1) =
i∑

k=1

akj

we have

(i, j) ∈ D(A) if and only if rA(i, j) = rA(i− 1, j) = rA(i, j − 1). (62)

(⊆) Assume (i, j) ∈ Ess(A). By definition, (i+ 1, j), (i, j + 1) 6∈ D(A). Since (i, j) ∈ D(A),

applying (62) and (R2), we have

rA(i, j) = rA(i, j − 1) ≤ rA(i+ 1, j − 1) ≤ rA(i+ 1, j).

If rA(i + 1, j) = rA(i, j) then rA(i + 1, j) = rA(i + 1, j − 1). Then by (62), we have that

(i + 1, j − 1) ∈ D(A), contradicting (i, j) ∈ Ess(A). Therefore, rA(i, j) + 1 = rA(i + 1, j).

The argument for rA(i, j) + 1 = rA(i, j + 1) is entirely analogous.
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(⊇) By assumption, rA(i, j) = rA(i− 1, j) = rA(i, j − 1). Then applying (62), (i, j) ∈ D(A).

Since rA(i, j) 6= rA(i+ 1, j) and rA(i, j) 6= rA(i, j + 1), we conclude

(i+ 1, j), (i, j + 1) 6∈ D(A).

Therefore, (i, j) ∈ Ess(A).

Lemma 4.6. [i, j, r]b = ∧{A ∈ ASM(n) : rA(i, j) ≤ r}.

See [BS2017, Theorem 30] for a proof. An analogous statement in terms of monotone

triangles appears in [LS1996]. Note in particular,

if rA(i, j) ≤ r then [i, j, r]b ≤ A. (63)

This is a special case of the generalized essential criterion given in [Kob2013].

Lemma 4.7. Fix A ∈ ASM(n).

(I) For all 1 ≤ i, j ≤ n, [i, j, rA(i, j)]b ∈ Bn or [i, j, rA(i, j)]b = id.

(II) A = ∨{[i, j, rA(i, j)]b : 1 ≤ i, j ≤ n}.

Proof. (I) From (R2) we must have rA(i, j) ≤ min{i, j}. If this is an equality, we have

[i, j, rA(i, j)]b = id and we are done. Then assume not. By (R1), rA(i, n) = i. As a

consequence of (R2), n− j ≥ i− rA(i, j). Then i+ j − rA(i, j) ≤ n. As such, the conditions

(B1)-(B3) are satisfied.

(II) Let A′ = ∨{[i, j, rA(i, j)]b : 1 ≤ i, j ≤ n}. By Lemma 4.6, A is an upper bound to each

[i, j, rA(i, j)]b. Therefore, A ≥ A′ and rA ≤ rA′ . Since rA′ is entrywise the minimum of the

corner sum matrices of the [i, j, rA(i, j)]b’s, in particular,

rA′(i, j) ≤ r[i,j,rA(i,j)]b(i, j) = rA(i, j).

Then rA′ ≤ rA. As such, rA′ = rA and so A′ = A.

Lemma 4.8. Assume A 6= In. If (i, j) 6∈ Ess(A), then there is some (i′, j′) so that

[i, j, rA(i, j)]b < [i′, j′, rA(i′, j′)]b.

Proof. Let u = [i, j, rA(i, j)]b. If rA(i, j) = min{i, j} then u is the identity and hence smaller

than any bigrassmannian. Then assume rA(i, j) < min{i, j}. Since A 6= In, there is some

(i′, j′) exists for which [i′, j′, rA(i′, j′)]b ∈ Bn (e.g. some (i′, j′) ∈ Ess(A)).
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Applying Lemma 4.5 and (R2), there are four potential ways for (i, j) to fail to be in

Ess(A).

Case 1: rA(i, j) = rA(i− 1, j) + 1.

Since we have assumed rA(i, j) < min{i, j} and rA(0, j) = 0, we must have i > 1. As such,

let u′ = [i− 1, j, rA(i− 1, j)]b. Then

ru′(i, j) = ru′(i− 1, j) + 1 = rA(i− 1, j) + 1 = rA(i, j) = ru(i, j)

so by Lemma 4.6, u ≤ u′.

Case 2: rA(i, j) = rA(i, j − 1) + 1.

The argument is entirely analogous to Case 1.

Case 3: rA(i, j) = rA(i+ 1, j).

Now let u′ = [i+ 1, j, rA(i+ 1, j)]b. Then

ru′(i, j) = ru′(i+ 1, j) = rA(i+ 1, j) = rA(i, j) = ru(i, j).

Applying Lemma 4.6, we have u < u′.

Case 4: rA(i, j) = rA(i, j + 1).

This is essentially the same as Case 3.

The following proposition shows how to recover bigr(A) from Ess(A).

Proposition 4.2. bigr(A) = {[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)}.

Proposition 4.2 is discussed in [LS1996, Section 5], using essential points of monotone

triangles. It can be found in a slightly more general context in [For2008, Theorem 5.1].

As an immediate consequence, A is determined by the restriction of rA to Ess(A). This

generalizes [Ful1992, Lemma 3.10].

Proof of Proposition 4.2. First note that

bigr(A) ⊆ {[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)}. (64)

If A = In then bigr(A) = {} = Ess(A). As such, assume not.

By Lemma 4.8, whenever (i, j) 6∈ Ess(A), there is some (i′, j′) so that

[i, j, rA(i, j)]b < [i′, j′, rA(i′, j′)]b.
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We may iteratively apply the Lemma 4.8 to construct a chain of inequalities

[i, j, rA(i, j)]b < [i′, j′, rA(i′, j′)]b < · · · < [i′′, j′′, rA(i′′, j′′)]b

with (i′′, j′′) ∈ Ess(A). Therefore

A = ∨{[i, j, rA(i, j)]b : 1 ≤ i, j ≤ n} (by Lemma 4.7)

= ∨{[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)}.

In particular, by (64) any bigrassmannian below A has an upper bound in

{[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)}.

Claim 4.1. {[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)} is an antichain, i.e. its elements are all incom-

parable.

Proof. Take (i, j), (i′, j′) ∈ Ess(A). Write u = [i, j, rA(i, j)]b and u′ = [i′, j′, rA(i′, j′)]b.

Case 1: ru′(i, j) ≤ r.

Since u′ ≤ A, we have ru′ ≥ rA. In particular, ru′(i, j) ≥ r. Then ru′(i, j) = r. By

condition (R2), ru′(i− 1, j), ru′(i, j− 1) ∈ {r− 1, r} and ru′(i+ 1, j), ru′(i, j+ 1) ∈ {r, r+ 1}.
But since (i, j) ∈ Ess(A) and ru′ ≥ rA, applying Lemma 4.5 we are forced to have

ru′(i− 1, j) = ru′(i, j − 1) = r = rA(i− 1, j) = rA(i, j − 1)

and

ru′(i+ 1, j) = ru′(i, j + 1) = r + 1 = rA(i+ 1, j) = rA(i, j + 1).

Then (i, j) ∈ Ess(u′){(i′, j′)}. As such, u′ = u.

Case 2: ru′(i, j) > r.

As such ru′(i, j) > ru(i, j). Then we conclude u 6≥ u′.

We may reverse the roles of u and u′ in the above argument. As such, either u and u′ are

incomparable or u = u′.

As a consequence of Claim 4.1, we have shown that {[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)} is

an antichain of bigrassmannian permutations whose least upper bound is A. Therefore,

bigr(A) = {[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)}.

Lemma 4.9. Suppose A ∈ ASM(n) and u ∈ Gn. If rA(des(u), j) ≤ ru(des(u), j) for all

j = 1, . . . , n, then u ≤ A.
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Proof. Let i = des(u). Since rA(i, j) ≤ ru(i, j), we have A ≥ [i, j, ru(i, j)]b. Since u is

Grassmannian, all of its essential boxes occur in row i. Then by Lemma 4.6 we have u′ ≤ A

for all u′ ∈ Ess(u). Therefore A is an upper bound to Ess(u). Then A ≥ u = ∨Ess(u).

4.5 Inclusions of ASMs

There is a natural inclusion ι : ASM(n)→ ASM(n+ 1) defined by

A 7→

(
A 0

0 1

)
.

We write

ASM(∞) :=

( ∞⋃
n=1

ASM(n)

)
/ ∼

where ∼ is the equivalence relation generated by A ∼ ι(A). Let

S∞ =

( ∞⋃
n=1

Sn

)
/ ∼ .

When context is clear, we will freely identify an equivalence class its representatives. We

write A ∈ ASM(n) to indicate that A has a representative which is an element of ASM(n).

Observe that

A ≤ B if and only if ι(A) ≤ ι(B). (65)

To see this, notice that rι(A)(i, n+1) = rι(A)(n+1, i) = i for any A ∈ ASM(n). Thus ASM(∞)

inherits the structure of a poset from the finite case. In particular, for any n, there is an

order embedding

ASM(n) ↪→ ASM(∞).

To compare two classes in ASM(∞), we may take N large enough so that there are represen-

tatives in A,B ∈ ASM(N). Due to (65) the resulting order does not depend on the choice of

N . Pairwise, joins and meets still exist so ASM(∞) is a lattice. However it is not complete;

in particular, the entire lattice ASM(∞) has no upper bound.

Note that if u ∈ Gn, we have

(λ(u), des(u)) = (λ(ι(u)), des(ι(u))).

Therefore, the bijection in Lemma 2.3 is stable under inclusion. Write G∞ and B∞ for the

37



sets of Grassmannian and bigrassmannian permutations in S∞. Diagrams are also stable

under inclusion, i.e. D(A) = D(ι(A)). Therefore

bigr(ι(A)) = {ι(u) : u ∈ bigr(A)}. (66)

As such, elements of ASM(∞) are encoded by (finite) antichains in B∞.

4.6 Partial ASMs

We now discuss another poset which is closely related to ASM(n). A partial alternating

sign matrix is a matrix with entries in {−1, 0, 1} so that

(I) the nonzero entries in each row and column alternate in sign,

(II) each row and column sums to 0 or 1, and

(III) the first nonzero entry of any row or column is 1.

A partial permutation is a partial ASM with entries in {0, 1}. Write PA(n) for the set of

n×n partial ASMs and P(n) for the set of n×n partial permutation matrices. We sometimes

say A (or w) is an honest ASM (or honest permutation) to emphasize that A ∈ ASM(n)

(or w ∈ Sn).

As in the case of ASMs, we may endow PA(n) with the structure of a poset by comparison

of corner sum functions. M. Fortin studied PA(n), showing that it is the Dedekind-MacNeille

completion of P(n) [For2008, Section 6]. Here, partial permutation matrices are identified

with partial injective functions. The poset structure defined by corner sum matrices agrees

with the extended Bruhat order defined by L. E. Renner in [Ren2006].

Lemma 4.10. Every A ∈ PA(n) has a canonical completion to an honest ASM Ã ∈ ASM(N),

with n ≤ N ≤ 2n.

Proof. The construction is similar to the one in for partial permutations found in [MS2004,

Proposition 15.8]. Starting from the top row of A, if sum of row i is zero, append a new

column to A with a 1 in the ith row. Continue in this way from top to bottom. Then starting

from the leftmost column, if column j sums to zero, add a new row with a 1 in position j.

Let Ã be the matrix obtained by this procedure.

By construction, Ã satisfies (A1); nonzero entries alternate in sign along rows and columns.

Also, the entries of within each row and column of Ã sum to 1, so (A2) holds. As such, the

sum of all entries in A counts the total number of rows, as well as the number of columns.
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Then Ã is square. At most n columns and rows were added. Therefore, Ã ∈ ASM(N) for

some n ≤ N ≤ 2n.

Example 4.5. If A =

 0 0 0

0 1 0

1 −1 0

 then Ã =


0 0 0 1 0

0 1 0 0 0

1 −1 0 0 1

0 1 0 0 0

0 0 1 0 0

. Since the sum of

the entries of A is 1, N = 2n− 1 = 5.

For w ∈ P(n) we define the length of w to be `(w) := `(w̃). Similarly, we define the

diagram D(A) := D(Ã). By construction, D(A) is contained in the n× n grid.

Lemma 4.11. rA ≥ rB if and only if rÃ ≥ rB̃.

Proof. If rÃ ≥ rB̃ it is immediate that rA ≥ rB.

Now assume that rA ≥ rB. By construction, the essential set of both Ã and B̃ is contained

in the first n rows and columns. As such, for any (i, j) ∈ Ess(Ã), we have rB̃(i, j) ≤ rÃ(i, j)

and therefore [i, j, rÃ(i, j)]b ≤ B. Then B̃ is an upper bound to bigr(A) and so A ≤ B

which implies rÃ ≥ rB̃.

Taking the inclusion of Ã into ASM(2n) is an order embedding PA(n) ↪→ ASM(2n). As

such, we may study the order on PA(n) by identifying each partial ASM with its image under

the above inclusion.

A partial bigrassmannian is an element b ∈ P(n) so that b̃ ∈ S2n is bigrassmannian.

Again, these are indexed by triples (i, j, r) but we omit condition (B3). Write [i, j, rij]b for

the partial bigrassmannian in P(n). By [For2008], these are the basic elements of PA(n).

Notice, that restrictions of honest ASMs to northwest submatrices produce partial ASMs.

Take A ∈ ASM(N). Then if n ≤ N , we have A[n],[n] ∈ PA(n). Notice A ≤ B implies

A[n],[n] ≤ B[n],[n]. The converse certainly does not hold. However, in the case A = Ã[n],[n], we

do have A ≤ B whenever A[n],[n] = B[n],[n]. This follows since Ess(A) ⊆ n× n and so u ≤ B

for all u ∈ bigr(A).
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CHAPTER 5

COXETER GROUPS AND SUBWORD COMPLEXES

5.1 Coxeter Groups and the Bruhat Order

We follow [BB2006] as a reference. Fix a set S. A Coxeter matrix is a map from

S × S → {1, 2, . . . ,∞}

so that m(s, s′) = m(s′, s) for all s, s′ ∈ S and m(s, s′) = 1 if and only if s = s′. A Coxeter

matrix defines a group W with the presentation

W = 〈S | (ss′)m(s,s′) : m(s, s′) <∞〉. (67)

W is called a Coxeter group and the pair (W,S) a Coxeter system.

We can encode the data of a Coxeter matrix as a (partially labeled) graph. The vertices

of this graph correspond to the elements of S. There is an edge between s and s′ whenever

m(s, s′) ≥ 3. If m(s, s′) ≥ 4, we indicate this by labeling the edge with m(s, s′).

Example 5.1. Consider the symmetric group Sn. Let si = (i i+ 1) denote a simple trans-

position and consider the set S = {si : i = 1, . . . , n − 1}. Then the pair (Sn, S) forms a

Coxeter system. Each simple transposition squares to the identity:

s2
i = e.

The set of simple reflections respect two additional types of relations, the commutations

sisj = sjsi if |i− j| > 1

and braid relations

sisi+1si = si+1sisi+1.

The corresponding Coxeter graph appears below.
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s1 s2 s3 sn−1

This Coxeter system is known as type An.

The Coxeter length is

`(w) = min({k : w = s1s2 . . . sk with si ∈ S for all i}). (68)

For Sn, the Coxeter length agrees with the definition (15). A minimal length expression for

w ∈ S is called a reduced expression for w.

A word is an ordered list s = (s1, . . . , sm) of simple reflections in S. A subword of s is

an ordered subsequence t = (sii , . . . , sik). A word s = (s1, . . . , sm) represents w ∈ W if

w = s1 · · · sm and `(w) = m, i.e. the ordered product is a reduced expression for w. We say

s contains w if s has a subword which represents w. Write RSW(s, w) for the set of subwords

of s which represent w.

Example 5.2. Suppose W = S3 and S = {s1, s2}. Let s = (s1, s2, s1, s2). The word s has

3 subwords which represent 231 = s1s2. We list them below as tuples, writing a dash to

indicate that the transposition in that position is not included in the subword.

(s1, s2,−,−) (s1,−,−s2) (−,−, s1, s2).

The above subwords are distinct as subwords of s. However, as words, they are all equivalent

to (s1, s2). For another example, s contains w0 = s1s2s1 = s2s1s2 twice:

(s1, s2, s1,−) (−, s2, s1, s2).

In this case, the above subwords are distinct as words, but they both represent w0.

We use subwords to define a partial order on W called the Bruhat order:

w ≥ v if and only if some (and hence every) reduced word for w contains v. (69)

There are several equivalent characterizations of the Bruhat order. See [Hum1992, Section

5.10]. For the symmetric group, (69) is equivalent to the order on Sn as defined in (7). See

[BB2006, Theorem 2.1.5] for a proof.

Example 5.3. Let W = S3.
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id

s1 s2

s1s2 s2s1

s1s2s1 = s2s1s2

Pictured above is the Hasse diagram for the Bruhat order on S3.

5.2 Subword Complexes

Recall that P(S) denotes the power set of S. A simplicial complex ∆ is a subset of P([N ])

so that whenever f ∈ ∆ and f ′ ⊆ f , we have f ′ ∈ ∆. An element f ∈ ∆ is called a face.

The dimension of f is dim(f) = |f | − 1. Write

dim(∆) = max{dim(f) : f ∈ ∆}.

If f ∈ ∆, the codimension of f is codim(f) = dim(∆) − dim(f). The set of faces of ∆

ordered by inclusion form a poset. Let

F (∆) = MAX(∆) (70)

denote the set of facets of ∆, i.e. the maximal faces. Then define

Fmax(∆) = {f ∈ ∆ : codim(f) = 0}. (71)

Necessarily, Fmax(∆) ⊆ F (∆). When this containment is an equality, ∆ is called pure.

Given two simplicial complexes ∆1,∆2 ⊆ P([N ]), we may refer without ambiguity to the

intersection (or union) of ∆1 and ∆2; it is precisely their intersection (or union) as sets.

A straightforward verification shows that ∆1 ∩ ∆2 and ∆1 ∪ ∆2 are themselves simplicial

complexes.

Lemma 5.1. Fix simplicial complexes ∆1, . . . ,∆k ⊆ P([N ]). Let ∆ = ∆1 ∩ · · · ∩∆k. Then

F (∆) ⊆ {f1 ∩ · · · ∩ fk : fi ∈ F (∆i)}.

Proof. Fix f ∈ F (∆) ⊆ ∆. Then f ∈ ∆i for all i. For each i, there exists some fi ∈ F (∆i)
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such that f ⊆ fi. Therefore,

f ⊆ f1 ∩ · · · ∩ fk ⊆ fi for all i = 1, . . . , k. (72)

Then f1 ∩ · · · ∩ fk ∈ ∆i for all i. As such,

f ⊆ f1 ∩ · · · ∩ fk ∈ ∆1 ∩ . . . ∩∆k = ∆. (73)

Since f ∈ F (∆), the containment in (73) is actually an equality.

For the remainder of this section, we follow [KM2004] as a reference. Given a fixed word

s with n letters, there is a natural identification of subwords of s with subsets of [n]. Then

we write s− t to be the set difference as subsets of [n]. Define the subword complex

∆(s, w) = {s− t : t contains w}.

We will abbreviate Ft := s− t. Immediately by definition,

Ft ⊆ Ft′ if and only if t ⊇ t′. (74)

Then if t′ contains w, t does as well. Therefore, ∆(s, w) is a simplicial complex.

Example 5.4. As in Example 5.2, let W = S3 and s = (s1, s2, s1, s2). Then ∆(s, s1s2) is

pictured below.

F(s1,s2,s1,−) F(s1,s2,−,s2) F(s1,−,s1,s2) F(−,s2,s1,s2)

F(s1,s2,−,−) F(s1,−,−,s2) F(−,−,s1,s2)

We can verify, for instance, that since (s1, s2,−,−)∪ (s1,−,−, s2) = (s1, s2,−, s2), we have

F(s1,s2,−,−) ∩ F(s1,−,−,s2) = F(s1,s2,−,s2).

The Demazure algebra of (W,S) over a ring R is freely generated by {ew : w ∈ W}
with multiplication given by

ewes =

ews if `(ws) > `(w)

ew if `(ws) < `(w).

If s = (s1, . . . , sk), the Demazure product δ(s) is defined by the product in the Demazure

algebra es1 · · · esm = eδ(s). The Demazure product is well behaved with respect to the Bruhat

order.
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Lemma 5.2 ([KM2004, Lemma 3.4]). δ(s) ≥ w if an only if s contains w.

In particular, δ(s) = sup{w : s contains w}.

Example 5.5. Suppose W = S3 and S = {s1, s2}. Let s = (s1, s2, s1, s2). By applying a

braid relation, we see the ordered product of the transpositions in S is

s1s2s1s2 = s2s1s2s2 = s2s1.

As such, s is not a reduced word. We have

`(s1) < `(s1s2) < `(s1s2s1).

However, `(s1s2s1) > `(s1s2s1s2). Then δ(s) = s1s2s1.

Alternatively, observe that s contains w0 = s1s2s1. Since w0 is greater than all other

elements of S3, we apply Lemma 5.2 and confirm that δ(s) = w0.

The faces of ∆(s, w) have a natural description in terms of the Demazure product. Then

∆(s, w) = {Ft : t ⊆ s and δ(t) ≥ w}. (75)

The facets of ∆(s, w) are indexed by the subwords of s which represent w. Explicitly, the

map t 7→ Ft defines a bijection from RSW(s, w) to F (∆(s, w)).

In Example 5.4, the pictured subword complex is homeomorphic to a 1-dimensional ball.

In general, ∆(s, w) is always homeomorphic to a ball or a sphere.

Theorem 5.1 ([KM2004, Corollary 3.8]). ∆(s, w) is homeomorphic to a sphere if ∆(s) = w.

Otherwise, it is homeomorphic to a ball.

5.3 Type A Subword Complexes and Alternating Sign Matrices

Throughout this section, let W = S∞ and S = {(i, i+ 1) : i = 1, 2, . . .} be the set of simple

transpositions. Given A ∈ ASM(n), define

∆(s, A) = {Ft : δ(t) ≥ A}. (76)

This is itself a simplicial complex, but need not be a subword complex. Immediately from

the definition,

if A ≥ B then ∆(s, A) ⊆ ∆(s, B). (77)
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We will show that ∆(s, A) is a union of subword complexes. In particular, if A ∈ ASM(n),

each of these subword complexes are labeled by permutations with representatives in Sn.

Lemma 5.3. Suppose w ∈ S∞ is an upper bound to {w1, . . . , wk} ⊆ Sm. Then there exists

w′ ∈ Sm so that ∨{w1, . . . , wk} ≤ w′ ≤ w.

Proof. Let s be a reduced word for w. By (69), s contains a subword, si which represents

wi for each i. Let s′ =
⋃k
i=1 si ⊆ s. By Lemma 5.2, since s′ contains each of the wi’s, we

have δ(s′) ≥ wi for all i. Therefore, δ(s′) is an upper bound to {w1, . . . , wk}. Again, by

Lemma 5.2, s′ contains δ(s′) and hence s contains δ(s′). As such,

w = δ(s) ≥ δ(s′).

Finally, the word s′ uses only simple transpositions from Sm, so δ(s′) ∈ Sm.

As a corollary, we obtain the following.

Corollary 5.1. (I) Perm(A) = MIN({w ∈ S∞ : w ≥ A}).

(II) Perm(A) = MIN({w ∈ P(n) : w ≥ A}).

Proof. (I) This is immediate from Lemma 5.3.

(II) Fix w ∈ P(n). Consider the inclusions Ã, w̃ ∈ ASM(2n). Then w̃ ≥ A is an upper

bound to bigr(Ã) = bigr(A). Applying Lemma 5.3, we obtain w′ ∈ Sn with Ã ≤ w′ ≤ w̃.

Since w′ ∈ Sn, we may take its representative w̃′ ∈ ASM(2n). Then Ã ≤ w̃′ ≤ w̃. Applying

Lemma 4.11, we see that A ≤ w′ ≤ w. As such, the statement follows.

Proposition 5.1. Fix a word s and A ∈ ASM(n).

(I) ∆(s, A) =
⋃

w∈Perm(A)

∆(s, w).

(II) If A = ∨{A1, . . . , Ak} then

∆(s, A) =
k⋂
i=1

∆(s, Ai).

(III) F (∆(s, A)) = {Ft : t ⊆ s is a reduced expression for some w ∈ Perm(A)}.

Proof. (I) Since w ≥ A, applying (77) we have

∆(s, A) ⊇
⋃

w∈Perm(A)

∆(s, w).
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If Ft ∈ ∆(s, A) then δ(t) ≥ A. By (60) and Corollary 5.1, there exists w ∈ Perm(A) so that

δ(t) ≥ w ≥ A. Then Ft ∈ ∆(s, w). Therefore, ∆(s, A) ⊆
⋃

w∈Perm(A)

∆(s, w).

(II) Since A ≥ Ai, applying (77), we have that ∆(s, A) ⊆ ∆(s, Ai) for each i = 1, . . . , k.

Therefore,

∆(s, A) ⊆
k⋂
i=1

∆(s, Ai).

If Ft ∈ ∆(s, Ai) for all i, then δ(t) ≥ Ai for all i. Since A = ∨{A1, . . . , Ak} we must have

δ(t) ≥ A. As such, Ft ∈ ∆(s, A).

(III) Suppose t is a reduced expression for some w ∈ Perm(A). If t contains the subword t′

and Ft′ ∈ ∆(s, A) then

w = δ(t) ≥ δ(t′) ≥ A.

By (60), δ(t′) = w. Since t is a reduced expression for w, we have t = t′. Therefore

Ft ∈ ∆(s, w).

5.4 Parabolic Subgroups

Let J ⊆ S. The group WJ = 〈s : s ∈ J〉 is called a parabolic subgroup of W . Let

W J = {w ∈ W : ws > w for all s ∈ J}.

Equivalently, w ∈ W J if and only if no reduced expression for w ends with a letter from J

[BB2006, Lemma 2.4.3]. The elements of W J are the minimal length coset representatives

of W/WJ . Indeed, each coset has a unique minimal length representative in W J .

Any w ∈ W has a unique factorization

w = wJwJ with wJ ∈ W J and wJ ∈ WJ (78)

[BB2006, Proposition 2.4.4]. Furthermore, this factorization is length additive

`(w) = `(wJ) + `(wJ).

There is a natural projection map P J : W → W J defined by P J(w) = wJ which preserves

the Bruhat order.

Proposition 5.2 ([BB2006, Proposition 2.5.1]). If v ≤ w then vJ ≤ wJ .
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The right descent set of w is

DR(w) = {s ∈ S : `(ws) < `(w)}. (79)

Let Js = S − {s}.

Lemma 5.4 ([BB2006, Corollary 2.6.2]). We have u ≤ w if and only if P Js(u) ≤ P Js(w)

for all s ∈ DR(u).

Lemma 5.5. (I) If v ∈ W J so that v ≤ w, then v ≤ wJ .

(II) w = sup{wJs : s ∈ S}.

Proof. (I) If v ∈ W J then v = vJ . Furthermore, by Proposition 5.2, if v ≤ w, we have

v = vJ ≤ wJ .

(II) By (78), w is an upper bound to {wJs : s ∈ S}. Let v be an upper bound to {wJs : s ∈ S}.
By Proposition 5.2, since v ≥ wJs , we have vJs ≥ wJs for all s ∈ S. In particular, vJs ≥ wJs

for all s ∈ DR(w). Applying Lemma 5.4, we see w ≤ v. Therefore, w is the least upper

bound of {wJs : s ∈ S}.

The next proposition says that any reduced word for w contains a unique subword which

represents wJ .

Proposition 5.3. Fix w ∈ W and a reduced word s = (s1, . . . , sk) for w. Then for all

J ⊆ S, we have #RSW(s, wJ) = 1.

Proof. The statement is trivially true if `(w) = 0. Suppose `(w) = 1, i.e. s = (s). Then if

s ∈ J , we have wJ = id. Otherwise s 6∈ J and so wJ = s. In either case, s contains wJ as a

subword exactly once.

Fix k > 1 and assume the statement holds for all v ∈ W with `(v) = k − 1.

Take w ∈ W so that `(w) = k and let s = (s1, . . . , sk) be a reduced word for w. Let

v = s1w. Then sv = (s2, . . . , sk) is a reduced word for v and v < w.

Case 1: For any subword s′ = (si1 , . . . , sij) representing wJ , we have i1 6= 1.

Then wJ is contained in sv and therefore wJ ≤ v. Since wJ ≤ v ≤ w, applying Proposi-

tion 5.2 yields

wJ = (wJ)J ≤ vJ ≤ wJ . (80)

As such, wJ = vJ . By the induction hypothesis, sv contains a unique subword representing

vJ = wJ . Therefore, s also contains a unique subword representing wJ .

47



Case 2: There exists a subword s′ = (si1 , . . . , sij) representing wJ , with i1 = 1.

First note that s1w
J = si2 . . . sij ∈ W J . Therefore,

v = s1w = s1w
JwJ .

Since s1w
J ∈ W J and wJ ∈ WJ , by uniqueness of the factorization v = vJvJ , we have

vJ = s1w
J and vJ = wJ . Furthermore,

vJ = si2 · · · sij ≤ wJ .

Since vJ < wJ , we have that wJ 6≤ v. Otherwise, applying the same argument as in (80)

would imply wJ = vJ .

Since wJ 6≤ v, there is no subword of sv which represents wJ . Then, in fact, every

subword (si1 , . . . , sij) of s representing wJ must have i1 = 1. If (si1 , . . . , sij) is a subword

of s representing wJ , since i1 = 1, we have (si2 , . . . , sij) is a subword of sv representing vJ .

By the induction hypothesis there is only one such subword. Therefore, there is a unique

subword of s representing wJ .
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CHAPTER 6

PRISM TABLEAUX AND ALTERNATING SIGN
MATRICES

The content of this chapter is taken from [Wei2017a]. The original definitions regarding

prism tableaux were introduced in joint work with A. Yong [WY2018].

6.1 Prism Tableaux

Recall, a reverse semistandard tableau for λ is a filling of the Young diagram of λ with

positive integers so that labels

(T1) weakly decrease within rows (from left to right) and

(T2) strictly decrease (from bottom to top) within columns.

Fix λ and d as in (8). We define

AllPrism(λ,d) = RSSYT(λ(1), d1)× · · · × RSSYT(λ(k), dk). (81)

An element of AllPrism(λ,d) is called a prism tableau.

For the discussion which follows, it is not enough to merely think of a prism tableau as a

tuple of reverse semistandard tableaux. Rather, we think of each of the component tableaux

as having a position in the Z+×Z+ grid. As before, we use matrix coordinates to refer boxes

in the grid. An antidiagonal of Z+ × Z+ consists of the boxes

{(i, 1), (i− 1, 2), . . . , (1, i)}.

We identify the shape of each λ(i) with

λ(i) = {(a, b) : b ≤ λ
(i)
di−a+1} ⊆ Z+ × Z+. (82)
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The prism shape for (λ,d) is obtained by overlaying the λ(i)’s:

S(λ,d) :=
k⋃
i=1

{(a, b) : b ≤ λ
(i)
di−a+1}. (83)

From this perspective, a prism tableau for (λ,d) is a filling of S(λ,d) which assigns a label of

color i from the set {1, 2, . . . , di} to each (a, b) ∈ λ(i) so that labels of color i weakly decrease

along rows from left to right and strictly decrease along columns from bottom to top. Such

fillings are in immediate bijection with AllPrism(λ,d). As such, we freely identify these

two representations of a prism tableau.

Weight T as follows:

wt(T ) =
∞∏
i=1

xnii

where ni is the number of antidiagonals which contain the label i (in any color).

Example 6.1. Let λ = ((1), (3, 2), (2, 1, 1)) and d = (2, 5, 6). Below, we give an example of

T ∈ AllPrism(λ,d).

T =

(
1 , 1 1

3 3 2 ,
1
2
6 3

)
←→

1

11 1
32 3 2
6 3

The corresponding weight monomial is wt(T ) = x3
1x

2
2x

3
3x6.

Let

deg(λ,d) = min{deg(wt(T )) : T ∈ AllPrism(λ,d)}. (84)

T ∈ AllPrism(λ,d) is minimal if deg(wt(T )) = deg(λ,d). Let `c be a label ` of color c.

Labels {`c, `d, `′e} in the same antidiagonal form an unstable triple if ` < `′ and replacing

the `c with `′c gives a prism tableau. Write

Prism(λ,d) = {T ∈ AllPrism(λ,d) : T is minimal and has no unstable triples}. (85)

A tuple (λ,d) defines an ASM in the following way. We can always choose n large enough

so that λ(i) ⊆ di × (n− di) for all i = 1, . . . , k. Then let

uλ,d := ([λ(1), d1]g, . . . , [λ
(k), dk]g) (86)
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and

Aλ,d := ∨uλ,d ∈ ASM(n). (87)

The main goal of this chapter is to study the polynomial∑
T ∈Prism(λ,d)

wt(T ). (88)

Theorem 1.1 states that (88) expands as a multiplicity free sum of Schubert polynomials

indexed by elements of MinPerm(Aλ,d). We prove Theorem 1.1 in Section 6.4.

6.2 Combinatorial Prism Models

We now describe two ways of taking an ASM as a input and producing a pair (λ,d) so that

A = Aλ,d. Both procedures are entirely combinatorial. We start with bigrassmannian prism

tableaux, which were defined in [WY2018].

Definition 6.1 (Bigrassmannian Prism Tableaux). Suppose

Ess(A) = {(i1, j1), (i2, j2), . . . , (ik, jk)}.

Let

β(`) = (i` − rA(i`, j`))× (j` − rA(i`, j`)). (89)

Define βA = (β(1), . . . , β(k)) and bA = {i1, . . . , ik}. The bigrassmannian prism shape is

SB(A) := S(βA,bA). Write PrismB(A) := Prism(βA,bA).

Example 6.2. Let A be as in Example 4.1. Then Ess(A) = {(1, 3), (2, 1), (3, 2)}.

(i`, j`) rA(i`, j`) β(`)

(1, 3) 0 1× 3

(2, 1) 0 2× 1

(3, 2) 1 2× 1

Using the table above, we construct the shape SB(A).
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There are only three prism fillings of SB(A).

T1 =

11 1 1
22
3

T2 =

11 1 1
21
3

T3 =

11 1 1
21
2

Their weight monomials are wt(T1) = x3
1x2x3, wt(T2) = x3

1x2x3, and wt(T3) = x3
1x

2
2. These

all have the same degree, and so each tableaux is minimal. We can obtain T1 from T2 by

replacing the pink 1 with a 2. Therefore T2 has an unstable triple and we conclude that

PrismB(A) = {T1, T3}.

Then AβA,bA = x3
1x2x3 + x3

1x
2
2.

We now introduce the parabolic prism model. Our definition uses the monotone triangles

of W. H. Mills, D. P. Robbins, and H. Rumsey [MRR1983]. Given

A = (aij)
n
i,j=1 ∈ ASM(n)

let CA be the matrix of partial column sums, i.e. CA(i, j) =
∑i

`=1 a`j. The ith row of mA

records (in increasing order) the positions of the 1s in the ith row of CA. The array mA is

called a monotone triangle.

Example 6.3.

A =


0 0 1 0

1 0 −1 1

0 0 1 0

0 1 0 0

 CA =


0 0 1 0

1 0 0 1

1 0 1 1

1 1 1 1

 mA =

3

1 4

1 3 4

1 2 3 4

Pictured above is an ASM, its column sum matrix, and its montone triangle.

There is explicit dictionary between monotone triangles and corner sum matrices. Entry

(i, j) of mA indicates the position of the jth ascent in row i of rA, i.e,

mA(i, j) = a if and only if rA(i, a− 1) = j − 1 and rA(i, a) = j. (90)

Given A and 1 ≤ ` ≤ n, we define

λ(A,`) = (mA(`, `)− `,mA(`, `− 1)− (`− 1), . . . ,mA(`, 1)− 1). (91)
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Since mA strictly increases along rows, λ(A,`) is a partition. By construction,

λ(A,`) ⊆ `× (n− `).

Notice if u ∈ Gn, then λ(u,des(u)) = λ(u).

Definition 6.2 (Parabolic Prism Tableaux). Write

{i : (i, j) ∈ Ess(A)} = {i1, . . . , ik}

for the indices of essential rows of A. Let

ρA = (λ(A,i1), λ(A,i2), . . . , λ(A,ik)) and pA = (i1, . . . , ik).

Then define the parabolic prism shape

SP (A) = S(ρA,pA).

We abbreviate PrismP (A) := Prism(ρA,pA).

In the following lemma, we note that each [λ(w,`), `]g is actually a minimal length coset

representative for w with respect to a maximal parabolic subgroup of Sn. Write w(i) for the

minimal length coset representative of w in W/〈s1, . . . , ŝi . . . , sn−1〉.

Lemma 6.1. If w ∈ Sn, then w(`) = [λ(w,`), `]g.

Proof. We obtain w(`) from w by sorting the elements in the sets {w(1), w(2), . . . , w(`)} and

{w(`+ 1), . . . , w(n)} and then concatenating these sequences (see [BB2006, Lemma 2.4.7]).

As such, row ` of mw(`) and mw agree. Therefore, λ(w,`) = λ(w(`),`) = λ(w(`)). If they are

empty partitions, then id = w(`) = [λ(w,`), `]g. Otherwise, we apply Lemma 2.3 and conclude

w(`) = [λ(w,`), `]g.

In special cases, minimal parabolic prism tableaux do not have unstable triples. In par-

ticular, the following holds.

Theorem 6.1. If T is a minimal parabolic prism tableau for a permutation w, then T does

not have unstable triples.

We postpone the proof to the next section. The conclusion of Theorem 6.1 can fail if w is

not a permutation matrix.
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Example 6.4. Let A be as in Example 4.1. Then

mA =

4

2 4

1 3 4

1 2 3 4

.

The essential rows are pA = (1, 2, 3) and ρA = ((3), (2, 1), (1, 1)).

Below, we list the possible prism fillings of (ρA,pA).

T1 =

11 1 1
22 2
3

T2 =

11 1 1
21 2
3

T3 =

11 1 1
21 2
2

T4 =

11 1 1
22 1
3

T5 =

11 1 1
21 1
3

T6 =

11 1 1
21 1
2

i 1 2 3 4 5 6

wt(Ti) x3
1x

2
2x3 x3

1x
2
2x3 x3

1x
2
2 x3

1x2x3 x3
1x2x3 x3

1x
2
2

minimal no no yes yes yes yes

Among the minimal tableaux, T4 is obtained by replacing the unstable triple in T5. Likewise,

replacing the unstable triple T6 produces T3. As such, PrismP (A) = {T3, T4}. Then

AρA,pA = x3
1x

2
2 + x3

1x2x3.

Notice that AβA,bA = AρA,pA. This holds in general as a consequence of Theorem 1.1 and

the next proposition.

Proposition 6.1. (I) A = AβA,bA.

(II) A = AρA,pA.
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Proof. (I) Let Ess(A) = {(i1, j1), . . . , (ik, jk)} and

β(`) = (i` − rA(i`, j`))× (j` − rA(i`, j`))

as in (89). By construction,

[β(`), i`]g = [i`, j`, rA(i`, j`)]b. (92)

Therefore,

A = ∨bigr(A) (by (59))

= ∨{[i, j, rA(i, j)]b : (i, j) ∈ Ess(A)} (by Proposition 4.2)

= ∨{[β(1), i1]g, . . . , [β
(k), ik]g} (by (92))

= AβA,bA (by (87)).

(II) Let u = [λ(A,i), i]g. Since λ(A,i) = λ(u,i), we must have

mA(i, j) = mu(i, j) for all j = 1, . . . , i.

Applying (90), we have

rA(i, j) = ru(i, j) for all j = 1, . . . , n. (93)

Let pA = (i1, . . . , ik) be the essential rows of A and let ρA = (λ(A,i1), . . . , λ(A,ik)). Then

uρA,pA = ([λ(A,i1), i1]g, . . . , [λ
(A,ik), ik]g).

By (93) and Lemma 4.9, [λ(A,i`), i`]g ≤ A for all ` = 1, . . . , k. As such, A is an upper

bound to uρA,pA and hence

AρA,pA = ∨uρA,pA ≤ A. (94)

On the other hand, by (93), r[λ(A,i),i]g(i, j) = rA(i, j). Then by Lemma 4.6,

[i, j, rA(i, j)]b ≤ [λ(A,i), i]g for all 1 ≤ i, j ≤ n.

In particular, if u ∈ bigr(A), then there is some i` in the list pA so that

u ≤ [λ(Ai` ), i`]g ≤ AρA,pA .
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Therefore, AρA,pA is an upper bound to bigr(A) and hence

A = ∨bigr(A) ≤ AρA,pA . (95)

Therefore, by (94) and (95), A = AρA,pA .

We note that the parabolic model could also have been defined using a partition shape

for every row of A. This has the drawback of having more redundant labels in each tableau.

However, the prism shapes have a direct connection to the poset of ASMs:

A ≤ B if and only if λ(A,i) ⊆ λ(B,i) for all i = 1, . . . , n. (96)

The description of Bruhat order in (96) generalizes the following description of the poset

of Grassmannian permutations with a fixed descent. Take u, v ∈ Gn with des(u) = des(v).

Then

u ≤ v if and only if λ(u) ⊆ λ(v). (97)

6.3 Pipe Dreams and the Square Word

Recall si is the simple transposition (i i+ 1) ∈ S2n. Define the square word

Qn×n = sn sn−1 . . . s1 sn+1 sn . . . s2 . . . s2n−1 s2n−2 . . . sn.

Order the boxes of the n× n grid by reading along rows from right to left, starting with the

top row and working down to the bottom. This ordering identifies each letter of Qn×n with

a cell in the n× n grid.

A plus diagram is a subset of the n × n grid. We indicate (i, j) is in the plus diagram

by marking its position in the grid with a +. The identification of the letters in Qn×n
with the grid defines a natural bijection between subwords of Qn×n and plus diagrams. As

such, we freely identify each word with its plus diagram. Notice that plus diagrams may be

immediately identified with pipe dreams. Furthermore, P as a subword of Qn×n represents

w, if and only if P is a reduced pipe dream for w.

Example 6.5. When n = 3, we have

Qn×n = s3s2s1s4s3s2s5s4s3.

Below, we label the entries of the 3 × 3 grid with their corresponding simple transpositions.
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We also give a subword of Q3×3 and its corresponding plus diagram.

s1 s2 s3

s2 s3 s4

s3 s4 s5

s3 − − − s3 s2 − − −
· · +

+ + ·
· · ·

Notice that P is not a reduced expression, s3s3s2 = s2. Therefore, it is not a facet of

∆(Qn×n, A) for any A ∈ ASM(n).

For brevity, write ∆A := ∆(Qn×n, A). Assign FP the weight

wt(FP) =
n∏
i=1

xnii where ni = #{j : (i, j) ∈ P}.

By Theorem 5.1, if w ∈ Sn, the complex ∆w is a pure simplicial complex. Since its facets

are in transparent bijection with pipe dreams, the following holds.

Theorem 6.2 ([FK1996, BB1993, KM2005]).

Sw =
∑

FP∈F (∆w)

wt(FP). (98)

For permutations, ∆w is the Stanley-Reisner complex of a degeneration of the Schubert

determinantal ideal Iw [KM2005, Theorem B]. The same holds for IA and ∆A. See Section 7.6

and Section 7.7 for details.

As a consequence of Theorem 6.2, we have the following corollary.

Corollary 6.1. (I)
∑

w∈Perm(A)

Sw =
∑

FP∈F (∆A)

wt(FP).

(II)
∑

w∈MinPerm(A)

Sw =
∑

FP∈Fmax(∆A)

wt(FP).

Proof. (I) By Proposition 5.1,

F (∆A) =
⋃

w∈Perm(A)

F (∆w). (99)

FP is a facet of ∆w if and only if P represents w. A subword can represent at most one

permutation, so the union in (99) is disjoint. Therefore, applying (98), we have∑
w∈Perm(A)

Sw =
∑

w∈Perm(A)

∑
FP∈F (∆w)

wt(FP) =
∑

FP∈F (∆A)

wt(FP).
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(II) Observe that

Fmax(∆A) =
⋃

w∈MinPerm(A)

F (∆w). (100)

Again this union is disjoint. As such, the result follows.

6.4 Proof of Theorem 1.1

Take T ∈ RSSYT(λ, d) and write Tij for the entry of T which is in the ith row and jth column

in the ambient Z+ × Z+ grid (as in (82)). Define a plus diagram PT by placing a plus in

position (Tij, i + j − Tij) for each label in T . This in turn defines a map T 7→ FPT . Define

Φλ,d(T ) = FPT .

Proposition 6.2. Φλ,d : RSSYT(λ, d)→ F (∆[λ,d]g) is a bijection.

Proposition 6.2 is well known. For a proof, see e.g. [KMY2009, Proposition 5.3]. Define

Φλ,d : AllPrism(λ,d)→ ∆Aλ,d
(101)

where

Φλ,d(T (1), . . . , T (k)) = Φλ(1),d1(T
(1)) ∩ · · · ∩ Φλ(k),dk

(T (k)). (102)

Equivalently, Φλ,d(T (1), . . . , T (k)) = FPT where PT =
⋃k
i=1PT (i) . By part (II) of Proposi-

tion 5.1, Φλ,d is well defined.

Example 6.6. Continuing Example 6.1, we have the following map.

T =

1

11 1
32 3 2
6 3

7→ PT =

· + · + + · ·
· · · + · + ·
· · + + + · ·
· · · · · · ·
· · · · · · ·
+ · · · · · ·
· · · · · · ·

Notice that wt(T ) = wt(PT ) = x3
1x

2
2x

3
3x6.

Lemma 6.2. The map Φλ,d is weight preserving.

Proof. The plus diagram PT has a plus in position (i, j) if and only if there is some a so that

Ta,i+j−a = i.
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Let FP = Φλ,d(T ). Then P = PT (1) ∪ · · · ∪ PT (k) . Therefore, (i, j) ∈ P if and only if

(i, j) ∈ PT (`) for some ` ∈ [k]. As such, (i, j) ∈ P if and only if the label i appears in the

(i+ j)th antidiagonal of T . Therefore,

wt(FP) =
∏

(i,j)∈P
xi =

∏
i

xnii = wt(T ).

Notice by Lemma 5.1 and Proposition 6.2,

F (∆Aλ,d
) ⊆ Φλ,d(AllPrism(λ,d)). (103)

If T is minimal, Φλ,d(T ) ∈ Fmax(∆Aλ,d
). This implies

deg(λ,d) = deg(Aλ,d). (104)

For permutation matrices, Perm(w) = w and so deg(w) = `(w). This shows the original

definition for a minimal prism tableau given in [WY2018] agrees with the definition stated

here.

Call T facet if Φλ,d(T ) ∈ F (∆A). Let Facet(λ,d) ⊆ AllPrism(λ,d) denote the set of

facet prism tableaux. Write StableFacet(λ,d) ⊆ Facet(λ,d) for the set of facet tableaux

which have no unstable triples. By (103),

Perm(Aλ,d) = {w : Φλ,d(T ) ∈ ∆w for some T ∈ Facet(λ,d)}. (105)

Example 6.7. Let A be as in Example 4.4. Set λ = ((2), (2)) and d = (1, 2). Notice

that S(λ,d) is both the parabolic and the bigrassmannian prism shape for A. Therefore,

Aλ,d = A. There are three prism fillings of S(λ,d), listed below.

T1 =

1 1
1 1 T2 =

1 1
2 1 T3 =

1 1
2 2

Only T1 is minimal, so Prism(λ,d) = {T1}. Therefore Aλ,d = wt(T1) = x3
1. The above prism

tableaux correspond to the following plus diagrams.

P1 =

+ + + ·
· · · ·
· · · ·
· · · ·

P2 =

+ + + ·
+ · · ·
· · · ·
· · · ·

P3 =

+ + · ·
+ + · ·
· · · ·
· · · ·
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Since P2 ) P1, we have FP2 ( FP1. Therefore T2 is not a facet prism tableau. There are

no plus diagrams in the image of Φλ,d which are strictly contained in P1 or P3, so by (103),

FP1 ,FP3 ∈ F (∆A). Then T1, T3 ∈ Facet(λ,d).

The word corresponding to P1 is s3s2s1 = 4123 and the word for P3 is s2s1s3s2 = 3412.

Therefore Perm(A) = {4123, 3124} and MinPerm(A) = {4123}.

Theorem 6.3. (I) F (∆Aλ,d
) is in weight preserving bijection with StableFacet(λ,d).

(II) The bijection in (I) restricts to a bijection between Fmax(∆Aλ,d
) and Prism(λ,d).

Theorem 1.1 follows as an immediate consequence of Theorem 6.3 and Corollary 6.1.

Aλ,d =
∑

T∈Prism(λ,d)

wt(T ) =
∑

w∈MinPerm(Aλ,d)

Sw. (106)

Similarly, we have ∑
T ∈StableFacet(λ,d)

wt(T ) =
∑

w∈Perm(Aλ,d)

Sw. (107)

For our proof of Theorem 6.3, we analyze the fibers of Φλ,d

Φ−1
λ,d(FP) = {T ∈ AllPrism(λ,d) : Φλ,d(T ) = FP}. (108)

For an arbitrary face of ∆Aλ,d
, this fiber may be empty. However, by (103), facets have

nonempty fibers. In Proposition 6.4 we show that the fiber of any facet has the structure of

a lattice. Furthermore, the maximum element of Φ−1
λ,d(FP) is the only tableau in the fiber

with no unstable triples.

Order RSSYT(λ, d) and AllPrism(λ,u) by entrywise comparison.

Proposition 6.3. (I) RSSYT(λ, d) is a lattice.

(II) AllPrism(λ,u) is a lattice.

Proof. (I) Given T, U ∈ RSSYT(λ, d), we claim T ∧U = min(T, U) and T ∨U = max(T, U).

Note that

if a1 ≤ a2 and b1 ≤ b2 then min{a1, b1} ≤ min{a2, b2}. (109)

Similarly,

if a1 < a2 and b1 < b2 then min{a1, b1} < min{a2, b2}. (110)

The same statements hold when replacing min with max. Therefore, (T1) and (T2) are pre-

served under taking entrywise minima and maxima. Furthermore, min(T, U) and max(T, U)
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use only labels from [d]. Then

min(T, U),max(T, U) ∈ RSSYT(λ, d).

By applying Lemma 4.1, we see that RSSYT(λ, d) is a lattice.

(II) By (I), AllPrism(λ,d) is a product of lattices. Then AllPrism(λ,d) is itself a lattice.

Again, T ∧ U = min(T ,U) and T ∨ U = max(T ,U).

Write

RSSYTP(λ, d) := {T ∈ RSSYT(λ, d) : Φλ,d(T ) ⊇ FP}. (111)

Lemma 6.3. (I) Suppose T, U ∈ RSSYTP(λ, d). Then

Φλ,d(T ∨ U) ⊇ FP and Φλ,d(T ∧ U) ⊇ FP .

As such, RSSYTP(λ, d) is a lattice.

(II) Suppose T, U ∈ RSSYTP(λ, d) with T < U . Then there exists V ∈ RSSYTP(λ, d) so that

T < V ≤ U and V differs from T by increasing the value of a single entry.

(III) Take T ,U ∈ Φ−1
λ,d(FP). Then

Φλ,d(T ∨ U) ⊇ FP and Φλ,d(T ∧ U) ⊇ FP .

Proof. (I) Let T, U ∈ RSSYTP(λ, d). Fix an antidiagonal D of λ. Let {a1, a2, . . . , am} and

{b1, b2, . . . , bm} be the ordered lists of labels which appear in antidiagonal D of T and U

respectively. Then the entries in antidiagonal D of T ∨ U are

{max(a1, b1), . . . ,max(am, bm)} ⊆ {a1, . . . , am} ∪ {b1, . . . , bm}.

Since this holds for every antidiagonal,

PT∨U ⊆ PT ∪ PU .

Therefore,

Φλ,d(T ∨ U) ⊇ Φλ,d(T ) ∩ Φλ,d(U) ⊇ FP .

The argument for T ∧ U is the same.

(II) Suppose T, U ∈ RSSYTP(λ, d) and T < U . Since T < U all entries of T are (weakly) less

than the entries of U . Let S = {(i, j) : Tij < Uij}. Since T 6= U , there is some entry of T

that is strictly less than the corresponding entry in U , so S 6= ∅.
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Since S is finite and nonempty, there is some (i, j) ∈ S so that (i+1, j), (i, j−1) 6∈ S. Then

replace the (i, j) entry of T with Uij and call this V . Then V ∈ RSSYT(λ, d). Furthermore,

the entries in each antidiagonal of V form a subset of the union of the antidiagonal entries

of T and U so

Φλ,d(V ) ⊇ Φλ,d(T ) ∩ Φλ,d(U) ⊇ FP .

Then we have produced V ∈ RSSYTP(λ, d) so that T < V < U .

(III) By definition, Φλ,d(T ) = Φλ,d(U) = FP . Then Φλ(i),di(T
(i)) ⊇ FP and

Φλ(i),di(U
(i)) ⊇ FP for all i = 1, . . . , k.

Applying (I), we have

Φλ(i),di(T
(i) ∨ U (i)) ⊇ FP and Φλ(i),di(T

(i) ∧ U (i)) ⊇ FP .

Therefore,

Φλ,d(T ∨ U) = Φλ(1),d1(T
(1) ∨ U (1)) ∩ · · · ∩ Φλ(k),dk

(T (k) ∨ U (k)) ⊇ FP

and

Φλ,d(T ∧ U) = Φλ(1),d1(T
(1) ∧ U (1)) ∩ · · · ∩ Φλ(k),dk

(T (k) ∧ U (k)) ⊇ FP .

Proposition 6.4. Fix FP ∈ F (∆Aλ,d
).

(I) Φ−1
λ,d(FP) is a lattice.

(II) Suppose T ,U ∈ Φ−1
λ,d(FP) with T < U . Then T has an unstable triple.

(III) #StableFacet(λ,d) ∩ Φ−1
λ,d(FP) = 1.

Proof. (I) We have that Φ−1
λ,d(FP) is a subposet of AllPrism(λ,d). Therefore, it is enough

to show that Φ−1
λ,d(FP) is closed under taking joins and meets.

By Lemma 6.3, Φλ,d(T ∧ U) ⊇ FP . Since FP ∈ F (∆Aλ,d
), this containment is actually

an equality. Therefore, Φλ,d(T ∧ U) ∈ Φ−1
λ,d(FP), i.e., Φ−1

λ,d(FP) is closed under joins. The

argument for meets is the same. Then we conclude that Φ−1
λ,d(FP) is a lattice.

(II) Suppose U > T . In particular, for some i, we have U (i) > T (i). By the part 2 of

Lemma 6.3, there is V ∈ RSSYTP(λ(i), di) with U (i) ≥ V > T (i) so that V differs from T (i) by

increasing the value a single entry.
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Since Φλ(`),d`
(T (`)) ⊇ FP for all ` = 1, . . . , k and Φλ(i),di(V ) ⊇ FP , we have

Φλ,d(T (1), . . . , T (i−1), V, T (i+1), . . . T (k)) ⊇ FP . (112)

Since FP is a facet, (112) is an equality. Then

(T (1), . . . , T (i−1), V, T (i+1), . . . T (k)) ∈ Φ−1
λ,d(FP).

Therefore, T has an unstable triple.

(III) By (I), Φ−1
λ,d(FP) is a lattice. In particular, it is finite and nonempty so has a unique

maximum element.

By (II), if T is not the maximum of Φ−1
λ,d(FP), then it has an unstable triple. Conversely,

if T has an unstable triple, then by definition, there is T ′ ∈ Φ−1
λ,d(FP) with T < T ′. As

such, T is not the maximum. Therefore, StableFacet(λ,d) ∩Φ−1
λ,d(FP) is the maximum of

Φ−1
λ,d(FP). Then

#StableFacet(λ,d) ∩ Φ−1
λ,d(FP) = 1.

Proof of Theorem 6.3. (I) Define Ψ : F (∆Aλ,d
)→ StableFacet(λ,d) by mapping FP to the

unique element in StableFacet(λ,d)∩Φ−1
λ,d(FP). By Proposition 6.4 part (III), this is well

defined. Injectivity follows since

Φ−1
λ,d(FP) ∩ Φ−1

λ,d(FP ′) = ∅

whenever P 6= P ′.
Given T ∈ StableFacet(λ,d), let FP = Φλ,u. By the definition of StableFacet(λ,d),

we have FP ∈ F (∆Aλ,d
). Then T = Ψ(FP). As such, Ψ is surjective.

Since Φλ,u is weight preserving, Φ(Fmax(∆Aλ,d
)) = Prism(λ,d).

We conclude by showing that minimal parabolic prism tableaux for permutations do not

have unstable triples.

Lemma 6.4. Fix a minimal prism tableaux T ∈ AllPrism(λ,d). Let w be the permutation

represented by PT . If T has an unstable triple, then there exists i so that [λ(i), di]g 6= w(i).

Proof. Fix (λ,d). Take a minimal tableau T ∈ AllPrism(λ,d). Then

Φλ,d(T ) = FPT ∈ Fmax(∆Aλ,d
)

and PT is a reduced word for some w ∈ Sn.
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Suppose T = (T (1), . . . , T (k)) has an unstable triple. Then there is some index i so that

T ′ = (T (1), . . . , T, . . . T (k)) for some T which differs from T (i) by increasing the value of a

single entry.

By Proposition 6.2, PT and PT (i) are distinct subwords of PT and they both represent

[λ(i), di]g. Applying Proposition 5.3, we see that [λ(i), di]g 6= w(i).

We conclude by showing that minimal parabolic prism tableaux for permutations do not

have unstable triples.

Proof of Theorem 6.1. Fix w ∈ Sn and a minimal tableau T ∈ AllPrism(ρw,pw). From

Proposition 6.1, w = Aρw,pw . Since T is minimal, PT represents w. By Lemma 6.1, we

have [ρi,pi]g = w(i) for all i. Applying Lemma 6.4, we see that T does not have unstable

triples.
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CHAPTER 7

MULTIDEGREES OF ASM VARIETIES

In this chapter, we study a class of subvarieties of the space of n × n matrices. These

varieties generalize the matrix Schubert varieties of Fulton. Their multidegrees have a natural

interpretation in terms of prism tableaux. This work originally appeared in [Wei2017a].

7.1 Stanley-Reisner Theory

Let k[z] = k[z1, . . . , zN ]. Given v = (v1, . . . , vN) ∈ NN , write zv :=
∏N

i=1 z
vi
i . If v ∈ {0, 1}N ,

then zv is a square-free monomial. An ideal is called a square-free monomial ideal

if it has a generating set of square-free monomials. Stanley-Reisner theory describes the

correspondence between square-free monomial ideals in k[z] and simplicial complexes ∆ ⊆
P([N ]). We give a brief overview. For more background, see [MS2004, Chapter 1].

Notice square-free monomials in k[z] correspond to faces in P([N ]). Given f ∈ P([N ]),

write zf =
∏
i∈f

zi.

Definition 7.1. The Stanley-Reisner ideal of ∆ is

I∆ = 〈zf : f 6∈ ∆〉.

The quotient k[z]/I∆ is called the Stanley-Reisner ring of ∆.

Write mf = 〈zi : i ∈ f〉 and let f = [N ]− f .

Theorem 7.1. The map ∆ 7→ I∆ is a bijection between square-free monomial ideals in k[z]

and simplicial complexes ∆ ⊆ P([N ]). The ideal I∆ can be expressed as an intersection of

monomial prime ideals

I∆ =
⋂
f∈∆

mf . (113)

Proof. See [MS2004, Theorem 1.7].
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Explicitly, the inverse map takes a square-free monomial ideal I to

∆(I) := {f ⊆ [N ] : zf 6∈ I}.

Given a square-free monomial ideal I, we say ∆(I) is the Stanley-Reisner complex asso-

ciated to I.

The following lemma is straightforward from Definition 7.1, but we give the details.

Lemma 7.1. Let {Iα}α∈A be a set square-free monomial ideals with Iα ⊆ k[z1, . . . , zN ]. Then

∆(
∑

α∈A Iα) =
⋂
α∈A∆(Iα).

Proof. A generating set for
∑

α∈A Iα can be obtained by concatenation of the generating sets

for the Iα’s. Therefore, it is a square-free monomial ideal. Notice a monomial m ∈
∑

α∈A Iα

if and only if m ∈ Iα for some α ∈ A.

Assume f ⊆ [N ]. Then,

f ∈ ∆(
∑
α∈A

Iα) ⇐⇒ zf 6∈
∑
α∈A

Iα

⇐⇒ zf 6∈ Iα for all α ∈ A

⇐⇒ f ∈ ∆(Iα) for all α ∈ A

⇐⇒ f ∈
⋂
α∈A

∆(Iα).

7.2 Multidegrees

In this section, we review multidegrees. See [MS2004, Chapter 8] for an introduction. We

say k[z] is multigraded by Zn if there is a semigroup homomorphism d : NN → Zn. We

may interpret d as a map from monomials in k[z] to elements of Zn. As such, we write

d(zv) := d(v).

Write k[z]a for the k vector space which has as a basis the monomials of degree a,

{zv : d(zv) = a}.

As a vector space, k[z] =
⊕
a∈A

k[z]a. A k[z]-module M is multigraded by k[z] if it has a direct

sum decomposition M =
⊕
a∈Nn

Ma which satisfies

k[z]a ·Mb ⊆Ma+b
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for all a,b ∈ Zn. We will assume that the multigrading is positive, that is each of the

graded pieces of k[z] are finite dimensional as k vector spaces.

Let C be a function from finitely generated, graded S modules to Z[x1, . . . , xn]. We say C
is additive if for each M

C(M ; x) =
k∑
i=1

mult(M, pi)C(k[z]/pi; x). (114)

Here, {p1, . . . , pk} is the set of maximal dimensional associated primes of M and mult(M, p)

is the multiplicity of M at p. See [Eis1995, Section 3.6].

Fix a monomial term order on k[z]. If f ∈ k[z], write init(f) for its lead term. The

initial ideal of I is

init(I) := {init(f) : f ∈ I}.

C is degenerative if given a graded free presentation F/K, we have

C(F/K; x) = C(F/init(K); x). (115)

Write 〈a,x〉 := a1x1 + a2x2 + · · ·+ anxn.

Theorem 7.2. [MS2004, Theorem 8.44] There is a unique function C which is additive and

degenerative so that

C(k[z]/〈zi1 , . . . , zik〉; x) =
k∏
`=1

〈d(zi`),x〉. (116)

C(M ; x) is called the multidegree of M .

Lemma 7.2. Suppose I is a square-free monomial ideal in k[z]. Then

C(k[z]/I; x) =
∑

f∈Fmax(∆(I))

C(k[z]/mf ; x).

Proof. Since I is square-free, it has the prime decomposition

I =
⋂

f∈F (∆(I))

mf .

Squarefree monomial ideals are radical, and so

mult(k[z]/I,k[z]/mf ) = 1
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whenever f ∈ F (∆(I)). The maximal dimensional associated primes of k[z] are

{mf : f ∈ Fmax(∆(I))}.

Applying additivity,

C(k[z]/I; x) =
∑

f∈Fmax(∆(I))

C(k[z]/mf ; x).

7.3 Matrix Schubert Varieties

In this section, we follow [MS2004, Chapter 15] as a general reference. Let Mat(n) denote the

space of n× n matrices with coefficients in an algebraically closed field k. Let z = (zij)
n
i,j=1

be a matrix of generic variables and write k[z] = k[z11, z12, . . . , znn] for the coordinate ring

of Mat(n).

The classical determinantal variety Xr ⊆ Mat(n) is the set of n× n matrices of rank

at most r

Xr = {M ∈ Mat(n) : rank(M) ≤ r}.

Xr is an irreducible subvariety of Mat(n). Its corresponding radical ideal is generated by the

size r + 1 minors in z

Ir = 〈minors of size r + 1 in z〉.

This is a special case of a matrix Schubert variety.

Recall M[i],[j] is the submatrix of M obtained by taking the first i columns and j rows.

Given a partial permutation matrix w ∈ P(n), we define the matrix Schubert variety

Xw = {M ∈ Mat(n) : rank(M[i],[j]) ≤ rw(i, j) for all 1 ≤ i, j ≤ n}. (117)

Fulton showed that Xw is irreducible [Ful1992].

Recall B−,B+ ⊂ GL(n) are the Borel subgroups of lower triangular and upper triangular

matrices respectively. There is a left action of B− × B+ on Mat(n) given by

(b1, b2) ·M := b1Mb−1
2 . (118)

Write Ωw = B− × B+ · w for the orbit which contains the partial permutation w. We recall

some facts about B− × B+ orbits.

Proposition 7.1. (I) If M ∈ Ωw, then rank(M[i],[j]) = rw(i, j) for all 1 ≤ i, j ≤ n.
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(II) There is a unique w ∈ P(n) in each B− × B orbit.

(III) Xw = Ωw. Furthermore, Xw is irreducible and has dimension n2 − `(w).

Proof. (I) The action of B−×B+ onM ∈ Mat(n) is by row operations which sweep downwards

and column operations which sweep to the right. Restricted to M[i],[j] this action is just row

and column operations within M[i],[j]. Therefore, rank(M[i],[j]) is stable under this action for

all 1 ≤ i, j ≤ n. In particular, rank(w[i],[j]) = rw(i, j), so the result follows.

(II) This is proved in [MS2004, Proposition 15.27].

(III) See [MS2004, Theorem 15.31].

Recall T is the torus of invertible diagonal matrices. There is an action of T on Mat(n)

by left multiplication. Given M ∈ Mat(n), the rank of any submatrix is preserved under

the action of T. In particular, Xw is T stable. Define a degree map d by d(zij) = i. The

associated multigrading corresponds to the action of T on Mat(n). In particular, T stable

subvarieties of Mat(n) have coordinate rings that are k[z]-graded modules. When k[z]/I is

the coordinate ring of X ⊆ Mat(n), write C(X; x) := C(k[z]/I; x). In this situation, (114)

becomes

C(X; x) =
k∑
i=1

C(Xi; x) (119)

where {X1, . . . , Xk} are the maximal dimensional irreducible components of X. Since I is

radical, (119) is a multiplicity free sum.

By [KM2005, Theorem A], when w ∈ Sn,

C(Xw; x) = Sw. (120)

One of the major goals of [KM2005] was to exhibit a geometrically natural explanation for

previously known combinatorial models for Schubert polynomials. We explain a similar in-

terpretation for prism tableau and the Gröbner geometry of alternating sign matrix varieties.

This is discussed in Section 7.7.

7.4 ASM Varieties

We now present a generalization of matrix Schubert varieties. Given A ∈ ASM(n), we define

the alternating sign matrix variety

XA := {M ∈M[i],[j] : rank(M[i],[j]) ≤ rA(i, j) for all 1 ≤ i, j ≤ n}.
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Immediately by definition,

if A ≤ B then XA ⊇ XB. (121)

XA has the following set theoretic descriptions as unions and intersections of other ASM

varieties.

Proposition 7.2. (I) XA =
⋃

w∈Perm(A)

Xw.

(II) If A = ∨{A1, . . . , Ak}, then XA =
k⋂
i=1

Ai.

Proof. (I) (⊆) Fix M ∈ XA. Then M ∈ Ωw for some w ∈ P(n) and rw ≤ rA. By Corol-

lary 5.1, there exists w′ ∈ Perm(A) so that w ≥ w′. Then M ∈ Xw ⊆ Xw′ . Hence

M ∈
⋃
w∈Perm(A) Xw.

(⊇) If w ∈ Perm(A) then w ≥ A. Then by (121), XA ⊇ Xw. Therefore,

XA ⊇
⋃

w∈Perm(A)

Xw.

(II) (⊆) We have A ≥ Ai for all i. Then by (121), XA ⊆
⋂k
i=1XAi .

(⊇) Take M ∈
⋂k
i=1XAi . Then M ∈ Ωw for some w ∈ P(n). Since M ∈ XAi for all i, we

have w ≥ Ai for all i. Then w ≥ A = ∨{A1, . . . , Ak}. Therefore M ∈ Ωw ⊆ XA.

Fulton showed that each Xw is defined by a smaller set of essential conditions,

Xw = {M ∈M[i],[j] : rank(M[i],[j]) ≤ rw(i, j) for all (i, j) ∈ Ess(w)}. (122)

By Proposition 7.2, XA =
⋂
u∈bigr(A) Xu. Therefore, ASM varieties are also defined by

essential conditions.

XA = {M ∈M[i],[j] : rank(M[i],[j]) ≤ rA(i, j) for all (i, j) ∈ Ess(A)}. (123)

The rank of any submatrix is preserved under the action of T, so XA is T stable. As such,

we may consider its multidegree.

Proposition 7.3. C(XA; x) =
∑

w∈MinPerm(A)

Sw.

Proof. As a consequence of Proposition 7.2, the top dimensional irreducible components of

XA are {Xw : w ∈ MinPerm(A)}. Then using the additivity property of multidegrees and
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(120), we have

C(XA; x) =
∑

w∈MinPerm(A)

C(Xw; x) =
∑

w∈MinPerm(A)

Sw.

Theorem 1.2 follows as an immediate consequence of Proposition 7.3 and Theorem 1.1.

7.5 Northwest Rank Conditions

It is possible to consider more general rank conditions than those defined by corner sums of

ASMs. Let r = (rij)
n
i,j=1 with rij ∈ N ∪ {∞}. The northwest rank variety is

Xr := {M ∈M[i],[j] : rank(M[i],[j]) ≤ rij for all 1 ≤ i, j ≤ n}. (124)

Fulton showed that Xr is irreducible if and only if r = rw for some w ∈ P(n). It is

stable under the B− × B+ orbit, so decomposes as a union of (partial) matrix Schubert

varieties. Z. Xu-an and G. Hongzhu classified northwest rank varieties and gave an algorithm

to decompose them into their irreducible components [ZG2008].

We give an alternative discussion using the order theoretic properties of partial ASMs. A

priori, Xr appears to be a more general object than an ASM variety. We will show, up to

an affine factor, Xr is isomorphic to some ASM variety. Furthermore, Xr = XrA for some

A ∈ PA(n). Therefore, northwest rank varieties are indexed by partial ASMs.

Lemma 7.3. Let A ∈ PA(n) and Ã ∈ ASM(N) its completion to an honest ASM. Then

XA × kN2−n2 ∼= XÃ.

Proof. By construction, rÃ(i, j) = rA(i, j) for all 1 ≤ i, j ≤ n. Therefore, if M ∈ XÃ then

M[n],[n] ∈ XA. Conversely, fix L ∈ XA. We have L ∈ Ωw for some w ∈ P(n), with w ≥ A.

Let L′ be any matrix in Mat(N) so that L′[n],[n] = L. Then L′ ∈ Ωv for some v ∈ P(N).

Consider the completions w̃, ṽ ∈ ASM(∞). Since A ≤ w, we have Ã ≤ w̃ ∈ ASM(∞).

By construction, w̃ is the minimum among elements of ASM(∞) which restrict to w in

P(n). Since v[n],[n] = w, we have Ã ≤ w̃ ≤ ṽ ∈ ASM(∞). Then Ã ≤ ṽ[N ],[N ] = v ∈ PA(N).

Therefore, L′ ∈ Ωv ⊆ XÃ. As such, XÃ
∼= {L× kN2−n2

: L ∈ XA}.

Fix a rank function r = (rij)
n
i,j=1. Let

Ar = ∨{[i, j, rij]b : rij < n} ∈ PA(n). (125)
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Proposition 7.4. XAr = Xr.

Proof. If rij ≥ n, it is a vacuous rank condition on matrices in Mat(n). As such, we may

ignore these entries of r. By definition, XAr =
⋂
X[i,j,rij ]b with the intersection taken over

(i, j) indexing nonvacuous rank conditions.

If M ∈ Xr we have M ∈ X[i,j,rij ]b for all 1 ≤ i, j ≤ n. Therefore, M ∈ XAr . Conversely,

if M ∈ XAr , then rank(M[i,j]) ≤ rA(i, j) ≤ rij whenever rij is a nonvacuous rank condition.

As such, M ∈ Xr.

Notice that unions of matrix Schubert varieties need not be northwest rank varieties.

Example 7.1. Let X = X132∪X213. If X = Xr, then r132, r213 ≤ r. As such, r132∧r213 ≤ r.

But r132 ∧ r213 = r123. Since dim(X123) > dim(X), it follows that X cannot be defined by a

list of northwest rank conditions.

7.6 ASM Determinantal Ideals

We now turn our discussion to defining ideals for ASM varieties. Recall the ASM ideal

IA := 〈minors of size rA(i, j) + 1 in z[i],[j]〉. (126)

A matrix has rank at most r if and only if all of its minors of size r + 1 vanish. As such, IA

set-theoretically cuts out XA. Furthermore, IA has generators which are homogeneous for

the Zn grading on k[z].

Lemma 7.4. (I) If rA ≤ rB then IA ⊇ IB.

(II) IA =
∑

u∈bigr(A)

Iu = 〈minors of size rA(i, j) + 1 in z[i],[j] : (i, j) ∈ Ess(A)〉.

Proof. (I) Define

Iri,j = 〈minors of size r + 1 in z[i],[j]〉. (127)

We may compute each minor by iteratively doing row expansions. As such,

if r ≤ r′ then Iri,j ⊇ Ir
′

i,j. (128)

Therefore, suppose rA ≤ rB. Then

IA =
∑
j

∑
i

I
rA(i,j)
i,j ⊇

∑
j

∑
i

I
rB(i,j)
i,j = IB.
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(II) For each (i, j) there is u ∈ bigr(A) so that rA(i, j) = ru(i, j). As such, I
rA(i,j)
i,j ⊆ Iu for

some u in bigr(A). By part (I), Iu ⊆ IA, for all u ∈ bigr(A). Therefore

IA =
∑
j

∑
i

I
rA(i,j)
i,j ⊆

∑
u∈bigr(A)

Iu ⊆ IA.

To distinguish between the two generating sets of IA, we refer to

Gen(A) = {minors of size rA(i, j) + 1 in z[i],[j]}

as the defining generators of IA. Call

EssGen(A) = {minors of size rA(i, j) + 1 in z[i],[j] : (i, j) ∈ Ess(A)}

the essential generators of IA.

Example 7.2. Let A be as in Example 4.4. We have Ess(A) = {(1, 2), (2, 3)}. Furthermore,

rA(1, 2) = 0 and rA(2, 3) = 1. Applying Lemma 7.4 yields

IA = 〈z11, z12,

∣∣∣∣∣ z11 z12

z21 z22

∣∣∣∣∣ ,
∣∣∣∣∣ z11 z13

z21 z23

∣∣∣∣∣ ,
∣∣∣∣∣ z12 z13

z22 z23

∣∣∣∣∣〉
= 〈z11, z12,, z13z21, z13z22〉

= 〈z11, z12, z21, z22〉 ∩ 〈z11, z12, z13〉

= I3412 ∩ I4123.

This agrees with the irreducible decomposition XA = X3412 ∪ X4123. Notice by additivity,

C(k[z]/IA; x) = C(k[z]/I4123; x) = x3
1 = S4123.

7.7 Initial Ideals and Prism Tableaux

An antidiagonal term order on k[z] is a term order for which the lead term of any minor

in Z is the product of its antidiagonal terms. From now on, fix an antidiagonal term order

≺ on k[z]. A Gröbner basis for I is a set {g1, . . . , gk : gi ∈ k[z]} so that

(I) I = 〈g1, . . . , gk〉, and

(II) init(I) = 〈init(g1), . . . , init(gk)〉.
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Proof of Proposition 1.1. (I) If w ∈ Sn, by Section 7.2 of [Knu2009], there is a Frobenius

splitting for which Xw is compatibly split. Since XA =
⋂
u∈bigr(A) Xu, it is also compatibly

split.

By the argument in [Stu1990], EssGen(u) is a Gröbner basis for Iu. Since Bn is the base

of ASM(n), we may apply part (II) of [KM2005, Theorem 6]. As

EssGen(A) =
⋃

u∈bigr(A)

EssGen(u),

it is a Gröbner basis for IA. Since Gen(A) ⊇ EssGen(A), we have that Gen(A) is also a

Gröbner basis for IA.

(II) The lead terms of EssGen(A) are square-free, hence init(IA) is radical. Since IA degen-

erates to a radical ideal, it is itself radical.

(III) By [KM2005, Theorem B], if w ∈ Sn,

∆(init(Iw)) = ∆(Qn×n, w). (129)

From part (I),

init(IA) =
∑

u∈bigr(A)

init(Iu).

Therefore,

∆(init(IA)) =
⋂

u∈bigr(A)

∆(init(Iu)) (by Lemma 7.1)

=
⋂

u∈bigr(A)

∆(Qn×n, u) (by (129))

= ∆(Qn×n, A) (by part (II) of Proposition 5.1.)

The discussion in [Knu2009] assumes k = Q. However, since the defining generators of IA

have coefficients in {±1}, the generators are actually Gröbner over Z, and so the statement

holds more generally. Applying Lemma 7.2, we can also compute C(XA; x) as the weighted

sum over

Fmax(∆(init(IA))) = Fmax(∆A).

Theorem 6.3 gives a weight preserving bijection between Prism(λ,d) and Fmax(∆Aλ,d
). This

produces a specific connection between the Gröbner geometry of XAλ,d
and prism tableaux.
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CHAPTER 8

QUIVER REPRESENTATIONS AND QUIVER LOCI

In this chapter, we recall some background regarding quiver representations. The central

question in the representation theory of quivers is to understand isomorphism classes of

representations. We focus mostly on the nicest case, that of Dynkin quivers. By Gabriel’s

theorem, up to isomorphism, Dynkin quivers have finitely many indecomposable representa-

tions. For introductory references on quiver representations, we refer the reader to [Bri2008]

and [Sch2014]. Part of the following chapter was taken from [RWY2018] which is joint work

with R. Rimányi and A. Yong.

8.1 Quiver Representations

A quiver Q = (Q0,Q1) is a directed graph with vertex set Q0 and

arrows Q1. Throughout, we will assume Q has finitely many vertices.

For a ∈ Q1, let h(a) be the head of the arrow and t(a) its tail. An

example of a quiver is pictured to the right. A quiver is acyclic if it

does not have any directed cycles of arrows. In particular, acyclic quivers do not have loops,

that is arrows which start and end at the same vertex. The quiver pictured above is not

acyclic. A quiver is Dynkin if its underlying (undirected) graph is a Dynkin diagram of

type ADE. These graphs are pictured below.

An Dn

E6 E7 E8

Notice that Dynkin quivers are acylic.
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Take C to be our ground field. A representation V of Q is an assignment of a finite

dimensional vector space Vi to each i ∈ Q0 and a linear transformation

Va : Vt(a) → Vh(a)

for each arrow a ∈ Q1. Each representation V of Q has an associated dimension vector

dV = (dV(1), . . . ,dV(n)) ∈ NQ0 where dV(i) = dimVi

which records the dimension of the vector spaces associated to the vertices of Q. We will

sometimes write dimV := dV. Let NQ0 denote the set of dimension vectors of Q. A

morphism T : V→ W of representations of Q is a collection of linear transformations

(Ti : Vi → Wi)i∈Q0 such that Th(a)Va = WaTt(a) for every arrow a ∈ Q1.

Write Hom(V,W) for the space of morphisms from V to W. If each of the Ti’s are iso-

morphisms, then V and W are isomorphic representations. Notice, for V and W to be

isomorphic, they must have the same dimension vectors.

Given representations V and W of Q, we can build a new representation V ⊕W by

(V ⊕W)i := Vi ⊕Wi for all i ∈ Q0 and (V ⊕W)a := Va ⊕Wa for each a ∈ Q1. (130)

By construction, the dimension is additive over taking direct sums:

dimV ⊕W = dimV + dimW.

W is a subrepresentation of V if for each i ∈ Q0, we have that Wi is a subspace of Vi

and Wa : Wt(a) → Wh(a) is the restriction of the map Va : Vt(a) → Vh(a). Up to isomorphism,

this is equivalent to saying there is an injective morphism from W to V.

A representation is simple if it has no proper subrepresentation. Up to isomorphism, the

simple representations of an acyclic quiver are in bijection with its vertices. Explicitly, the

simple representation S(i) assigns C to vertex i and 0 to all other vertices. A representation

which is a direct sum of simple representations is called semisimple.

Example 8.1. Let Q be the quiver pictured below.

1 2

a
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Define a representation V[1,2] by assigning a copy of C to each vertex and letting the morphism

between them be the identity map.

C C

id

There is a map T : V[1,2] → S(1) defined by T1 = [k] and T2 = 0. For any k ∈ C, the following

square commutes.

C C

C 0

[1]

[k] 0

0

As such, T is a morphism of quiver representations. In particular, Hom(V[1,2], S(1)) ∼= C. On

the other hand, for any value of k 6= 0 the diagram

C 0

C C

0

[k] 0

[1]

does not commute. Therefore, the only morphism of quiver representations from S(1) to V[1,2]

is trivial. As such Hom(S(1),V[1,2]) ∼= 0. Similarly, one may verify that Hom(S(2),V[1,2]) ∼= C
and Hom(V[1,2], S(2)) ∼= 0.

In particular, we have shown that S(2) is a subrepresentation of V[1,2], but S(1) is not.

A representation is indecomposable if it does not admit a nontrivial decomposition as

a direct sum of two representations, i.e. V is indecomposable if V ∼= U ⊕W implies U = 0

or W = 0. As a first example, simple representations are automatically indecomposable.

Complete reducibility says that any finite dimensional representation V can be written as a

direct sum

V =
N⊕
i=1

V(i) (131)

where each V(i) is indecomposable. Furthermore, up to isomorphism and permuting factors,

this decomposition is unique.

Example 8.2. As in Example 8.1, let Q be the quiver pictured below.

1 2

a

Let V[1,2] be as before. In Example 8.1, we showed that S(1) is not a subrepresentation of
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V[1,2], as there is no nontrivial morphism from S(1) to V[1,2]. Then in particular,

V[1,2] 6∼= S(1) ⊕ S(2). (132)

If V ∼= U ⊕W, either U1
∼= C or W1

∼= C. Without loss of generality, assume U1
∼= C.

Then W1 = 0. If W2 = C, then we must have U2 = 0 and we are in the situation of the right

hand side of (132). Therefore, W = 0 and V[1,2] is indecomposable.

By (131), to understand isomorphism classes of representations of Q, it is enough to

understand the isomorphism classes of indecomposable representations. A quiver is of finite

type if it has finitely many isomorphism classes of indecomposable representations.

Theorem 8.1 ([Gab1972]). A quiver is of finite type if and only if it is a disjoint union of

Dynkin quivers.

Proof. See [Bri2008, Theorem 1.1.7].

The Euler form

χQ : Zn × Zn → Z

is defined by

χQ(d1,d2) =
∑
i∈Q0

d1(i)d2(i)−
∑
a∈Q1

d1(t(a))d2(h(a)). (133)

We often use the abbreviation

χQ(V,W) := χQ(dimV,dimW).

A positive root is a dimension vector d = (di)i∈Q0 so that χQ(d,d) = 1. The positive roots

do not depend on the orientation of the arrows of Q, only on the underlying graph.

Theorem 8.2 ([Gab1972]). Suppose Q is of finite representation type. Them the map

[V] 7→ dimV defines a bijection from isomorphism classes of indecomposable representations

of Q to positive roots of Q.

Proof. See [Bri2008, Theorem 2.4.3].

Example 8.3. For an A2 quiver, the positive roots are (1, 0), (0, 1), and (1, 1). The first two

positive roots correspond to the simple representations S(1) and S(2). The third corresponds

to the indecomposable representation pictured below.

C C

[1]
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We may confirm by direct computation that there are no other positive roots. If d = (d1, d2),

then

χQ(d,d) = d2
1 + d2

2 − d1d2 = (d1 − d2)2 + d1d2.

If d1 ≥ 2 or d2 ≥ 2 then χQ(d,d) ≥ 2. Since (0, 0) is not a positive root, the only positive

roots are the ones listed above.

Given V and W an extension of V by W is a short exact sequence of morphisms

0→ W→ E→ V→ 0.

Two extensions are equivalent if the following diagram commutes:

0 W E V 0

0 W E′ V 0

∼

Write Ext1(V,W) for the space of extensions of V by W up to equivalence.

Hom(V,W) and Ext1(V,W) are finite dimensional vector spaces. The Euler form relates

their dimensions as follows:

χQ(V,W) = dimHom(V,W)− dimExt1(V,W), (134)

(see [Bri2008, Corollary 1.4.3]).

8.2 The Representation Space

Let Mat(m,n) be the space of m×n matrices and fix d ∈ NQ0 . The representation space

is

RepQ(d) :=
⊕
a∈Q1

Mat(d(h(a)),d(t(a))).

A matrix in Mat(m,n) determines a map from Cn to Cm. Explicitly, an m× n matrix acts

on an n×1 column vector by matrix multiplication. As such, points of RepQ(d) determine d

dimensional representations ofQ. Conversely, by fixing a basis, we see that any d dimensional

representation is isomorphic to some V ∈ RepQ(d).

Let

GLQ(d) :=
∏
x∈Q0

GL(d(x)).
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GLQ(d) acts on RepQ(d) by base change. Explicitly, given G = (Gi)i∈Q0

G · V = (Gh(a)VaG−1
t(a))a∈Q1 . (135)

Lemma 8.1. Fix V and W in RepQ(d). Then V and W are isomorphic if and only if they

lie in the same GLQ(d) orbit.

In particular, orbits in the representation space are in bijection with isomorphism classes

of d dimensional representations of Q.

Example 8.4. Let Q be as below.

1 2

a

Fix a dimension vector d = (d1, d2). Then RepQ(d) = Mat(d2, d1). Given M ∈ Mat(d2, d1),

there is some G2 ∈ GL(d2) so that G2M is in reduced row echelon form. Furthermore, there

is G1 ∈ GL(d2) so that

G2MG−1
1 =

[
Ir 0

0 0

]
where Ir denotes the r × r identity matrix.

Since rank is preserved under the action of the general linear group, the GLQ(d) orbits on

RepQ(d) are indexed by the rank of the matrices in each orbit.

Write OQ(d) for the set of orbits in RepQ(d). If γ ∈ OQ(d), let codimC(γ) denote the

complex codimension of γ in RepQ(d). Fix any point V ∈ η. The codimension of γ may be

expressed in terms of extensions of V.

Lemma 8.2 (Voigt). If V ∈ γ then codimC(γ) = dimExt1(V,V).

Proof. See [Rin1980, Lemma 2.3].

8.3 Type A Quiver Representations

Assume Q is a type A quiver and label its vertices from left to right with the set {1, 2, . . . , n}.
If all arrows point in the same direction, we say that Q is equioriented. Positive roots of

Q are in bijection with intervals of vertices in Q. Explicitly, d = (d1, . . . , dn) is a positive

root of Q if and only it there exists i ≤ j so that

dk =

1 if i ≤ k ≤ j

0 otherwise.
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Given 1 ≤ i ≤ j ≤ n, define V[i,j] to be the representation which assigns the vector space

C to vertex k if k ∈ [i, j] and zero otherwise. The map corresponding to an arrow is the

identity whenever mapping from C to C and zero otherwise. Write d[i,j] := dimV[i,j].

A lacing diagram [ADF1980] L is a graph so that:

(I) the vertices are arranged in n columns labeled 1, 2, . . . , n (left to right) and

(II) the edges connect adjacent columns form a partial matching.

A strand is a connected component of L. A strand is of type [i, j] if it starts in column i

and ends in column j. Write

m[i,j](L) = #{strands of type [i, j] in L}. (136)

There is an explicit dictionary between representations of Q and lacing diagrams. Each

lacing diagram may be interpreted as a sequence of partial permutation matrices. This

sequence defines a representation VL ∈ RepQ(d). We do not give the details here, as we are

not concerned with the representations themselves, but merely their dimension vectors. See

[KMS2006] for the equioriented case and [BR2007] for quivers of arbitrary orientation.

Let L[i,j] be the lacing diagram which consists of a single strand of type [i, j]. Notice that

V[i,j]
∼= VL[i,j] . Strands in L reveal the irreducible decomposition of VL

VL ∼=
⊕

1≤i≤j≤n
V
⊕m[i,j](L)

[i,j] . (137)

We associate a dimension vector to L. Write

dim(L) = (dL(1), . . . ,dL(n))

where dL(k) is the number of vertices in column k of L. Equivalently, by counting the

number of strands which use a vertex of column k, we have

dL(k) =
∑

1≤i≤k≤j≤n
m[i,j](L). (138)

Translating from lacing diagrams to representations, we have dim(L) = dim(VL).

Two lacing diagrams are equivalent if they only

differ by reordering of vertices within columns. For

example, the lacing diagrams pictured to the left
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are all equivalent. Alternatively, we may say

[L] = [L′] if and only if m[i,j](L) = m[i,j](L′) for all 1 ≤ i ≤ j ≤ n.

Therefore, we will write m[i,j]([L]) := m[i,j](L). Using (137), it follows that isomorphism

classes of representations are in bijection with equivalence classes of lacing diagrams:

VL ∼= VL′ if and only if [L] = [L′].

Let

CQ(d) = {[L] : dim(L) = d}

denote the set of equivalence classes of d dimensional lacing diagrams. Given

η = [L] ∈ CQ(d), write γη ∈ OQ(d) for the orbit which contains VL. The map η 7→ γη defines

a bijection from CQ(d)→ OQ(d).
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CHAPTER 9

PARTITION IDENTITIES AND QUIVER
REPRESENTATIONS

The following chapter is joint work with R. Rimányi and A. Yong [RWY2018].

9.1 Introduction

The main goal of this chapter is to establish a specific connection between classical parti-

tion combinatorics and the theory of quiver representations. Our motivation is to give an

elementary proof for a family of identities introduced by M. Reineke [Rei2010]. The iden-

tities are closely related to cluster algebras (see e.g., work of V. V. Fock–A. B. Goncharov

[FG2009] and references therein), wall crossing phenomena (see e.g., the paper [DM2016] of

B. Davison–S. Meinhardt as well as the references therein), and Donaldson-Thomas invari-

ants and Cohomological Hall Algebras (see, e.g., the work of M. Kontsevich–Y. Soibelman

[KS2011]). This work is intended to be an initial step towards understanding the rich combi-

natorics encoded by advanced dilogarithm identities, such as B. Keller’s identities [Kel2011].

We give a new explanation for M. Reineke’s identities in type A via generating series argu-

ments.

We follow the conventions of [Rim2013]. Recall the quantum dilogarithm series

E(z) =
∞∑
k=0

(−z)kqk
2/2

(1− q)(1− q2) . . . (1− qk)
. (139)

To state M. Reineke’s identities, we will first define the quantum algebra of Q. We start by

defining the following form:

λQ(d1,d2) = χQ(d2,d1)− χQ(d1,d2). (140)

Write N for the set of nonnegative integers. Following [Rim2013], the quantum algebra

AQ is generated over Q(q1/2) by

{zd : d ∈ Nn}
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with multiplication given by

zd1zd2 = −q1/2λQ(d1,d2)zd1+d2 .

Theorem 9.1 ([Rei2010]). If Q is Dynkin, there exists an ordering on the dimension vectors

for the simple representations α1, . . . , αn and the indecomposable representations β1, . . . , βN

so that

E(zα1) · · ·E(zαn) = E(zβ1) · · ·E(zβN ). (141)

Proving Theorem 9.1 is equivalent to showing that for every d ∈ Nn the coefficient of

zd is equal on both sides of the expression (141). This calculation of these coefficients is

carried out in [Rim2013]. Here, the identity is restated in terms of the geometry of quiver

representations.

Given γ ∈ OQ(d), pick any representation V ∈ γ. Then by complete reducibility,

V ∼=
N⊕
i=1

V
⊕mβi
βi

,

where Vβi is an indecomposable representation so that dim(Vβi) = βi. In fact, any V′ ∈ γ
has this same irreducible decomposition; the mβi ’s are constant on orbits. Then we define

mβi(γ) to be the multiplicity of Vβi in the irreducible decomposition of any V ∈ γ.

Theorem 9.2 ([Rim2013]). For each dimension vector d = (d(1),d(2), . . . ,d(n)),

n∏
i=1

1

(q)d(i)

=
∑

γ∈OQ(d)

qcodimC(γ)

N∏
i=1

1

(q)mβi (γ)

. (142)

We now restrict our focus to type A quivers. Assume Q is a type A quiver. We label the

vertices from left to right with the set {1, 2, . . . , n}. Recall

CQ(d) = {[L] : dim(L) = d}

denotes the set of equivalence classes of d dimensional lacing diagrams. Given the class

η = [L] ∈ CQ(d), write γη ∈ OQ(d) for the orbit which contains VL. The map η 7→ γη defines

a bijection from CQ(d)→ OQ(d).

We now associate certain statistics to η. Set parameters

ski (η) = m[i,k−1](η) and (143)

tkj (η) = m[j,k](η) +m[j,k+1](η) + · · ·+m[j,n](η). (144)
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Fix a sequence of permutations

w = (w(1), . . . , w(n)), where w(i) ∈ Si and w(i)(i) = i. (145)

The partition combinatorics behind Theorem 9.3 below suggests the Durfee statistic:

rw(η) =
∑

1≤i<j≤k≤n
skw(k)(i)(η)tkw(k)(j)(η). (146)

With these definitions, we now state our main theorem.

Theorem 9.3 (Quiver Durfee Identity). For d = (d(1), . . . ,d(n)) and w as in (145),

n∏
k=1

1

(q)d(k)

=
∑

η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

. (147)

Here [
i+ j

j

]
q

=
(q)i+j

(q)i(q)j

is the q-binomial coefficient, the generating series for partitions with at most i rows and

j columns [And1984, Theorem 3.1]. Indeed, we will show in Lemma 9.1 that each side of

(147) has an interpretation as the generating series of a set of multipartitions. By doing

some algebraic cancellations, Theorem 9.3 implies the following:

Corollary 9.1.
n∏
i=1

1

(q)d(i)

=
∑

η∈CQ(d)

qrw(η)
∏

1≤i≤j≤n

1

(q)m[i,j](η)

. (148)

This is our link to Reineke’s identity. In Definition 9.2, we assign each type A quiver a

sequence of permutations wQ. We then show this choice satisfies

Theorem 9.4.

rwQ(η) = codimC(γη).

For type A, Theorem 9.2 follows as a consequence of Corollary 9.1 and Theorem 9.4.

The chapter is organized as follows. In Section 9.2, we recall some background on gener-

ating series. In Section 9.3, we define sets S and T so that the left hand side of (147) is a

generating series for S and the right hand side is a generating series for T . We give an explicit

bijection between S and T , thus proving Theorem 9.3. By simple algebraic cancellations,

we prove Corollary 9.1. Finally, in Section 9.4, we prove Theorem 9.4, thus completing our

proof.
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9.2 Generating Series for Partitions

First we recall some background on generating series. Let A be a set equipped with a weight

function

wtA : A→ N.

Suppose

ai := #{a ∈ A : wt(a) = i} <∞

for each i. Then the generating series for A is

G(A, q) :=
∑
a∈A

qwtA(a). (149)

Equivalently, by collecting like terms,

G(A, q) =
∞∑
i=0

aiq
i. (150)

Generating series are well behaved under taking products and disjoint unions of sets. Define

wtA×B(a, b) = wtA(a) + wtB(b).

Then

G(A×B, q) = G(A, q)G(B, q). (151)

For disjoint unions, the generating series is additive:

G(A tB, q) = G(A, q) +G(B, q). (152)

Each partition has an associated weight

wt(λ) = |λ| =
`(λ)∑
i=1

λi. (153)

Equivalently, wt(λ) is the total number of boxes in the Young diagram of λ. A multipar-

tition is simply a tuple of partitions λ = (λ(i))i∈I . We weight λ by defining

wt(λ) =
∑
i∈I

wt(λ(i)).

Let pk = {λ : wt(λ) = k}. Famously due to Euler, the generating series for the set of all
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partitions is
∞∑
k=0

pkq
k =

∞∏
i=1

1

1− qi
. (154)

Throughout, we will be interested in subsets of partitions which have constraints placed on

the total number of rows or columns in their Young diagram. Let

P(i, j) = {λ : `(λ) ≤ i and λ1 ≤ j}.

Here we allow for i or j to be infinite. When i and j are finite,

G(P(i, j), q) =

[
i+ j

i

]
q

. (155)

The generating series for P(∞, k), as well as P(k,∞), is obtained by truncating the product

in (154):

1

(q)k
=

k∏
i=1

1

1− qi
. (156)

Write i × j for the rectangular partition with i parts of size j and let R(i, j) = {i × j}.
Immediately from (149),

G(R(i, j), q) = qij. (157)

The following identity is due to Euler:

1

(q)∞
=
∞∑
j=0

qj
2

((q)j)2
. (158)

We sketch a textbook bijective proof. The Durfee square D(λ) is the largest j × j square

7→

partition that fits inside λ. Draw D(λ) in-

side of λ so that it is justified against the top

left corner. By cutting λ along the boundary

of D(λ), we may divide λ into three smaller

partitions, as pictured to the right. This decomposition defines a bijection:

P(∞,∞)
∼−→

∞⋃
j=0

R(j, j)× P(j,∞)× P(∞, j).

See [And1984, pp 27-28] for details and related identities.

The present work uses a generalization of the Durfee square. Fix r ∈ Z. The Durfee

rectangleD(λ, r) is the largest i×(i+r) rectangular partition contained in λ. By convention,
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we say any 0-width or 0-height rectangle is contained in λ. Equivalently, D(λ, r) is the

rectangle with top left corner positioned at (0, 0) and bottom right corner where the line

x+ y = r intersects the (infinite) boundary line of the partition.

Example 9.1. Let λ = (3, 3, 2, 2, 1). Pictured below are the Durfee rectangles D(λ, r) for

r = −1, 0, 4.

D(λ,−1) D(λ, 0) D(λ, 4)

Notice that D(λ, 4) = 0× 4 rectangle since the line x+ y = 4 intersects the boundary of λ at

the point (4, 0).

Decomposing λ using D(λ, r) gives a proof of the following identity of B. Gordon and L.

Houten [GH1968, pp. 91-92]:

1

(q)∞
=

∞∑
i=max{0,−r}

qi(r+i)

(q)i(q)r+i
. (159)

The A2 case of Theorem 9.3 can be proved using a truncated version of (159). We sketch the

explicit connection here. Fix r ≤ k. We can split λ ∈ P(∞, k) into three partitions using

D(λ, r). This defines a bijection

P(∞, k)
∼−→

k−r⋃
i=max{0,−r}

R(i, r + i)× P(∞, r + i)× P(i, k − (r + i))

which corresponds to the following identity of generating series:

1

(q)k
=

k−r∑
i=max{0,−r}

qi(r+i)

(q)r+i

[
k − (r + i) + i

i

]
q

. (160)

We may rephrase (160) in the language of lacing diagrams. Set n = 2 and fix a dimension

vector d = (k−r, k). Choose a d-dimensional lacing diagram L such that m[1,1](L) = i. Since

m[1,1](L) +m[1,2](L) = k − r, necessarily m[1,2](L) = k − r − i. Similarly, m[2,2](L) = r + i.
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We reindex the sum in (160) and obtain

1

(q)d(2)

=
∑

η∈CQ(d)

qm[1,1](η)m[2,2](η)

(q)m[2,2](η)

[
m[1,1](η) +m[1,2](η)

m[1,1](η)

]
q

. (161)

For any η, we have t11(η) = d(1). Dividing both sides of (161) by (q)d(1) and using the

equations (143) and (144) gives

1

(q)d(1)(q)d(2)

=
1

(q)d(1)

∑
η∈CQ(d)

qs
2
1(η)t22(η)

(q)t22(η)

[
s2

1(η) + t21(η)

s2
1(η)

]
q

. (162)

We have d(1) = t11(η) for any η ∈ CQ(d). Then we obtain

1

(q)d(1)(q)d(2)

=
∑

η∈CQ(d)

qs
2
1(η)t22(η)

(q)t11(η)(q)t22(η)

[
s2

1(η) + t21(η)

s2
1(η)

]
q

. (163)

This is the n = 2 case of Theorem 9.3.

For n > 2, the proof of Theorem 9.3 uses multiple Durfee rectangles. This technique is

similar to the Durfee dissections of A. Schilling [SW1998]. See also the work of C. Boulet on

successive Durfee rectangles [Bou2010]. We also note the resemblance to the Durfee systems

of P. Bouwknegt [Bou2002]. Also see the references to loc. cit. for other work on generalized

Durfee square identities. Our main point of difference is that these identities do not directly

concern lacing diagrams.

9.3 Proof of Theorem 9.3

Throughout this section, fix a dimension vector d = (d(1), . . .d(n)) and a sequence of

permutations as in (145):

w = (w(1), . . . , w(n)) with w(i) ∈ Si and wi(i) = i.

Define

S = P(∞,d(1))× · · · × P(∞,d(n)). (164)

Let

R(η) = {µ = (µki,j) : µki,j ∈ R(skw(k)(i)(η), tkw(k)(j)(η)), 1 ≤ i < j ≤ k ≤ n}, (165)
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i.e. it consists of a single element, a tuple of rectangles. For ease of notation, we write

skk(η) =∞ for each k. Let

P (η) = {ν = (νki ) : νki ∈ P(skw(k)(i)(η), tkw(k)(i)(η)), 1 ≤ i ≤ k ≤ n}. (166)

Define

T (η) = R(η)× P (η). (167)

Finally, we let

T =
⋃

η∈CQ(d)

T (η). (168)

Weight λ = (λ(1), . . . , λ(n)) ∈ S by defining

wtS(λ) =
n∑
k=1

|λ(k)|.

Assign (µ,ν) ∈ T the weight

wtT (µ,ν) =
∑

1≤i<j<k≤n
|µki,j|+

∑
1≤i≤k≤n

|νki |.

Lemma 9.1. (I) The generating series for S is

G(S, q) =
n∏
k=1

1

(q)d(k)

.

(II) The generating series for T is

G(T, q) =
∑

η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

.

Proof. (I) By (164),

S = P(∞,d(1))× · · · × P(∞,d(n)).
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Then,

G(S, q) =
n∏
k=1

G(P(∞,d(k)), q) (by (151))

=
n∏
i=1

1

(q)d(k)

(by (156)).

(II) First, observe that

G(R(η), q) =
∏

1≤i<j≤k≤n
G(R(skw(k)(i)(η), tkw(k)(j)(η)), q) (by (151) and (165))

=
∏

1≤i<j≤k≤n
q
sk
w(k)(i)

(η)tk
w(k)(j)

(η)
(by (157))

= qrw(η) (by (146)).

Now,

G(P (η), q) =
∏

1≤i≤k≤n
G(P(skw(k)(i)(η), tkw(k)(i)(η)), q) (by (166))

=
∏

1≤i≤k≤n
G(P(ski (η), tki (η)), q) (by permuting indices)

=
n∏
k=1

G(P(skk(η), tkk(η)), q)
k−1∏
i=1

G(P(ski (η), tki (η)), q)

=
n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

(by (156) and (155)).

Therefore,

G(T, q) =
∑

η∈CQ(d)

G(T (η), q) (by (152) and (168))

=
∑

η∈CQ(d)

G(R(η)× P (η), q) (by (167))

=
∑

η∈CQ(d)

G(R(η), q)G(P (η), q) (by (151))

=
∑

η∈CQ(d)

qrw(η)

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

.

We now define the general “cutting” operation we use to map from S to T . Fix two weakly
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increasing sequences of nonnegative integers

m = (m0 ≤ m1 ≤ · · · ≤ mkm) and n = (n0 ≤ n1 ≤ · · · ≤ nkn).

Given a partition λ, let λ(i,j)(m,n) be the partition formed by restricting the Young diagram

of λ to rows [mi−1 + 1,mi] and columns [nj−1 + 1, nj]. Here, we allow for infinite mkm and

nkn . Immediately from the definition,

λ(i,j)(m,n) ∈ P(mi −mi−1, nj − nj−1). (169)

Furthermore,

λ(i,j)(m,n) ∈ R(mi −mi−1, nj − nj−1) (170)

if and only if the Young diagram of λ has a box in position (mi, nj).

The following lemma describes how the size of D(λ, r) varies as r changes.

Lemma 9.2. Fix λ and suppose r′ ≤ r. If D(λ, r) = s× (s+ r) and D(λ, r′) = s′× (s′+ r′)

then

(I) s ≤ s′ and

(II) s′ + r′ ≤ s+ r.

Proof. (I) Suppose s+r′ < 0. We have 0 ≤ s′+r′, since it is the width of D(λ, r′). Therefore,

s ≤ s′. Otherwise, if s+ r′ ≥ 0, then

s× (s+ r′) ⊆ s× (s+ r) ⊆ λ.

Since D(λ, r′) = s′ × (s′ + r′), we have s ≤ s′.

(II) If s = s′ then

s′ + r′ ≤ s′ + r = s+ r.

Then suppose s < s′. Since s+ 1 ≤ s′ and

D(λ, r′) = s′ × (r′ + s′) ⊆ λ,

we have (s+1)×(r′+s′) ⊆ λ. Since D(λ, r) = s×(s+r), by definition, (s+1)×(s+1+r) 6⊆ λ.

And so

s′ + r′ ≤ λs+1 < s+ 1 + r,

i.e. s′ + r′ ≤ s+ r.
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Define a map Ψk : T → P(∞,d(k)) by “gluing” the partitions of T with superscript k as

indicated in Figure 9.1. Then let Ψ = Ψ1 × . . .×Ψn.

tk
w(k)(k)

tk
w(k)(k−1)

tk
w(k)(2)

tk
w(k)(1)

sk
w(k)(1)

sk
w(k)(2)

sk
w(k)(k−1)

· · ·

...

µk1,k µk1,k−1 µk1,2

µk2,k µk2,k−1

µkk−1,k ν
k
k−1

νk1

νk2

νkk

Figure 9.1: Description of the map Ψk : T → S.

The proposed inverse Φ : S → T is

defined as follows. We will recursively

define parameters

tkj (λ) for 1 ≤ j ≤ k ≤ n

by induction on k. Our initial condi-

tion is that t11(λ) = d(1). Assume the

sequence

tk−1
1 (λ), . . . , tk−1

k−1(λ)

has been previously determined and

that

tk−1
j (λ) ≥ 0 for all 1 ≤ j ≤ k − 1.

Let

δki (λ) = D(λ(k),d(k)−
i∑

`=1

tk−1
w(k)(`)

(λ)) for i = 0, . . . , k − 1. (171)

Note in particular that δk0(λ) = 0× d(k) for all 1 ≤ k ≤ n. Suppose

δki (λ) = aki (λ)× bki (λ). (172)

For ease of indexing, write bkk(λ) = 0. Let

tkw(k)(i)(λ) = bki−1(λ)− bki (λ) for i = 1, . . . , k. (173)

We also define

skw(k)(i)(λ) = aki (λ)− aki−1(λ) for i = 1, . . . , k − 1. (174)

By the hypothesis, tk−1
j (λ) ≥ 0 for all 1 ≤ j ≤ k − 1. Therefore,

d(k)−
i∑

`=1

tk−1
w(k)(`)

(λ) ≤ d(k)−
i−1∑
`=1

tk−1
w(k)(`)

(λ) for all i’s.
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Then we may apply Lemma 9.2 to the δki ’s, to obtain sequences

ak(λ) = (ak0(λ) ≤ ak1(λ) ≤ · · · ≤ akk−1(λ) ≤ akk(λ)) (175)

with akk(λ) =∞ and

bk(λ) = (bkk(λ) ≤ bkk−1(λ) ≤ · · · ≤ bk1(λ) ≤ bk0(λ)). (176)

By (175) and (176), the ski (λ)’s and tkj (λ)’s are all nonnegative. Continue until k = n.

We then map λ 7→ (µ,ν) where

µki,j = λ(k)(ak(λ),bk(λ))i,k−j+1

and

νki = λ(k)(ak(λ),bk(λ))i,k−i+1.

In the proof, we will justify that this map is well defined, i.e. (µ,ν) ∈ T . This involves

finding a class η(λ) ∈ CQ(d) so that (µ,ν) ∈ T (η(λ)). We define our candidate now.

Definition 9.1. Let η(λ) be the equivalence class of a lacing diagram uniquely defined by:

• m[i,j](η(λ)) = sj+1
i (λ) for 1 ≤ i ≤ j ≤ n− 1

• m[i,n](η(λ)) = tni (λ) for i = 1 . . . n.

Since each m[i,j](η(λ)) ≥ 0, we have that η(λ) is well defined.

Example 9.2. Assume w = (1, 12, 123). Fix a dimension vector d = (3, 6, 5) and partitions

λ(1) = (2, 1), λ(2) = (5, 1), and λ(3) = (3, 3, 2, 1, 1).

t11 t21t22

s2
1

t33 t32 t31

s3
2

Then δ2
1(λ) = D(λ(2), 6− 3) = 1× 4 and so t21(λ) = 2, and t22(λ) = 4. From this, we have

δ3
1(λ) = D(λ(3), 5− 2) = 0× 3 and δ3

2(λ) = D(λ(3), 5− 2− 4) = 3× 2.
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Therefore, t31(λ) = 2, t32(λ) = 1, and t33(λ) = 2. This corresponds to η(λ) = [L] with L as

given below.

L =

Alternatively, suppose w = (1, 12, 213). Keeping the same d and λ(i)’s gives

t11 t21t22

s2
1

t33 t31 t32

s3
1

s3
2

As before, δ2
1(λ) = D(λ(2), 6− 3) = 1× 4. Consequently,

δ3
1(λ) = D(λ(3), 5− 4) = 2× 3 and δ3

2(λ) = D(λ(3), 5− 4− 2) = 3× 2.

This yields η(λ) = [L′], where L′ is pictured below.

L′ =

Notice that the different choices for w yielded different equivalence classes.

Immediately from the definitions (143) and (144), we have

tki (η) + ski (η) = tk−1
i (η). (177)

for any η ∈ CQ(d). We show the parameters defined in (173) and (174) satisfy the same

recursion.

Lemma 9.3. tk
w(k)(i)

(λ) + sk
w(k)(i)

(λ) = tk−1
w(k)(i)

(λ) for 1 ≤ i < k ≤ n.

Proof. By (172) and the definition of a Durfee rectangle,

bki (λ)− aki (λ) = d(k)−
i∑

`=1

tk−1
w(k)(`)

(λ). (178)
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Applying (173) and (174),

tkw(k)(i)(λ) + skw(k)(i)(λ) = bki−1(λ)− bki (λ) + aki (λ)− aki−1(λ)

= (bki−1(λ)− aki−1(λ))− (bki (λ)− aki (λ))

=

(
d(k)−

i−1∑
`=1

tk−1
w(k)(`)

(λ)

)
−

(
d(k)−

i∑
`=1

tk−1
w(k)(`)

(λ)

)
= tk−1

w(k)(i)
(λ).

The next lemma collects various properties of η(λ). In particular, it justifies our choice in

notation for ski (λ) and tkj (λ).

Lemma 9.4. (I) ski (η(λ)) = ski (λ)

(II) tkj (η(λ)) = tkj (λ)

(III) η(λ) ∈ CQ(d).

Proof. (I) This is immediate from Definition 9.1.

(II) By Lemma 9.3,

tki (λ) = tk+1
i (λ) + sk+1

i (λ).

Iterating, we obtain

tki (λ) = tk+2
i (λ) + sk+2

i (λ) + sk+1
i (λ)

= . . .

= tni (λ) +
n∑

`=k+1

s`i(λ)

= tni (η(λ)) +
n∑

`=k+1

s`i(η(λ)) (by Definition 9.1)

= m[i,n](η(λ)) +
n∑

`=k+1

m[i,`−1](η(λ)) (by (144) and (143))

= tki (η(λ)) (by (144)).

(III) For each k,

d(k) = bk0(λ)− bkk(λ)
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=
k∑
i=1

bki−1(λ)− bki (λ) (by (173))

=
k∑
i=1

tkw(k)(i)(λ)

=
k∑
i=1

tki (λ) (permute the terms of the sum)

=
k∑
i=1

tki (η(λ)) (by part (II))

=
∑

1≤i≤k≤j≤n
m[i,j](η(λ)) (by (144)).

By (138), we have η(λ) ∈ CQ(d).

Theorem 9.5. Ψ : T → S is a weight-preserving bijection, i.e., wtT (µ,ν) = wtS(Ψ(µ,ν)).

Proof. Ψ is weight-preserving: That wtT (µ,ν) = wtS(Ψ(µ,ν)) is clear since Ψ preserves the

total number of boxes.

Ψ is well-defined: If dim(η) = (d(1), . . . ,d(n)) then

d(k) =
k∑
i=1

n∑
j=k

m[i,j](η) =
k∑
i=1

tki (η) for k = 1, . . . , n.

Therefore, Ψk(µ,ν) has parts of size at most d(k) for each k, i.e. Ψk(µ,ν) ∈ P(∞,d(k)) for

each k. Therefore, Ψ(µ,ν) ∈ S.

Φ is well-defined:

By (169),

λ(k)(ak(λ),bk(λ))i,k−j+1 ∈ P(aki (λ)− aki−1(λ), bkj−1(λ)− bkj (λ)).

By (174) and (173),

sw(k)(i)(η(λ)) = aki (λ)− aki−1(λ) and tkw(k)(j)(η(λ)) = bkj−1(λ)− bkj (λ).

Therefore,

λ(k)(ak(λ),bk(λ))i,k−j+1 ∈ P(skw(k)(i)(η(λ)), tkw(k)(j)(η(λ))).

By definition,

νki = λ(k)(ak(λ),bk(λ))i,k−i+1
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and so

νki ∈ P(skw(k)(i)(η(λ)), tkw(k)(i)(η(λ)))

as desired.

Similarly, by (169),

µki,j = λ(k)(ak(λ),bk(λ))i,k−j+1

and so

µki,j ∈ P(sw(k)(i)(η(λ)), tkw(k)(j)(η(λ))).

Since δki (λ) ⊂ λ(k), the box (aki (λ), bki (λ)) ∈ λ(k). Likewise, since δkk−j+1(λ) ⊂ λ(k), we have

(akk−j+1(λ), bkk−j+1(λ)) ∈ λ(k).

Therefore, (aki (λ), bkk−j+1(λ)) ∈ λ(k) As such, by (170),

µki,j ∈ R(sw(k)(i)(η(λ)), tkw(k)(j)(η(λ))).

Therefore, Φ(λ) ∈ T (η(λ)) ⊆ T .

Ψ ◦ Φ = Id:

The map Φ acts by cutting the λ(k)’s into various pieces and Ψ glues these shapes together

into their original configurations. Then for every λ ∈ S, we have Ψ(Φ(λ)) = λ.

Φ ◦Ψ = Id:

Fix (µ,ν) ∈ T . Then in particular, (µ,ν) ∈ T (η) for some η ∈ CQ(d). Let λ := Ψ(µ,ν).

We must argue η = η(λ). If so, Φ(Ψ(µ,ν)) = (µ,ν).

Since (µ,ν) ∈ T (η), each Ψk(µ,ν) contains a rectangle

εkj =

(
j∑
i=1

skw(k)(i)(η)

)
×

(
k∑

i=j+1

tkw(k)(i)(η)

)
(179)

for all 1 ≤ j < k as in Figure 9.1. By definition, dim(η) = d. Then it follows

k∑
i=j+1

tkw(k)(i)(η) = d(k)−

(
j∑
i=1

tkw(k)(i)(η)

)
.

As in (177), tki (η) + ski (η) = tk−1
i (η). Then by substitution we have

k∑
i=j+1

tkw(k)(i)(η) = d(k)−
j∑
i=1

tk−1
wk(i)

(η) +

j∑
i=1

skw(k)(i)(η). (180)
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Substitution of (180) into (179) yields

εkj = s× (s+ d(k)−
j∑
i=1

tk−1
wk(i)

(η))

contained in λ(k). Here, s =
∑j

i=1 s
k
i (η). In particular, by construction, the bottom right

corner of εkj intersects the boundary of λ(k) (see Figure 9.1), i.e. s is the maximum value for

which εkj ⊆ λ(k). Then by the definition of a Durfee rectangle,

εkj = D(λ(k),d(k)−
j∑
i=1

tk−1
wk(i)

(η)).

By (171) and Claim 9.4 part (II),

δkj (λ) = D(λ(k),d(k)−
j∑
i=1

tk−1
wk(i)

(η(λ))).

We seek to show δkj (λ) = εkj for all 1 ≤ j < k ≤ n. Our argument is by induction on k.

By definition, t11(η) = d(1) = t11(η(λ)). Then

δ2
1(λ) = D(λ(2),d(2)− t11(η))

= D(λ(2),d(2)− t11(η(λ)))

= ε21,

so the Durfee rectangles agree. Assume δk−1
j (λ) = εk−1

j for all 1 ≤ j < k − 1. Then in

particular, tk−1
i (η) = tk−1

i (η(λ)) for all 1 ≤ i ≤ k − 1 and so

j∑
i=1

tk−1
wk(i)

(η) =

j∑
i=1

tk−1
wk(i)

(η(λ)). (181)

Then δkj = εkj since both are Durfee rectangles defined by the same parameter. Hence,

δkj = εkj . Therefore,

ski (η) = ski (η(λ)) for all 1 ≤ i < k ≤ n

and

tki (η) = tki (η(λ)) for all 1 ≤ i ≤ k ≤ n.

Hence η = η(λ).
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Table 9.1: Pictured below are the equivalence classes for d = (1, 2, 1) and their
corresponding parameters skj (η) and tkj (η). The last column gives G(T (η), q).

η = [L] (skj (η)) (tkj (η)) G(T (η), q)

[ ] 2 1 j/k
1 2

2 0 3

3 2 1 j/k
1 1

2 0 2
1 0 0 3

q4
(

1
(q)1

)(
1

(q)2

)(
1

(q)1

)
= q4

(1−q)3(1−q2)

[ ] 2 1 j/k
0 2

1 1 3

3 2 1 j/k
1 1

1 1 2
1 0 0 3

q2
(

1
(q)1

)(
1

(q)1

)(
1

(q)1

)
= q2

(1−q)3

[ ] 2 1 j/k
1 2

1 0 3

3 2 1 j/k
1 1

2 0 2
0 1 0 3

q2
(

1
(q)1

)(
1

(q)2

)([
2
1

]
q

)
= q2

(1−q)3

[ ] 2 1 j/k
0 2

0 1 3

3 2 1 j/k
1 1

1 1 2
0 1 0 3

q
(

1
(q)1

)(
1

(q)1

)
= q

(1−q)2

[ ] 2 1 j/k
0 2

1 0 3

3 2 1 j/k
1 1

1 1 2
0 0 1 3

(
1

(q)1

)(
1

(q)1

)
= 1

(1−q)2

Proof of Theorem 9.3. By Theorem 9.5, S and T are in weight preserving bijection. There-

fore,

G(S, q) = G(T, q).

Applying Lemma 9.1 gives the result.

Example 9.3. Let n = 3 and d = (1, 2, 1) and w = (1, 12, 123). Then

rw(η) = (s2
1(η)t22(η)) + (s3

1(η)t32(η) + s3
1(η)t33(η) + s3

2(η)t33(η))

and

G(P (η), q) =
1

(q)t11(η)

1

(q)t22(η)

[
t21(η) + s2

1(η)

s1(η)2

]
q

1

(q)t33(η)

[
t31(η) + s3

1(η)

s3
1(η)

]
q

[
t32(η) + s3

2(η)

s3
2(η)

]
q

.

Table 9.1 lists the equivalence classes for d = (1, 2, 1) and their corresponding terms on the
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right hand side of (147). We then verify,

G(T, q) =
q4

(1− q)3(1− q2)
+

q2

(1− q)3
+

q2

(1− q)3
+

q

(1− q)2
+

1

(1− q)2

=
1

(1− q)3(1− q2)
(q4 + 2q2(1− q2) + q(1− q)(1− q2) + (1− q)(1− q2))

=
1

(q)1(q)2(q)1

= G(S, q).

We now give the proof of Corollary 9.1.

Proof. By (177),

tki (η) + ski (η) = tk−1
i (η). (182)

Furthermore by (143) and (144),

ski (η) = m[i,k−1](η) and tni (η) = m[i,n](η).

Thus,

n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

=
n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tki (η)+ski (η)

(q)tki (η)(q)ski (η)

=
n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tk−1
i (η)

(q)tki (η)(q)ski (η)

=

(
n∏
k=1

1

(q)tkk(η)

k−1∏
i=1

(q)tk−1
i (η)

(q)tki (η)

)(
n∏
k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏
k=1

k∏
i=1

1

(q)tki (η)

)(
n∏
k=2

k−1∏
i=1

(q)tk−1
i (η)

)(
n∏
k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏
k=1

k∏
i=1

1

(q)tki (η)

)(
n−1∏
k=1

k∏
i=1

(q)tki (η)

)(
n∏
k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏
i=1

1

(q)tni (η)

)(
n∏
k=1

k−1∏
i=1

1

(q)ski (η)

)

=

(
n∏
i=1

1

(q)m[i,n](η)

)(
n∏
k=1

k−1∏
i=1

1

(q)m[i,k−1](η)

)
=

∏
1≤i≤j≤n

1

(q)m[i,j](η)

.
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The proof of Theorem 9.5 implies an enriched form of Theorem 9.3. Let

(a; q)k = (1− a)(1− aq)(1− aq2) · · · (1− aqk−1).

For η ∈ CQ(d), let uj(η) be the number of strands that terminate at column j in some

(equivalently any) lace diagram L ∈ η. That is,

uj(η) =

j∑
i=1

sj+1
i (η). (183)

Corollary 9.2 (of Theorem 9.5).

n∏
k=1

1

(qz; q)d(k)

=
∑

η∈CQ(d)

qrw(η)

n∏
k=1

zuk−1(η) 1

(qz; q)tkk(η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

. (184)

Proof. The left hand side of (184) is the generating series for S with respect to the weight

that uses q to mark the number of boxes and z to mark length of the partitions involved.

Now, suppose λ = (λ(1), . . . , λ(n)) ∈ S. Under the indicated decomposition in Figure 9.1,

`(λ(k)) = `(νkk ) +
k−1∑
i=1

skw(k)(i)(η(λ)) = `(νkk ) + uk−1(η(λ)),

where the second equality holds by (183) and reordering terms. The corollary follows imme-

diately from this and Theorem 9.5 combined.

Theorem 9.3 is the z = 1 case of Corollary 9.2. By analysis as in Section 9.2, we obtain

as a special case this Durfee rectangle identity:

1

(qz; q)k
=

k−r∑
i=max{0,−r}

ziqi(r+i)

(qz; q)r+i

[
k − (r + i) + i

i

]
q

.

From Corollary 9.2 one can deduce an enriched form of Theorem 9.2.

102



9.4 Proof of Theorem 9.4

AssumeQ is a type A quiver. Label its vertices from left to right with the numbers 1, 2, . . . , n.

Write ai for the arrow whose left endpoint is vertex i. Let I be the set of intervals in Q, i.e.

I = {[i, j] : i ≤ j and i, j ∈ [n]}.

Recall ι is the natural inclusion from Si−1 to Si. Let w
(i−1)
0 denote the longest permutation

in Si−1. We associate a sequence of permutations to Q as follows:

Definition 9.2. Let w
(1)
Q = 1 and w

(2)
Q = 12. For i ≥ 3 Set

w
(i)
Q =

ι(w
(i−1)
Q ) if ai−2 and ai−1 point in the same direction

ι(w
(i−1)
Q w

(i−1)
0 ) if ai−2 and ai−1 point in opposite directions.

Write wQ := (w
(1)
Q , . . . , w

(n)
Q ). By construction, wQ is of the form (145).

Example 9.4. Let Q be the quiver pictured below.

1 2 3 4 5 6

a1 a2 a3 a4 a5

Then wQ = (1, 12, 123, 3214, 32145, 541236).

Definition 9.2 is our link between codimC(γη) and the Durfee statistic. The outline of the

proof of Theorem 9.4 is as follows. We start by defining two subsets of I×I, BoxStrands(w)

and ConditionStrands(Q). In Proposition 9.1, we show that

rw(η) =
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η).

Proposition 9.2 states

codimC(γη) =
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η).

In Proposition 9.3, we show

BoxStrands(wQ) = ConditionStrands(Q).

Combining these propositions completes the proof.
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Given a sequence w = (w(1), . . . , w(n)) which satisfies (145), define

BoxStrands(w) = {([w(k)(i), k − 1], [w(k)(j), `]) : 1 ≤ i < j ≤ k ≤ ` ≤ n} ⊆ I × I. (185)

To define ConditionStrands(Q), we consider pairs of intervals (I, J) ∈ I×I of the following

three types:

(I) I = [w, x− 1] and J = [x, z] with w < x ≤ z

x z

w x− 1

(II) I = [w, y] and J = [x, z] with w < x ≤ y < z and the arrows ax−1 and ay point in the

same direction, e.g.,

x z

w y

(III) I = [x, y] and J = [w, z] with w < x ≤ y < z and the arrows ax−1 and ay point in

different directions, e.g.,

w z

x y

With this, we let

ConditionStrands(Q) = {(I, J) : (I, J) satisfies (I), (II), or (III)}. (186)

The set BoxStrands(w) has an immediate connection to the Durfee statistic rw(η).

Proposition 9.1.

rw(η) =
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η).

Proof. By (146),

rw(η) =
∑

1≤i<j≤k≤n
skw(k)(i)(η)tkw(k)(j)(η).
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Using (143) and (144), we have:

rw(η) =
∑

1≤i<j≤k≤n
m[w(k)(i),k−1](η)

(
n∑
`=k

m[w(k)(j),`](η)

)
=

∑
1≤i<j≤k≤`≤n

m[w(k)(i),k−1](η)m[w(k)(j),`](η)

=
∑

(I,J)∈BoxStrands(w)

mI(η)mJ(η).

Here, we give an alternate expression for codimC(γη) in terms of the Euler form. Define

U = {(I, J) : χQ(VI ,VJ) < 0}.

Lemma 9.5.

codimC(γη) =
∑

(I,J)∈U
mI(η)mJ(η)(−χQ(VI ,VJ)).

Proof. By [Rei2001], Section 2, there exists a total order on I so that

Hom(VI ,VJ) and Ext1(VJ ,VI) = 0 whenever I < J and I 6= J . (187)

Indecomposables for Dynkin quivers have no nontrivial self extensions, that is,

Ext1(VI ,VI) = 0 for all I ∈ I,

[Bri2008, Theorem 2.4.3]. Then dimExt1(VI ,VJ) = 0 whenever I ≥ J .

Writing

Vη =
⊕
I∈I

V
⊕mI(η)
I

as a direct sum of indecomposables, we have

Ext1(Vη,Vη) ∼=
⊕

(I,J)∈I×I
Ext1(VI ,VJ)⊕mI(η)mJ (η).

Then

codimC(γη) = dimExt1(Vη,Vη) =
∑

(I,J)∈I×I
mI(η)mJ(η)dimExt1(VI ,VJ).
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Since Ext1(Vη,Vη) vanishes when I ≥ J ,

codimC(γη) =
∑

(I,J):I<J

mI(η)mJ(η)dimExt1(VI ,VJ),

(see [Rim2013]). Combining (134) and (187) gives

codimC(γη) =
∑

(I,J):I<J

mI(η)mJ(η)(−χQ(VI ,VJ)). (188)

Using the ordering on I and (134), it follows that

if I < J, then χQ(VI ,VJ) ≤ 0 and χQ(VJ ,VI) ≥ 0. (189)

Since Q is a Dynkin quiver, if I = J , then χQ(VI ,VJ) > 0 [Bri2008]. Thus we may reindex

the sum, taking only those (I, J) for which χQ(VI ,VJ) < 0. Therefore,

codimC(γη) =
∑

(I,J)∈U
mI(η)mJ(η)(−χQ(VI ,VJ)).

Lemma 9.6. Fix intervals I and J . If [x, y] ⊆ I, J then

y∑
i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai)) = 1. (190)

Proof. Since [x, y] ⊆ I, J , dI(i) = dJ(i) = 1 for all i ∈ [x, y]. Therefore,

y∑
i=x

dI(i)dJ(i) = y − x+ 1. (191)

Regardless of the orientation of ai, if i ∈ [x, y − 1] then t(ai), h(ai) ∈ [x, y]. Because

[x, y] ⊆ I, J , we have dI(t(ai)) = dJ(h(ai)) = 1. Then

y−1∑
i=x

dI(t(ai))dJ(h(ai)) = (y − 1)− x+ 1. (192)

Subtracting (192) from (191) gives (190).

Let

StrandPairs = {(I, J) = ([x1, x2], [y1, y2]) ∈ I × I : x2 ≤ y2}.
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From (185) and the definitions (I)-(III), it follows that

ConditionStrands(Q) ⊂ StrandPairs.

Lemma 9.7. Let (I, J) ∈ StrandPairs. Then

(I, J) ∈ ConditionStrands(Q) ⇐⇒ χQ(VI ,VJ) < 0 or χQ(VJ ,VI) < 0.

Moreover, if χQ(VI ,VJ) < 0, then χQ(VI ,VJ) = −1 and likewise χQ(VJ ,VI) < 0 implies

χQ(VJ ,VI) = −1.

Proof. Since we have assumed Q is a type A quiver, we have

χQ(d1,d2) =
n∑
i=1

d1(i)d2(i)−
n−1∑
i=1

d1(t(ai))d2(h(ai)). (193)

Given an interval I, write dI for the dimension vector of VI . By (193), we have

χQ(VI ,VJ) = χQ(dI ,dJ) =
n∑
i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai)).

We analyze this expression repeatedly throughout our argument.

(⇒) By direct computation, we will show if (I, J) ∈ ConditionStrands(Q) then

χQ(VI ,VJ) = −1 or χQ(VJ ,VI) = −1,

which is the last assertion of the claim.

Case 1: (I, J) = ([w, x− 1], [x, z]) is of type (I).

Subcase i: ax−1 points to the right.

χQ(VI ,VJ) =
n∑
i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai))

= −
n−1∑
i=1

dI(t(ai))dJ(h(ai)) (since I ∩ J = ∅)

= −dI(t(ax−1))dJ(h(ax−1))

= −dI(x− 1)dJ(x)

= −1.

Subcase ii: ax−1 points to the left.
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Let Qop be the quiver obtained by reversing the direction of all arrows in Q. Then

χQ(dJ ,dI) = χQop(dI ,dJ). Therefore,

χQ(VJ ,VI) = χQ(dJ ,dI) = χop
Q (dI ,dJ) = −1

by Subcase 1.i.

Case 2: (I, J) = ([w, y], [x, z]) is of type (II).

Subcase i: ax−1 and ay point to the right.

χQ(VI ,VJ) =

y∑
i=x

dI(i)dJ(i)−
y∑

i=x−1

dI(t(ai))dJ(h(ai))

=

(
y∑
i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai))

)
− dI(t(ax−1))dJ(h(ax−1))

− dI(t(ay))dJ(h(ay))

= 1− dI(t(ax−1))dJ(h(ax−1))− dI(t(ay))dJ(h(ay)) (Lemma 9.6)

= 1− dI(x− 1)dJ(x)− dI(y)dJ(y + 1)

= −1.

Subcase ii: ax−1 and ay point to the left.

χQ(VJ ,VI) = −1 by the Qop argument, as in Subcase 1.i.

Case 3: (I, J) = ([x, y], [y, z]) is of type (III).

Subcase i: ax−1 points right and ay points left.

χQ(VI ,VJ) =

y∑
i=x

dI(i)dJ(i)−
y∑

i=x−1

dI(t(ai))dJ(h(ai))

=

(
y∑
i=x

dI(i)dJ(i)−
y−1∑
i=x

dI(t(ai))dJ(h(ai))

)
− dI(t(ax−1))dJ(h(ax−1))

− dI(t(ay))dJ(h(ay))

= 1− dI(t(ax−1))dJ(h(ax−1))− dI(t(ay))dJ(h(ay)) (Lemma 9.6)

= 1− dI(x− 1)dJ(x)− dI(y − 1)dJ(y)

= −1.

Subcase ii: ax−1 points left and ay points right.

χQ(VJ ,VI) = −1 by the Qop argument, as in Subcase 1.i.
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Thus we have shown whenever (I, J) ∈ ConditionStrands(Q),

χQ(VI ,VJ) = −1 or χQ(VJ ,VI) = −1.

(⇐) Let (I, J) = ([x1, x2], [y1, y2]) ∈ StrandPairs and first assume χQ(VI ,VJ) < 0.

Case 1: I ∩ J = ∅. Then dI(i) = 0 or dJ(i) = 0 for all i ∈ [1, n] and so

χQ(dI ,dJ) = −
n−1∑
i=1

dI(t(ai))dJ(h(ai)).

Since χQ(dI ,dJ) < 0 there must exist an arrow ai with t(ai) ∈ [x1, x2] and h(ai) ∈ [y1, y2].

Then i = x2, ai points to the right, and y1 = x2 + 1. This implies (I, J) is of type (I).

Case 2: Assume I ∩ J 6= ∅. Since we assume x2 ≤ y2

I ∩ J = [x1, x2] ∩ [y1, y2] = [z, x2]

where z ∈ {x1, y1}. Then

χQ(dI ,dJ) =
n∑
i=1

dI(i)dJ(i)−
n−1∑
i=1

dI(t(ai))dJ(h(ai))

=

x2∑
i=z

dI(i)dJ(i)−
x2∑

i=z−1

dI(t(ai))dJ(h(ai)) (Lemma 9.6)

= 1− dI(t(az−1))dJ(h(az−1))− dI(t(ax2))dJ(h(ax2)).

Since χQ(dI ,dJ) < 0, we must have

dI(t(az−1)) = dJ(h(az−1)) = dI(t(ax2)) = dJ(h(ax2)) = 1.

Therefore,

t(az−1), t(ax2) ∈ I = [x1, x2] (194)

and

h(az−1), h(ax2) ∈ J = [y1, y2]. (195)

If an arrow ai points to the right, then h(ai) = i+ 1 and t(ai) = i. If ai points left, h(ai) = i

and t(ai) = i + 1. We proceed by analyzing the direction of ax2 and az−1. First consider

ax2 . If ax2 points left, then t(ax2) = x2 + 1 and so x2 + 1 ∈ [x1, x2], which is a contradiction.

Therefore, we may assume ax2 points right.

Now consider the direction of az−1. If az−1 points to the right, then t(az−1) = z−1 ∈ [x1, x2]
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by (194) and so z > x1. Since z ∈ {x1, y1}, we must have z = y1.

z = y1 y2

x1 x2

Therefore (I, J) is of type (II).

If az−1 points left, now we have by (195) h(az−1) = z − 1 ∈ [y1, y2]. Therefore z − 1 > y1

and so z 6= y1 which implies z = x1. Hence we have:

y1 y2

z = x1 x2

Therefore, (I, J) is of type (III).

By near identical arguments, χQ(dJ ,dI) < 0 when

(I) az−1 and ax2 both point left, z = y1, and x2 < y2; i.e., (I, J) is of type (II)

(II) az−1 points right, ax2 points left, z = x1 and x2 < y2 so (I, J) is of type (III).

In particular, we have the following corollary.

Corollary 9.3. If χQ(VI ,VJ) < 0 then χQ(VI ,VJ) = −1.

Proof. If (I, J) ∈ StrandPairs, this is immediate by Lemma 9.7. Otherwise, we have

(J, I) ∈ StrandPairs. Then by Lemma 9.7 (J, I) ∈ ConditionStrands(Q). As such,

χQ(VI ,VJ) = −1.

Recall U = {(I, J) : χQ(VI ,VJ) < 0}. We let

U1 = {(I, J) = ([x1, x2], [y1, y2]) : (I, J) ∈ U and x2 ≤ y2}, and

U2 = {(I, J) = ([x1, x2], [y1, y2]) : (I, J) ∈ U and x2 > y2}.

Trivially,

U = U1 t U2. (196)

Let

Ũ2 = {(J, I) : (I, J) ∈ U2}.

Lemma 9.8. ConditionStrands(Q) = U1 t Ũ2.
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Proof. If (I, J) ∈ Ũ2, then (J, I) ∈ U2 ⊂ U and so χQ(VJ ,VI) < 0. Therefore χQ(VI ,VJ) ≥ 0

and hence (I, J) 6∈ U . As such, (I, J) 6∈ U1. Therefore, U1 ∩ Ũ2 = ∅.
(⊆) If (I, J) ∈ ConditionStrands(Q), by Lemma 9.7, χQ(VI ,VJ) < 0 or χQ(VJ ,VI) < 0.

In the first case, from the definition, (I, J) ∈ U1. In the second case, again by definition,

(J, I) ∈ U2, which implies (I, J) ∈ Ũ2.

(⊇) We have U1, Ũ2 ⊆ StrandPairs. Thus by Lemma 9.7,

U1, Ũ2 ⊆ ConditionStrands(Q).

Proposition 9.2.

codimC(γη) =
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η).

Proof. If (I, J) ∈ U , then χQ(VI ,VJ) < 0. Applying Corollary 9.3, χQ(VI ,VJ) = −1. Then

by Lemma 9.5,

codimC(γη) =
∑

(I,J)∈U
mI(η)mJ(η)(−χQ(VI ,VJ))

=
∑

(I,J)∈U
mI(η)mJ(η).

Therefore, applying (196)

codimC(γη) =
∑

(I,J)∈U1

mI(η)mJ(η) +
∑

(I,J)∈U2

mI(η)mJ(η)

=
∑

(I,J)∈U1

mI(η)mJ(η) +
∑

(I,J)∈Ũ2

mI(η)mJ(η)

=
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η) (Lemma 9.8)

as claimed.

Our final goal is to show BoxStrands(wQ) = ConditionStrands(Q). We start with a

lemma.

Lemma 9.9. All elements of BoxStrands(wQ) and ConditionStrands(Q) may be written

in the form:

(I, J) = ([x, k − 1], [y, `]), with x 6= y, k ≤ `. (197)
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Proof. If

([w
(k)
Q (i), k − 1], [w

(k)
Q (j), `]) ∈ BoxStrands(wQ),

then

w
(k)
Q (i) 6= w

(k)
Q (j) and k ≤ `.

Hence, by setting x = w
(k)
Q (i) and y = w

(k)
Q (j), we are done.

Now suppose

([x1, x2], [y1, y2]) ∈ ConditionStrands(Q).

By (I)-(III), x1 6= y1 and x2 < y2. Then set x = x1, y = y1, k = x2 + 1, and ` = y2.

With Lemma 9.9 in mind, to prove BoxStrands(wQ) = ConditionStrands(Q), it is

enough to show given (I, J) of the form in (197),

(I, J) ∈ BoxStrands(wQ) ⇐⇒ (I, J) ∈ ConditionStrands(Q).

We first handle the special case when I and J are disjoint.

Lemma 9.10. Let (I, J) be as in (197) and suppose I∩J = ∅. Then (I, J) ∈ BoxStrands(wQ)

if and only if (I, J) ∈ ConditionStrands(Q).

Proof. If (I, J) ∈ ConditionStrands(Q), then by the disjointness hypothesis it must be of

type (I), i.e.

(I, J) = ([x, k − 1], [k, `]).

Now, since x ≤ k−1 and w
(k)
Q ∈ Sk with w

(k)
Q (k) = k, there exists i < k such that w

(k)
Q (i) = x.

Therefore,

([x, k − 1], [k, `]) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (k), `]) ∈ BoxStrands(wQ).

Conversely, assume

(I, J) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (j), `]) ∈ BoxStrands(wQ)

and I ∩ J = ∅. Then w
(k)
Q (j) > k − 1 which means w

(k)
Q (j) = k and j = k by the definition

of w
(k)
Q . Furthermore, w

(k)
Q (i) ≤ k − 1 since i < j = k. Therefore,

(I, J) = ([w
(k)
Q (i), k − 1], [k, `])

is of type (I), and hence in ConditionStrands(Q).
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We now prove the following.

Proposition 9.3. BoxStrands(wQ) = ConditionStrands(Q).

Proof. Let (I, J) be as in (197). We seek to show

(I, J) ∈ BoxStrands(wQ) ⇐⇒ (I, J) ∈ ConditionStrands(Q).

We will proceed by induction on k. In the base case k = 2, we must have x = 1 and so

y ≥ 2. As such, I ∩ J = ∅ and so we are done by Lemma 9.10. Fix k > 2 and assume the

claim holds for k − 1. That is, given a pair of intervals ([x′, k − 2], [y′, `′]) so that x′, y′ and

`′ satisfy x′ 6= y′ and k − 1 ≤ `′ we have

([x′, k − 2], [y′, `′]) ∈ BoxStrands(wQ) ⇐⇒ ([x′, k − 2], [y′, `′]) ∈ ConditionStrands(Q).

(198)

Now let (I, J) be as in (197), i.e.,

(I, J) = ([x, k − 1], [y, `]) with x 6= y, k ≤ `.

Again, by Lemma 9.10, if I ∩ J = ∅ we are done, so assume I ∩ J 6= ∅. Then y < k.

Now, since 1 ≤ x, y ≤ k, there exist i and j such that

1 ≤ i, j ≤ k with x = w(k)(i) and y = w(k)(j).

Then from (185)

(I, J) = ([w
(k)
Q (i), k − 1], [w

(k)
Q (j), `]) ∈ BoxStrands(wQ) ⇐⇒ i < j. (199)

Throughout, when x ≤ k − 2 we write I ′ := [x, k − 2]. We will break the argument into two

main cases.

Case 1: ak−2 and ak−1 point in the same direction.

By definition, w
(k)
Q = ι(w

(k−1)
Q ). Then if x ≤ k − 2, it follows that

(I ′, J) = ([x, k − 2], [y, `])

= ([wk−1
Q (i), k − 2], [wk−1

Q (j), `])

and so

(I ′, J) ∈ BoxStrands(wQ) if and only if i < j. (200)

We have four possible subcases, based on the relative values of x and y.
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Subcase i: x < y = k − 1.

The pair (I, J) is of type (II), and hence (I, J) ∈ ConditionStrands(Q). Furthermore,

note that

(I ′, J) = ([x, k − 2], [k − 1, `])

is of type (I), and so in ConditionStrands(Q). The intervals for (I ′, J) and (I, J) look like

this:

x k − 2

k − 1 `

x k − 1

k − 1 ` .

By the inductive hypothesis (198), (I ′, J) ∈ BoxStrands(wQ). By (200), i < j. Therefore,

by (199), (I, J) ∈ BoxStrands(wQ).

As such, (I, J) is in both ConditionStrands(Q) and BoxStrands(wQ).

Subcase ii: x < y < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (199)

⇐⇒ (I ′, J) ∈ BoxStrands(wQ) by (200)

⇐⇒ (I ′, J) ∈ ConditionStrands(Q) by (198)

⇐⇒ ax−1 points in the same direction as ak−2

⇐⇒ ax−1 points in the same direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

The following picture depicts (I ′, J) and (I, J) respectively when (I ′, J) and (I, J) are in

ConditionStrands(Q).

y `

x k − 2

y `

x k − 1

Subcase iii: y < x = k − 1.

Pictured below are the intervals I and J .

y `

x
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Since y < x and this case assumes ak−2 and ak−1 point in the same direction, (I, J) cannot

be of type (III) and is not in ConditionStrands(Q). Since

w
(k)
Q = ιw

(k−1)
Q and w

(k−1)
Q (k − 1) = k − 1,

it follows that i = k − 1. Since

y = w
(k)
Q (j) = w

(k−1)
Q (j) < k − 1,

it follows that i > j, and so by (199)

(I, J) 6∈ BoxStrands(wQ).

Therefore, (I, J) is in neither ConditionStrands(Q) nor BoxStrands(wQ).

Subcase iv: y < x < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (199)

⇐⇒ (I ′, J) ∈ BoxStrands(wQ) by (200)

⇐⇒ (I ′, J) ∈ ConditionStrands(Q) by (198)

⇐⇒ ax−1 points in the opposite direction as ak−2

⇐⇒ ax−1 points in the opposite direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Below are (I ′J) and (I, J) respectively, in the case (I ′, J), (I, J) ∈ ConditionStrands(Q).

y `

x k − 2

y `

x k − 1

Case 2: ak−2 and ak−1 point in opposite directions.

By definition,

w
(k)
Q = ι(w

(k−1)
Q w

(k−1)
0 ).

If x ≤ k − 2, and y ≤ k − 1 it follows that

(I ′, J) = ([x, k − 2], [y, `])

= ([w
(k−1)
Q (k − i), k − 2], [w

(k−1)
Q (k − j), `])
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and so

(I ′, J) ∈ BoxStrands(wQ) if and only if k − i < k − j if and only if i > j. (201)

Subcase i: x < y = k − 1.

x k − 2

k − 1 `

x k − 1

k − 1 `

Since ak−2 and ak−1 point in opposite directions, (I, J) 6∈ ConditionStrands(Q). The as-

sumption y = k−1 implies (I ′, J) ∈ ConditionStrands(Q). By (198) (I ′, J) ∈ BoxStrands(wQ).

Since x, y < k, we have

x = w
(k)
Q (i) = w

(k−1)
Q (k − i) and y = w

(k)
Q (j) = w

(k−1)
Q (k − j).

Then k − i < k − j, so i > j and (I, J) 6∈ BoxStrands(wQ), by (199).

Hence (I, J) is neither in ConditionStrands(Q) nor BoxStrands(wQ).

Subcase ii: x < y < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (199)

⇐⇒ (I ′, J) 6∈ BoxStrands(wQ) by (201)

⇐⇒ (I ′, J) 6∈ ConditionStrands(Q) by (198)

⇐⇒ ay−1 points in the opposite direction as ak−2

⇐⇒ ay−1 points in the same direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Below, we have (I ′, J) 6∈ ConditionStrands(Q) and (I, J) ∈ ConditionStrands(Q).

y `

x k − 2

y `

x k − 1

Subcase iii: y < x = k − 1. Here (I, J) looks like:

y `

x
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Since Case 2 assumes ak−2 and ak−1 point in opposite directions, (I, J) is type (II) and so

(I, J) ∈ ConditionStrands(Q). Now,

k − 1 = x = w
(k)
Q (i) = w

(k−1)
Q (k − i)

which implies i = 1. Then j > i, so (I, J) ∈ BoxStrands(wQ). Therefore, (I, J) is both in

ConditionStrands(Q) and BoxStrands(wQ).

Subcase iv: y < x < k − 1.

(I, J) ∈ BoxStrands(wQ) ⇐⇒ i < j by (199)

⇐⇒ (I ′, J) 6∈ BoxStrands(wQ) by (201)

⇐⇒ (I ′, J) 6∈ ConditionStrands(Q) by (198)

⇐⇒ ax−1 points in the same direction as ak−2

⇐⇒ ax−1 points in the opposite direction as ak−1

⇐⇒ (I, J) ∈ ConditionStrands(Q).

Pictured below are (I ′, J) and (I, J), in the case that (I ′, J) 6∈ ConditionStrands(Q) and

(I, J) ∈ ConditionStrands(Q).

y `

x k − 2

y `

x k − 1

Thus, we have BoxStrands(wQ) = ConditionStrands(Q).

Proof of Theorem 9.4.

rwQ(η) =
∑

(I,J)∈BoxStrands(wQ)

mI(η)mJ(η) (by Proposition 9.1)

=
∑

(I,J)∈ConditionStrands(Q)

mI(η)mJ(η) (by Proposition 9.3)

= codimC(γη) (by Proposition 9.2).

As such, the result follows.

We conclude with our proof of Reineke’s identity for type A quivers.

Proof of Theorem 9.2 (in type A). The map η 7→ γη defines a bijection from CQ(d) toOQ(d).

Since Q is type A, there is a bijection between {β1, . . . , βN} and I. Furthermore, whenever
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I 7→ βi, we have mI(η) = mβi(γη). Then starting from Corollary 9.1, it follows that

n∏
i=1

1

(q)d(i)

=
∑

η∈CQ(d)

qrwQ (η)
∏

1≤i≤j≤n

1

(q)m[i,j](η)

=
∑

η∈CQ(d)

qcodimC(γη)

N∏
i=1

1

(q)mβi (γη)

=
∑

γ∈OQ(d)

qcodimC(γ)

N∏
i=1

1

(q)mβi (γ)

.
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Paris Sér. I Math, 295(3):447–450, 1982.

[LS1996] —. Treillis et bases des groupes de Coxeter. The Electronic Journal of Combi-
natorics, 3(R27):2, 1996.

[Mac1991] I. G. Macdonald. Notes on Schubert polynomials, volume 6. Montréal: Dép. de
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