2004 SUMMARY OF ENGINEERING RESEARCH

A Report of Activities during 2003

This .pdf is part of the larger 2004 Summary of Engineering Research, available on the Web at www.engr.uiuc.edu/research and on CD-ROM. The Summary of Engineering Research represents the extensive engineering research program conducted in 2003 at the University of Illinois at Urbana-Champaign. Detailed statistics about research in the College of Engineering are included in the Directory of Engineering and Engineering Technology Programs and Research, published by the American Society for Engineering Education, Washington, D.C.

How to Use the Summary of Engineering Research: Research projects are listed by title, followed by the names of the investigators and the sponsoring agencies. Projects are sorted by major topic areas. Project descriptions are brief. Additional information on each project may be obtained from the investigator in charge (denoted by an asterisk). Mailing addresses are provided on the introductory page.

How to Obtain Publications: Please consult academic and public libraries for the journal articles, papers, and books listed in this report. Information about technical reports is available from the Engineering Documents Center, Grainger Engineering Library Information Center, 1301 West Springfield Avenue, Urbana, IL 61801, USA. To search the center’s collection on the Internet, please visit the website at http://g118.grainger.uiuc.edu/engdoc/opent1.asp. Copies of Ph.D. theses also can be found at the University of Illinois Library, www.library.uiuc.edu, or may be purchased from University Microfilms, 300 Zeeb Road, Ann Arbor, MI 48106, USA, www.umi.com.

The 2004 Summary of Engineering Research is produced by the Office of Engineering Communications, University of Illinois at Urbana-Champaign.

Tina M. Prow: Editor and Coordinator
Peggy Currid: Freelance Editor, Publications Sections
Jim Vattano: Graphic Designer
Thomas Habing: Research Programmer, Grainger Engineering Library Information Center
Bill Mischo: Engineering Librarian, Grainger Engineering Library Information Center

Please send queries and comments about the 2004 Summary of Engineering Research to the Engineering Communications Office, 303 Engineering Hall, MC-266, 1308 West Green Street, Urbana, IL 61801 USA, or email research@engr.uiuc.edu.
Renowned for the quality of its undergraduate and graduate programs, the Department of Mechanical and Industrial Engineering educates engineers who stand at the head of their fields. With rigorous research programs in nearly two dozen disciplinary areas, the department generates and applies new knowledge that strengthens the engineering profession and responds to societal needs.

While addressing the broad spectrum of areas long associated with mechanical and industrial engineering, such as automotive systems, controls and dynamics, energy systems, manufacturing, and operations research, research in the department also explores such emerging areas as nano-, micro-, and meso-technology and bioengineering. Innovative research directions reflect the interests and creativity of the faculty and students. Educating new generations of researchers is integral to the department’s mission.

The Department of Mechanical and Industrial Engineering is committed to meeting the needs of the State of Illinois and the nation through both fundamental and applied research. Driving the research mission of the department are the desires to generate new knowledge and to transfer it into practice. Several departmental center initiatives focus on research and technology transfer in the areas of air conditioning and refrigeration, building systems, continuous casting, fracture control, and machine tool systems. The department also houses the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS), a National Science Foundation Nanoscale Science and Engineering Center. Through these and other research initiatives, the department continually expands its cooperative research efforts with state and federal government agencies as well as its partnerships with industry.

The department is strongly committed to cross-disciplinary research as well and works closely with other departments within the College of Engineering and across the university. The Beckman Institute for Advanced Science and Technology, the National Center for Supercomputing Applications, the Materials Research Laboratory, and other campus resources add strength and diversity to the department’s research.

*R. O. Buckius was department head during this reporting period.

Faculty and Their Interests

Andrew G. Alleyne
Automotive systems, control systems

Narayan R. Aluru
Bioengineering, computational science and engineering, engineering mechanics, fluid dynamics, nano-, micro-, and meso-technology

Armand J. Beaudoin
Bioengineering, materials behavior, materials processing

Joseph Bentsman
Control systems, dynamic systems

Lawrence A. Bergman
Dynamic systems

M. Quinn Brewster
Combustion and propulsion, heat transfer

Richard O. Buckius
Combustion and propulsion, fluid dynamics, heat transfer

Clark W. Bullard, Emeritus
Energy systems and thermodynamics, environmental engineering, heat transfer

Bei Tse Chao, Emeritus
Heat transfer, fluid dynamics

John C. Chato, Emeritus
Bioengineering, energy systems and thermodynamics, heat transfer

Thomas F. Conry
Nano-, micro-, and meso-technology
J. Craig Dutton
Combustion and propulsion, energy systems and thermodynamics, fluid dynamics, heat transfer

Edward R. Damiano
Bioengineering, computational science and engineering, fluid dynamics

Jonathan A. Dantzig
Computational science and engineering, engineering mechanics, fluid dynamics, heat transfer, materials behavior, materials processing

Richard E. DeVor, Research Professor
Engineering statistics and quality control, environmental engineering, manufacturing systems, nano-, micro-, and meso-technology

Geir E. Dullerud
Control systems, dynamic systems

William E. Dunn
Computational science and engineering, control systems, energy systems and thermodynamics, fluid dynamics, heat transfer

Placid M. Ferreira
Design methodology and tribology, manufacturing systems, production management

John G. Georgiadis
Bioengineering, computational science and engineering, energy systems and thermodynamics, fluid dynamics, heat transfer

Nick G. Glumac
Combustion and propulsion, energy systems and thermodynamics, materials processing

Elizabeth Hsiao-Wecksler
Bioengineering, control systems, dynamic systems, engineering mechanics

Yonggang Y. Huang
Computational science and engineering, engineering mechanics, materials behavior, nano-, micro-, and meso-technology

Anthony M. Jacobi
Energy systems and thermodynamics, fluid dynamics, heat transfer, nano-, micro-, and meso-technology

Sheldon H. Jacobson
Operations research

Harley Johnson
Computational science and engineering, engineering mechanics, materials behavior, nano-, micro-, and meso-technology

Shiv G. Kapoor
Engineering statistics and quality control, environmental engineering, manufacturing systems, nano-, micro-, and meso-technology

Scott D. Kelly
Computational science and engineering, control systems, dynamic systems, engineering mechanics

Diego Klabjan
Computational science and engineering, operations research, production management

Helmut H. Korst, Emeritus
Fluid dynamics, combustion and propulsion

Herman Krier
Combustion and propulsion, fluid dynamics, heat transfer, energy systems and thermodynamics

Mark J. Kushner
Energy systems and thermodynamics

Dimitrios Kyritsis
Automotive systems, combustion and propulsion, energy systems and thermodynamics, heat transfer

Carl S. Larson, Emeritus
Design methodology and tribology

Chia-Fon Lee
Automotive systems, combustion and propulsion, computational science and engineering, energy systems and thermodynamics, environmental engineering, fluid dynamics, heat transfer

Judith S. Liebman, Emeritus
Operations research

Chang Liu
Microfabrication, microfluidics, MEMS for nanotechnology (M4N), nano-, micro-, and meso-technology, sensors, wireless networks
Presently, components of the vehicle act independently of one another to control various aspects of the vehicle’s dynamics. In this research, the dynamics of a moving...
vehicle are controlled by coordinating and integrating the various subsystems of the chassis. Wheel torque, steering forces, and suspension forces are combined in a synergistic approach to achieve levels of vehicle performance and safety that are superior to previous approaches. Extensive use of modern control techniques is made to determine the optimal combination of forces.

Automotive Applications of the Electro-Spray
D. C. Kyritsis,* A. P. Carlucci, A. DeRisi
University of Illinois at Urbana-Champaign; University of Lecce, Italy

In this exploratory study, we are investigating the possible effects of electric fields on automotive sprays. Although high voltage is already present in the chambers of spark-ignited engines, its possible use not only as an ignition source but also as a tool for spray steering has not attracted any research interest. We are investigating to what extent we can use electric fields to create an appropriate fuel stratification and affect the spray atomization process. The latter effect is of potentially crucial importance for gasoline direct injection. Experimental tools include fuel dopant laser-induced fluorescence and size measurement techniques.

Design and Analysis of a Linear Internal Combustion Engine
C. F. Lee,* R. J. Cairo, H. M. Wasfy
University of Illinois at Urbana-Champaign

Reciprocating internal combustion (IC) engines produce power in linear (i.e., translation) motion through the piston’s oscillation, and some of the devices driven by engines also operate linearly. However, the current design of engines converts the linear power to rotary power by means of crankshaft/connecting rod mechanism and then retransforms the rotary power back into linear power to drive a pump. Therefore, for an engine-driven pump (or compressor), by removing the rotary components and driving the pump directly by the engine piston in a linear fashion, the system would have higher mechanical efficiency, less weight, and less complexity. Such a linear engine has been designed and built, and system analysis and tests will be performed.

Design and Investigation of an Optically Accessible Diesel Reformer for Fuel Cells
University of Illinois at Urbana-Champaign; Argonne National Laboratory

Fuel cells provide attractive energy efficiency and low pollution emissions, but their use is prohibited by the limited distribution network of hydrogen. The advantage for on-board reforming of diesel fuels is that it provides highest volumetric and gravimetric densities for hydrogen. However, the optimization of the diesel reformer requires detailed information of the in-cylinder spatial gas composition of the reformer. Modeling and laser diagnostics can provide the needed information. Therefore, the optical access into the interior of the reformer is required. A reformer and its accessories will be designed and constructed to simulate an existing reformer with an optically transparent injection zone window, heated intakes, and heated catalyst regions. Laser diagnostics and numerical calculations will then be conducted to evaluate and optimize the reformer operation.

Design, Modeling, and Experiments of Homogeneous Charge Compression Ignition Engines
C. F. Lee,* Y. Xu, T. Fang, R. C. Wang, D. Wang
Grainger Emerging Technologies Grant

Homogeneous Charge Compression Ignition (HCCI) engines, in which a lean mixture ignites at numerous locations in the cylinder under piston compression, should largely eliminate NOx and particulate emissions when compared with conventional spark-ignition and diesel engines. Under part-load conditions, HCCI engines will increase fuel efficiency and reduce emissions but would shift to other ignition schemes at full load. The major technical challenges of HCCI operation are the control of combustion phasing and the reduction of unburned hydrocarbon and carbon monoxide emissions. This requires detailed knowledge of in-cylinder spray evaporation, fuel/air mixture formation, and combustion processes. Innovative laser diagnostics experiments will be combined with state-of-the-art computer modeling to devise strategies for optimizing and controlling HCCI engine performance and reducing emissions over the speed-load range of interest in applications.
Diesel Spray Visualization in a Constant Volume Injection Bomb
C. F. Lee,* Y. Xu
Caterpillar Inc.

A constant volume injection bomb simulating the cylinder of large-bore diesel engines has been developed with excellent optical access for studies of a Caterpillar diesel injector. Optical access consists of an end window view of the full bore and a large cylinder ring window. The Hydraulic Electronic Unit Injector allows for the easy adjustment of injection duration and pressure with variation in injector pulse width and hydraulic oil pressure. The effects of injection pressure, injection duration, and gas density on the sprays are studied using laser diagnostic and visualization techniques.

Fuel/Air Mixing and Combustion in a High-Speed Direct-Injection Diesel
C. F. Lee,* R. A. White,* R. E. Coverdill,* T. Fang, W. S. Mathews

The objective of the proposed work is to provide detailed information on the mixing and combustion processes in a small-bore HSDI engine through in-cylinder measurements of fuel spray penetration, mixing, and interaction with the bowl geometry using exciplex planar laser-induced fluorescence; ignition and combustion using natural flame emission; and soot formation using laser-induced incandescence as a function of engine operating conditions. The experiments will be conducted on a single cylinder research engine based on the Ford Diata modified for optical access using a Bowditch piston arrangement.

Investigation of Alternative Fuels for the Emission Reduction of Diesel Engines Using In-Cylinder Laser Diagnostics
C. F. Lee,* C. J. Mueller (Sandia Natl. Lab.); G. C. Martin
Sandia National Laboratories, SNL-19316

Interest in alternative fuels for diesel engines has grown in recent years due to their ability to reduce regulated pollutant emissions, displace foreign oil imports, and provide an environmentally friendly, renewable energy source. Many alternative fuels have physical, chemical, and combustion characteristics that are significantly different from those of traditional diesel fuel. The effects of these fuel-property changes on in-cylinder processes will be investigated using in-cylinder laser diagnostics. The primary goal is to determine the most important mechanisms by which alternative fuels can reduce soot and NOx emissions while maintaining high cycle efficiency.

Modeling and Experiment of Spray Impingement and Film Flow and Back-Flow Atomization of Port Injection Engines
C. F. Lee,* W. S. Mathews, J. A. Colwell, J. W. Powell
Ford Motor Co.; Amoco; National Science Foundation, CTS-0116719

To understand and improve fuel preparation of port-injection engines, multidimensional models are being developed for spray impingement on the wall, fuel film formation and transport, and atomization due to the back flow from the cylinder into the intake port upon intake valve opening. P/DPA, digital imaging, and light reflection measurements of drop size and velocity, film spreading rate, and film thickness will be conducted under controlled conditions specifically designed to provide a set of data for direct comparison with the modeled results. The calibrated models will then be used to study the port-injection and back-flow processes in the engines.

Modeling and Experiments of Lean Direct-Injection, Four-Stroke Spark-Ignition Engines
C. F. Lee,* D. L. Chang, J. W. Powell
National Science Foundation, CTS-9734402

A lean direct-injection spark-ignition engine concept has the potential of reducing fuel consumption and increasing performance while obtaining cleaner exhaust gas and greater driver comfort. The key research need of this type of engine is to develop a better understanding and control of in-cylinder fuel injection, atomization, vaporization, and mixing. The objective of this research program is to study the fuel sprays and air mixing process in direct-injection, four-stroke, spark-ignition engines using the latest multidimensional modeling and laser diagnostics techniques. Direct injection strategies currently under consideration by industry will be used, and the effects of key variables such as injector timing, atomization quality, air motion, and engine geometry will be investigated.

Modeling of Air/Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation
C. F. Lee,* D. Wang, Y. B. Zeng* (Bombardier)
University of Illinois at Urbana-Champaign; Bombardier Motor Corporation

A numerical study was performed on the air/fuel preparation process in a direct-injected, spark-ignition engine.
engine under stratified conditions. A four-component fuel with a distillation curve similar to that of actual gasoline was used. The multicomponent droplet and film vaporization models included major mechanisms such as nonideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A tumble-flow guided engine was studied. Computations with varying operation parameters were conducted to analyze relations between operation parameters and mixture stratification quality. The effects of the multicomponent models on fuel vapor distribution were also demonstrated.

Modeling of Blow-By, Ignition, Combustion, and Emissions of a High-Speed Diesel Engine
C. F. Lee,* J. X. Zhao, R. I. K. Shazi
Ford Motor Co.

One promising engine for passenger cars that are cleaner, more efficient, and more powerful is the high-speed, direct-injection (HSDI) diesel engine. Currently, the main drawbacks of this engine include greater pollutant production of NOx and particulate matter. A better understanding of the combustion process inside the engine is needed. The latest engine spray, ignition, and combustion models will be used to obtain simulated data and compare that data to experimental data obtained from an optical HSDI engine. This is done to validate the spray and combustion models. Then, with reasonable confidence, the computed and measured data will be used to determine the parameters affecting pollutant formation and ways to reduce it.

Modeling of Cavitating Flows in High-Pressure Fuel Injectors
C. F. Lee,* H. M. Wasfy
University of Illinois at Urbana-Champaign

Flow cavitation is considered a major problem affecting the performance of a high-pressure diesel injector. The cavitating flow is a two-phase flow by nature with gaseous phase generally dispersed within the liquid phase in the form of minute bubbles. Since it is computationally impossible to simulate each bubble as it forms, the model is needed for calculating the amount of mass trapped in the bubbles to compute averaged fluid properties. The model also allows for tracking the formation and destruction processes of the bubbles. The impact of the bubble dynamics on the injector flow will also be studied.

Modeling of Multicomponent Fuel Evaporation in Engines Using Continuous Thermodynamics
C. F. Lee,* D. Wang
Ford Motor Co.

The heating and gasification of liquid fuel droplets and films during the intake and compression strokes of an SI engine are important for fuel/air mixture preparation and cold-start emission. The amount of the liquid droplets entering the cylinder is strongly influenced by the type of fuel used. The complex fuel composition is described by a distribution function based on continuous thermodynamics for tracking gasoline, diesel, and JP-4 fuels. Evaporation models of multicomponent fuel droplets and films are developed. The models will be verified against vaporization measurements of single droplets. The model will then be used to study the detailed mixture preparation process.
Bioengineering

Thermal Studies in Bioengineering
J. C. Chato*
*University of Illinois at Urbana-Champaign
Various aspects of thermal behavior of biological materials and systems, particularly the human body, are studied. The work ranges from morphological studies of the blood vessels that affect heat transfer to computer modeling of various organs as well as the entire thermoregulatory system. Typical applications are the prediction of the deep-body temperature in a hot bath, estimation of the maximum safe touch temperature of a heated surface, and thermal treatment of toenail fungus.

Mechanotransduction in the Vestibular Semicircular Canals
E. R. Damiano,* T. M. Stace
*University of Illinois at Urbana-Champaign
The vestibular semicircular canal system is a phylogenetically old sensory apparatus responsible for transducing angular motions of the head. Fluid-structure interactions in the semicircular canals that result from head rotation give rise to spike initiation in afferent nerve complexes that encode the vestibular nerve. The aim of this research is to study the response dynamics of the semicircular canals. A new mathematical model of canal mechanics is under development that couples an asymptotic theory of pulsatile flow in curved circular ducts to a mechanoelectrochemical model of the charged mucopolysaccharide structures involved in the transduction process.

Microhemofluidics in Venules Using Microparticle Image Velocimetry
E. R. Damiano,* D. S. Long
*University of Illinois at Urbana-Champaign; The Whitaker Foundation, TF-02-0024
Resistance to blood flow in microvessels depends on vessel dimension and the nonuniform local distribution of blood viscosity with microvessels, which is complicated by an unknown radial distribution of red cells. Using fluorescent microparticle image velocimetry to study microhemofluidics in glass capillary tubes in vitro and venules in vivo, we are developing a novel method for accurately and easily predicting distributions in velocity, viscosity, and local red-cell concentration that have not previously been directly measurable in vivo. These methods reveal details of microvascular blood flow that have implications for flow resistance, leukocyte adhesion, and mechanotransduction mechanisms.

Micro-Viscometric Studies of the ESL in Microvessels
E. R. Damiano*
*The Whitaker Foundation, TF-02-0024; National Institutes of Health, R01 HL 076499-01
Our aims are to test whether the endothelial surface layer (ESL) expressed on vascular endothelium of microvessels increases resistance to blood flow in microvessels and quantitatively determine the Fahraeus and Fahraeus-Lindqvist effects in mouse skeletal-muscle venules in vivo; test whether a hydrodynamically relevant ESL exists on arterioles in vivo.; test whether a physiologically typical ESL exists on the surface of a confluent monolayer of cultured endothelial cells; and test whether the ESL acts as an anti-inflammatory barrier that prevents primary capture and subsequent rolling of leukocytes from the free stream in post-capillary venules in vivo.

The Mechanoelectrochemical Behavior of the Capillary Glycocalyx
E. R. Damiano,* F. H. El-Khatib
*National Science Foundation, BES-0093985
Using brightfield and fluorescence microscopy, mechanical and electrostatic deformations of the glycocalyx surface layer on capillary endothelial cells will be observed in vivo in order to obtain estimates of the permeability properties and fixed-charged density of the layer. Combined with these experiments, a multidimensional mechanoelectrochemical model of the glycocalyx will be developed using continuum mixture theory. These investigations are aimed at providing a quantitative theoretical framework to explore the biophysical role of this structure in such diverse and important processes as immune response, cell adhesion, mass transport, and mechanotransduction of flow.

Bio-Inspired Active Membranes
J. G. Georgiadis,* C. V. Falkenberg
*University of Illinois at Urbana-Champaign; National Science Foundation, CTS-0120978; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil
Driven by a parallel effort to develop synthetic ion gates and pumps, as well as the study of heat and mass transfer through human skin, we are developing a model and a perm-selective membrane system with extended barrier functionality. The modeling effort is complemented by MRI experiments.
Compact MRI-Optical Scanners
J. G. Georgiadis,* D. Morris* (Natl. Instit. of Health),
L. G. Raguin
University of Illinois at Urbana-Champaign;
National Institutes of Health

Recent advances in miniaturization have allowed the design and fabrication of dual modality imaging systems combining magnetic resonance imaging (MRI) and standard systems using visible light. We have designed a compact MRI scanner based on a permanent magnet and millimeter-size radio frequency coils. The bore of the scanner allows optical access without degrading MRI resolution significantly. The miniature MRI scanner is positioned under the objective of a modified scanning confocal microscope. The setup allows the simultaneous imaging of a submillimeter focal volume by both instruments. This apparatus is motivated by applications in the areas of histolopathology and tissue engineering.

Dynamic Hemodynamic Response and fMRI Signal
J. G. Georgiadis,* S. Honecker
Defense Advanced Research Agency; University of Illinois at Urbana-Champaign; Gauthier Program for Exploratory Studies

This is a joint experimental and numerical investigation of the hydrodynamic basis of the BOLD signal during functional MRI scanning of the brain. The first phase involves fabricating an elastomeric perfusion phantom that mimics the arterio-venous topology of the visual cortex. The second phase involves the solution of the inverse problem, which will allow for the extraction of hemodynamic response from the fMRI signal.

Fast, High-Resolution Magnetic Resonance Angiography
J. G. Georgiadis,* D. Morris* (Natl. Instit. of Health),
L. G. Raguin
University of Illinois at Urbana-Champaign;
National Institutes of Health

This is a comprehensive investigation of Fourier, non-Fourier, and q-space magnetic resonance imaging sequences for the quantification of blood perfusion in the microvasculature system. Validation of the new sequences is pursued via attendant phantom experiments.

Biomechanical Analysis of Aggressive In-Line Skating: Landing and Balance on Grind Rail
E. T. Hsiao-Wecksler,* A. Beaudoin,* P. Kurath
University of Illinois at Urbana-Champaign

Aggressive in-line skating is a sport that emphasizes balance. A popular activity is grinding, where the skater jumps onto a grind rail—which may be a specially designed structure at a skate park, or a common handrail on a staircase. In grinding, skaters jump up and accurately place their skates on the rail, smoothly decelerate, and balance upon the rail while sliding (or “riding it out”). In-line skaters have developed a heuristic approach to training. Inherent to their training are exercises that emphasize the development of muscle control during eccentric, muscle-stretching contractions to smoothly decelerate the body. For example, before performing a grind, the skater would repeatedly jump upon an object and “stall”—that is, jump, place skates on the rail, decelerate, and hold that position. Our main focus is in the prevention of complete loss of balance, falls, and injury in the event of impact with the ground. In this novel study, we will collect data on limb motion and forces developed during deceleration activities, such as grinding and stalling. By performing controlled jumping and balancing experiments, this project allows us to gain insight into how these individuals are able to use eccentric contraction to assist with maintaining balance and, perhaps, minimizing impact force and energy.

Effect of Tai Chi on Postural Control and Response Strategies
E. T. Hsiao-Wecksler,* K. S. Rosengren
University of Illinois at Urbana-Champaign

Tai chi has been promoted to older adults as an exercise to improve physical and mental fitness. It has also been found to reduce the likelihood of falling in senior citizens. This project explores how the tai chi experience may modify postural control mechanisms and movement strategies during stance and unexpected external perturbations to balance. Dynamic systems modeling, control theory, and movement analysis are used to examine these issues. Two studies are currently in progress. One is a cross-sectional study, with healthy adults aged 25 to 63 years, exploring the effect of long-term tai chi experience (2 to 15 years) on standing balance, and gait and obstacle crossing behaviors. The other is a longitudinal study with older adults (65+ years) that is examining how balance and movement strategies may change as a result of 5 months of tai chi training.

*Denotes principal investigator.
Postural Response to an Auditory Startle-Probe
University of Illinois at Urbana-Champaign

The startle reflex in humans is typically evaluated by measuring eye blink behavior (magnitude, timing). Postural response, particularly postural sway, to sudden and unexpected auditory noise has not been examined. It is hypothesized that a defensive strategy, i.e., increased forward sway, will be elicited as part of the startle response.

Postural Responses to Affective Pictures and Acoustic Startle Probes
University of Illinois at Urbana-Champaign

The purpose of this project is to extend our understanding of emotional states to behavior as measured through postural sway. The startle reflex in humans is typically evaluated by measuring eye blink behavior (magnitude, timing). Postural response, particularly postural sway, to sudden and unexpected auditory noise has not been examined. Two studies are currently in progress. One examines only the effect of an acoustic startle probe on postural sway. The other combines the effects of an acoustic startle probe with viewing emotion-eliciting pictures, which is a known measure of the behavioral set. The goal of these studies is to examine approach and avoidance behavior as measured by participants’ tendency to sway their bodies toward or away from the stimuli.

Variations in Balance and Postural Control Throughout Pregnancy and up to Six Months Postpartum
E. T. Hsiao-Wecksler
University of Illinois at Urbana-Champaign

Pregnant women anecdotally state that balance changes as pregnancy progresses and the circumference of the trunk and body weight increase. However, no studies have examined how balance, and postural control that moderates balance, may vary throughout pregnancy and the subsequent postpartum period. This study will assess how balance and postural control may vary as a consequence of pregnancy by examining how a subject’s postural sway varies over the nine-month pregnancy and a following six-month postpartum period.

BioMEMS-Based Microinstrumentation for In Situ Quantitative Investigations of Adhesion, Cell Structural Mechanics, and Mechanotransduction of Single Living Cells and Embryos
M. T. A. Saif, S. Yang
National Science Foundation, ECS 0118003

There is increasing experimental evidence suggesting that extracellular and intracellular mechanical forces have a profound influence on a wide range of cell behavior, such as growth, differentiation, apoptosis, gene expression, adhesion, and signal transduction. It is thus important to understand how the external mechanical forces are transmitted into the cell and what corresponding molecular changes they initiate. In this project, we develop a class of bioMEMS-based sensors and actuators for biological investigations such as cell adhesion at a cellular and subcellular level in biohabitats where the environmental conditions—biochemical, electromagnetic, and ambient temperature—are controlled.

Mechano-Stimulation of Skin Cells
University of Illinois at Urbana-Champaign

Skin is a mechanically compliant organ that routinely undergoes large strains during normal physiological function. Several important questions on the 3-D cellular architecture and intercellular connectivity of the epidermis, composed primarily of keratinocytes that need answers include: the effect of mechanical strain on the formation, maturation, number density, and placement of desmosomes and hemidesmosomes; the effect of strain on the gap junction intercellular communication complex that regulates the equilibrium between keratinocyte growth and differentiation; and the effect of local three-dimensional topography on the formation of a stratified squamous epithelium during keratinocyte culture on mechanical compliance. This project utilizes cell culture on microfabricated structures to measure the stress and strain within keratinocytes during different stages of development and the formation of mechanical junctions between cells.

*Denotes principal investigator.
Mechanical Behavior of Bone Scaffolds with Multiscale Porosity: Effects of Ingrown Tissue and In Vivo Degradation
A. J. Wagoner Johnson,* R. Jamison, M. Wheeler
University of Illinois at Urbana-Champaign Campus Research Board, Institute of Communications Research, Argonne National Laboratory

The objective of the research is to quantify the effects of in vivo degradation and tissue ingrowth on the mechanical behavior of hydroxyapatite (HA) tissue engineering scaffolds considered for load bearing applications. These scaffolds are unique in that they contain tailored multiscale porosity, the significance of which has not been adequately described. The insights gained from this research will advance the clinical utility of HA scaffolds for load bearing applications by quantifying the rates of tissue ingrowth and scaffold degradation; characterizing the three dimensional tissue distribution and HA degradation patterns; quantifying the effects of ingrowth and degradation on the mechanical properties; and characterizing the damage mechanisms following ingrowth and degradation. Results will not only strongly influence the design and fabrication of next-generation scaffolds, but will also provide guidelines for clinical rehabilitation for recovering patients.

Nondestructive 3-D Imaging of Tissue/Scaffold Composites Using Microcomputed Tomography
A. J. Wagoner Johnson,* R. Jamison
University of Illinois at Urbana-Champaign Campus Research Board, Institute of Communications Research; Argonne National Laboratory

Hydroxyapatite (HA) bone scaffolds are being developed to replace allograft and autograft bone, for which the risk of disease or other complications is significant. The tissue integration process must be carefully characterized. While several techniques are employed for full characterization, including scanning electron microscopy and histology, all are destructive in nature and can only represent the cellular activity in two dimensions. Furthermore, sample preparation for histology is time consuming and labor intensive. For this study, a nondestructive technique called x-ray microcomputed tomography is used to characterize cell and tissue distribution patterns in HA scaffolds with a resolution up to 5 mm. Scaffolds were seeded with cells and cultured for times between one day and four weeks. Cells and tissue were stained with osmium, which attenuates x-rays more than the HA and allows them to be distinguished. Cells can be mapped in three dimensions after one day. By three weeks, tissue covering the scaffold and in the interior can be imaged. Data are viewed as “slices” in cross-section or as a three-dimensional object using ANALYZE software.

Biomechanical Energy Conversion Technology for Future Marine Corps Operations
Office of Naval Research

This interdisciplinary research aims to harvest the biomechanical energy produced by natural human bodily movement, in the most efficient and least perturbing manner, and then to convert it into an electrical form for portable use. It will be carried out through a unique collaboration of power electronic and biomechanics expertise. Potential applications of this research include mobile communications and electronics as well as portable performance data log devices.

Effects of Shoulder, Low Back, or Knee Strength Degradation on Motion Control Strategies and Injury Risk during Manual Materials Handling
X. Zhang,* D. Bartlett
National Institutes of Health; Center for Disease Control and Prevention

The general objective of this research is to systematically investigate whether and how strength degradation in three major body joints—the shoulder, low back, and knee—affects the movement strategies and injury risk associated with the performance of manual materials handling. Our long-term goal is to develop quantitative tools and guidelines that integrate movement and strength information for the recognition, prediction, and prevention of musculoskeletal injuries. A successful completion of this project will lead to motion-based evaluation of muscle strength degradation for proactive ergonomics intervention, return-to-work assessment, and rehabilitative ergonomics implementation; guidelines and computerized simulation models for designing consumer products or workplaces to better accommodate special populations with compromised strength capabilities; and a better understanding of how muscle strength influences the motion control strategies and consequently the injury risk during manual materials handling tasks in specific and human movements in general.

*Denotes principal investigator.
Combustion and Propulsion

Heterogeneous Solid Propellant Combustion Simulation
M. Q. Brewster,* R. P. Fitzgerald
U.S. Department of Energy Center for Simulation of Advanced Rockets, B341494

The combustion of two-dimensional AP/HTPB laminate propellants is simulated computationally. The framework is mass and energy transport with simplified chemical kinetics. The predicted results include steady regression rate, propellant surface geometry (free surface), and gas-phase flame structure. These three quantities are also the basis for comparison with experiments for validation of the model. The goal is to develop a simplified kinetics and transport scheme that can be used in 3-D, unsteady simulations of composite propellants.

Lab-Scale Solid Rocket Motor Studies
M. Q. Brewster,* J. Y. Jung, B. Lee
U.S. DoE Center for Simulation of Advanced Rockets, B341494

A lab-scale solid propellant rocket motor is being used to generate experimental data to validate numerical simulations developed at the Center for Simulation of Advanced Rockets (CSAR). Both oscillating and steady modes, and cold (inert) and hot flow (live propellant) modes are used.

Radiation Heat Transfer in Solid Rocket Motors
M. Q. Brewster,* K. C. Tang
U.S. Department of Energy Center for Simulation of Advanced Rockets, B341494

Thermal radiation is an important mode of heat transfer in rocket motor internal flowfields. The primary source of thermal radiation is the field of submicron, liquid phase Al₂O₃ “smoke” particles formed by aluminum droplet combustion. In addition, pressure-broadened line radiation from molecular gases such as CO₂, H₂O, and HCl is also important at the elevated pressures in rockets. A hybrid radiation model will be developed with an N-flux description near the propellant surface matched with a diffusion approximation in the core region. A k-distribution technique will be used to accommodate the continuum particle radiation and the molecular gas line radiation. Absorption of radiation by the propellant is being simulated by three-dimensional Monte Carlo.

Simulation and Validation of Internal Rocket Motor Ballistics Using Space Shuttle RSRM Propellant
M. Q. Brewster,* W. C. Ross
U.S. DoE Center for Simulation of Advanced Rockets, B341494

This project uses the RocStar integrated code of the Center for Simulation of Advanced Rockets (CSAR) to investigate coupled phenomena of internal flow and solid mechanics interaction in solid rocket motors typical of the space shuttle reusable solid rocket motor (RSRM), such as segment joint inhibitor vortex interaction. Validation is done using shuttle propellant in a small-scale motor to compare with simulation predictions.

Solid Propellant Radiant Ignition and Combustion Modeling
M. Q. Brewster,* K. C. Tang, J. Cain
U.S. Department of Energy Center for Simulation of Advanced Rockets, B341494

Ignition of AP-composite propellants is being simulated computationally. The simulation uses a modified Zeldovich-Novozhilov (ZN) theoretical approach, compatible with a nonlinear dynamic burning model that has already been developed and validated. Radiative energy is considered as the first ignition source, due to the strong role of radiation from burning metal in pyrotechnic igniters. Ammonium perchlorate (AP) composite propellant is the primary material considered. The effects of radiant flux level, spectral energy distribution, and propellant optical properties on ignition delay are investigated. The model will be used to predict ignition behavior of AP and AP-composite propellant and will be validated with experimental results for AP and space shuttle propellant.

Three-Dimensional Simulation of Solid Rocket Motor Grain Burnback and Internal Flowfield Modeling
M. Q. Brewster,* D. S. Stewart,* K. C. Tang, S. H. Yoo, M. A. Wilcox
U.S. Department of Energy Center for Simulation of Advanced Rockets, B341494

The burnback of a solid rocket motor propellant grain is simulated computationally in three-dimensional space. A new algorithm based on level-sets for propagating surfaces in 3-D space, called WaveTracker, is implemented. Coupling of solid propellant combustion (burning surface motion) to chamber gas dynamics is included to simulate ballistic performance of the rocket motor.
Hydrogen Synthesis via Combustion of Fuel-Rich Methane/Air Mixtures
N. Glumac,* H. Krier, B. Lemke, C. Roodhouse
National Science Foundation

Intermediate solutions for the large-scale synthesis of hydrogen for transportation applications will likely require cost-effective conversion of methane into hydrogen and carbon monoxide. Current technologies such as steam methane reforming remain too expensive, largely as a result of the required energy input and catalyst use. This study investigates noncatalytic partial oxidation of methane/air mixtures at elevated pressures as a simple means to generate hydrogen on a large scale. The chemistry of these mixtures is largely unknown and is studied in our laboratory with a high-pressure flow reactor and spectroscopic diagnostics.

Spectroscopic Diagnostics of Aluminum Combustion
N. G. Glumac,* H. Krier,* R. Eyer
U.S. Office of Naval Research, N00014-01-1-0899

Energetic solid propellants usually contain metal aluminum. The rate that aluminum burns, the temperatures surrounding the aluminum droplets, and the concentration of intermediate species as a function of time are being measured using a shock tube and high-resolution, time-resolved emission and absorption spectroscopy. Such data for the aluminum sub-oxide, AlO, will allow for the development of the kinetic pathways required to describe the rate that the aluminum burns in mixtures of propellant gases. In addition, this study investigates the combustion behavior of aluminum hydride under high-pressure conditions.

Combustion of Aluminum and Aluminum Hydride
H. Krier,* N. Glumac, T. Bazyn
U.S. Office of Naval Research, N00014-01-1-0899

Using a high-pressure shock tube to generate intense temperatures, we measure the combustion rates and temperatures of aluminum, boron, and aluminum hydride in atmospheres that closely simulate the environment in a solid rocket motor. Advanced spectroscopic techniques are used to probe the environment surrounding these burning particles in order to generate benchmark chemistry data that can be used to validate next-generation combustion models.

Modeling of Ultrafine Aluminum Particle Combustion
H. Krier,* N. Glumac, K. Aita
U.S. DoE Center for Simulation of Advanced Rockets; U.S. Department of Energy, B341494

As aluminum particles become finer, burning rates and ignition times decrease, resulting in attractive burning behavior in solid rocket motors. Unfortunately, while such particles can be manufactured, current models cannot accurately predict their behavior. For fine particles, the combustion becomes rate limited, and the quasi-steady approximation does not apply, leading to dramatically different burning behavior. This study will develop a model to predict the flame structure and combustion characteristics of ultrafine metal particles in solid rocket motor environments.

Reactive Metals in Shaped Charge Applications
H. Krier,* N. Glumac, J. Felts
U.S. Office of Naval Research, N00014-03-1-0778

There exists some experimental evidence that the use of reactive metal liners in underwater shaped charge devices can lead to enhanced energy release, resulting in greater penetration and/or target damage. This study is designed to examine the fundamental combustion processes that occur in hypersonic metal jets emanating from a shaped charge explosive as they traverse a water medium. This study uses the shock tube to investigate fundamental reaction rates of metal in water, as well as a powder gun facility with a 1.3 km/s capability.

Solid Rocket Motor Aluminum Burning Models
H. Krier*
U.S. Department of Energy Center for Simulation of Advanced Rockets; U.S. Department of Energy, B341494

This research is focused on developing quasi-steady burning rate models for both pure aluminum and agglomerated aluminum droplets produced from metalized solid propellants. Chemical kinetics for various propellant gas oxidizers must be considered. Models will be compared to data available in ongoing research at the University of Illinois at Urbana-Champaign.

Catalytic/Gaseous Combustion Interaction for Mesoscale Power Generation
D. C. Kyritsis,* S. A. Smyth, E. Anderson
University of Illinois at Urbana-Champaign

The potential of catalytic combustion to yield “combustion-based” batteries is investigated by probing experimentally the fundamentals of the interaction of
surface chemistry, gaseous chemistry, and fluid mechanics in small-scale catalytic burners. Such “combustion-based” batteries will put to use the high energy density of liquid hydrocarbons for autonomous portable generation. Our study focuses on the study of the fundamental flow configurations that will be the “building blocks” of practical mesoscale burners (flat plate boundary layer flows, flows around catalytically coated wires, etc.).

Simplified Spectroscopic Methods for Scalar Dissipation Measurements in Counterflow Diffusion Flames
D. C. Kyritsis,* K. Bijjula
University of Illinois at Urbana-Champaign

This two-year project has as an objective the determination of simplified techniques for the measurement of the scalar dissipation rate (SDR) in laminar diffusion flames. Much as SDR rate is the quantity determining the structure of the flamelets, its measurement is usually extremely complicated, involving time-consuming measurements of a series of scalars. In this study, we elaborate on the fact that SDR scales with the inverse square of a characteristic thickness of the mixing layer surrounding the flame. At an initial stage, we perform direct SDR measurements using line Raman imaging. Then we pursue a simplified measurement using laser-induced fluorescence measurements of relevant mixing layer markers.

Development of the Forward Illumination Light Extinction (FILE) Time-Resolved, 2-D Soot Measurement Technique
C. F. Lee,* Y. Xu
Grainger Emerging Technologies Grant

A new forward illumination light extinction (FILE) soot measurement technique was developed with the capability of obtaining 2-D time-resolved quantitative soot volume fractions in a single combustion event. By using a high-speed camera and a point light source, this technique can achieve a 2-D soot concentration measurement with only one window when studying confined combustion. Line of sight quantitative soot volume fraction is obtained by calculating the reflected light intensity with or without the presence of soot cloud. The technique was verified using measurement of the axisymmetric ethylene diffusion flame. The technique is under testing for various combustion systems.

effects of Oxygenate in Diesel Fuel on Spray Structure, Combustion, and Emissions

C. F. Lee,* Y. Xu, D. Wang
Argonne National Laboratory, ANL-1F-01341; BP-Amoco; Caterpillar Inc.

A promising solution for emission reduction being investigated is to blend oxygenates into diesel fuels in an effort to improve the in-cylinder combustion characteristics and thus reduce the NOx and particulate matter (PM) levels. Diesel combustion is generally characterized by three main processes: spray formation, droplet evaporation, and burning of the fuel/air mixture. A fundamental understanding of these processes will be developed through the experiment and modeling of droplets, sprays, and engines in order to determine the effectiveness and value of blending oxygenates into diesel fuel as a means to achieve the requisite NOx and PM levels.

Investigation of Low-Temperature Combustion in an Optically Accessible Diesel Engine
C. F. Lee,* T. Fang
Sandia National Laboratories, SNL-19316

Low-temperature combustion is a method to achieve homogeneous charge compression ignition in diesel engines. Late injection timing combined with high swirl ratio, high exhaust gas recirculation, and high injection pressure result in more homogeneous charge than conventional diesel engines and lower combustion temperature. This kind of combustion mode is also called MK (modulated kinetics) combustion. It offers great potentials in reduction of NOx and smoke emissions from diesel engines while still keeping the high thermal efficiency of diesel engines. The fundamental mechanism behind the lower temperature combustion will be investigated using laser diagnostics.

Modeling of Microexplosion and Flash Boiling in Engines
C. F. Lee,* D. L. Chang, D. Wang
Center for Advanced Study; Ford Motor Co.

Microexplosion and flash boiling phenomena affect both vaporization and atomization of fuel sprays. For multicomponent fuel droplets, light components are entrapped inside the droplet that possibly leads to a local super-heat region and produces bubbles inside the droplet. The droplet then undergoes a violent expansion resulting in secondary breakup (so-called microexplosion). Fundamentally, flash boiling is similar to microexplosion. Both are believed to have positive effects on engine
performance because they tend to produce smaller droplets compared to conventional breakup mechanisms. The theory and model for the breakup due to microexplosion and flash boiling will be developed and verified.

Numerical Investigation of the Effect of Increased Acceleration on Film Boiling and Film Vaporization
C. F. Lee,* R. K. Kapadia
University of Illinois at Urbana-Champaign

Engine-out HC emissions resulting from liquid fuel, which escapes from the combustion process, give the motivation for researchers to better understand the film vaporization in a combustion chamber. Previous works theorized that the removal of liquid fuel from the combustion cycle was a result of the film boiling regime of the film boiling curve, otherwise known as the Leidenfrost phenomenon. The objective of this work is to develop a robust film boiling model, which incorporated the effects of increased acceleration on film boiling and, consequently, on film vaporization at high temperatures.

Two-Photon Fluorescence Detection of Nitric Oxide
C. F. Lee,* C. J. Mueller* (Sandia Natl. Lab.), G. C. Martin
Sandia National Laboratories, SNL-19316

As engine nitric oxide (NO) emissions are reduced, the sensitivity of laser-induced fluorescence (LIF) techniques must be improved to help understand how new modes of combustion work to enable these reductions. A two-photon LIF technique will be developed to overcome some of the difficulties of single-photon techniques, including the rejection of scattered laser light, fluorescence from other species including fuel, and the strong absorption of the excitation laser by combustion products in diesel engines. The two-photon technique will be verified in a flow cell and over a flat flame burner. This technique will subsequently be applied to diesel engine combustion measurements.

Computational Science and Engineering

Transport and Phase Behavior of Binary Fluids in Porous Media
J. G. Georgiadis,* A. Kalinichev (Geol.), D. J. Holdych, D. C. Karampinos
NSF Center of Advanced Materials for the Purification of Water with Systems (CAMPWS), CTS-0120978

As an integral part of the computational activity under the auspices of the Center of Advanced Materials for the Purification of Water with Systems (CAMPWS), a National Science Foundation Science and Technology Center, the project combines expertise in *ab initio*, Monte Carlo, molecular dynamics, and Lattice-Boltzmann methods. The common objective is to investigate hydrogen bonding in aqueous solutions, solute hydration and diffusion, ion cluster formation, phase separation, absorption, and electrokinetics in water-gas-salt systems in the bulk or near separation membranes or functionalized solid substrates.

Nested Newton Scheme for Domain Decomposition
L. Kale* (Comput. Sci.); D. A. Tortorelli,* D. Kulkarni
National Science Foundation, ITR

We introduce a domain decomposition approach based on a two-level Newton scheme for finite element analysis. The approach lends itself naturally to parallelization and allows for efficient handling of localized nonlinearities. A discontinuous Galerkin formulation is employed to handle nonmatching meshes across subdomain interfaces. The developed algorithm will be implemented in parallel using Charm++.

Space-Time FEM for Contact Problems
D. A. Tortorelli,* P. D. Pattillo II
Sandia National Laboratories

We present a space-time finite-element method that tracks the contact interface such that every surface element is solely subjected to either contact or traction boundary conditions. We analyze an indentation problem involving a rigid indenter impacting a deformable subspace to demonstrate the methodology. The problem is two-dimensional in space and one-dimensional in time. By using space-time elements, we are able to highly refine, in both space and time, the region of interest below the indenter. Such a method increases the computational efficiency of the numerical analysis.
Control Systems

Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems
G. E. Dullerud,* J. Abounadi (MIT); F. Bullo (Gen. Engr.); E. Feron (MIT); E. Frazzoli (Aerosp. Engr.); P. R. Kumar (Elect. & Comput. Engr.); S. Lall (Stanford Univ.); D. Liberzon (Elect. & Comput. Engr.); N. A. Lynch (MIT); J. C. Mitchell (Stanford Univ.); S. K. Mitter, E. Modiano (MIT); B. Reznick (Math.); M. Viswanathan (Comput. Sci.)

Air Force Office of Scientific Research; Defense Advanced Research Projects, Multidisciplinary Research Programs of the University Research Initiative, F49620-02-1-0325

The proliferation of computing and wireless communication technology has opened up tremendous possibilities for deploying large cooperative networks of smart vehicles to perform intricate and complex missions. It is evident that collaborative teams of aerial and ground vehicles can perform a plethora of highly beneficial tasks for achieving military objectives and civilian security. The major objective of our consortium is the development of a rigorous theoretical foundation, and scalable analytical tools and paradigms, so that systems can be systematically constructed and their performance formally verified. More generally, the activity of this program can be expected to have a dramatic impact on understanding and designing large-scale, robust, real-time distributed systems. Our goals are to make use of recent algorithmic developments to provide hard performance guarantees and bounds for systems performing sophisticated tasks in uncertain and dynamic physical situations.

Advanced Dynamic Modeling and Control of Air Conditioning and Refrigeration Systems
A. Alleyne,* C. W. Bullard,* P. S. Hrnjak,* B. Rasmussen
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

This project develops a dynamic simulation-modeling environment that is suitable for closed loop control of stationary and mobile a/c and refrigeration systems. The focus is on controlling quasi-steady transitions between operating states, instead of startup and shutdown transients, by modulating flow rates of both air and refrigerant. It builds upon previous models by making more extensive use of physical parameters, based on results from other research projects. The model development is supported by a parallel set of experiments conducted in a flexible test facility.

Control of Fluid Power Systems
A. G. Alleyne,* P. Gupta, B. Hencey, B. Edler
University of Illinois at Urbana-Champaign; National Science Foundation; Caterpillar Inc.

The modeling and control of fluid power systems includes electrical, mechanical, hydraulic, and pneumatic subsystems. Various types of advanced controllers are applied to these complex nonlinear systems. Applications of these systems range from automotive engine systems to earth-moving vehicles to high-speed machine tool drives.

Control of Nonlinear Systems
A. G. Alleyne*
University of Illinois at Urbana-Champaign

The control of various nonlinear mechanical and electromechanical devices is studied. The techniques applied vary from standard linearization (Jacobian) to gain scheduling to nonlinear transformations (feedback linearization). The structure of the particular systems being controlled is exploited to facilitate control. The application of this is directed to the control of various mechanical systems.

Integrated Chassis Control for Vehicles
A. G. Alleyne,* Y. Li
University of Illinois at Urbana-Champaign; Ford Motor Co.

Presently, components of the vehicle act independently of one another to control various aspects of the vehicle’s dynamics. In this research, the dynamics of a moving vehicle are controlled by coordinating and integrating the various subsystems of the chassis. ABS braking systems, traction control systems, lateral stability control systems, 4-wheel drive (4WD), and controllable suspensions (active or semiactive) are combined in a synergistic approach to achieve higher levels of vehicle performance. The benefits of this approach are increased vehicle performance and safety.

Microscale Robotic Deposition
A. Alleyne,* P. M. Ferreira,* J. Lewis, D. Bristow
National Science Foundation, DMI-0140466

The objective is to develop new materials systems, manufacturing systems, control, and planning algorithms required for microscale robotic deposition (m-RD) of colloidal gels. An integrated approach will be directed toward the fabrication of 3-D periodic structures (feature sizes less than 10 mm) required for emerging photonic applications. Such novel structures provide the optical

*Denotes principal investigator.
analogs to semiconductor materials at length scales relevant for optical communication and computing technologies.

Multi-Axial, Full-Scale, Substructured Testing and Simulation Facility
A. Alleyne,* D. Kuchma, A. Elnashai, J. Ghaboussi, B. Spencer
National Science Foundation, DCM

The primary objective of this project is to create a facility in which a full-scale subassembly can be subjected to complex loading and imposed deformation states at multiple connection points on the subassembly, including the connection between the structure and its foundation. The facility will have the following unique features: 6-DOF load and position control at multiple connection points; system modularity to allow for easy expansion and low-cost maintenance/operation; multiple dense arrays of noncontact measurement devices; and advanced visualization and data mining capabilities for integrated teleoperation and teleobservation.

Nano-CEMMS Systems Integration Testbeds for the Micro- and Macroscale
A. G. Alleyne,* P. M. Ferreira, M. Tharayil
National Science Foundation

This work relates to the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS) Center. We are developing systems integration tools and testbeds for rapidly identifying potential bottlenecks in the confluence of different core technologies associated with our nanoscale manufacturing efforts. The tangible results of this project will be the development of the earliest testbeds that are representative of the fully functional Nano-CEMMS system as it is currently envisioned. Additionally, this project will be able to provide systems-level planning and guidelines for the development of the overall research plan. The ability to provide planning input will grow throughout the project as better knowledge and understanding of the overall systems-level issues are developed.

X-by-Wireless Feedback Control of Coordinated Systems
A. Alleyne,* P. Kawka
University of Illinois at Urbana-Champaign

The goals of this project are twofold. First, the project will examine direct feedback control of individual systems via wireless connections. This is fundamentally different from previous and current wireless investigations whereby command sequences are communicated to the system while the actual device-level control takes place “on-board.” Second, this project will investigate the coordination of multiple wireless users acting together to perform a controlled action. The separate users will be able to develop a connection and coordinated control strategy that will be transparent to users being added or removed as long as there are sufficient agents to perform the task.

Hierarchical and Reconfigurable Schemes for Distributed Control over Heterogeneous Networks
National Science Foundation, ITR 0085917

The research project deals with issues arising in controlling geographically distributed complex real-time systems over a heterogeneous communication network. It is aimed at developing the foundations of network-based control, from theory to applications. The overall objectives are the following: the design, analysis, implementation, and performance characterization of hierarchical and heterogeneous distributed control algorithms and middleware that are affected through hierarchical heterogeneous networks comprised of wired and wireless subnets; and specification and implementation of network services and support required for the development and deployment of distributed control algorithms over hierarchical heterogeneous networks.

Active Sensing Approach to Output-Based Control of Nonsmooth Dynamical Systems with Controlled Singularities
J. Bentsman,* K. Zheng, J. Kim, B. Miller, E. Rubinovich
National Science Foundation, CMS-0324630

This project focuses on developing a mathematical framework for active sensing in systems with controlled singularities and applying it to power systems and high-performance electromechanical drives.

Active Singularity Approach to Control of Nonsmooth Mechanical and Electromechanical Systems Using Wavelet-Based and Impulsive Control Methods
J. Bentsman,* H. Zhao, K. Zhang
National Science Foundation, CMS-0000458

The goals of the project are to develop a mathematical framework for representing control actions and system motions during the singularity motion phase and
combining them with regular motion phase; develop high-speed time-localized estimation and identification procedures that utilize nonsmooth data as well as feedback control laws applicable to singular and regular motion phases; and apply the technique developed to the high-speed fault clearing in power networks and impact motion control in electromechanical systems.

Adaptive Control and Identification of Distributed Parameter Systems

J. Bentsman,* Y. Orlov, J. Kim
National Science Foundation, CMS-0324630; Electric Power Research Institute, EP-P93624722

A large number of processes require infinite dimensional state space for their adequate descriptions. The application of regular finite-dimensional adaptive control algorithms to such processes might result in poor convergence properties and inadequate performance of adaptive controllers. The purpose of this research is to explore the methods of improving controller adaptation capabilities and identification methods for systems described by partial differential and functional equations.

Control of Uncertain Time-Varying Systems Based on Robust Predictive Control Technique and Localized Time-Frequency Concepts

J. Bentsman,* H. Zhao, K. Zheng, J. Kim
National Science Foundation, CMS-0000458

The project focuses on the development of robust controllers for time-varying systems with uncertainties. The specific application is the control of startup and shutdown and transient dynamics of a boiler turbine power generation unit.

Control-Oriented Modeling, Identification, and Controller Synthesis for Electrical Motors and Nonsmooth Electromechanical Systems

J. Bentsman,* H. Zhao, A. H. Lee, K. Zhang
Grainger Center for Electromechanics; National Science Foundation, CMS-0000458

The work proposed will focus on development of wavelet-based and ARMA model tools and methodologies for the real-time identification of the time-varying/nonlinear electrical motor and hybrid/impulsive electromechanical system dynamics; development of robust predictive self-tuning control laws for control of electromechanical systems; and investigation of nonsmooth dynamics in electromechanical systems and development of hybrid/impulsive control laws for active control of nonsmooth system behavior.

Modeling and Identification of EMF-Induced Transitions in Lipids

J. Bentsman,* I. Dardynskaia, O. Shadyro, P. G. Glushonok
National Science Foundation, CMS-0000458

The project goal is to develop dynamic models of EMF-induced changes in lipids and lipid-modeling substances. Equations of chemical kinetics and stochastic H-infinity identification are used as the basic tools.

Robust Controller Design for Power Plant and Its Testing on EPRI Simulator

J. Bentsman,* H. Zhao, K. Zheng
Electric Power Research Institute, EP-P93624722

The goal of this project is to design an H-infinity controller for a coal-fired power plant, test it on an EPRI simulator, and compare its performance with existing control laws.

Self-Tuning Robust Control of Multi-Input/Multi-Output Nonlinear Processes

J. Bentsman,* H. Zhao, K. Zheng
Electric Power Research Institute, EP-P93624722

This project is focused on combining recently developed \(H_\infty\) predictive control techniques with the \(H_\infty\) predictive identification to synthesize robust controllers for several classes of MIMO uncertain nonlinear systems. The application is currently focused on the stream generation processes in the industrial and utility boilers.

Control Design of Complex Engineering Systems

G. E. Dullerud,* M. Farhood
National Science Foundation, ECS-98-75244

The objectives of the program are the development of analytical and computational tools for control of systems along trajectories, validation of models in a control context, and distributed control methods for emerging technologies.

Postural Control during Mild Impulsive Perturbations

E. T. Hsiao-Wecksler*
University of Illinois at Urbana-Champaign

Investigating how individuals respond to disturbances to balance is essential to improving our understanding of the etiology of falls. Balance and postural control mechanisms during perturbed stance may change with age. These differences may manifest themselves in the behavioral characteristics of the postural response noted immediately.
after a perturbation. We are particularly interested in the response of the postural control system after a transient perturbation. Limited work has been done to explore postural responses to sudden, impulse like perturbations. In this investigation, the impulse loading and impulse response control-theory paradigm will be used to examine the postural response to a mild, quick-release backward tug. While impulse response and its associated characteristics are rudimentary concepts in engineering control theory, we have only just begun to extend this paradigm to investigate postural control. The purpose of this study is to learn more about how to characterize responses to a transient perturbation, what these responses tell us about the postural control system in general, and how these responses may vary with age.

Geometric Mechanics and Biomorphic Locomotion in Fluids

S. D. Kelly*

University of Illinois at Urbana-Champaign

Biomorphic robotic systems offer advantages over conventional autonomous vehicles in energy efficiency, agility, adaptability, and stealth. Biomorphic designs, or underwater and aerial vehicles, are particularly promising in these respects, but the superior performance of biological systems often reflects their ability to exploit complex dynamic phenomena in subtle ways. This project endeavors to realize reduced-order nonlinear models for the interaction of deformable bodies and vortical flows using contemporary techniques from LaGrangian and Hamiltonian mechanics and to develop tools for assessing and exploiting the controllability of such systems. Of particular interest are robotic systems that develop liftlike forces through periodic change in shape, the optimization of interactions among arrays of such systems, and the use of vehicle-mounted flow sensors in the feedback control of agile maneuvers.

Architectures for Secure and Robust Distributed Infrastructures

S. Lall* (Stanford Univ.); C. Beck (Gen. Engr.); S. Boyd (Stanford Univ.); J. Doyle (California Technical Univ.); G. E. Dullerud; C. Hadjicostis (Elect. & Comput. Engr.); B. Lesieutre, M. Medard (MIT); B. Prabhakar (Stanford Univ.); R. Srikant (Gen. Engr.); C. Tomlin (Stanford Univ.); G. Verghese (MIT); Z. Di

Air Force Office of Scientific Research, F49620-01-1-0365

The major barrier constraining the successful management and design of large-scale distributed infrastructures is the conspicuous lack of knowledge about their dynamical features and behaviors. Until very recently, analysis of systems has primarily relied on the use of nondynamical models. These traditional approaches have enjoyed considerable success while systems are run in predominately cooperative and “friendly” environments and provided that their performance boundaries are not approached. With the current proliferation of applications using and relying on such infrastructures, these infrastructures are becoming increasingly stressed, and the incentives for malicious attacks are heightening.

Chemical Management Services in Small and Medium Enterprises

T. Lindsey*

U.S. Environmental Protection Agency Region IV

This project includes three tasks as follows. The first involves working directly with small and medium enterprises (SMEs) to perform on-site chemical management assessments. During the assessments, total chemical-related costs and “headaches” will be determined in order to clearly demonstrate both the economic and operational value of pollution prevention and chemical management. In addition, SME managers will be surveyed to identify barriers to chemical management. The second component of the project involves working directly with chemical management suppliers. A supplier “working group” will be established and utilized to review and summarize information on SME management barriers, current economic barriers, and technology barriers that prevent chemical management diffusion in SMEs. The third component brings SMEs and chemical management suppliers together to resolve remaining barriers and initiate pilot projects that can be tested in SME facilities.

Advanced Digital Control of High-Capacity Disk Drives

National Science Foundation, ECS-0072752

Project aims are to apply a variety of powerful state-of-the-art control techniques to control of high-capacity disk drives. Seagate Technologies is the project industrial partner.

Ultrafiltration Pilot and Evaluation for Brown Metal Products

D. Neidigh,* T. Lindsey

Brown Metal Products

The Illinois Waste Management and Research Center (WMRC) will evaluate the potential for membrane
filtration to remove contaminants and recover valuable raw materials such as alkaline wash solution.

Ionic Liquids as Solvent, Catalyst, and Catalytic Support: Chemical Agent Decontamination and Detoxification

B. Nelson, T. Lindsey*
U.S. Department of Defense

This project will research the practical application of ionic liquids in the decontamination and detoxification of chemical agents. The goal of this effort is to create a new series of reagents that capture the best attributes of room temperature ionic liquids toward contaminant solubility and detoxification for the U.S. Army. In particular, formations of superior cleaning agents that catalyze chemical reaction will be developed. Such a series of cleaning agents would have immediate use in chemical detoxification and decontamination of a wide range of contaminants of importance to the Department of Defense (DoD).

Application of Algebraic Geometry for Control Design

P. Seiler*
University of Illinois at Urbana-Champaign

Many problems in control design and analysis require polynomial optimizations to be solved. The goal of this project is to investigate ties between algebraic geometry and polynomial optimizations. The ultimate objective is to develop tools for the analysis and design of controllers.

Evaluation of Ultrafiltration for Processing Neoprene Mixing Tank Wash Water

M. Springman*
Illinois Manufacturing Extension Center; The ROHO Group

The Illinois Waste Management and Research Center (WMRC) will perform bench-scale testing of neoprene rinse water to determine which membrane media will best remove contaminants from the water.

Preparation of an Integrated Pest Management Plan for Illinois Department of Military Affairs

M. Springman,* T. Lindsey
Illinois Department of Military Affairs

Activities of this project include research and development of an Integrated Pest Management plan for the Illinois Department of Military Affairs (DMA) so that the plan conforms to guidelines established by the National Guard Bureau (NGB) and Department of Army Regulation AR

200-5. Assessments of three facilities will be performed. Pest control recommendations will be made using best management practices and pest prevention as the goals, rather than pest extermination.

Design Methodology and Tribology

Tribological Studies on Scuffing Due to the Influence of CO₂ Used as a Refrigerant in Compressors

T. F. Conry* (Gen. Engr.), A. A. Polycarpou,* N. Demas
27 Company Consortium: Air Conditioning and Refrigeration Center

This project will compare the effects of POE and PAG lubricants in a CO₂ refrigerant/lubricant mixture on the friction, lubrication, wear, and scuffing properties of various tribological pairs that are used in compressors. The proposed research will focus on the following two areas in an effort to explain the previously noted data scatter with CO₂ as the refrigerant: a characterization of the surface texture over the period of time between the initiation of a test through to the instant of scuffing; and a characterization of the physical, chemical, and mechanical properties of the surface and near-subsurface material.

Optimal Path Planning for an Earth-Moving Vehicle

C. S. Larson,* R. Ingram,* M. Vande Wiele
Caterpillar Inc.

The objective of this project is to develop a system to calculate the optimal path from given starting and ending points for an earth-moving vehicle to follow during a typical work cycle. Constraints considered in calculating the optimal path are the vehicle geometry, vehicle performance limits, work area configuration, and vehicle jerk and acceleration limits. The applications of this research will include use as a design tool to assist engineers in determining vehicle specifications.

Develop an Environmentally Friendly Small Arms Weapons Cleaning System

T. Lindsey,* M. Springman
Illinois Department of Military Affairs

The Illinois Waste Management and Research Center (WMRC) will develop a prototype cleaning system that will be capable of cleaning up to eight M-16 assault rifles in a single batch using ultrasonic waves and aqueous-based chemistry. The system will be capable of purifying chemicals such that waste will be minimized.
Implementation of ADOP2T Technology Diffusion Methods for Printed Wire Board Facilities
Tim Lindsey*
Illinois Environmental Protection Agency

This project is a partnership in an effort to facilitate pollution prevention (P2) technology implementation at printed wire board (PWB) facilities in Illinois. The project will involve a sequential process of identifying best practices, executing brief demonstrations, and extended pilot trials of the practices that provide the site-specific information required to influence companies’ decision to adopt P2 technologies.

Friction and Wear Studies of Compressor Surfaces
A. A. Polycarpou,* J. C. Hoopes
Copeland Corporation

The main objective of this study is to experimentally investigate the friction and wear of tribomaterials used for compressor surfaces under mixed lubrication conditions in a controlled environment that simulates application conditions. A high-pressure tribometer is used for the tests. It provides independent control of normal load, speed, temperature, pressure, and oil/refrigerant mixture supply rate at the interface.

Tribology of Coating Materials Under High-Temperature Conditions
A. A. Polycarpou,* T. Solzak
Balzers A. G.

In this research, we use a high-temperature tribometer capable of testing up to 1,000°C to perform controlled friction and wear tests of different hard coating materials.

Tribology of Polymer Composite Materials Relevant to Compressors Surfaces
A. A. Polycarpou,* M. Cannaday
27 Company Consortium: Air Conditioning and Refrigeration Center

The majority of compressor surfaces that experience tribological contact are metallic surfaces, including cast iron, aluminum, steel, and copper alloys. Even though polymer-based materials are used in many tribological applications, their use in air conditioning compressor surfaces seems to be somewhat limited or absent. Polymeric interfaces have major differences with metallic interfaces that need to be specifically addressed for their successful implementation and operation. In this research, we will use the high-pressure tribometer to perform scuffing experiments using different polymeric-based materials in the presence of refrigerant-lubricant mixtures, and sliding velocities and temperatures typical to compressor surfaces.

Tripot Constant Velocity (CV) Joint Internal Friction Characterization
A. A. Polycarpou,* C. H. Lee
Delphi Automotive Systems

Constant velocity (CV) joints are an integral part of vehicles, significantly affecting steering, suspension, and vehicle vibration comfort levels. CV joints provide coupling forces and moments between connected substructures, as well as localized damping dissipation. In this research, we will experimentally and analytically investigate the internal friction in CV joints, with emphasis on CV tripot joints. Specifically, we propose to construct an instrumented CV joint test rig capable of testing actual CV joints to study their detailed internal friction and wear characteristics. Also, we propose to model the internal CV joint friction, and correlate experimental results with the proposed model. Lastly, design criteria will be established, linking CV joint design parameters, such as geometry and roughness to friction, wear, and performance in general.

Ultra-High-Pressure Tribometer for Tribological Studies of CO₂ Refrigerant
A. A. Polycarpou,* T. F. Conry (Gen. Engr.),* N. Demas
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

This project will compare the effects of POE and PAG lubricants in a CO₂ refrigerant/lubricant mixture at several pressures up to the UHPT capacity (to be purchased separately) of 2000 psig. The results at 200 psig in the UHPT will be compared to the 200 psig results for a CO₂ refrigerant/lubricant mixture in the current HPT (as a baseline comparison with previous work) on the friction, lubrication, wear, and scuffing properties of various tribological pairs that may be used in compressors. The new UHPT order will be placed with a known tribometer manufacturer, and delivery will be taken in the first year. Upon receiving the UHPT, shake-down runs will commence and test protocols will be developed. After that phase of the project is completed, a formal testing and analysis program will commence.

*Denotes principal investigator.
Topology Optimization and the Fictitious Domain Method
National Science Foundation; ITR

Topology optimization of structures to design for (e.g., minimum weight subject to a compliance constraint) has become an area of rapidly increasing interest during the past decade. Here we take a novel approach by introducing a distinct geometry model that is projected onto a fixed domain. In this way, the structural analysis is simplified as it is performed on a fixed mesh using the fictitious domain finite element method, and the optimization is simplified by reducing the number of design parameters.

Dynamic Systems

Damping in Bolted Joints
Sandia National Laboratories, DOE SNL BF-0162

Mechanical joints are recognized to be responsible for much of the uncertainty in the behavior of otherwise linear structures. Two mechanisms that have been identified as both present and important are micro- and macroslip in the vicinity of connectors, such as bolts, and microslip between adjacent parts of a structure, particularly at high frequencies. Analysis and experiments have been used to characterize the behavior of two beams connected by a bolted lap joint, with work continuing on the development of predictive models.

Equipment Grant: Acquisition of a Scanning Laser Vibrometer
Air Force Office of Scientific Research, F49620-03-1-0386

A polytec scanning laser vibrometer has been acquired to support the research of AFOSR F49620-01-1-0208. The vibrometer is currently acquiring data in several isolation experiments involving energy pumping in continua.

Nonlinear Localization Shock Isolation
National Science Foundation, CMS-00-00060

We propose a nonlinear base isolation design for isolating shocks from structures. The design is based on nonlinear localization whereby energy is transferred away from a mode of the structure to be isolated and directed into a secondary subsystem. Experimental verification of the method is planned.

Novel Passive Control Methods for Aerostructures
Air Force Office of Scientific Research

We are applying concepts of nonlinear localization and energy pumping to the vibration and shock isolation of structures representative of aircraft components. To achieve this, we use both analysis and experiments to gain a better understanding of the fundamental physics underlying both nonlinear localization and energy pumping. The research team is extending the energy-pumping concept to flexible continuous structures and to certain nonlinear systems.

A New Concept for Flutter Suppression Based on Nonlinear Energy Pumping
Air Force Office of Scientific Research, F49620-01-1-0208

Application of a nonlinear energy sink (NES) to a self-excited system such as the van der Pol oscillator has been shown through simulation and analysis to result in annihilation of limit cycle oscillations over a wide range of system parameters. The efficacy of the NES to perform similarly in an aeroelastic system is currently being investigated.

Dynamic Modeling and Analysis of the Adaptive Immune Response
S. D. Kelly,* C. C. Leong* (Univ. of Western Australia) University of Illinois at Urbana-Champaign

Certain features of the adaptive immune response to antigen challenge, such as the Th1/2 polarization of proliferating CD4+ T cells, emerge dynamically from the interactions of different cell types at a population level. This project seeks to model cytokine-mediated T cell proliferation and differentiation in a manner that illuminates the properties of the adaptive immune response.

*Denotes principal investigator.
response as a dynamical system. This work anticipates a control-theoretic approach to immunomodulatory disease therapy.

Modeling, Simulation, Analysis, and Control of Retinopathy of Prematurity

S. D. Kelly;* C. H. Simmons (Cedars-Sinai Medical Center)

University of Illinois at Urbana-Champaign

Maturation of the human fetal inner retina is regulated by the delivery of oxygen to differentiating cells along the growing retinal frontier; neovascularization of the retina to deliver this oxygen is mediated by the production of angiogenic growth factors by hypoxic retinal cells. Retinopathy of prematurity (ROP), a leading cause of blindness among children, constitutes abnormal vascularization of the developing retina in premature infants receiving supplemental oxygen to compensate for underdeveloped lungs. This project seeks to develop a mathematical model for the physiology of retinal development that elucidates the phenomenology of ROP and to use model-based feedback control design to realize a closed-loop scheme for regulating the delivery of oxygen to a premature infant—possibly in conjunction with other dynamic therapeutic interventions—based on periodic, minimally invasive blood gas measurements and/or novel retinal imaging.

Detection of Evaporator Frost

N. R. Miller,* T. Newell,* V. Caponi

27 Company Consortium: Air Conditioning and Refrigeration Center

Vibration sensing of a variety of evaporators is proposed as a means to globally detect the buildup of frost on evaporator coils. Frequency shifts of various vibration modes of evaporators would be identified as frost growth occurs. The results would be used to develop frost detection systems for refrigeration systems.

Energy Systems and Thermodynamics

Advanced Thermal System Simulation Tools

C. W. Bullard,* G. Jain

27 Company Consortium: Air Conditioning and Refrigeration Center

The goal of this project is to develop ways of incorporating component simulation models into a global simulation model of vapor-compression refrigeration systems. The challenge is to make use of a Newton-Raphson solver at the system level where the number of equations is less than 100, while interfacing with finite-volume models of individual components that may contain thousands of equations. The challenge is to make the algorithms stable in the presence of highly nonlinear coupling among components and the existence of discontinuities in the Jacobian resulting from phase changes on the air and refrigerant sides. The model is being validated using data from a variety of systems.
evaporator, novel circuiting arrangements, and variable-speed air moving devices.

Designing and Optimizing Systems with Compressor Rapid-Cycling
C. W. Bullard,* P. S. Hrnjak,* M. Poort
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

This project explores an innovative method for mass flow regulation in refrigeration and air conditioning systems: rapid cycling of the compressor. Results to date have shown that cycle periods as long as 10 to 30 seconds can achieve efficiencies comparable to those obtainable with variable-speed compressors, potentially at lower cost. Experiments focus on identifying fundamental physical mechanisms affecting system performance and control and ways to design components for pulsed flow operation.

Mesoscopic Thermomechanical (MTM) Desalination
J. G. Georgiadis,* M. A. Shannon
NSF Center of Advanced Materials for the Purification of Water with Systems(CAMPWS), CTS-0120978

The objective is to resolve several critical issues associated with the function of the mesoscopic thermomechanical (MTM) desalinizer, which is a low-cost, mass-producible water purifier that uses phase change for separating ions from water. The main theme is to realize the full potential of desalination via freeze-distillation by synthesizing and optimizing the materials that are necessary for the development of a working prototype of the MTM desalination device. This project focuses on the extraction of the rejected brine and the development of rotor coatings that permit the control of ice formation and detachment.

Carbon Dioxide as a Refrigerant in Secondary Loops and Cascade Systems
P. Hrnjak,* J. Jang
Wolverine Inc.

Carbon dioxide has excellent thermophysical properties at low refrigeration temperatures. Combined with good material compatibility and environmental friendliness, it becomes an attractive option. System, defrost, heat transfer, and related issues are being studied in the project.

Charge Minimization in Components and Refrigeration Systems
P. S. Hrnjak,* K. Traeger
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Charge minimization is important for every fluid, but mildly flammable and toxic fluids might be used as refrigerant even in populated areas if charge is minimized. This is an experimental and model study to relate charge reduction to capacity and coefficient of performance (COP) of refrigeration systems.

Control Strategies in Transcritical CO₂ Systems
P. S. Hrnjak,* A. Musser
Visteon

New application of transcritical systems with CO₂ for air conditioning and heat pumping require new component and control strategies. Steady-state and transient models are developed and experimentally verified.

Improving Transcritical CO₂ Systems for Heat Pumping and Air Conditioning in Automotive Systems
P. S. Hrnjak,* S. Elbel
Daimler-Chrysler

Evaporation of carbon dioxide at close to critical temperatures shows different characteristics than conventional refrigerants. This project elaborates a new concept of evaporator and controller as well as new ways to utilize potential of expansion work.

Maldistribution and Bundle-Depth Effects on Falling-Film Flow
A. M. Jacobi*
27 Company Consortium: Air Conditioning and Refrigeration Center

In falling-film heat exchangers, a liquid is sprayed onto the top of a tube bundle and, as it falls from one horizontal tube to another below it, the flow may take the form of discrete droplets, jets, or a continuous sheet. The falling-film mode plays an important role in the wetting, heat transfer, and mass transfer characteristics of the heat exchanger. Ongoing research is about to yield new regime maps to include the effects of vapor shear on the falling film behavior. We now consider liquid-flow maldistribution effects on the local falling film mode, and we will incorporate the new maps into bundle simulations that will allow the study of overfeed rate, fluid properties, and heat duty effects on the flow regime from the top to the bottom of a bundle. Along with providing a critical...
assessment of maldistribution effects, this project will provide an engineering tool capable of predicting local mode behavior in spray bundles. To our knowledge, it will be the first tool of this kind available. The results will be highly valuable to those designing, building, or using spray evaporators.

Super-Wettable Surfaces for Heat Exchangers in Refrigeration Systems

A. M. Jacobi*

27 Company Consortium: Air Conditioning and Refrigeration Center

Current frost management schemes for refrigeration systems usually rely on achieving frost tolerance through geometric design. Specifically, fin spacing and fin staging are used with relatively simple fin geometries. This approach has constrained heat exchanger designers to consider only noncompact heat exchangers for refrigeration systems—the fin spacing is kept large in order to make the exchanger frost tolerant. We will explore a new way to achieve frost tolerance: super-wettable surfaces for refrigeration systems. Conventional aluminum fin materials have advancing contact angles as low as about 40 degrees with receding contact angles as low as roughly 10 degrees. Through new material processing methods, it is possible to achieve (and presumably maintain) contact angles below a few degrees. We plan to answer the question: How do such surfaces behave in refrigeration systems?

Design Methods for Reducing Refrigerant-Induced Noise

N. R. Miller,* B. E. Ellen

27 Company Consortium: Air Conditioning and Refrigeration Center

This project is a follow-on to Project 72 and the ongoing Project 105, Sound Generation Mechanisms of Expansion Devices. In Project 72, we experimentally investigated the noise from a variety of expansion devices over a wide range of operating conditions. We also examined the propagation and attenuation of the acoustic signal within the refrigerant flow and through the tube walls. Finally, we were able to begin investigation of attenuation devices and the physical mechanisms of noise generation. Project 105 has concentrated primarily on the “popping” noise reported to occur in capillary tubes under certain operating conditions. The project has attempted to solidify our understanding of the various refrigerant flow noise problems and methods for attenuating those problems. In this proposed project, we want to shift our focus to developing design guidelines for low noise expansion devices and refrigeration components that minimize the propagation of refrigerant flow noise and shocks.

Development of an Unbrazed, Flattened Copper Tube Condenser

T. A. Newell,* P. Hrnjak, T. Beavers, T. Gaddis

Copper Development Association

This project investigates flattened copper tubes with unbrazed fin structures for use in refrigeration condensers.

Salt Gradient Solar Pond Research

T. A. Newell*

Illinois Department of Energy and Natural Resources, STILENRAE25SLRPND129; International Salt Co.; Gundl Lining Systems

A half-acre solar pond has been constructed in the agriculture section of campus. Continuing research investigates the feasibility of solar ponds for low-temperature heating processes.

An Investigation of Electrochemical Processes for Refrigeration

T. A. Newell,* D. Gerlach, E. Mina

27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

This research focuses on investigation of electrochemical processes for producing refrigeration effects.

Development of Next-Generation Building Energy Analysis Program, “EnergyPlus”

C. O. Pedersen,* R. J. Liesen,* R. Chilla

U.S. Department of Energy, Lawrence Berkeley Laboratory

This project includes research and development in the areas of building energy analysis and computer simulation of building systems. The context for this research is a computer program, called EnergyPlus, which is being developed under Department of Energy (DoE) sponsorship. EnergyPlus will include a detailed thermal zone model and a state-of-the-art heating, ventilation, and air conditioning (HVAC) system simulation. The zone model will accurately predict the performance of the building envelope and will calculate the effect of energy saving systems such as passive solar and advanced fenestration. The HVAC system simulation will be integrated with the zone model to allow for the analysis of processes such as moisture adsorption in building elements and hydronic radiant heating.
Development of a Silicon Carbide Microcapillary-Pumped Loop
L. M. Phinney, T. J. Mackin,* L. J. Meyer
General Electric

As miniaturization of electronics and devices continues, thermal management at small scales is increasingly important and challenging. This affects the performance of computers, cellular phones, and consumer electronics as well as many other devices that are a part of everyday life in modern societies. This project is developing a microcooler and packaging scheme for power (low-frequency) applications. We are designing and fabricating a capillary-pumped, loop-based microcooler in silicon carbide.

Technical Support of a Green Illinois Lighting Efficiency Demonstration Project
T. Rusk,* T. Lindsey
Illinois Environmental Protection Agency

This project will provide technical support to assist in the implementation and evaluation of efficient lighting systems at Starved Rock Convention Center and Read Mental Health center.

Engineering Mechanics

Mesoscale Modeling of Fracture in Alloys for Aerospace Applications
A. J. Beaudoin,* J. C. Mach; P. H. Geubelle
(Aerosp. Engr.)
U.S. DoE Accelerated Strategic Computing Initiative; University of Illinois at Urbana-Champaign

Physically based models for metal plasticity are combined with the cohesive surface model for metal fracture in this work. Applications emphasize materials employed in the space shuttle. The response of D6AC steel used in the solid rocket motor has been characterized over a range of temperature and strain rate. Fracture in the presence of jerky flow, such as that observed for Al-Li alloys forming the super lightweight external fuel tank, is studied using a detailed mesoscale model. This model is implemented as a parallel computer code.

Application of Strain Gradient Plasticity—Modeling and Experiments
Y. Huang*
National Science Foundation, CMS-98-96285; Campus Research Board; National Science Foundation of China

The purpose of this research project is to develop a microscale plasticity theory for applications from 0.1 to 10 microns, such as in nano- and micro-indentations, microelectronic devices, and nano-, micro-, and meso-technology.

Computational Methods for Mechanism-Based Higher-Order Continuum Theories
Y. Huang*
National Science Foundation, CMS-9983779

The objective of the proposed work is to develop novel computational methods for the recently proposed virtual internal bond (VIB) method. The VIB method extends the application range of classical continuum mechanics to modeling cohesive elasticity at much smaller length scales (e.g., lattice spacing in elastic deformation). A major obstacle to the application of such theory is the lack of efficient numerical methods for higher order or nonlocal continuum theories involving multiple distinct materials length scales. We propose to develop a robust and reliable numerical method to analyze multiscale phenomena that cannot be addressed by classical continuum theories.

Dynamic Failure Modes of Marine Composite Materials under Blast Loading
Y. Huang*
U.S. Office of Naval Research

We study dynamic fracture of composite materials under blast loading.

Mesoscale Modeling of the Constitutive and Failure Response of the Solid Propellant and the Case
Y. Huang,* A. J. Beaudoin; E. de Sturler (Comput. Sci.); P. H. Geubelle (Aerosp. Engr.)*
U.S. Department of Energy Accelerated Strategic Computing Initiative (ASCI) Center; University of Illinois at Urbana-Champaign

We develop constitutive models for solid propellant accounting for the nonlinear debonding process of the interfaces between energetic particles and polymeric binders.
A Strain-Gradient Cohesive Fracture Model for Intersonic Crack Propagation
Y. Huang*
U.S. Office of Naval Research, N000140110205

We use a strain-gradient cohesive model to investigate intersonic and supersonic crack propagation in solids.

Thermomechanical Fatigue of Cast Iron
P. Kurath*
Caterpillar Inc.

During routine operation, many engine components can experience nonuniform or localized temperature changes. These temperature differences, in conjunction with structural constraint, can cause stresses to develop in addition to those caused by normal operating loads. The effects of these additional stresses and possible acceleration of fatigue damage from oxidation at extreme temperatures are being investigated. Extending the experimental observations from uniaxial testing into a multidimensional model applicable to actual components is also being investigated.

Damage Tolerance in Tank Cars
H. Sehitoglu;* D. Pecknold,* C. Barkan* (Civil & Environ. Engr.); S. Kibey
Federal Railway Administration

This research program is intended to develop information for the Federal Railway Administration and the tank car industry to apply durability concepts to improve the understanding of factors contributing to design, operation, and maintenance of tank cars. The technical emphasis is aimed at identifying the uncertainties on the overall durability analysis of tank cars and the sensitivity of the factors that produce high levels of variability in reliability analysis and design. It is expected that the underlying concepts developed for tank cars can be applied to other railroad systems.

Stresses under Contact Loading and Material Ratchetting
H. Sehitoglu,* Y. Jiang
Association of American Railroads

In collaboration with the University of Nevada, Reno

Based on a stress invariant hypothesis and a stress/strain relaxation procedure, an analytical approach is forwarded for approximate determination of residual stresses and strain accumulation in rolling contact. For line rolling contact problems, the proposed method produces residual stress distributions in favorable agreement with the existing finite-element findings. We study ratchetting behavior of 1070 steel under uniaxial tension-compression and axial-shear loadings experimentally. Strain ratchetting direction exhibits a complex dependence on the previous loading history, including nonconsistence with the mean stress direction. Different models to predict this phenomenon are proposed and compared to experiments.

Engineering Statistics and Quality Control

Evaluation of ISO 14001, Environmental Management System (EMS), Technical Assistance
K. Barnes,* T. Lindsey
Illinois Manufacturing Extension Center; InterTech Nashville

The Illinois Waste Management and Research Center (WMRC) will perform 15 half-day, on-site assessments designed to evaluate the performance of ISO 14001 Environmental Management System implementation. Additionally, WMRC will provide a two-day seminar on internal auditing techniques and procedures. An additional three days will be scheduled to provide guidance in establishing an EMS team and performing an internal environmental review and an internal audit. The seminars will include implementation work (facility homework) to be completed by InterTech and reviewed by WMRC prior to the next scheduled seminar.

University of Illinois Chicago Energy Resources Center Total Assessment Audit Program
T. Lindsey*
University of Illinois Chicago Energy Resources Center

The goal of this project is to facilitate the implementation and evaluation of pollution prevention, health, and safety and regulatory compliance activities to three metal casting sector companies.

Gap Analysis of Environmental Management System at Caterpillar–Mapleton Facility to Meet ISO 14001 Requirements
D. Neidigh,* T. Lindsey
Illinois Manufacturing Extension Center; Caterpillar Inc.–Mapleton

Researchers will perform gap analysis of the current Environmental Management System (EMS) program against the ISO 14001 standard to determine additional

*Denotes principal investigator.
implementation requirements and needs. The Illinois Waste Management and Research Center (WMRC) will provide two EMS-trained specialists to perform an eight-hour, on-site gap analysis at the Mapleton facility. WMRC staff will review documentation (policy, manual procedures, and records). An on-site analysis will also be conducted (including employee interviews as necessary) to obtain objective evidence of the status of the EMS. Upon completion of the analysis, WMRC will summarize the results in a written report to the facility.

Study and Develop Recommendations for Reducing Adverse Great Lakes Ecosystem Impacts from PBT Chemicals
W. Nelson,* T. Lindsey
Tellus Institute, Inc.

The Waste Management Research Center (WMRC) will investigate the impact of persistent, bioaccumulative, and toxic (PBT) compounds in the Great Lakes from various industrial sectors. Additionally, WMRC will investigate modifications to industrial processes that could reduce the impacts of PBT chemicals.

Environmental Engineering

Science and Technology Center of Advanced Materials for the Purification of Water with Systems (CAMPWS)
J. G. Georgiadis,* M. Shannon,* P. Bohn,* J. Economy, V. Snoeyink;* M. Reinhard (Stanford Univ.)
National Science Foundation

The research component of CAMPWS focuses on the development of innovative approaches to water purification through the synthesis of advanced materials and their integration into systems. The mechanical engineering team leads Thrust 2, which focuses on desalination and water reclamation.

Applicability and Scalability of Microfiltration for Recycling Semi-Synthetic Metalworking Fluids
S. G. Kapoor,* R. E. DeVor,* J. Wentz
Illinois Department of Natural Resources—Waste Management and Research Center

Microfiltration has been shown to be a promising technology for recycling synthetic and semi-synthetic metalworking fluids, capable of achieving selective separations of external contaminants from base metalworking fluids. The objective of this research is to study the applicability of the microfiltration technology for a wide range of commercial metalworking fluids.

The physical and chemical properties of metalworking fluids will be characterized, and filtration tests will study fouling of both tubular ceramic membranes and polymeric flat sheet membranes.

Decision-Based, Environmentally Conscious Design
D. Thurston (Gen. Engr.),* M. J. Rood*
National Science Foundation

Certain engineering design projects are vulnerable to decision biases that result in irrational and inconsistent decision making. Environmentally conscious design (ECD) falls into this category. This project develops a rational, decision-based design framework for ECD that overcomes current difficulties. An adsorption, electrothermal-swing, air pollution control technology is used as the testbed for this research.

Fluid Dynamics

Analysis of Flow and Transport in Subway Systems
W. E. Dunn,* M. Gresshoff
U.S. Department of Energy, DOE-ANL-1F-01541

The study involves a laboratory simulation of flow in a subway station. Results from these experiments will be compared with field measurements to verify proper scaling between the laboratory-scale experiment and the full-scale system. Once proper scaling is established, the results of the experiment will be used to improve computer models of flow in subway systems. These improved models will be used to improve air quality in the underground system.

Atmospheric Boundary Layer Modeling
W. E. Dunn,* S. Tschopp, M. Rhodes
U.S. Army; U.S. Department of Energy, ANL1F-00941

The atmospheric boundary layer determines the transport of pollutants and toxic materials in the atmosphere. The atmospheric boundary layer is constantly changing due to the solar heating of the ground. During the day, the ground heats the air and produces a convectively driven, unstable boundary layer. At night, the ground is colder than the air, and the boundary layer is stable. The transport model developed as part of this project treats the entire surface energy budget, including short wavelength solar heating, long wavelength radiation exchange, sensible and latent convective heat transfer through the plant canopy, and conduction heat transfer in the ground.
Experimental Study of a Bump Compression Model
J. C. Dutton,* E. Loth* (Aerosp. Engr.), S. D. Kim, B. J. Tillotson, L. S. Chang
Boeing Phantom Works

An experimental investigation is underway of a bump model immersed in a Mach 3 supersonic flow. The basic idea is that the secondary flow set up by the three-dimensional pressure gradient on the bump drives the boundary layer flow off the bump, resulting in a thin boundary layer being ingested into an associated supersonic inlet. An optimized bump shape has been chosen for study via a separate design-of-experiments CFD investigation. The experimental methods used include Schlieren/shadowgraph photos, surface-flow visualizations, surface static pressure distributions via static taps and pressure-sensitive paint, and mean velocity and turbulence measurements obtained with laser Doppler velocimetry.

Imaging Study of Turbulent Mixing in a Supersonic Base-Bleed Flow Using PLIF
J. C. Dutton,* J. P. Kuehner
U.S. Army Research Office, DAAD19-01-1-0367

In this investigation, planar laser-induced fluorescence (PLIF) of vaporized acetone is used to obtain a semi-quantitative measure of mixing in a supersonic base flow with mass bleed. The intensity of the acetone PLIF signal is indicative of the concentration of base-bleed fluid in the recirculation region behind the base and in the wake that develops downstream. The information obtained from these images will assist in understanding the physics governing the base-bleed flowfield. This will allow better understanding of the benefits found by using base bleed to reduce drag effects on high-speed aerodynamic bodies.

Simultaneous Measurements of Pressure, Temperature, Density, and Velocity Using CARS in High-Speed Flows
J. C. Dutton,* R. P. Lucht* (Purdue Univ.), J. P. Kuehner
U.S. Army Research Office, DAAD19-01-1-0367

The objective of this research program is the development and application of a new nonintrusive optical diagnostic technique for spatially and temporally resolved measurements of pressure, temperature, density, and velocity in high-speed flows. The high-resolution N$_2$ coherent anti-Stokes Raman spectroscopy (CARS) technique takes advantage of the line-broadening effects and population shifts of the rotational structure near the nitrogen ($v = 0 \rightarrow 1$) Q-branch, which are pressure- and temperature-sensitive. To extract thermodynamic quantities from the high-resolution CARS spectra, theoretical spectra are fit to the experimental spectra in a least-squares manner, leaving pressure and temperature as adjustable parameters. Density is determined from the equation-of-state and velocity from the measured static temperature and homenergetic assumption.

Smart Mesoflaps for Aeroelastic Transportation to Control Shock/Boundary Layer Interactions
Defense Advanced Research Projects Agency, F49620-98-1-0490

A multidisciplinary research and development project is ongoing to investigate the capability and performance of a novel concept termed smart mesoflaps for aeroelastic transpiration (SMAT) that will provide mass and momentum transfer to control shock/boundary-layer interactions (SBLIs). Such interactions are critical for supersonic external and mixed-compression inlets and on transonic external aerodynamic surfaces. The SMAT concept consists of a matrix of small flaps covering an enclosed cavity. These flaps are designed to undergo local aeroelastic deflection to achieve proper mass bleed or injection when subjected to shock loads. This portion of the project investigates the aerodynamic performance of the system using advanced numerical and experimental methods.

Three-Dimensional, Supersonic Base Flows
J. C. Dutton,* A. L. Kastengren
U.S. Army Research Office, DAAD19-01-1-0367

This project seeks to obtain nonintrusive, laser-based diagnostic measurements to identify the important flow mechanisms in three-dimensional base flows that are representative of high-speed objects flying at angle-of-attack. Important questions to be addressed include the steadiness of the overall flowfield, the interaction of the lee-side vortical flow with the base flow recirculation region, and the size and shape of the separated flow regions. Measurement methods used include Schlieren/shadowgraph photography, surface streakline visualizations, LDV, planar Rayleigh/Mie scattering, and pressure-sensitive paint.

Time-Correlated Density-Fluctuation Measurements by Rayleigh Scattering
J. C. Dutton,* J. P. Kuehner
U.S. Army Research Office, DAAD19-01-1-0367

This project focuses on making nonintrusive, time-correlated measurements of density and its turbulent
fluctuations by obtaining Rayleigh scattered light. Extremely low signal levels require individual photons to be counted using a photomultiplier tube. This allows for correction of shot noise effects during data reduction. Time-series density measurements can be acquired, and, from these, fluctuations are deduced. Density fluctuations are measured to within one percent uncertainty at a frequency up to 50 kHz. An underexpanded sonic jet and supersonic backstep flowfield are being studied with this Rayleigh scattering method.

Unsteady Features of Supersonic Separated Flows
J. C. Dutton,* P. M. Cannon, J. R. Janssen
U.S. Army Research Office, DAAD19-01-1-0367

In this work, we are investigating the unsteady aspects of supersonic base flows by obtaining and analyzing time-series measurements of base-pressure fluctuations. High-frequency response pressure transducers are located at various radial and circumferential positions across the base and the mean, rms, power spectra, and cross-correlations of the time-series data are obtained. In addition, the relation of the base-pressure fluctuations to the instantaneous turbulent structure and velocity field in various regions of the flow is studied. The latter objective is accomplished by obtaining the time-series base-pressure data simultaneously with planar laser-sheet images and PIV data.

Quantitative Visualization of Convective Heat and Mass Transfer in Complex Internal Flows
J. G. Georgiadis,* L. G. Raguin
National Science Foundation; National Center for Supercomputing Applications

In applications with complex internal flows, it is the unpredictability of the tortuous fluid particle trajectories that produces enhanced heat and mass transfer, beyond the level of simple molecular diffusion. The research program consists of a combination of noninvasive measurements with magnetic resonance imaging (MRI) and numerical simulation using Lattice-Boltzmann methods (LBM) of such internal flows. Two model systems have been considered: a Taylor-Couette reactor and a helical flow mixer driven by a pair of Rushton turbines.

Development of Exciplex Fluorescence Planar Droplet Sizing Technique
C. F. Lee,* J. W. Powell
National Science Foundation, CTS-9734402 and CTS 01-16719

Planar droplet sizing (PDS) has the potential to supply droplet size information over an entire viewing region, rather than at discrete points, like phase Doppler anemometry (PDA). A PDS technique is developed to measure Sauter mean diameter (SMD). A transient spray is studied, and appropriate PDA data are taken to scale the PDS data and convert relative SMD into absolute SMD. Rather than using a traditional laser-induced fluorescence tracer, exciplex fluorescence is utilized. The use of laser-induced exciplex fluorescence can discriminate between fluorescent signals from liquid fuel and fuel vapor. This enables the application of the technique in high-temperature environment.

Experimental Study of Particle Dispersion in the Turbulent Near Wake of a Circular Cylinder
C. F. Lee,* T. Fang
Campus Research Board; National Science Foundation, CTS 01-16719

The aim of this research is to investigate the effect of vortex structure on the dispersion of solid particles in the turbulent near wake of a circular cylinder. The change in the particle dispersion pattern with the Stokes number will be explored. The goal is to improve the understanding of the particle/fluid turbulent interaction and also to investigate the control of particle dispersion by large, energetic vortices. In order to do this, a vortex identification technology for gas/particle flow based on phase averaging will be developed. The combination of a laser Doppler velocimeter (LDV) and a phase Doppler particle analyzer (PDPA) will be used in the experiment.

*Denotes principal investigator.
Fluctuation in Fully Developed Pipe Flow of a Dense Suspension and Transport Parameters
C. F. Lee,* Y. Xu
University of Illinois at Urbana-Champaign; National Science Foundation, CTS-01-16719

Fully developed pipe flow of a dense suspension is characterized by low-frequency fluctuations in wavy stratified flow in a horizontal pipe. Upgrading synchronized measurements of the laser Doppler velocimetry and phase Doppler particle analyzer gives components of fluctuating velocities and densities of particle suspensions where particle-particle interactions are significant when compared to particle-wall interactions. Data permit closure of the time-averaged equations for the predictions of stress components in a flowing suspension. Advances include optics and software for determining the local instantaneous density, velocity components, and diffusivities of particle clouds from their passage through the laser-measuring volume.

Investigation of Molten Droplet Impingement on a Flat Surface
C. F. Lee,* A. Fedorchenko,* A. B. Wang,*
(National Taiwan Univ.)
University of Illinois at Urbana-Champaign; National Science Council, Taiwan

The impingement of liquid droplets on solid substrate is of practical importance in many industrial applications. This phenomenon is the core of thermal spray coatings that can be an ideal method for microelectromechanical systems (MEMS) packaging because it is low-cost and environmentally friendly. A collaborative research study has been conducted on molten drop impact/coating for MEMS packaging. The volume of fluid method was used to track the free interface between the liquid and gas phases for various droplet materials and under different ambient and surface conditions. The computational results were then compared with experimental and analytical results.

Experimental Investigation of Viscous Two-Phase Flow in Microchannels
T. A. Newell,* P. S. Hrnjak,* J. Burr
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Void fraction and pressure drop of different microchannel tubes are being investigated. A variety of refrigerants at different mass flow rates and quality are examined.

Investigation of Refrigerant/Oil Mixtures in Horizontal Tubes
T. A. Newell,* J. C. Chato,* J. Crompton
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Void fraction and oil concentration will be investigated in a variety of refrigerant tubes and passageways.

Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes
A. J. Pearlstein,* A. Scheeline* (Chem.)
University of Illinois at Urbana-Champaign

High-temperature thermal treatment is a potentially promising approach to isolation of radioactive and otherwise hazardous metals from liquids. We are conducting computational and experimental investigations of the dynamics of liquid drops in high-temperature gas flows, with particular emphasis on how heat and mass transfer affect metal speciation. The computational work focuses on understanding how flow internal and external to drops affects transport and speciation, with particular emphasis on the drop’s wake. This involves extending our previous work to higher density ratios, different viscosity ratios, accounting for thermal effects (e.g., variable surface tension), and ultimately, multicomponent mass transfer.

Fluid Mechanics of Electrodeposition to High-Aspect Ratio Through-Holes in Printed Circuit Boards
A. J. Pearlstein,* D. L. Cotrell
University of Illinois at Urbana-Champaign;
National Institute of Standards and Technology

Rapid and uniform deposition of copper on the inner surface of high aspect ratio “through-holes” of printed circuit boards is important in electronics manufacture. We are investigating a new approach using a rotating screw electrode (RSE) inside the hole. In addition to improving the electric field distribution, the RSE generates a 3-D flow that greatly enhances mass transfer. Experiments show that plating uniformity is excellent. We have developed a numerical code to compute this

*Denotes principal investigator.
flow and have shown that the computed flow is in good agreement with two-component laser Doppler velocimetry.

Stokes-Flow Computation of Diffusion Coefficients and Rotational Diffusion Tensors for Globular Proteins

A. J. Pearlstein,* H. Zhao, J. T. Jeong
University of Illinois at Urbana-Champaign

We have established the convergence properties of a boundary element method (BEM) based computational approach for determining translational diffusion coefficients and rotational diffusion tensors for globular proteins and have shown how the approach can be used, along with the binary Nernst-Hartley equation, to estimate the effective charge on protein macroions. The approach has been applied to lysozyme and ten other proteins for which heteronuclear nuclear magnetic resonance (NMR) relaxation measurements of the rotational diffusion tensor are available.

Magnetic Stabilization of Convection during Compound Semiconductor Crystal Growth

J. S. Walker,* B. C. Houchens, L. E. Gemeny
National Science Foundation, CTS-0346302

Large single crystals of compound semiconductors are needed for future developments in wireless and optical communications. In the Czochralski process, an instability in the buoyant convection leads to a periodic and nonaxisymmetric liquid motion. The associated fluctuations in heat and mass transfer from the liquid to the crystal produce many defects in the crystal and nonuniform distributions of important additives. Magnetic fields are needed to eliminate this instability. Linear stability analyses are being developed to predict the minimum magnetic field strength needed to stabilize the buoyant convection for a given process. The results will be used to design future processes to grow larger crystals with few defects and uniform distributions of additives.

Heat Transfer

Radiative Properties and Reactive Wave Propagation Mechanisms in Nanoenergetic Material

M. Q. Brewster,* S. Begley
Los Alamos National Laboratory, 54961-001-2

The objective of this research is to investigate the reactive wave propagation mechanisms in nanoenergetic metastable intermolecular composite (MIC) materials by determining the relative importance of radiative and conductive energy transport. Radiative properties are being measured using both absolute and relative light scattering and extinction measurements. Radiative transfer theory is used to deduce the radiative properties of densely packed powders, including the effects of multiple scattering.

Radiative Transfer in Absorbing and Scattering Media

R. O. Buckius*
American Air Liquide

Radiation heat transfer models for absorbing and scattering media, including general multidimensional gaseous absorption, are being developed. The correlated-k approach has been developed and validated for thermal radiative transport in highly nonhomogeneous media containing water vapor and carbon dioxide. The developed approach models the entire infrared spectrum of water vapor and carbon dioxide, including band overlap regions, for temperatures up to 2500 K.

Thermal Radiation Scattering from Very Rough Surfaces

R. O. Buckius*
National Science Foundation; National Center for Supercomputing Applications

This research program consists of a combined analytical and experimental investigation of the scattering and emission from realistic interfaces and films, including those with surface length scales on the order of the wavelength. The objectives are to rigorously quantify the scattering of thermal radiation from electromagnetic theory, to develop approximate yet accurate models, and to experimentally determine reflection for such interfaces. Rigorous electromagnetic theory and approximate geometric optics and diffraction models have been developed and compared with experimental findings.

Heat Exchangers for Transcritical A/C Systems

C. W. Bullard,* J. Rajan
Samsung Electronics Co.

When carbon dioxide is used as a refrigerant for air conditioning systems, it operates on a transcritical thermodynamic cycle. This project explores innovative configurations for heat exchangers that can operate with reversed flow during the heating season and that also supply hot water while meeting heating or cooling demand.
Enhancement of Air-Side Heat Transfer in Offset-Strip Fin Arrays Using Unsteady Forcing
J. C. Dutton,* A. M. Jacobi,* J. M. Brutz
27 Company Consortium: Air Conditioning and Refrigeration Center

In this work, mechanical excitation (via oscillating vanes) of the flow through an offset-strip fin array is used to obtain enhanced air-side heat transfer. The basic idea is to use low-amplitude forcing at appropriate frequencies to trigger natural instabilities in the flow, such that large-scale flow fluctuations (unsteadiness, vortex shedding, etc.) with amplitudes far in excess of the forcing are obtained. These fluctuations, in turn, will lead to greatly enhanced air-side heat transfer and should do so with a minimal increase in array pressure drop. Dye-in-water flow visualizations, convective heat transfer data, and particle image velocimetry (PIV) velocity field information are being obtained.

Heat Pipes and Thermosyphons for Air Conditioning and Refrigeration Applications
P. S. Hrnjak,* A. M. Jacobi, Z. Gu
27 Company Consortium: Air Conditioning and Refrigeration Center

Heat pipes and thermosyphons have been used in a wide range of applications and industries. Recent advances in design and manufacturing have resulted in reduced cost for this technology, making it even more attractive in contemporary thermal management systems. The potential for broader application of heat pipes and thermosyphons is compelling in air conditioning and refrigeration systems, where they can be used instead of a single-phase secondary loop, or where the extremely high thermal conductivity can be exploited to achieve a significant performance improvement. The goal of this project is to explore phenomena related to oil-refrigerant mixtures in very small channels of less than 300 mm hydraulic diameters.

Heat Transfer in Condensing CO₂ at Low Temperatures
P. Hrnjak, *J. Jang
Wolverine Inc.; National Science Foundation

Carbon dioxide is an excellent refrigerant for low-temperature cascade systems and secondary loops in temperature range -50°C to -20°C. Heat transfer in round tubes and between plates is studied, with emphasis on small channels.

In-Tube Condensation of Ammonia in Smooth and Enhanced Tubes with and without Miscible Oil
P. S. Hrnjak,* T. A. Newell,* J. Vollrath, H. Komadiwirya
American Society of Heating, Refrigerating, and Air-Conditioning Engineers

Experimentally obtained data for condensation of ammonia in horizontal tubes, with and without oil, will be used to generate heat transfer and pressure-drop correlations.

Oil Effects on Heat Transfer and Pressure Drop in Small Channels
P. S. Hrnjak,* C. Seeton, B. Field
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Optimization of channel size drives diameters to lower and lower values but neglects effect of oil on pressure drop and heat transfer. The objective of this project is to explore phenomena related to oil-refrigerant mixtures in very small channels.

Refrigerant Lubricant Interaction in Transcritical CO₂ Systems
P. S. Hrnjak,* C. Seeton
Visteon

Obtaining the data for lubricant CO₂ mixtures and understanding their effect on heat transfer and pressure drop in heat exchangers and new operating regimes in the application of vehicular air conditioning systems, such as heat pumps, is the focus of this project.

Air-Side Condensate Accumulation and Shedding Effects on the Thermal Performance of Automotive Air Conditioning Evaporators
A. M. Jacobi,* J. Pienkos
Ford-Visteon

Our research has been aimed at developing design methods and guidelines for condensate management in automotive air conditioning evaporators. The research is pursued through an approach combining experimental methods and analytical modeling. The specific goals of the current work are to quantify the air-side condensate retention in automotive evaporators as a function of fin and heat exchanger geometry; to quantify the effects of surface and operating conditions on condensate retention; to quantify the effects of retained condensate on heat transfer and pressure-drop performance; and to develop an engineering tool to predict condensate retention and its effect on thermal performance.
Falling Film Behavior: Maps to Include
Vapor Shear, Dry-Out, and Flooding
A. M. Jacobi,* A. Pagan
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

This research extends our earlier work, which resulted in the first generalized flow-pattern map for predicting whether a liquid film falling from one horizontal tube to another below it will take the form of discrete droplets, jets, or a continuous sheet. Flow pattern maps will be developed for a falling liquid film in the presence of a flowing vapor. Experiments use a falling-film bundle constructed within a wind tunnel, allowing visual access during experiments with a vertical up- or down-flow of the vapor. Fluid properties and flow rates are measured and images of the flow are recorded.

High-Performance Heat Exchangers for Air Conditioning and Refrigeration Applications (Noncircular Tubes)
A. M. Jacobi,* Y. Park, G. Michna, Y. Zhong
Air Conditioning and Refrigeration Technology Institute; Department of Energy; ARTI#605-20020:NC-HX

The objective of this research is to evaluate the heat transfer and pressure-drop performance of serpentine-fin, flat-tube heat exchangers (i.e., exchangers with noncircular tubes). This assessment will be conducted for smooth, corrugated, and louvered fins, over a range of geometrical and operating parameters representative of particular heating, ventilating, air conditioning, and refrigerating applications. The performance of serpentine-fin, flat-tube designs will be compared to that of conventional, plain-fin, round-tube heat exchangers. The range of operating conditions ensures that dry-surface, wet-surface, and frosted-surface performance will be examined.

Super-Wettable Surfaces for Heat Exchangers in Air Conditioning Systems
A. M. Jacobi,* L. Liu
27 Company Consortium: Air Conditioning and Refrigeration Center

The evaporator in air conditioning systems normally operates with the air-handling surface colder than the dew-point temperature of the conditioned air. Therefore, moisture condenses and accumulates on the surface of the heat exchanger. Condensate retained on the air-side heat transfer surface has a profound impact on the performance of the heat exchanger and on the air quality. Very recently, material processing advances have produced fins with extremely low contact angles. We are studying condensate retention and its thermal-hydraulic effect for extremely wettable surfaces.

An Empirical Study of Frost Accumulation Effects on Louvered-Fin, Microchannel Heat Exchangers
A. M. Jacobi,* P. Hrnjak*
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

In this project, frost growth on folded louvered fins with microchannel tubes is studied. The emphasis of this work is on experimental study over the complex parameter space of louvered fins. The research will provide an experimental assessment of frost growth and its effects on overall heat transfer and pressure-drop behavior for microchannel heat exchangers. These experimental studies will result in performance correlations useful for the design of microchannel heat exchangers with folded, louvered fins in frost applications.

An Experimental and Analytical Study of Condensate Retention on Air-Side Heat Transfer Surfaces: Condensate Management
A. M. Jacobi,* A. ElSherbini
27 Company Consortium: Air Conditioning and Refrigeration Center

This project builds on the successes of this earlier work to provide further wet-exchanger performance data (for a micro-channel geometry), to extend the simplified retention model to handle important geometric complexities, and to explore new methods for managing condensation. This project represents a new direction in our work, and may help lead to surface designs that provide better condensate drainage and less fly out. The ultimate outcome of this work will be a new approach in modeling wet heat exchanger performance—an approach based on a rational prediction of condensate retention and its effect on air-side heat transfer and pressure drop.

An Experimental and Analytical Study of Dynamic Carry-Over
A. M. Jacobi,* A. ElSherbini
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

The problem of condensate carry-over (or fly out) is important to maintaining occupant comfort in the conditioned space. Carry-over occurs when condensate on the air-side surface is stripped into the air stream by shear and pressure forces; the droplets entrained into the airflow are carried downstream where they either land in the

*Denotes principal investigator.
Investigation of Refrigerator Heat and Mass Transfer Cabinet Loading during Open Door Conditions
T. A. Newell,* W. Terrell, C. Gutierrez
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Experimental investigation of combined heat and mass transfer in open cavities is being conducted.

Radiative Interactions with Microstructures
L. M. Phinney,* T. J. Mackin, J. W. Rogers, S. B. Koppaka
National Science Foundation, CTS-9984979

Mechanical structures with dimensions as small as a few microns are being used in conjunction with electrical circuits to create microelectromechanical systems (MEMS). These devices offer low weight and batch production methods, which are advantageous for many applications. Controlling and optimizing laser processing of microdevices during fabrication requires a thorough understanding of radiative interactions with microstructures. A novel method for repairing adhered surface-micromachined, polycrystalline silicon structures has been developed using short-pulse lasers. This project experimentally, analytically, and computationally examines the effect of radiation on microstructures.

A Theoretical and Experimental Approach to Rapid Screening and Design of Secondary Refrigerants
National Science Foundation, CTS 0124751

Novel combinatorial optimization methods are developed to search the astronomical space of potential secondary refrigerants and select the most promising ones to be evaluated experimentally.

Human Factors and Ergonomics
Supporting Exploratory Sequential Data Analysis with MacSHAPA
P. Sanderson*
University of Queensland, Australia; New York University

Human factors and cognitive engineering researchers often have to review and analyze videotaped records of people interacting with systems and with other people in the workplace. Video analysis is time-consuming work, and if it is performed without a conceptual framework the quality of results suffers accordingly. We have developed

A Study of the Application of Vortex Generators to Enhance the Air-Side Thermal Performance of Heat Exchangers
A. M. Jacobi,* A. Sommers
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Passively generated streamwise vortices can enhance air-side heat exchanger performance. Our earlier work has shown that vortex generation applied to a plain fin-and-tube heat exchanger with a large fin spacing will increase the area-goodness factor, j/f, by up to 34% at relatively high air flow rates. This new research project is focused on full-scale implementation of vortex enhancement in systems for which frost growth occurs on the air-side surface and for heat exchangers with high compactness (surface-area-to-volume ratio exceeding 2000 m$^{-1}$).

Microscale Thermal Sensing and Actuation Using MEMS
T. J. Mackin,* L. M. Phinney
National Science Foundation, CTS-0240020

The rapidly developing microelectromechanical systems (MEMS) technology has applications in the automotive, health care, aerospace, environmental sensing, and consumer products industries. MEMS devices have been used to extend thermal measurement capabilities to greater sensitivities and smaller spatial resolutions than those achieved by traditional methods. Additionally, some MEMS devices are thermally actuated. For example, bimaterial cantilevers deform when heated because of mismatches in the thermal expansion coefficients and have been used to actuate MEMS devices. This project investigates using MEMS devices to measure heat transfer performance, thermophysical properties, and thermal actuation schemes.

Investigation of Refrigerator Heat and Mass Transfer Cabinet Loading during Open Door Conditions
T. A. Newell,* W. Terrell, C. Gutierrez
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Experimental investigation of combined heat and mass transfer in open cavities is being conducted.

Radiative Interactions with Microstructures
L. M. Phinney,* T. J. Mackin, J. W. Rogers, S. B. Koppaka
National Science Foundation, CTS-9984979

Mechanical structures with dimensions as small as a few microns are being used in conjunction with electrical circuits to create microelectromechanical systems (MEMS). These devices offer low weight and batch production methods, which are advantageous for many applications. Controlling and optimizing laser processing of microdevices during fabrication requires a thorough understanding of radiative interactions with microstructures. A novel method for repairing adhered surface-micromachined, polycrystalline silicon structures has been developed using short-pulse lasers. This project experimentally, analytically, and computationally examines the effect of radiation on microstructures.

A Theoretical and Experimental Approach to Rapid Screening and Design of Secondary Refrigerants
National Science Foundation, CTS 0124751

Novel combinatorial optimization methods are developed to search the astronomical space of potential secondary refrigerants and select the most promising ones to be evaluated experimentally.

Human Factors and Ergonomics
Supporting Exploratory Sequential Data Analysis with MacSHAPA
P. Sanderson*
University of Queensland, Australia; New York University

Human factors and cognitive engineering researchers often have to review and analyze videotaped records of people interacting with systems and with other people in the workplace. Video analysis is time-consuming work, and if it is performed without a conceptual framework the quality of results suffers accordingly. We have developed

A Study of the Application of Vortex Generators to Enhance the Air-Side Thermal Performance of Heat Exchangers
A. M. Jacobi,* A. Sommers
27 Company Consortium: Air Conditioning and Refrigeration Center; National Science Foundation

Passively generated streamwise vortices can enhance air-side heat exchanger performance. Our earlier work has shown that vortex generation applied to a plain fin-and-tube heat exchanger with a large fin spacing will increase the area-goodness factor, j/f, by up to 34% at relatively high air flow rates. This new research project is focused on full-scale implementation of vortex enhancement in systems for which frost growth occurs on the air-side surface and for heat exchangers with high compactness (surface-area-to-volume ratio exceeding 2000 m$^{-1}$).

Microscale Thermal Sensing and Actuation Using MEMS
T. J. Mackin,* L. M. Phinney
National Science Foundation, CTS-0240020

The rapidly developing microelectromechanical systems (MEMS) technology has applications in the automotive, health care, aerospace, environmental sensing, and consumer products industries. MEMS devices have been used to extend thermal measurement capabilities to greater sensitivities and smaller spatial resolutions than those achieved by traditional methods. Additionally, some MEMS devices are thermally actuated. For example, bimaterial cantilevers deform when heated because of mismatches in the thermal expansion coefficients and have been used to actuate MEMS devices. This project investigates using MEMS devices to measure heat transfer performance, thermophysical properties, and thermal actuation schemes.
a conceptual framework for video analysis called exploratory sequential data analysis (ESDA) that is supported by a widely used software tool (MacSHAPA). In this project, we are engaged in further development of the ESDA framework and the MacSHAPA software so that researchers can more effectively extract meaning from video data.

Optimization-based Human Motion Simulation Models for Computer-Aided Human Centric Design
X. Zhang,* S. W. Lee
National Science Foundation

This research project seeks to integrate the development of a series of optimization-based models for digital human motion simulation and the synthesis of movement performance descriptors such that the developed models are physically realistic and computationally efficient. These models will have open structures to incorporate movement performance descriptors that can be formulated as objective functions, constraints, or parameters, and then be empirically synthesized, tested, and determined. In return, the determined or evaluated descriptors will allow the models to render complex simulated motions via efficient computations. The project will employ empirical databases of several types of complex human movements most relevant to computer-aided workplace and vehicle design as well as virtual prototyping.

Manufacturing Systems

Collaborative Research: Virtual Machine Tool
R. E. DeVor,* S. G. Kapoor,* P. Bless
National Science Foundation, DMI-00-04226

The objective of this project is to build a flexible, easily reconfigurable, and interactive software development environment that supports the large and growing body of software tools for computer-aided manufacturing (CAM). The envisioned virtual machine tool (VMT) environment will be based on a systemization of the CAM component domain, an agent-based communication framework, and a set of algorithmic strategies to develop a flexible environment for the simulation of manufacturing processes in terms of workpiece attributes and process capabilities.

Development of a Drilling Process Module for the Machining Advisor
R. E. DeVor,* S. G. Kapoor,* A. Paul
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The machining advisor system being developed uses a genetic algorithm to optimize machining parameters based on process objectives and constraints. Mechanistic models for drilling that have been developed are used to evaluate the objective function for the optimization process. The system assists the user in selecting process parameters and tool parameters that optimize the required set of objectives that may include forces, cycle time, and quality constraints. The system can also be used to design optimum tool geometries based on a set of process requirements.

Machinability Studies for Austempered Ductile Iron
R. E. DeVor,* S. G. Kapoor,* O. Bhattacharyya, M. Glowick, A. Balasubramaian
Internet Corporation; National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The use of austempered ductile iron (ADI) in automotive applications has been increasing due to its strength-to-weight ratio, wear and impact resistance, and vibration damping capacity as compared to forgings and cast steels. The machinability of ADI in its fully heat-treated state, however, has not been investigated extensively. The goal of this project is to investigate the ways and means to aggressively machine ADI in its fully heat-treated state. The resulting machining strategy will lead to machining of ADI with costs comparable to those for ferritic ductile iron.

*Denotes principal investigator.
Mechanistic Cutting Process Calibration via Microstructure-Level Simulation Models
R. E. DeVor,* S. G. Kapoor,* S. Park
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The goal is to develop a new and efficient methodology for the calibration of mechanistic force simulation models based on microstructure-based finite element modeling of the cutting processes that will eliminate the need for costly, time-consuming, and instrumentation-intensive calibration experiments. The microstructure-based simulation model will be used to study the effects of material microstructure on the cutting forces in machining, including the influence of grain size, distribution, and interlaminar structure in multiphase materials.

Next-Generation Intelligent Monitoring System
R. E. DeVor,* S. G. Kapoor,* L. Yang
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The goal of this project is to develop a machining process model-based online intelligent monitoring system to detect, isolate, and identify process variations and faults in machining processes. Using an open architecture, control-enabling environment, improved fault detection and diagnostics will lead to adaptive control strategies for process optimization.

Productivity and Quality Improvement in Deep-Hole Drilling
R. E. DeVor,* S. G. Kapoor,* J. Degenhardt
Delphi Automotive Systems; National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The goal of this project is to improve the productivity and quality of the deep-hole drilling process by understanding the major contributors to chip clogging and poor chip evacuation. Extensive experimental studies will support model development and model validation leading to the determination of the process and drill geometry variables that can facilitate the evacuation of chips in the drilling process. The project results should lead to reduced tool breakage and therefore less downtime as well as shorter machining cycles and better hole quality.

Development of an Interactive System for Machining Process Planning
P. M. Ferreira,* J. A. Stori,* A. Seth, K. Van Bronkhorst
Consortium for Advanced Manufacturing–International

Conventional approaches to computer-aided process planning typically rely on a rigid set of manufacturing features and a collection of heuristics for feature extraction, tool selection, and operation sequencing. Often, such systems sacrifice flexibility and adaptability in the pursuit of complete automation. The objective of this project is the development of an extendible and interactive system for machining process planning. Computational and geometrical support is provided for a planning environment in which the high-level strategies of a human process planner can be explored, validated, and simulated. A key component of the proposed system is the ability to extend the feature set, search strategies, and planning rules through a high-level scripting language.

Logical Control of Large-Scale Discrete Event Systems with Application to Flexible Automation
P. M. Ferreira,* C. Yuan
University of Illinois at Urbana-Champaign; University Scholars Award; University of Illinois Manufacturing Research Center; Consortium for Advanced Manufacturing–International

Structural control refers to the shaping of the structure of the state space of a discrete-event system. The state space is a directed graph, and one of the most important structural properties required of this graph is that the component containing the initial state be strongly connected. This guarantees that the system is free of deadlocks under normal operation. In this project we devise control policies (which are essentially cuts on this directed graph) that are polynomially computable and guarantee strong conductivity while ensuring that the size of the strongly connected component is large. Special system structures under which these cuts are “optimal” are also explored.

Micro- and Mesoscale Stages for Manufacturing
P. M. Ferreira,* J. Stori, Q. Yao
University of Illinois at Urbana-Champaign Research Board

Parallel-kinematic mechanics are proving successful as the basis of high-performance machine tools of conventional size. This project applies novel parallel kinematic schemes to developing two- and three-dimensional micro- and mesoscale stages.
A Parallel Kinematics High-Speed Machine Tool
P. M. Ferreira,* J. A. Stori,* J. Dong
National Science Foundation, DMI-99-84214; University of Illinois at Urbana-Champaign

A high-speed, three-axis machine tool has been developed based on a novel parallel kinematics XY table (PKXYT). The PKXYT offers attractive performance characteristics including low inertia, dynamically matched axes, trivial kinematics, and high accuracy. In order to fully exploit the capabilities of this machine, we are developing planning and control strategies to maximize performance objectives while operating within the feasible region of the particular hardware. We are evaluating the capabilities of this machine in a variety of application domains, including graphite electrodes for the EDM process, biomedical implants, and small aerospace components.

Analysis of Tool Chipping Mechanisms in Metal Cutting Processes
S. G. Kapoor,* R. E. DeVor, S. Park
Kennametal, Inc.; National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

Edge chipping is one of the dominant modes of tool failure for turning and milling processes. This project aims to develop a more thorough and phenomenologically based understanding of the mechanisms that drive the tool chipping problem and the associated factors that drive the onset of tool chipping by developing a model-based predictive capability that would project the likelihood of the occurrence of chipping for a given combination of tool material, tool geometry, workpiece material, and process conditions and geometry.

Modeling and Analysis of Internal Thread Forming Process
S. G. Kapoor,* R. E. DeVor,* C. Warrington
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

Many applications in industry rely on threaded holes as a means of joining components. The most popular way to create the threads is via cutting. However, another method, thread forming, has recently seen increasing interest. The mechanism behind thread forming is plastic deformation of the material, which also causes work hardening; thus, threads are able to withstand greater loads. The project aims to investigate thread quality, in particular, the formation of split crests. Through both experiments and numerical modeling the impact of tap design and process parameters, a split crest formation is being studied.

Noise Reduction for High-Speed Milling Process
S. G. Kapoor,* R. E. DeVor,* S. Marathe, K. Sampath
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

Machining at very high speeds (range of 20,000–30,000 surface feet per minute) often causes a great amount of noise. The noise levels to which operators are exposed usually exceed the total allowable worker noise dose (90–95 db). The goal of this project is to gain an understanding of the fundamental sources of noise generation in machining and to develop effective techniques to mitigate the noise in the machining process and in machine tool systems.

An Investigation on the Machining Performance of the Reaming Process
S. G. Kapoor,* R. E. DeVor,* O. Bhattacharyya
National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The objective of this research is to develop a more complete understanding of the cutting force mechanisms and process stability for the reaming process and their influence on the hole quality. Specifically, a mechanistic model for the reaming process that will predict torque, thrust, and hole quality in reaming based on given reamer geometry, machining conditions, specific workpiece material and a set of process faults experienced during the reaming process will be developed.

A Methodology for High-Speed/High-Performance Machining
S. G. Kapoor,* R. E. DeVor,* M. Jun
Kennametal, Inc.; National Science Foundation Industry/University Cooperative Research Center for Machine Tool Systems Research

The significance for high-speed/high-performance machining (two to three times higher than the conventional machining speeds and feeds) has increased due to reduced process time and improved workpiece accuracy and surface finish. However, due to short contact times between cutting-edge engagements and process errors, the dynamic behavior of the machining process is not well understood. The objectives of this project are to model the end milling dynamics in the presence of process faults such as parallel axis offset runout, spindle tilt, and
gyroscopic and rotary inertial effects and to develop a methodology to evaluate a given machining application for the purpose of determining an optimum process plan.

Parametric Cost Modeling
M. L. Philpott,* R. S. Schrader, S. Hogan
John Deere Harvester

The goal of this project is to develop a methodology for real-time, feature-based costing (FBC) integrated into a computer-aided design (CAD) system. The methodology utilizes a combination of innovative memory management combinations of possible manufacturing tool paths and routings. This process enables the user of a CAD system to find the most cost-effective method of manufacture in real time, feature by feature, when designing a part. Parametric feature information is extracted from the CAD system and mathematical models convert this information into recommended manufacturing processes and costs. Initial pilot implementation at John Deere has demonstrated functionality and accuracy of the methodology and high acceptance by design and manufacturing engineers.

Decision Support Systems for Electronics Manufacturing
J. Stori,* P. Ferreira, T. Dong, D. Mukhaphadyay
Rockwell-Collins Inc.

In this project, we develop software tools that integrate product design information from STEP AP210 models of printed wire-based assemblies, factory resource information, and processing know-how. The tools being developed include producibility decision support, process simulation software, and manufacturing systems configuration software.

Development of a Native AP210 Package Modeler
J. A. Stori,* P. M. Ferreira, T. Dong
National Institute of Standards and Technology

The objective of this project is to develop an electrical component modeler native to STEP AP 210. This component modeler will provide an easy-to-use GUI that allows users to quickly define the many geometric constructs (such as leads, contacts, seating planes, dimensions, tolerances, etc.) and the many functional capabilities of features (e.g., wire, microwave waveguide, optical waveguide, electrical, thermal, mounting, orientation) that are called for in the standard. By providing a “parametric” capability based on package technology, it will allow for the rapid generation of “library” objects that can be used to facilitate the population of a component library of AP 210 packaged parts.

Process Characterization of Vibrostrengthening and Application to Fatigue Enhancement of Aluminum and Titanium Components
J. A. Stori,* P. M. Ferreira, M. Sangid
The Boeing Corporation

The focus of this project is the development and characterization of a vibratory finishing process for fatigue enhancement of aluminum and titanium components. Preliminary experimental studies suggest that this process can compete favorably with shot peening for certain aerospace applications. Project tasks include the development of predictive process models, experimental process validation, and the development of application guidelines for production.

Process Optimization of Electrodischarge Machining (EDM)
J. A. Stori,* N. Jayaraman
National Science Foundation, DMI-99-84214

The electrodischarge machining (EDM) process is a nontraditional material removal process capable of attaining high accuracy in hard workpiece materials. Exploiting the capabilities of EDM involves the manipulation of a wide range of process parameters including spark pulse profiles, peak currents, gap voltages, and feed rates. Unlike traditional computer numerical control (CNC) processes, process feedback is an integral component of a stable machining operation. A model-based framework is being developed for the optimization of the process parameters and control strategies. Expected benefits include the ability to generate optimal parameters for new materials with a minimum of experimentation and the development of an analytical tool for balancing the trade-offs between accuracy and process efficiency.

Process-Conscious Tool Path Generation
J. A. Stori,* P. Jang
University of Illinois at Urbana-Champaign; National Science Foundation, DMI-99-84214

Tool-path generation for machining operations has traditionally been approached from a purely geometric perspective. When the cutting mechanics and process dynamics are considered, existing tool path strategies are found to be significantly lacking. Excessive plunging and slotting, sharp velocity discontinuities, and changing cut geometry limit production rates, reduce part quality, and increase tool wear. New algorithms are developed to reduce variations in cutter engagement and chip geometry, resulting in a stable, predictable, and controllable process. Particular emphasis is placed on accommodating the dynamic limitations of modern, high-speed machining centers.
System-Level Fault Detection and Diagnosis
J. A. Stori,* S. Dey
Ford Motor Co.

Process variability, such as that occurring in workpiece hardness or casting geometry, complicates the detection and diagnosis of process faults in a production-machining environment. Process monitoring algorithms often fail to detect gradual changes and can misdiagnose sudden process shifts. In the present work, a system-level process monitoring methodology is being developed to increase fault diagnosis reliability when a single workpiece undergoes a series of sequential machining operations. Upstream sensor data are used to modify process limits for downstream operations, and data from sequential operations are used to collectively discern variations that may not be detected within a single operation.

Materials Behavior

Constitutive Modeling of Aluminum Sheets for Accurate Formability and Springback Predictions
Y. Huang*
Ford Motor Co.; Alcan Aluminum

The objective of this research project is to develop constitutive models of aluminum sheets for automotive applications.

Mechanism-based Theories of Strengthening and Hardening for Alloy Design and Processing
Y. Huang*
National Science Foundation, CMS-0084980; ALCOA

We use the theory of Mechanism-based Strain Gradient (MSG) plasticity to investigate the size effect in alloys.

Thermal and Loading Dynamics of Energetic Materials
Y. Huang*
Los Alamos National Laboratory

We study the mechanical behavior of energetic materials under thermal and dynamic loading conditions.

A Crystal Plasticity Model to Study Aluminum Bendability
Y. Huang*
Alcan Aluminum Co.

The objective of this project is to develop a single crystal plasticity model and study the bendability of aluminum in automotive applications.

Biaxial Nonproportional Testing of Aircraft Alloys
P. Kurath*
General Electric, 00-2711 RFA

An age of many service aircraft invokes questions of safety and remaining useful service life. Most baseline fatigue data are uniaxial and inherently proportional. However, several major service events are nonproportional. Current efforts attempt to quantify the effect of these loadings on the service life at several temperatures.

Multiaxial High-Cycle Fatigue
P. Kurath*
Dayton Research Institute, RSC00011

With many components, it is desirable to ascertain if their actual service life is longer than that for which they were originally designed. Most fatigue test data are obtained from uniaxial specimens, and the extension of this data to more complex stress states has not been verified. Hence, long life multiaxial fatigue tests will be performed to evaluate existing design algorithms with an emphasis on high cycle fatigue. Existing multiaxial fatigue life model predictions often differ by orders of magnitude. The most appropriate algorithm for this life range will be identified or, if necessary, an alternate approach will be suggested.

Residual Stress Simulations for Welded Structures
P. Kurath*
John Deere Company

Residual stresses play a major role in fatigue durability assessment. The thermal cycle during welding can cause a complex three-dimensional residual stress field that can be altered by subsequent cyclic service deformation. Analytical techniques are being developed to examine welding variables affect on the residual stresses. Structural redistribution due to subsequent cyclic events is also being addressed. The redistribution may alter variable amplitude life predictions.

Temperature-Dependent Deformation of Plasma Sprayed Steels
P. Kurath*
Ford Motor Co.

Plasma deposition is a method currently under investigation to fabricate moderate to high hardness tooling in near-net shape. This would eliminate subsequent heat treatment and associated warping due to nonsymmetrical residual stresses. Spot surface temperatures during deposition are as high as 700°C,
with subsequent cooling to ambient temperature. In order to model the residual stresses, it is vital to model the time-dependent mechanical response of the material. Baseline mechanical strength and durability of the product are also being investigated.

Durability of Advanced Materials

Fracture Control Program

Recent developments in processing technology have resulted in advanced materials with lower fabrication costs and improvements in microstructural uniformity. To utilize the full potential of these materials, new design tools have to be developed in collaboration with industry. Examples of such materials include metal matrix composites and short reinforcement fibers in epoxy matrices. The metal matrix composites with higher elastic modulus, higher temperature capabilities, and lower weight compared with their counterparts represent excellent opportunities for engine, brake, and rotating components in the ground vehicle industry.

Fatigue Crack Growth and Crack Closure

Fracture Control Program

The aim of this study is to develop a life prediction methodology for fatigue crack growth based on the changes in crack opening levels with maximum stress level, crack length, geometry, mean stress, and microstructure. The primary tool for the determination of opening stress is an elastic-plastic, finite-element simulation of fatigue crack growth. Stress-strain behavior in the model accounts for slip at the microlevel as well as elastic anisotropy. Fatigue crack growth data obtained under conditions of intermediate- and large-scale yielding, including low-cycle fatigue and biaxial loading, are successfully correlated only when closure-modified parameters are employed.

Fatigue of Welds and Adhesive Joints

Fracture Control Program

Factors that control the fatigue behavior of welded components are currently being studied. Analytical methods for estimating the total fatigue life of butt and fillet welds subjected to variable-amplitude loading histories are currently being evaluated. Surface treatments, such as shot peening and laser dressing of the weld toe, are also being investigated as possible methods for improving the fatigue strength. Recently, a new model for estimating the fatigue life of weldments has been proposed for butt, T-joint, and cruciform weldments using the concepts of “crack closure” for cracks emanating from a notch. Results compare favorably with experimental data in the University of Illinois fatigue data bank and with experimental work in the literature.

Life Prediction Methods for Notched Members under Nonproportional Multiaxial Fatigue

Fracture Control Program

The purpose of this research is to develop fatigue life prediction methods for notched components subjected to nonproportional multiaxial fatigue. To do this, the local stresses and strains must be related to the global stresses and strains by some approximation procedure, such as Neuber’s rule. Experimental tests on notched shafts subjected to proportional and nonproportional loading in tension and torsion are being performed. Results from these tests are being used to develop and verify the approximation procedure. Fatigue life estimates will then be made using an appropriate damage model that is based upon observations made during the tests. A life prediction scheme will be developed from the approximation procedure, and the appropriate damage model and will be verified from the results of the tests.
Probabilistic Methods
Fracture Control Program

A comprehensive fatigue damage model is being developed to address the following issues: What governs the nucleation of a microcrack within a single grain or other suitable microstructural unit cell? What governs the growth of this microcrack into adjacent microstructural unit cells? When does the microcrack develop enough plasticity to sustain its growth? These elements will be combined into a model for the entire fatigue damage process.

Determining the Mechanical Constitutive Properties of Metals as a Function of Strain Rate and Temperature: A Combined Experimental and Modeling Approach
I. Robertson* (Mater. Sci. & Engr.), C. Smith, J. Kimberley, A. Beaudoin,* J. Lambros,* H. Padilla
U.S. Department of Energy, DEFG03-02NA00072

The focus of this program is to develop a physical-based plasticity model of the response of polycrystalline material under extreme thermomechanical loading conditions. A key element will be the interaction of the deformation processes with grain boundaries. Information on microstructure evolution will be obtained by combining high strain rate testing with quasi-static tests in situ in the transmission electron microscope (TEM). The experimentally determined deformation mechanisms and processes will form the basis of a constitutive model describing the mechanical response across grain boundaries. This will be implemented in plasticity codes for polycrystalline systems and the predictions verified experimentally.

Interface and Reliability Studies of MEMS and Microelectronics
M. T. A. Saif,* A. Haque
National Science Foundation, ECS-97-34368

The objective is to investigate in situ, at an atomic to nanometer scale, the fundamental mechanisms of failure in microelectronic components and micromechanical systems. Microinstruments developed from micromechanical systems, as well as macroanalytical devices such as transmission electron microscopes, are employed for the study. The study is initially directed to experimentally investigate the micromechanisms of failure of interfaces formed by a metal (aluminum) and a ceramic (silicon dioxide). The effects of environment, such as humidity, pressure, and temperature, on the mechanisms of failure, are also studied.

Self-Assembled Nanowires
M. T. A. Saif,* H. Sehitoglu,* B. E. Alaca
Mechanical Engineering Gauthier Program for Exploratory Studies; National Science Foundation, ECS 024103

Forming engineered nanostructures is a major challenge in the field nanotechnology. Here, we form self-assembled nanowires and investigate the underlying mechanics that govern the self assembly. We have shown experimentally that plasma-deposited silicon dioxide may crack when annealed due to residual stress. We form nanowires by simply depositing nickel in the cracks, which forms wires with lateral dimension of around 20 nm. The length of the wires can be several micrometers. We study the parameters that govern the dimension of the wires and their geometry, as well as their mechanical and transport properties.

Detwinning and Hysteresis in NiTi Alloys
H. S. Sehitoglu,* A. J. Wagoner Johnson,* R. Hamilton, H. Woo (Dongguk Univ., South Korea), H. J. Maier (Univ. of Paderborn, Germany), Y. Chumlyakov (Siberian Physical and Technical Instit., Russia)
National Science Foundation

Shape memory alloys (SMA) are widely used in biomedical, sensor, and actuator applications because of their large recoverable strains and pseudoelastic behavior that arises from a reversible martensitic phase transformation. This work focuses on two characteristics observed in NiTi SMAs—namely, detwinning of martensite and hysteresis under temperature cycling. The detwinning mechanism produces recoverable strains that exceed the theoretical strains predicted for martensitic transformations in these materials. The thermal hysteresis, defined as the width of the strain-temperature cycle, depends on the heat treatment in NiTi. The aged microstructure produces a smaller hysteresis as compared to the solutionized case. In this work, we summarize the theoretically achievable strains in single crystal NiTi and study the transformation strains and thermal hysteresis experimentally for aged and solutionized conditions.
Fe-based Transforming Single Crystals
H. Sehitoglu,* C. Efstathiou
Air Force Office of Scientific Research

The purpose of this work is to develop new materials, based on Fe-Co-Ni-Ti, that exhibit pseudoelastic and shape memory behavior. The Fe-based alloys hold strong promise as they have high strength and high transformation strains. Methods to limit slip and improve the reversibility of transformation are currently being explored.

Linking Rail Surface Yield Strength, Microstructure, and Wear
H. Sehitoglu,* A. A. Polycarpou,* D. Canadinc, K. M. Lee
Transportation Technology Center Inc.; Association of American Railroads

The durability of rails is a major concern for railroads due to the safety and high maintenance requirements. Pearlitic steels have been used in rails for some time. This material has good low-cycle fatigue and toughness properties. However, under heavy loads, the surfaces flow plastically, producing spallation, cracking, and ultimately, fracture. Because of the increasing severity of service conditions, new materials must be explored. An alternative material to the existing pearlitic composition is the bainitic microstructure. In this research, a new methodology for durability analysis that predicts the wear resistance from first principles will be developed. We utilize nanoindentation tests to characterize the surface properties, bulk deformation tests to understand the role of crystallographic texture, and the analytical procedure for ratchetting/fatigue.

Mechanics and Materials Issues in Mesoscale Compressors
H. Sehitoglu,* M. T. A. Saif,* E. Alaca
Defense Advanced Research Projects Agency

Mechanics calculations are conducted for thin membranes under the combined action of electrostatic forces and refrigerant pressures. Anisotropic plate theory will be used with variable support conditions at the ends of the membrane. The potential for instability in the form of bubbled mode will be explored. The aim of these calculations is to optimize the cross-sectional geometry of the membrane. Experiments are designed to assess the structural integrity of the membrane under conditions of fatigue loading. In this case the special concern will be on the bending stresses at the end, where bonding to silicon occurs, and also on crack growth behavior due to the modulus mismatch at the interface of dissimilar materials used.

Origins of Asymmetry in Phase Transformations
H. Sehitoglu,* A. J. Wagoner Johnson,* R. Hamilton
U.S. Department of Energy, DE-FG02-93ER14393

The basic information obtained from the work will generate improved understanding of transformation under stress, stress-strain behavior as a function of temperature, and fatigue conditions. Single crystals of different orientations (in solution-treated and precipitated microstructures) of nitinol are studied. Several unique experiments under combined shear stress-hydrostatic pressure are conducted. Based on these experiments, the work will set the background to evaluate the theories proposed and lay the foundation for new ones with particular emphasis on complex changes in transformation strains.

Thermomechanical Fatigue of Aluminum Alloys
H. Sehitoglu,* C. Engler, T. Foglesong, H. Maier
Ford Motor Co.

The thermomechanical fatigue (TMF) resistance of a material often limits the lifetime of a component such as the cylinder head in engines. Isothermal tests performed at various temperatures, mechanical strain ranges, and strain rates may not capture many of the important damage micromechanisms under varying temperature and strain (i.e., TMF), and experiments and modeling of thermomechanical damage processes are needed. The study is developing a physically based life prediction method for the Al 319 and Al 356 alloys. The overall program considers the effect of the following process parameters on mechanical behavior: secondary dendrite arm spacing, effect of aging heat treatment, effect of porosity, and compositional effects.

Thermomechanical Fatigue of Cast Iron
H. Sehitoglu,* A. Viswanath
Ford Motor Co.

The purpose of this work is to describe the stress-strain response of grey cast iron at high temperatures. Experimental and modeling efforts are under way to describe tension-compression asymmetry, the mean stress effects in these alloys that are typically used in disc brakes.

Twining in Single Crystal Steels
H. Sehitoglu,* I. Karaman, D. Canadinc
National Science Foundation, CMS-99-00090

Orientation and stress state dependence of twinning is studied with novel experiments in materials with low stacking fault energy. These materials include Hadfield and
austenitic stainless steels with nitrogen additions. One of the unusual attributes of these steels is that during deformation, an upward curvature in stress-strain curves develops. Considerable tension-compression asymmetry develops in these classes of materials because of directionality of twinning. A micromechanics modeling effort, incorporating the twin volume fraction and twin evolution, will be undertaken for predicting the stress-strain response as a function of orientation, stress-state, and texture evolution.

Parameter Estimation of Plasticity Models via the Finite-Element Method and Inverse Analysis

D. A. Tortorelli,* D. Bammann* (Sandia Natl. Lab.), D. Pattillo
Sandia National Laboratories

Various plasticity models, which include both temperature and strain rate effects, are being implemented in a small strain plasticity finite-element code. Parameter estimation will be performed via an inverse analysis. Novel to this work is the computation of the parameter distributions.

Stochastic Crystal Plasticity

D. A. Tortorelli,* A. J. Beaudoin, M. R. Tonks
U.S. DoE Accelerated Strategic Computing Initiative

Modeling the texture evolution in crystalline materials allows for the accurate prediction of their plastic deformation. Though these models are effective, currently they are deterministic (they do not account for variation in the model parameters). Our research investigates the effect of parameter variations on texture evolution.

Residual Stress Effects on the Mechanical Properties of Lead Wires for Cardiac Devices

A. J. Wagoner Johnson,* A. A. Polycarpou,* J. Kelm, M. Al-Shawaf, N. Yu
Guidant Corporation

Materials used in cardiac devices serve in critical applications and, therefore, their properties must be well characterized and well understood. In this project, we are determining the residual stress magnitude and profile, as well as the effects of residual stress on the apparent shear modulus in micron-diameter wires used in pacemakers. Nanoindentation, a technique often used to determine the properties of thin films that are in a biaxial state of stress, is used to determine the residual stress profile along the transverse and longitudinal cross sections of wires. Here, the triaxial stress state of the wires must be considered.

Materials Processing

Coordinated Application of Constitutive Models, Simulation, and Experiment for Study of Metal-Forming Processes

A. J. Beaudoin,* M. E. Bange
National Science Foundation, NSF-98-75154; Alcan International, Ltd.

There exists considerable difference between the laboratory setting used for characterization of metals and the industrial plant where the resulting material models are applied. The present work combines experimental test procedures and finite-element simulations to pose a deformation history that lies between the simple uniaxial tests used in laboratory characterization and the complexity of a production process. Inhomogeneity is considered at the scale of the microstructure, as well as from the friction and geometric conditions induced during forming. The resulting experimental design serves to further the utility of existing constitutive models and provides a rigorous validation for the predictive capability of finite-element codes.

Development of a Two-Phase Model for the Hot Deformation of Highly Alloyed Aluminum

Department of Energy; Alcoa Aluminum

This research is developing a fundamental understanding of deformation of wrought alloys with emphasis on the upper temperatures bounding the hot working regime. Traditional constitutive models consider the alloy as a single-phase system. This research is developing a two-phase (grain interior and boundary) mathematical description. The focus on hot rolling provides a computation platform for optimization of the thermomechanical processing window (TPW) within industrial capabilities of temperature and deformation rate. This research will provide the computational tools to allow “faster and cooler” processing of highly alloyed aluminum.

Numerical Simulation of the Relaxation of Aluminum Alloy 5182 after Sheet Forming

A. J. Beaudoin,* L. Zhu
National Science Foundation, NSF-98-75154; Alcan International, Ltd.

Time-dependent relaxation processes continue after stamping of sheet metal components. Hence, properties and shape of the part will evolve with time. By means of

*Denotes principal investigator.
numerical simulation, the variation of shape and stress of sheet metal with relaxation time is predicted. Relaxation times vary from seconds to thousands of hours. Application is made to aluminum sheet metal intended for autobody and packaging applications.

Bone Fluid Flow
J. A. Dantzig*
*University of Illinois at Urbana-Champaign

We investigate the flow of fluids through bone under the action of applied loads. The objective is to better understand the transport of nutrients and the role of microstructure in bone remodeling.

Numerical and Experimental Investigation of Solidification in Biological Systems
J. A. Dantzig,* A. Hubel (Univ. of Minnesota)
*National Aeronautics and Space Administration

This project is a combined experimental and modeling effort aimed at understanding the interaction of solidification with cells in biological systems. The objective is to understand and improve cryopreservation protocols.

Phase-Field Modeling of Microstructure Development in Microgravity
J. A. Dantzig;* N. Goldenfeld* (Phys.)
*National Aeronautics and Space Administration (NASA), NAG 8-1657

In this project, we use advanced computational techniques to model dendritic growth with the goal of studying and understanding microgravity experiments. We collaborate with other NASA researchers studying both pure materials and alloys.

Simulation of Epitaxial Growth of Elastic Thin Films
E. Fried* (Washington Univ.), D. A. Tortorelli,* D. Kulkarni
*National Science Foundation; ITR

We employ our domain-decomposition-based, finite-element approach to simulate epitaxial growth in thin films. A continuum theory based on configurational forces is employed. The dynamical theory accounts for both stress and diffusion within the epitaxial surface.

Multiscale Models for Microstructure Simulation and Process Design
R. B. Haber,* J. A. Dantzig,* D. Johnson
*National Science Foundation, DMR-01-21695

This is an interdisciplinary effort to simulate microstructure evolution during processing. The efforts range in scale from atomistic to macroscopic, coupling thermal, chemical, and mechanical response. We use large-scale parallel computation to attack these problems.

Diffusion Effects in Photopolymerization
A. J. Pearlstein,* G. Terrones (Los Alamos Natl. Lab.)
*University of Illinois at Urbana-Champaign

Photopolymerization is important in fabrication of microelectronics, dental prostheses, and materials for a number of other applications. Since light is attenuated as it passes through the curing medium, nonuniformity is inherent to the process. We have recently shown how nonuniform photoinitiation leads to nonuniform conversion of monomer and nonuniform molecular weight distributions in photopolymerized materials. Current work focusing on effects of diffusion already has shown that diffusion can increase the degree of nonuniformity in the final material since initiator diffusion to the front of the layer leads to increased rates of initiation and monomer conversion there.

Effect of Processing Conditions on Development of Oxide Film Microstructure in Electro-Oxidation of Aluminum Alloys
A. J. Pearlstein,* A. Scheeline* (Chem.)
*University of Illinois at Urbana-Champaign

Surface preparation of aluminum alloys for adhesive bonding is an important process in using aluminum in automotive structural applications. Proper choice of acid, oxidant, temperature, contact time, electrical potential, and other processing conditions is critical in forming porous oxide films on the alloy that simultaneously provide corrosion protection and high bond strength. Our goal is to understand how processing affects oxide microstructure and to use that information to develop a better process. We have developed a laminar-flow, rotating cylinder, electrode reactor for rapid evaluation of contact time and potential effects and have used it to grow microstructures of remarkable uniformity.
Development of a Process to Continuously Melt, Refine, and Cast High-Quality Steel
B. G. Thomas,* L. Zhang, J. Aoki
U.S. Department of Energy; University of Missouri–Rolla

Many operational problems and costs are associated with feeding the continuous casting process from the continuous electric furnace steelmaking operation using batch ladles. A multifaceted project combining plant experiments, lab experiments, and computational modeling aims to design a fully continuous process using a series of intermediate vessels where alloy addition and refining occurs at steady state. The University of Illinois role focuses on the computational modeling aspects of the project. Three-dimensional models of multiphase turbulent fluid flow, mixing, and particle motion are being developed to assist with the design calculations. The results will help to design a feasible process, while identifying and solving possible problems prior to the pilot plant stage.

Flow Dynamics and Inclusion Transport in Continuous Casting of Steel
B. G. Thomas,* S. P. Vanka,* L. Zhang, Q. Yuan, B. Zhao
National Science Foundation GOALI No. DMI-0115486; Continuous Casting Consortium (Accumold; AK Steel; Swedish Institute for Metals Research; Postech, Korea)

Computational models of transient, multiphase fluid flow are being developed, validated, and applied to improve understanding of transient flow, inclusion transport and defect formation in the mold region during the continuous casting of steel slabs. Process parameters, such as nozzle geometry and gas injection rate, which are easy to change and yet profoundly influence both flow and product quality, are being optimized. Models to compute the transport and entrapment of inclusion particles are being tested through water model experiments, steel plant trials, and metallographic measurements at several steel companies who are cosponsoring this research.

Initial Solidification and Meniscus Hook Formation in Continuous Slab Casting
Continuous Casting Consortium (Accumold; AK Steel; Swedish Institute for Metals Research; Postech, Korea)

The first few seconds of solidification at the meniscus create the final cast product surface, and may include defects such as deep oscillation marks, surface depressions, and subsurface hooks in the microstructure, if conditions are not optimal. In-house computational heat flow and stress models of the meniscus region are being developed and applied to simulate these phenomena. Plant measurements such as mold temperature, liquid surface shape, and metallographic examination of oscillation marks and hooks are being conducted on slabs cast at POSCO. Together, ways to optimize casting conditions such as speed, level control, superheat, mold oscillation practice, and mold powder composition are being investigated to minimize meniscus hook depth.

Interface Heat Transfer and Friction in Continuous Casting
B. G. Thomas,* Y. Meng
Continuous Casting Consortium (Accumold; AK Steel; Swedish Institute for Metals Research; Postech, Korea)

Heat transfer in continuous casting molds is controlled primarily by heat conduction across the interface between the solidifying steel shell and the water-cooled copper mold. A comprehensive model, CON1D, has been developed to predict this heat transfer, including mass and momentum balances on the interfacial powder layers, superheat delivery from the turbulent liquid pool, gap formation, and friction between the shell and the mold walls. Plant and lab experiments are being conducted to measure interfacial heat transfer in the continuous casting mold. These are needed to obtain fundamental interfacial property data, so that the model can become a fully predictive tool to solve quality problems and interpret mold thermocouple and friction signals.

Investigation of Steel Cleanliness during Ingot Teeming
B. G. Thomas,* L. Zhang, B. Rietow
Ingot Metallurgy Forum

Inclusions trapped during bottom-poured static-cast ingots lead to quality problems in the final product. Computational models of transient, multiphase fluid flow in this process are being developed and applied to improve understanding of inclusion transport and capture. Process parameters, such as teeming rate and runner geometry, are being optimized. Plant experiments to measure the composition, morphology, and distribution of inclusions, refractory wear, and other relevant phenomena are being conducted for additional insight and model validation.
Thermal Stress Analysis of Solidifying Steel Shells
B. G. Thomas,* C. Li, C. Ojeda, S. Koric
Continuous Casting Consortium (Accumold; AK Steel; Swedish Institute for Metals Research; Postech, Korea; Columbus Stainless; Hatch Associates

A coupled, two-dimensional, transient finite-element model has been developed to predict temperature, shrinkage, and stress development in both horizontal and vertical sections through the solidifying shell as it moves down through the caster. The model includes the effects of the volume change during phase transformation, ferrostatic pressure, the generalized plane strain stress state, the constraining influence of the mold, creep plasticity, and the dynamic effect of solidification shrinkage on heat transfer across the interfacial gap between the mold and the shell. The model is being applied to simulate the early stages of solidification, ideal taper for different steel grades, maximum casting speed to avoid excessive bulging, and understanding crack formation.

Fiber Orientation in Injection Molded Composites
C. L. Tucker,* J. Wang
Delphi Automotive Systems

Some injection-molded plastics are reinforced with short glass fibers. The flow patterns during mold filling cause the fibers to orient in specific directions, making the part stronger and stiffer in those directions, and weaker and more compliant in others. Proper design of these parts requires that we know these orientation patterns. We have combined 2-D and 3-D computational fluid mechanics software with a theory of fiber orientation to predict orientation patterns in molded features with complex geometry. Current work focuses on improving the accuracy of the model for small parts with short flow lengths.

Mixing and Microstructure Control in Polymer Processing
C. L. Tucker,* C. A. Florek, T. Pham
National Science Foundation, DMI-98-13020

A polymer blend consists, at the microscopic level, of droplets of one polymer dispersed in a continuous matrix of another. The microstructure of a blend (i.e., the size, shape, and orientation of the droplets) has a major influence on the properties of the bulk material. We are developing theoretical models for how this microstructure arises during processing, from the deformation during mixing. We are also testing the model with carefully controlled experiments on droplet deformation and writing numerical simulations to predict the microstructure in complex flows, such as extruders and polymer mixers.

Nano-, Micro-, and Meso-Technology

CAREER: Integrated Computational MEMS (IC MEMS)
N. R. Aluru*
National Science Foundation

This project focuses on the development of efficient and radically simpler-to-use device CAD for microelectromechanical systems (MEMS) by employing meshless finite cloud methods; the development of mixed continuum (based on meshless computational methods) and atomic scale approaches for accurate analysis of mixed-technology MEMS; and the development of efficient parallel algorithms for implementation of the device modeling tools on distributed memory parallel computers.

ITR: Computational Prototyping of Micro-Electro-Fluidic-Mechanical Systems
N. R. Aluru*
National Science Foundation

In this research we focus on a particular class of microelectromechanical systems (MEMS), referred to as microelectrofluidicmechanical systems (MEFMS). MEFMS are miniaturized sensors, actuators, devices, and systems, where mechanical, electrical, and fluidic energy domains play a central role. Many electrofluidicmechanical devices have been designed and fabricated (e.g., pressure sensors, accelerometers, gyroscopes, digital micro-mirrors, microphones, and other devices). While fabrication approaches for these devices are mature enough, investigation of design alternatives for many of these devices is currently limited because of the lack of computational design tools. In this research, we are developing analysis and design tools for microelectrofluidicmechanical systems.

Mixed-Domain Simulations, Reduced-Order Models and Circuits for Bio-MEMS
N. R. Aluru*
National Science Foundation

The objective of this research is to develop analysis and design tools for device, reduced-order, and circuit modeling of biological electromechanical systems (bio-MEMS) for structured design of bio-MEMS. The objectives of device modeling are to develop mathematical models to include all significant microscopic effects in bio-MEMS, develop fast and efficient scattered point and mixed-regime techniques for mixed-domain
analysis of biofluidic devices. The objective of reduced-order modeling is to represent the device by a low-order model that can capture the functional behavior. Low-order models based on a weighted snapshot approach will be developed to capture multiple time scales encountered in bio-MEMS. By identifying several bio-fluidic components, which could form the basic building blocks for complex bio-MEMS on a chip, and developing reduced-order models for these building blocks, circuit models will be developed to design large-scale, bio-integrated circuits on a chip.

Biofluidic Intelligent Processors for Preparative Manipulations of Biological Warfare Agents at the Attomole Level
P. W. Bohn, M. A. Shannon,* J. V. Sweedler
Defense Advanced Research Project Agency

The biological intelligent processor (BIP) is a project to develop an intelligent molecular microprocessor for the manipulation of molecules. To do so, we are developing a multicompartment, multimembrane biofluidic device with characteristic linear dimensions of nanometers and volumes ranging from tens of attoliters and up, specifically designed to manipulate species that must be handled at extremely low masses (e.g., potent neurotoxins encountered in biological warfare agents). Electrokinetic flow is exploited to move species among the separate compartments of the device, and the nanopore membranes that separate the compartments also perform important biomolecular manipulations (e.g., affinity binding and molecular sieving). As a demonstration vehicle, we will produce structures that specifically separate and detect the potent neurotoxin serotype A from Clostridium botulinum, BoNT/A.

Tissue Engineering the Next Generation of Human Skin Replacements
University of Illinois at Urbana-Champaign Critical Research Initiative

This project investigates how intercellular junctions are formed between skin cells due to the influence of mechanical stimulus. The project combines mechanics, microfabrication, and biology to develop a tool that can specifically determine the effect that applied strain has on the formation of cell to cell and cell to basal laminate junctions.

Ab Initio Simulation of Electrokinetic Nanoflows
J. G. Georgiadis,* D. C. Karampinos
NSF Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, DMI-0328162; NSF Center of Advanced Materials for the Purification of Water with Systems (CAMPWS), CTS-0120978

The role of this project is to develop quantum mechanical (ab initio) models that can combine with “best-practice” molecular dynamics and multiscale approaches in the simulation of electrokinetic nanoflows. These one-of-a-kind simulation tools will be used to understand and characterize the molecular gate technology employed in developing the micro-nano-fluid network toolkit of the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS).

Chemical Vapor Deposition of Carbon Nanotube/Diamond Composites
N. G. Glumac,* M. F. Yu, S. P. Vanka
National Science Foundation, CMS-0304132; University of Illinois at Urbana-Champaign

In order to capitalize on the favorable properties of diamond while addressing the brittleness problem, a carbon nanotube (CNT)/diamond composite material is manufactured that should have extreme hardness combined with outstanding toughness. The objectives of this nanoscale exploratory research project are thus the growth of composite films of carbon nanotubes and diamond using chemical-vapor deposition, to extensively characterize these films, and to understand the film-growth process at the atomistic level through detailed simulations of the molecular processes.

* Denotes principal investigator.
The objective of this research is to develop new computational design tools with rigorous experimental validation to enable design and development of distributed, heterogeneous mixed-technology systems. At the component or the device level, the research will focus on four building blocks: microelectromechanical systems (MEMS), biological microelectromechanical systems (bio-MEMS), nanoelectromechanical systems (NEMS), and biological ion channels integrated with nanoelectronics (nanobioelectronics). Efficient computational design tools integrated with experimental validation will be developed for each of these building blocks. At the system level, the research focuses on integration of MEMS and bio-MEMS with conventional electronics. Device-level modeling research will focus on development of new, scattered-point computational methods for analysis of micro- and nanoscale devices; development of multiscale approaches combining continuum and molecular approaches; and development of efficient, reduced-order modeling approaches. System-level modeling research will focus on development of new algorithms and techniques to integrate various microdevice partial differential equations solvers with the circuit simulator SPICE3. The experimental effort will focus on development of new fabrication approaches for realizing nanobioelectronics, NEMS, and systems-level integration of MEMS and bio-MEMS with conventional electronics.

P. S. Hrnjak,* X. Tu

In the second phase of the project, the focus is on heat transfer and pressure drop in refrigerant flow through 100- to 200-micron hydraulic diameter channels.

Heat Transfer in Evaporating CO₂ at Low Temperatures
P. Hrnjak,* C. Y. Park
National Science Foundation; 27 Company Consortium: Air Conditioning and Refrigeration Center

Heat transfer in evaporation at CO₂ with and without oil in channels 1 to 6 mm is studied.

Analysis of Micro- and Nano-Fluidic Network for Scheduling and Planning of Fluid Delivery
Y. Huang*
National Science Foundation Center for Nanoscale Chemical-Electrical-Mechanical-Manufacturing Systems; University of Illinois at Urbana-Champaign

We are developing multiscale models to study micro- and nano-fluidic networks for scheduling and planning of fluid delivery.

Atomistic-Based Continuum Models of Micro- and Nano-Engineered Systems/Processes
Y. Huang,* R. E. DeVor, K. J. Hsia, S. G. Kapoor
National Science Foundation

We are developing atomistic-based continuum models to study issues related to micro- and nano-scale engineering.

Mechanism-based Modeling and Simulation in Nanomechanics
Y. Huang*
National Science Foundation, CMS-01-03257; Mechanical and Industrial Engineering, Program for Exploratory Studies

We develop multiscale computational methods to link atomistic models with continuum analysis in order to study the nanoscale mechanical behavior of materials.

A Nanoscale Quasi-Continuum Theory with Applications to Carbon Nanotubes
Y. Huang*
Mechanical and Industrial Engineering, Program for Exploratory Studies; National Science Foundation, CMS-00-99909; Alexander von Humboldt Foundation; National Science Foundation of China; National Center for Supercomputing Applications

This study aims at developing a quasi-continuum theory for nanoscale applications. It incorporates the information from atomistic studies into a continuum framework through the constitutive modeling.
Ion-Beam Machining to Eliminate Stress-Induced Curvature in MEMS Optical Devices
H. T. Johnson,* T. G. Bifano* (Boston Univ.)

A combined experimental and computational approach is used to develop a method of stress-induced curvature reduction in freestanding microelectromechanical (MEMS) thin film structures. The method is based on a theoretical understanding of residual stress sources that lead to curvature in such structures. Using ion-beam machining techniques, it is then possible to impose compensating stresses in sufficiently thin surface layers of material that will restore the structures to planar configurations. The objective of the project is to develop an understanding and methodology for this new approach.

Nanoscale Exploratory Research: Coupled Electronic and Mechanical Properties by Conformational Statistics Tight-Binding
H. T. Johnson,* G. Chirikjian (Johns Hopkins Univ.)

An atomistic modeling method is developed based on order-N, tight-binding methods and recent developments in conformational statistics. The method is applied to study several basic problems in nanoscale materials in which mechanical behavior and electronic properties are strongly coupled. The approach is based on the Cyrot-Lackmann moments theorem for tight-binding, which holds that the local electronic structure in a material can be constructed from knowledge of the atomic topology in the region of interest. The local atomic-scale topology is computed here using fast statistical numerical techniques for computing convolutions on lattices, developed originally for use in polymer physics and robot kinematics. By combining the two seemingly disparate areas of atomistic modeling and statistics of random walks, a powerful new modeling method is developed and demonstrated for problems in carbon nanotubes and defects and interfaces in semiconductor heterostructures.

Strain Effects on Photonic Device Properties across Length Scales
H. T. Johnson*

Computational and analytical models are used to study three separate but related fundamental problems in electronic and optical materials behavior. Applications of the research are in microelectronics and telecommunications devices. At the atomic scale, coupling of mechanical and electronic structure is studied using tight-binding atomistic methods. At the mesoscale or 10- to 100-nm level, strain effects on optical properties of quantum dots are studied using finite element analysis. At the continuum scale, residual stress effects on nano-, micro-, and meso-technology devices are studied using continuum analytical and coupled FEM-atomistic methods.

Design Rules for High-Temperature Microchemical Systems
P. J. A. Kenis,* R. I. Masel, E. G. Seebauer (Chem. & Biomol. Engr.); M. A. Shannon;* D. Vlachos (Univ. of Delaware)

Microfabrication of high-band gap materials and MEMS programs are combined with the study of energetics to help advance a new technology: microcombustion. Noncatalytic, spontaneous gas phase combustion within extremely small cavities has long been thought to be impossible. However, Richard Masel at the University of Illinois at Urbana-Champaign had developed a surface reaction theory that suggests that microcombustion could be possible, if wall quenching could be suppressed in a unique way. This seed project, funded by the Defense Advanced Research Projects Agency Electronics Technology Office through DynCorp, demonstrates that a hydrocarbon flame could be initiated and sustained within a microcavity, using an engineered materials combustor. A patent has been awarded on this fundamental work. We have received a Multiple University Research Initiative grant from the Department of Defense and a Critical Research Initiative grant from the University of Illinois at Urbana-Champaign to conduct basic research to understand and exploit this strongly coupled phenomenon for high-temperature microchemical systems. The goal is to create new microreactors to perform chemical processing that is very difficult on the normal scale and to generate very high-power density power at the microscale.

Formic Acid Microfuel Cell MEMS for Micropower Generation
P. J. A. Kenis, R. I. Masel (Chem. & Biomol. Engr.); M. A. Shannon;* A. Wieckowski (Chem.)

This project researches microfabricated room temperature fuel cells to supply 20 microwatts of steady-state power to 250 milliwatts of peak power for on-chip microelectromechanical system (MEMS) devices. A major problem with a number of MEMS devices in remote applications is the lack of a micropower source to run the devices. Indeed, batteries can be several to hundreds of times bigger than the MEMS device itself.

*Denotes principal investigator.
This project seeks to solve this problem by developing a unique, new type of fuel cell that delivers high energy and power density, all at ambient temperature conditions.

Design Rules for High-Temperature Micro-Chemical Reactors
Multidisciplinary University Research Initiative

This project exploits the high-temperature microcombustors previously developed by this group to build high-temperature (> 700ºC) micro-chemical reactors. Working in conjunction with colleagues in Chemical Engineering, we are building microscale ammonia decomposition reactors to produce hydrogen gas for polymer electrolyte membrane (PEM) micro-fuel cells. These systems make use of the high-energy density of NH₃ in liquid form at room temperature at ~ 8.5 atm to drive the full system. Several fundamental problems exist in how to microfabricate these systems, as well as to thermally isolate microscale structures at high temperatures.

Silicon-Based Fuel Cells for Micro-Power Generation (MPG)
Defense Advanced Research Projects Agency

The objective of this project is to develop new types of silicon-microfabricated, room-temperature fuel cells supply for on-chip microelectromechanical systems (MEMS) devices. A major problem with a number of MEMS devices in remote applications is the lack of a micropower source that delivers high energy and power density, all at ambient temperature conditions. Three types of micro-fuel cells are being explored (hydrogen, methanol, and formic acid) to address both the power and energy density issues. Several fundamental questions in microfabrication, and in charge, ion, and proton transport within the catalyst structure and within proton exchange membranes, still need to be resolved.

Nonmetallic, Flexible, Thin, Multichannel Heat Exchangers for Refrigeration and Air Conditioning Applications
M. L. Philpott,* M. A. Shannon*
27 Company Consortium: Air Conditioning and Refrigeration Center, National Science Foundation

The objective of this research is to investigate nonmetallic heat exchangers (NMHEx) made from polymers for refrigeration, air conditioning, and other cooling applications. Specifically, we are investigating the use of polymer multichannel heat exchangers that are thin (less than 250 mm), flexible (can be repeatedly bent without failure and can conform to different geometries after manufacture), and extremely lightweight (less than 0.7 kg/m² or 0.14 lb/ft²). These nonmetallic heat exchangers are made from two types of Kapton, a high-performance polymer renowned for its excellent thermal stability, mechanical toughness, high strength, and superior chemical resistance.

Dynamic Contact Modeling and Experiments on Miniature Systems
A. A. Polycarpou,* X. Shi, A. Suh
National Science Foundation

In this five-year Faculty Early Career Development (CAREER) Program research, a systematic approach to dynamic contact studies of Microsystems will be performed based on system-independent interfacial models that are coupled to the system dependent dynamics of the interface. A unique feature of the proposed approach is the direct incorporation of the intermolecular (adhesion) forces and kinetic friction models based on continuum mechanics into a dynamically moving contact interface. This will enable contact length scales from micrometer to millimeter range and beyond to be covered.

Feasibility Study of Novel Instrumentation with nN Force Resolution
A. A. Polycarpou,* N. Yu
National Science Foundation

This one-year exploratory research deals with the co-development and purchase of novel instrumentation capable of direct-force measurements with very high resolution of 1 nN. Current state-of-the-art, direct-force instruments are capable of 0.5 N to 1 N force resolution. The proposed instrumentation will then be integrated with an existing multimode atomic force microscope and will be used to perform preliminary interfacial nanoscale experiments to demonstrate the nN force resolution capabilities. Specifically, two types of experiments will be performed: “sub-nanoindentation” experiments for extracting material properties of sub-10 nm ultrathin layers and adhesion and pull-off force experiments using “ideal” surfaces and actual surfaces from Microsystems.

*Denotes principal investigator.
Friction and Vibration Interaction for Ultralow Fly-Height Head Disk Interfaces Intended for 1 Tbit/In^2 Areal Densities
A. A. Polycarpou,* S. C. Lee
National Storage Industry Consortium

The objective of this research is to study the interaction between friction, adhesion, and vibration of ultralow flying head disk interfaces and their effect on the fly-height and off-track motions of the recording slider. The focus of the research is to characterize the contacting interface and develop appropriate quasi-dynamic friction and adhesion models, develop linear and nonlinear dynamic models for the head disk interface system, and combine the adhesion, friction, and vibration models to accurately predict the instantaneous adhesion and friction forces, normal (fly-height/bouncing vibrations), and lateral (off-track) motions.

Three-Dimensional Surface Topography Effects on Intermolecular Forces in Miniature Systems
A. A. Polycarpou,* A. Suh
Information Storage Industry Consortium

Miniature devices including nano-, micro-, and mesotechnology and the head disk interface in magnetic storage often include very smooth surfaces, typically having root-mean-square roughness, Rq, of the order of 10 nm or less. When such smooth surfaces contact, or come into proximity of each other, strong intermolecular (adhesive) forces are developed and may result in unacceptable and possibly catastrophic adhesion, stiction, friction, and wear. In this work, an adhesion model is developed and is used to calculate the adhesion forces at typical nano-, micro-, and mesotechnology interfaces. The model strongly depends on the surface roughness parameters (3-D), which are measurements using an atomic force microscope.

In-situ TEM and SEM Studies of Fundamental Deformation and Failure Processes of Nano-Grained FCC Metals Using MEMS Stages
I. Robertson* (Mater. Sci. & Engr.); T. A. Saif,* J. Han, K. Hattar
National Science Foundation, DMR 0237400

The properties of materials at nanoscale regime are controlled by laws different from their large-scale counterparts. For example, the underlying mechanisms controlling the deformation of nano materials change from being dominated by dislocation to grain boundary processes. Understanding these processes at nanoscale is important if reliable devices and new structural materials are to be constructed intelligently. In this project, mechanical properties of nano-grained materials are measured, in situ in the transmission electron microscope (TEM), using a novel microelectromechanical systems (MEMS) instrument developed at the University of Illinois. Through these measurements, it will be possible, for the first time, to directly correlate the macroscopic mechanical properties with the underlying mechanisms that govern such properties in nano-grained materials.

Bistable MEMS for Nonvolatile Information Storage and Optomechanical Computing in Harsh Environments
M. T. A. Saif,* N. R. Miller,* M. Sulfridge
National Science Foundation, ECS-0083155

This project investigates a micromechanical bistable system for use in nonvolatile data storage and optomechanical computing in harsh environments, such as extreme temperatures, where conventional microelectronics face severe limitations. Here, a micromechanical bistable system is studied. It has two states: 1 or 0 (logic true or logic false), thus giving rise to the potential of digital data storage. The states can be changed by the pressure of a moderate-intensity laser beam, making possible the potential of developing optomechanical computers. Being a mechanical system, it is inherently robust and is suitable for harsh environment applications.

Capillary Forces at the Interface of a MEMS Probe and a Liquid
M. T. A. Saif*
University of Illinois at Urbana-Champaign

Capillary force allows small, flat, solid plates to float on liquids. The density of the plate material is higher than liquid. This project investigates the mechanisms of floatation and the force interaction between two small floating bodies. The project aims to identify the parameter space in which a microelectromechanical systems (MEMS) probe can be used to manipulate an object in liquid without inundating the corresponding MEMS devices.

Effect of Grain Boundary and Size on Electro-Thermomechanical Properties and Internal Friction of Nano-Grained Thin Metal Films Using MEMS Devices
T. A. Saif,* D. Tewari
National Science Foundation, ECS-0304243

Submicron metal films and wires are essential ingredients for micro/nano electronics as well as for microelectromechanical systems (MEMS) and nano-

*Denotes principal investigator.
mechanical systems. Such metal structures are typically polycrystalline in nature, with nanoscale grains that offer an abundance of grain boundaries. Such boundaries play a major role in determining the thermo electromechanical properties of nano-grained metals. Such properties at nanoscale are far from being fully understood. This project explores the role of grain boundaries in determining elastic and plastic properties, electrical and thermal conductivity, and internal friction of nano-grained metals. MEMS sensors and actuators are employed in exploring these properties.

Active Nanopore Membranes
M. A. Shannon*
*NSF Center of Advanced Materials for the Purification of Water with Systems (CAMPWS)

The objective of this project is to develop a low-energy usage, active ion pump for separating ions from water. In desalination systems, water molecules are separated from the influent aqueous ionic solution that they reside in, leaving a higher concentrated aqueous solution as the exfluent. In this project, we are developing a material system that will actively pump hydrated cations and anions from ionic aqueous solutions (> 20,000 to < 500 ppm) using electrical energy and diffusion to power active nanopore membranes. The goals are to reduce energy consumption required for ion separation, and to improve the understanding of the effect of eliminating concentration polarization impedance, a critical issue for aqueous ion separation.

Characterization of Transport in Single Nanopores
M. A. Shannon;* P. W. Bohn (Chem.)
*NSF Center of Advanced Materials for the Purification of Water with Systems (CAMPWS)

The objective is to characterize transport in nanopores by studying the properties of isolated, single nanofluidic channels by measuring nanochannel flow and binding characteristics of individual fluorescent probe molecules, to elucidate mechanisms involved in removal of trace contaminants with advanced water purification materials. One fundamental problem that pervades all water purification and reclamation technologies is the understanding of fluid flow and chemical reactions in restricted geometries that for structures with nanometer characteristic dimensions are fundamentally different than the same phenomena in their larger mm-scale counterparts. Therefore, macromolecules may traverse a significant fraction of a nanometer-diameter channel while rotating through part of its range, thus significantly changing its transport and absorption probabilities.

Chemical Synthesis of Piezoelectric and Ferroelectric Nanomaterials
M. F. Yu*
University of Illinois at Urbana-Champaign

The materials behaviors at the nanoscale are expected to be very different from that at large scale. For piezoelectric materials, the ever-shrinking device dimension may ultimately approach the stability limit for the existence and applicability of piezoelectric or ferroelectric phase. However, from the application point of view, there still exists a high demand for ever-smaller devices down to nanoscale to acquire high speed, high sensitivity, and other unique engineering “figure of merits.” The research is to synthesize the nanowire, nanoparticle, and nanoribbon of piezoelectric and ferroelectric properties for the study of low-dimensional piezoelectricity and ferroelectricity.

Development of an Integrated and Versatile Testing Platform for High Precision Metrology and Nano-CEMMS Toolbit Evaluation
M. F. Yu,* P. M. Ferreira
National Science Foundation; University of Illinois at Urbana-Champaign

This project is aimed at developing a multifunctional and adaptive testing platform through the development and integration of nanometer-resolution and multiple degrees of freedom motion station with nanometer positioning-sensing mechanisms. The project will explore and evaluate approaches and control strategies to 3-D nanometer-resolution parallel positioning, position sensing, and calibration of planar surfaces that correspond to the toolbit-work piece interface of the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS). The project will extend to the integration of flexible and scaled-down toolbit interfaces and include the functions for the rapid characterization and evaluation of the performance of individual gated nanopores within the Nano-CEMMS toolbit on a work piece.

Melting and Solidification with a Nanoprobe
M. F. Yu,* J. G. Wen, J. B. Freund
University of Illinois at Urbana-Champaign; National Science Foundation; U.S. Department of Energy

The research is to understand the fundamental issues related to nanoprobe-induced melting and solidification at the nanoscale and to explore the possibility of using nanoprobe for heat-assisted nanoscale patterning and machining. The research will exploit nanomaterials with high thermal conductivity, such as C and BN nanotubes, to fabricate nanopores; develop and use a homemade heating and manipulation stage to perform *in situ*
experiment of nanoprobe induced melting, solidification, and fabrication inside a high-resolution transmission electron microscope; and apply molecular dynamic simulation method to model nanoscale heat transfer.

Piezo- and Ferro-Electricity of One-Dimensional Nanomaterials
M. F. Yu*
*National Science Foundation, CMS-0324643

The project is aimed to achieve fundamental understanding of the piezoelectric and ferroelectric effects at low dimension for the purpose of developing novel nanoscale devices critical for nanoscale electromechanical systems. The subject, which has not been extensively studied yet, is critically related to the further advance of nanoscale science and technology.

A Multiscale, Integrated System for Efficient Free-Space Nanoscale Characterization, Manipulation, and Assembly
M. F. Yu,* C. Liu, Y. Huang
*University of Illinois at Urbana-Champaign

The trend for more condensed and integrated electronic and electromechanical devices calls for the miniaturization of individual components and the explorations of their functions. Tools, integrated with multi-degree of freedom (MDOF) positioning stages and multifunctional probes, and possessing subnanometer positioning resolution and in situ multifunctional characterization capabilities, will allow the manipulation, assembly, prototyping, and characterization of nanoscale devices, either in free space or on surface. We plan to demonstrate such a multiscale, integrated system for achieving flexible and efficient nanoscale construction and characterization, and to develop and apply advanced multiscale modeling methods to analyze and assist the development and characterization.

Operations Research

Designing Optimal Generalized Hill Climbing Algorithms with Applications to Discrete Manufacturing Process Design Optimization
*Air Force Office of Scientific Research, F49620-01-1-0007

The goal of this project is to develop new methods for designing optimal algorithms for discrete optimization problems. This research will use the generalized hill climbing algorithm framework as the domain for this work. The primary application for this research is a discrete manufacturing process design optimization problem of interest to the Materials Process Design Branch of the Air Force Research Laboratory. Generalized hill climbing (GHC) algorithms provide a well-defined framework to model and study the performance of algorithms for intractable discrete optimization problems. This project includes several goals: identify and develop new performance criteria (both asymptotic and finite-time) that can be used to define finite-time performance measures for GHC algorithms that more closely match how practitioners apply and use such algorithms; study the implications of these finite-time performance measures on various GHC algorithms; and evaluate the application of GHC algorithms, and the finite-time performance measures, to discrete manufacturing process design optimization problems, with the objective of determining how to optimally design such algorithms.

Engineering the Economics of Combination Vaccines for Pediatric Immunization
S. H. Jacobson,* T. Karnani
*National Science Foundation, DMI-0222597; Mechanical and Industrial Engineering, Program for Exploratory Studies

Childhood vaccination has become the single greatest defense against infectious diseases among children in the United States. Moreover, biotechnology breakthroughs are making it possible for vaccine manufacturers to develop vaccine antigens for a rapidly growing list of additional diseases, including the development of vaccines products that combine several individual vaccine antigens into a single injection. The goal of this project is to design operations research models and tools that can be used to engineer the economic and implementation issues associated with pediatric combination vaccines. The potential impact of this research is that the tools developed can be used to evaluate the economic and implementation of any new pediatric combination vaccine products as they enter the market place.

A Study of Aviation Access Control Security Systems
S. H. Jacobson,* L. Albert, T. Karnani
*National Science Foundation, DMI-0114499

International terrorism inflicted on the nation’s aviation system poses a significant threat to the economic and political infrastructure of the United States. Aviation security technologies in airports throughout the United States provide an important line of defense against such threats. It is a challenge to determine how to optimally
determine which security technologies to purchase as well as where to deploy such technologies and how to use them most effectively. The objective of this research project is to develop operations research models and algorithms to address these questions. The results of this project will be used to develop strategies to improve the security of the entire national airspace system through a systematic process of cost-effectively allocating aviation security resources.

A Study of Local Search Strategies Using Generalized Hill Climbing Algorithms
S. H. Jacobson,* D. E. Armstrong, H. Kaul
National Science Foundation, DMI-9907980

The objective of this project is to study local search strategies for discrete optimization problems, using the generalized hill climbing algorithm framework. Generalized hill climbing algorithms provide a well-defined structure for classifying and studying a large body of local search algorithms typically used to address a wide variety of (real-world) manufacturing and service industry problems that can be modeled as discrete optimization problems. This project presents and classifies local search algorithms (including simulated annealing, threshold accepting, and tabu search, among others) using the generalized hill climbing algorithm framework; identifies and develops convergence results and new finite-time performance measures for such algorithms (that more closely match how practitioners would apply them); studies the implications of these convergence results and finite-time performance measures on particular algorithm formulations; and evaluates the application of such algorithms to manufacturing and service industry discrete optimization problems.

Duality in Integer Programming and Its Application to Integrated Airline Planning
D. Klabjan*
National Science Foundation, DMI-0-322250

The strength of linear programming duality is well known and it is one of the most acclaimed results in theory and practice. On the other hand, it is usually taken for granted that duality is not achievable for integer programs. The objective of this proposal is to break the perception barrier by showing that indeed it is possible to compute an analog to the linear programming dual vector for an integer program. A new family of dual functions for integer programs is proposed. Several properties and many results with linear programming counterparts are given. More importantly, an algorithm is proposed that computes such a function for an integer program and it is shown that, in a reasonable amount of time, an optimal dual function can be computed. The proposed dual functions apply only to pure integer programs, and their extension to mixed integer programs is required. In addition, the framework for an algorithm that computes a dual function from the branch-and-cut tree is given. One of the applications of dual functions is in decomposition algorithms. We design a novel decomposition approach to integrated airline planning. Many decision support systems require sensitivity analysis of the underlying optimization models. For example, decision makers like to get estimates on the change of profitability if a unit of a resource is changed or piece of a product is modified by a small amount. Existing tools use ad-hoc techniques to perform sensitivity analysis. In this proposal, we explore the area of more scientific and practical approaches to sensitivity analysis. The proposed theory and algorithms also yield new methodology for solving large-scale models deemed so far intractable.

Next-Generation Linear Optimization
D. Klabjan*
Sabre, Inc.; National Center for Supercomputing Applications (NCSA)

We will develop a software library for airline crew scheduling. Unique features of the library will be the use of parallel algorithms, portability, independence of the complex crew scheduling rules, and its generality. The design will easily allow the use of the library for other similar problems such as robust crew scheduling and rostering.

Robust Airline Crew Scheduling: Move-Up Crews
D. Klabjan*
National Science Foundation, DMI-00-84826

Due to the flight disruptions in operations, the crew scheduling cost at the end of a month is substantially higher than the projected cost in planning. We will study models and solutions methodologies that produce more robust crew schedules in planning. We propose an objective function that captures the number of move-up crews, (i.e., the crews that can be swapped in operations). We will study several solution methodologies for solving the models.

Dynamic Models for Optimizing Retail Assortments
U. S. Palekar,* G. Daruka
Sears; University of Illinois at Urbana-Champaign

We consider the problem of determining the best set of items to be displayed as well as the amount to be carried in

*Denotes principal investigator.
retail stores in a multiperiod scenario. The model considers
product interactions, such as substitution, ensembles,
contiguities, and dependencies. We analyze the
computational complexity of several variants of the
problem. We also design and test exact algorithms for
the solution of the problem.

Mathematical Models for Joint Optimization
of Supply Chain and Trade Promotion Plans
U. S. Palekar,* H. Suri
Kellogg Co.

We consider the problem of supply chain optimization
when demand can be managed by optimally selecting
trade promotional plans. The model is a large integer-
programming problem that is solved using a multilevel
decomposition approach.

Optimal Pricing for a Product Assortment
with Multiple Market Segments
U. S. Palekar,* M. Singh
University of Illinois at Urbana-Champaign

We consider the problem of determining the optimal prices
of a set of items with different utilities and costs. Demand
for an item is dependent on the price differential between
the item and the next item with higher utility. Customers
can be grouped into segments based on the lowest utility
acceptable and the maximum acceptable price. We develop
an algorithm to determine the optimal pricing based on
product timing to maximize profit. We also consider
variants such as ladder pricing and anchor items.
Assortment decisions to add or drop products based
on regularity conditions and optimality considerations
are also considered.

Pricing and Allocation of Distributed Public
Use Facilities
U. S. Palekar,* H. Suri
University of Illinois at Urbana-Champaign

We consider the problem of pricing distributed service
facilities, such as parking when demand is elastic.
We consider segmented pricing schemes where customers
in different segments have different privileges. We develop
a mathematical model that simultaneously determines
prices and allocation of customers to different facilities.

BARON—An All-Purpose Global
Optimization Package
N. V. Sahinidis*
Mitsubishi Chemical Research Corporation

The area of global optimization software is so
important yet so underdeveloped. This project aims
at the development of BARON: an all-purpose,
high-performance global optimization methodology to
support engineering design and manufacturing. BARON
(branch-and-reduce-optimization-navigator) executes a
global optimization strategy by navigating its way through
user-provided subroutines. Its optimization strategy
integrates conventional branch-and-bound with a wide
variety of range reduction tests and branching schemes.
Specialized modules have been developed for special
problem classes including concave minimization over
polyhedral, polynomial programs, mixed integer and
quadratic programs, and factorable programs.

Branch-and-Reduce Algorithms
for Global Optimization
N. V. Sahinidis*
Mitsubishi Chemical Research Corporation

This project develops global optimization methodologies
for escaping from local minima traps. The algorithms
combine branch and bound with optimality- and
feasibility-based range reduction, finite branching
rules, tight bounding schemes, and efficient heuristics
to accelerate convergence. Problems considered include
the following: minimization of concave functions over
polytopes, multiplicative programs, bilinear programs,
integer programs, and factorable programs. We apply our
algorithms to problems in supply chain management,
portfolio optimization, and engineering design.

Convexification and Global Optimization
of the Pooling Problem
N. V. Sahinidis*
National Science Foundation, DMI-95-02722

The pooling problem arises in the supply chain design
of petrochemicals where crude oils are mixed to produce
intermediate quality streams that are finally blended into
final products. The main challenge in finding optimal
solutions to pooling problems is that they involve
nonlinearities that result in many local optima. We propose
a new formulation of the pooling problem and prove that
it is tighter than all previous ones. Using this new
formulation in the context of a branch and bound
algorithm, we are able to solve all benchmark pooling
problems with very little computational effort.

*Denotes principal investigator.
Planning in the Process Industry under Uncertainty
N. V. Sahinidis*
National Science Foundation, DMI-01-29283

As the chemical industry becomes increasingly competitive, tools to hedge against uncertainty become increasingly important. The project develops a two-stage stochastic optimization approach to the problem of planning in the process industries. We consider both discrete and continuous random parameters. In one research direction, we introduce the upper partial mean as a new measure of robustness and developed robust process planning algorithms under uncertainty. In another research direction, we develop approximation algorithms for two-stage stochastic integer programs. We provide proofs that these schemes are optimal in expectation as the problem size increases.

Multiobjective Optimization and Sensitivity Analysis for Discrete and Continuous Optimization Problems
J. A. Stori,* S. H. Jacobson,* V. Venkat
Austral Engineering and Software; Air Force Office of Scientific Research, F49620-00-C-0044

The objective of this research is to develop and define procedures that can be used to identify optimal solutions in a multiobjective environment, as well as to assess the quality of these solutions using sensitivity analysis and post-optimality analysis procedures. For systems with continuous parameters and smooth (e.g., continuous) objective functions, there has been a significant amount of research on this topic. For discrete solution spaces, the literature has been much more limited. This suggests the difficulty and challenges associated with the post-optimality analysis problem for multiobjective optimization in the discrete domain.

Production Management
Supply Chain Design for Multiproduct, Multilocation Production Systems
U. S. Palekar,* G. Cho, G. Spielberg-Korspeter
University of Illinois at Urbana-Champaign

We consider the problem of designing the manufacturing supply chain for complex assembled products. We develop mathematical models and algorithms for multiproduct supply chains that share common pasts as well as common resources. The model is a mixed integer program and can be used for assembly products with several thousand modes in the bill of materials. We extend the basic model to consider the joint optimization of production, transportation, and inventory costs. The model assumes a base-stock policy and determines the optimal placement of safety stocks and the allocation of production activities to various locations.

A Branch-and-Price Algorithm for Optimal Distribution System Design
U. S. Palekar,* A. Agarwal
University of Illinois at Urbana-Champaign

We consider the problem of designing a multiechelon distribution network to minimize the cost of safety-stocks and transportation. We assume a base-stock policy at each location and determine the network topology and the location of safety stocks in a three-echelon system. The branch-and-price algorithm is an exact algorithm and can solve practical-sized problems.

Dynamic Pricing for Manufacturer Capacity
W. Zhao*
University of Illinois at Urbana-Champaign

Advances in e-commerce, enterprise information systems, and automated production process control enable manufacturers to sell their processing capacity to more potential customers. We develop models that dynamically determine the price of the capacity in order to maximize the total expected revenue. The prices depend on the demand forecast, existing orders, and due dates.

Journal Articles
Automotive Systems

Bioengineering

Combustion and Propulsion

Computational Science and Engineering

Control Systems

Design Methodology and Tribology

Dynamic Systems

Seiler, P. and Sengupta, R. A bounded real lemma for jump systems. *Institute of Electrical and Electronic Engineers Transactions on Automatic Control, 48*:9, 1651-1654 (Sep. 2003).

Energy Systems and Thermodynamics

Engineering Mechanics

Fluid Dynamics

Heat Transfer

Human Factors and Ergonomics

Manufacturing Systems

Materials Behavior

Materials Processing

Nano-, Micro-, and Meso-Technology

Pahl, R. J. and Shannon, M. A. Design of a cylindrical high-voltage, high-temperature vacuum insulator. *Institute of Electrical and Electronic Engineers Transactions on Dielectrics and Electrical Insulation, 10*:2, 240-244 (Apr. 2003).

Operations Research

Production Management

Books

Design Methodology and Tribology

Materials Processing

Book Chapters

Combustion and Propulsion

Computational Science and Engineering

Control Systems

Engineering Mechanics

Heat Transfer

Materials Processing

Nano-, Micro-, and Meso-Technology

Operations Research

Papers Presented at Conferences and Symposia

Automotive Systems

Bioengineering

Combustion and Propulsion

Control Systems

Design Methodology and Tribology

Dynamic Systems

Energy Systems and Thermodynamics

Fluid Dynamics

Heat Transfer

Human Factors and Ergonomics

Manufacturing Systems

Materials Behavior

Materials Processing

Operations Research

Theses

Automotive Systems

Bioengineering

Combustion and Propulsion

Computational Science and Engineering

Control Systems

Design Methodology and Tribology

Energy Systems and Thermodynamics

Engineering Mechanics

Fluid Dynamics

Heat Transfer

Human Factors and Ergonomics

Manufacturing Systems

Materials Behavior

Materials Processing

Nano-, Micro-, and Meso-Technology

Operations Research

Awards and Honors

Andrew G. Alleyne
Outstanding Graduate Student Instructor Award, 1990-1991
Listed in the Daily Illini “Incomplete List of Teachers
Ranked as Excellent by Their Students,” Spring 1995
Faculty Early Development (CAREER) Award, National Science Foundation, 1996
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1998, 1999
Xerox Award for Faculty Research, University of Illinois College of Engineering, 2000
Who’s Who Among America’s Teachers, 2000
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2001, 2003
Fulbright Fellowship, 2002-2003
College of Engineering Ralph M. and Catherine V. Fisher Professor, University of Illinois, 2002-2005
Student Best Paper Award, American Society of Mechanical Engineering International Mechanical Engineers Congress and Exposition, Dynamic Systems and Control Division, 2002
Best Paper Finalist (top 12 out of 150), 6th International Symposium on Advanced Vehicle Control, 2002
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 2003
Distinguished Lecturer, Institute of Electrical and Electronics Engineers Control Systems Society, 2004-2007
American Society of Mechanical Engineers Dynamic Systems and Control Division Outstanding Young Investigator Award, 2003

Narayan R. Aluru
Career Award, National Science Foundation, 1999
Faculty Fellowship, National Center for Supercomputing Applications, 1999
Center for Middle Eastern Studies Distinguished Young Author Award, 2001
Xerox Award for Faculty Research, 2001
Willet Faculty Scholar, 2002-85
Armand J. Beaudoin
Invited Speaker, Fourth Annual Symposium on Frontiers of Engineering, National Academy of Engineering, 1998
Editorial Board, *Modeling and Simulation in Materials Science and Engineering*, 1998-
Faculty Early Development (CAREER) Award, National Science Foundation, 1999
Key Reader, *Metallurgical and Materials Transactions*, 1999-
Willett Faculty Scholar Award, University of Illinois College of Engineering, 2003-2006
Listed in the *Daily Illini* “Incomplete List of Teachers Ranked as Excellent by Their Students,” Fall 2000, 2001; Spring 2002
College of Engineers Advisors List, 2002
Xerox Award for Faculty Research, University of Illinois, 2003
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2003

Joseph Bentsman
Presidential Young Investigator Award, National Science Foundation, 1989
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1990
Member, Editorial Board, *Nonlinear Phenomena in Complex Systems*, An Interdisciplinary Journal, 1999-

Lawrence A. Bergman
Fellow, American Society of Mechanical Engineers
Fellow, Japan Society for the Promotion of Science
Associate Fellow, American Institute of Aeronautics and Astronautics
ASCE State-of-the-Art in Civil Engineering Award, American Society of Civil Engineers, 1983
Editorial Board, *Journal of Vibration and Control*, 1994-
Associate Editor, *Shock and Vibration Digest*, 1998-
Japan Society for the Promotion of Science (JSPS) Fellowship, 1998
ASCE Norman Medal, American Society of Civil Engineers, 1999
Editorial Board, *Probabilistic Engineering Mechanics*, 2000-
A. M. Freudenthal Guest Professorship, Universität Innsbruck, 2000

Richard O. Buckius
Fellow, American Society of Mechanical Engineers, 1988
Associate Fellow, American Institute of Aeronautics and Astronautics, 1996
Dow Outstanding Young Faculty, Illinois-Indiana Section, American Society for Engineering Education, 1978
Stanley H. Pierce Faculty Award, University of Illinois College of Engineering, 1979
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1980
Two-Year Effective Teaching Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1980, 1987, 1994, 2000
Campus Award for Excellence in Undergraduate Teaching, University of Illinois, 1980
Western Electric Fund Award, American Society for Engineering Education, 1981
Five-Year Effective Teaching Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1982, 1989
Halliburton Engineering Education Leadership Award, University of Illinois College of Engineering, 1987
Beckman Associate, University of Illinois Center for Advanced Study, 1989
Centennial Memorial Fund, Tokyo Institute of Technology, 1990
Committee on Institutional Cooperation Academic Leadership Fellow, 1990
Editorial Advisory Board, Heat Transfer-Japanese Research, 1990-
Editorial Advisory Board, Microscale Thermophysical Engineering, 1996-
Editorial Advisory Board, Heat Transfer Research, 1997-
Associate Technical Editor, Journal of Thermophysics and Heat Transfer, 1999-
American Society for Engineering Education Ralph Coats Roe Award, 2003

Clark W. Bullard, Emeritus
Resident Associate, University of Illinois Center for Advanced Study, 1977
Listed in the *Daily Illini* “Incomplete List of Teachers Ranked as Excellent by Their Students,” Fall 1984, Spring 1985
Visiting Associate Professor, University of Illinois Institute of Government and Public Affairs, 1985
Public Service and Civic Activities Award, Illinois Division, Izaak Walton League of America, 1985
Fulbright-Hayes Research Award, 1986
Visiting Fellow, Science Policy Research Unit, Sussex University, U.K., 1986
Guest Scholar, USSR Academy of Sciences, Institute for High Temperatures, 1987
Fellow, Royal Society of Arts, Commerce, and Manufacturers U.K., 1987-
Chevron Conservation Award, Chevron USA, 1990
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1992
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1999, 2000

Fellow, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2001
Who’s Who in American Education; Who’s Who in Technology Today; Who’s Who in Science; Men of Achievement; American Men and Women of Science; Outstanding Young Men of America, 1980; Who’s Who of Intellectuals; Biography International; Who’s Who in Engineering; Who’s Who in Technology; Who’s Who in the World; Biography Fame International
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2003
F. Paul Anderson Award for Technical Achievement, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004

Bei Tse Chao, Emeritus
Member, National Academy of Engineering
Member, Academia Sinica, Republic of China
Life Fellow, American Society of Mechanical Engineers
Fellow, American Association for the Advancement of Science
Life Fellow, American Society for Engineering Education
Boxer Indemnity Scholar, Sino-British Cultural and Educational Foundation, 1945-1948
Blackall Machine Tool and Gage Award, American Society of Mechanical Engineers, 1957
Heat Transfer Memorial Award, American Society of Mechanical Engineers, 1971
Western Electric Fund Award, American Society for Engineering Education, 1973
Russell S. Springer Visiting Professor of Mechanical Engineering, University of California, Berkeley, 1973
Ralph Coats Roe Award (First), American Society for Engineering Education, 1975
Five-Year Effective Teacher Award, University of Illinois, Department of Mechanical and Industrial Engineering Alumni Board, 1978
Southwest Mechanics Lecturer, Southwest Universities Association, 1982
Max Jakob Memorial Award, American Society of Mechanical Engineers and American Institute of Chemical Engineers, 1983
Lamme Medal, American Society for Engineering Education, 1984
Outstanding Achievement Award, American Academy of Higher Education, 1984
Prince Distinguished Lecturer, Arizona State University, 1984
Tau Beta Pi Daniel C. Drucker Eminent Faculty Award (First), University of Illinois College of Engineering, 1985
University Scholar, University of Illinois, 1985-1988
William T. Ennor Manufacturing Technology Award, American Society of Mechanical Engineers, 1992
National Aeronautics and Space Administration Certificate of Recognition for Creative Development, 1993
Centennial Medallion, American Society for Engineering Education, 1993
Centennial Alumnus, National Chiao-Tung University, Taiwan, 1996
Distinguished Alumnus, Shanghai Jiao-Tong University, China, 1996
Honorary Member, American Society of Mechanical Engineers, 2002

John C. Chato, Emeritus
Fellow, American Society of Mechanical Engineers, 1975
Fellow, American Institute for Medical and Biological Engineering, 1993
Postdoctoral Fellow, National Science Foundation, 1961
Distinguished Engineering Alumnus Award, University of Cincinnati, 1972
Fogarty Senior International Fellow, National Institutes of Health, 1978-1979
Charles Russ Richards Memorial Award, Pi Tau Sigma and American Society of Mechanical Engineers, 1978
Russell B. Scott Memorial Award, Cryogenic Engineering Conference, 1979
Honorary Visiting Professor, University of New South Wales, Australia, 1986
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1989
H. R. Lissner Award, American Society of Mechanical Engineers, 1992
Engineering Council Advisors List for Outstanding Advising, University of Illinois, 1996
Travel Fellowship, Japan Society for the Promotion of Science, 1997
Dedicated Service Award, American Society of Mechanical Engineers, 2000
Fellow, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2003

Thomas F. Conry
Fellow, American Society of Mechanical Engineers

J. Craig Dutton
National Science Foundation Trainee, 1973-1974
Fellow, University of Illinois, 1975-1976
National Science Foundation Energy Trainee, 1976-1978
Fellow, American Society of Mechanical Engineers, 1994
Associate Fellow, American Institute of Aeronautics and Astronautics, 1990
J. George H. Thompson Faculty Award for Teaching, Texas A&M University, 1981
ARCO Oil and Gas Company Outstanding Junior Faculty Award for Research and Teaching, 1981
Exxon Faculty Assistance Award for Research, 1983
Texas A&M University Student Engineers Council Outstanding Faculty Award for Teaching, 1983
Summer Faculty Research Fellowship, U.S. Air Force Office of Scientific Research, 1983
Texas A&M University Association of Former Students College-Level Distinguished Teaching Award, 1983
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 1986
Campus Award for Excellence in Undergraduate Teaching, University of Illinois, 1988
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1989
AT&T Foundation Award, Illinois-Indiana Section, American Society for Engineering Education, 1989
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1992
American Society for Engineering Education Centennial Certificate, 1993
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1993
W. Grafton and Lillian B. Wilkins Professor, University of Illinois Department of Mechanical and Industrial Engineering, 1998-2003
Donald Biggar Willet Professor, University of Illinois College of Engineering, 2003-2008
Edward R. Damiano
Poster Award, Second World Congress of Biomechanics, 1994
Cardiovascular Research Center Fellowship, University of Virginia, 1995
National Research Service Award, National Institutes of Health, 1996
Faculty Early Development (CAREER) Award, National Science Foundation, 2001
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Fall 2001

Jonathan A. Dantzig
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 1985; Fall 1986; Spring 1989, 1992; Fall 1993; Spring 1999, 2001; Fall 2002; Spring 2003
Fellow, American Society for Metals International, 1998
Arnold O. Beckman Award, University of Illinois Research Board, 1982
Union Oil Young Faculty Award, 1985-1988
Member of Editorial Board, Applied Mathematical Modeling, 1990-
Member of Editorial Board and Key Reader, Metallurgical and Materials Transactions A, 1990-
Member of Editorial Board and Key Reader, Metallurgical and Materials Transactions B, 1998-
Member of Editorial Board, International Journal of Cast Metals Research, 1998-
Best Poster, National Science Foundation OPAAL Program Review, 1999
Who’s Who in the Midwest, Who’s Who in Engineering, Phi Beta Kappa
Member, Editorial Board, Modeling and Simulation in Materials Science and Engineering, 2002
W. Grafton and Lillian B. Wilkins Professor, Mechanical and Industrial Engineering, 2003-2008

Richard E. DeVor, Research Professor
Member, National Academy of Engineering, 2000
Fellow, American Society of Mechanical Engineers
Fellow, Society of Manufacturing Engineers
Blackall Machine Tool and Gage Award, American Society of Mechanical Engineers, 1983, 1997

Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1985
Campus Award for Excellence in Undergraduate Teaching, University of Illinois, 1987
Halliburton Engineering Education Leadership Award, University of Illinois College of Engineering, 1989
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1981, 1989, 1995, 2002
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1981, 1990
Society of Manufacturing Engineers Education Award, 1993
Grayce Wicall Gauthier Chair Professorship, University of Illinois Department of Mechanical and Industrial Engineering, 1995-2000
Distinguished Service Award, University of Wisconsin-Madison College of Engineering, 1997
Distinguished Professor of Manufacturing, University of Illinois College of Engineering, 2000-2001
Distinguished Emeritus Professor of Manufacturing, University of Illinois College of Engineering, 2001
William T. Ennor Manufacturing Technology Award, American Society of Mechanical Engineers, 2003

Geir E. Dullerud
National Sciences and Engineering Research Council of Canada Initiation Grant, 1996
Faculty Early Development (CAREER) Award, National Science Foundation, 1999
Willett Faculty Scholar Award, University of Illinois College of Engineering, 2002-2005

William E. Dunn
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1991
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1992
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1994
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 2000
Placid M. Ferreira
Outstanding Young Manufacturing Engineer, Society of Manufacturing Engineers, 1990
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1990
Presidential Young Investigator Award, National Science Foundation, 1991
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 1990, 1992
Department Editor, Manufacturing Processes and Devices, IIE Transactions on Design of Manufacturing, 1993-
University Scholar, University of Illinois, 1995
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1997
Invited Guest Professor, Controls Engineering Department, Chalmers University, Gothenberg, Sweden, Summer 1999

John G. Georgiadis
Engineering Research Initiation Award from the Engineering Foundation and the American Society of Mechanical Engineers, 1988
Presidential Young Investigator Award, National Science Foundation, 1991
American Men and Women of Science, 1992
Guest Associate Editor, Journal of Fluids Engineering, 1996
Member, Editorial Advisory Board, Journal of Porous Media, 1996-
Certificate of Appreciation, American Society of Mechanical Engineers, 1998-1999
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1999
Centre Nacional de la Recherche Scientifique Researcher, Institute of Fluid Mechanics of Toulouse, Toulouse, France, 1999
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 2001, Fall 2002, Spring 2003

Nick G. Glumac
Faculty Early Development (CAREER) Award, National Science Foundation, 2001
Cannon Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006

Elizabeth Hsiao-Wecksler
Biology of Aging Research Scholar, American Federation for Aging Research and Glenn Foundation, 1998
New Investigator Recognition Award, Orthopaedic Research Society and American Geriatrics Society, 1999

Yonggang Y. Huang
Wakonse Fellow, University of Arizona, 1993
Junior Investigator Award, National Science Foundation, 1995
Alcoa Foundation Faculty Award, 1995, 1996
Motorola Foundation Faculty Award, 1997
Ford Foundation Faculty Award, 1998
Outstanding Young Investigator Award, National Science Foundation of China, 2000
Research Award for U.S. Scientists and Scholars, Alexander von Humboldt Foundation, 2001
Editorial Advisory Board, International Journal of Plasticity, 2002-
Beckman Associate, University of Illinois Center for Advanced Studies, 2002
Faculty Fellow, NCSA, University of Illinois, 2002
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 2003
ASME Pi Tau Sigma Gustus L. Larson Award, 2003

Anthony M. Jacob
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring and Fall 1993; Fall 1995; Spring and Fall 1996, 1997, 1998; Fall 2000; Spring 2003
Stanley H. Pierce Faculty Award, University of Illinois College of Engineering, 1994
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1996, 2002
Associate Technical Editor, International Journal of HVAC&R Research, 1998-
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1999
Associate Technical Editor, Journal of Energy Resources Technology, 1999-
Editor, ASME Heat Transfer Division Newsletter, 2000-
American Society of Heating, Refrigerating, and Air-Conditioning Engineers Distinguished Service Award, 2003
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2003
E. K. Campbell Award, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004
Kritzer Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006
Rose Award for Teaching Excellence, College of Engineering, 2003

Sheldon H. Jacobson
Research Initiation Award, National Science Foundation, 1994
Best Paper Award, Industrial Simulation Track, European Simulation Multiconference, Istanbul, Turkey, 1997
Application Award, First Place (with J. E. Kobza), Operations Research Division, Institute of Industrial Engineers, 1998
Willett Faculty Scholar Award, University of Illinois College of Engineering, 2002-2005
Associate, Center for Advanced Study, 2002-2003
Best Paper Award (with J. E. Kobza), Institution of Electrical Engineers Transactions: Focused Issue on Operations Engineering, 2003
Guggenheim Fellowship, John Simon Guggenheim Memorial Foundation, 2003

Harley Johnson
Faculty Early Development (CAREER) Award, National Science Foundation, 2001
Cannon Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006

Shiv G. Kapoor
Fellow, American Society of Mechanical Engineers
Fellow, Society of Manufacturing Engineers
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1984
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1986
GM-CAM Professor, University of Illinois Department of Mechanical and Industrial Engineering and College of Engineering, 1997-2000

Scott D. Kelly
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 2002

Diego Klabjan
Transportation Science Dissertation Award, International Award, Institute for Operations Research and the Management Sciences, 2000

Helmut H. Korst, Emeritus
Daniel Guggenheim Medal, ASME, AIAA, and SAE, 1994
Fellow, American Institute of Aeronautics and Astronautics
Fellow, American Society of Mechanical Engineers
Senior Postdoctoral Fellow, National Science Foundation, 1957
Dr. Ernest H. Wakefield Award, University of Illinois, 1975
Associate Member, University of Illinois Center for Advanced Studies, 1977-1978
Ebaugh Professor of Mechanical Engineering, University of Florida, 1984
Centennial Medallion, American Society for Engineering Education, 1993
Golden Doctor Diploma, Technical University, Vienna, Austria, 1997
Honorary Member, American Society of Mechanical Engineers, 2001

Herman Krier
Fellow, American Institute of Aeronautics and Astronautics
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1985
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1988
Best Paper Award in Plasmadynamics and Lasers, American Institute of Aeronautics and Astronautics Conference on Plasmadynamics and Lasers, 1997
American Institute of Aeronautics and Astronautics Wyld Award, 1998
Richard W. Kritzer Distinguished Professor, University of Illinois Department of Mechanical and Industrial Engineering, 1998-2003
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 2000
Plenary Lecture, 4th International Conference on Internal Ballistics and Combustion Process in Solid Propulsion Systems and Guns, Russian Academy of Sciences, Moscow, Russia, 2002

Mark J. Kushner
Fellow, American Physical Society
Fellow, American Vacuum Society
Fellow, Institute of Electrical and Electronics Engineers
Fellow, Optical Society of America
Fellow, Institute of Physics
Xerox Award for Faculty Research, University of Illinois College of Engineering, 1988, 1991
Everitt Award for Teaching Excellence, University of Illinois College of Engineering, 1990
Thomas Murphy University Scholar, University of Illinois, 1991-1994
Japan Society for Advancement of Science Fellow, 1992
Semiconductor Research Corporation Technical Excellence Award, 1995
Tegal Thinker Award for Plasma Etch Technology, 1997
Founder Professor of Engineering, University of Illinois, 1999-2004
Plasma Science and Technology Award, American Vacuum Society, 1999
IEEE Plasma Science and Applications Award, 2000

Dimitrios Kyritsis
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 2003

Carl S. Larson, Emeritus
National Science Foundation Summer Teaching Grants, 1957-1963
Teaching Development Award, University of Illinois, 1967
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1974, 1993

Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1977
Merit Award, Lincoln Foundation Design Contest, 1981
Honorary Knight of St. Pat, University of Illinois College of Engineering, 1986
Outstanding Faculty Member, Dad’s Association, University of Illinois, 1987
Outstanding Zone Campus Representative Award, American Society for Engineering Education, 1993
Centennial Certificate, American Society for Engineering Education, 1993
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2001
Department of Mechanical and Industrial Engineering Alumni Board Award, University of Illinois, 2002-2003

Chia-Fon Lee
GE Scholar, University of Illinois, 1997
Faculty Early Development (CAREER) Award, National Science Foundation, 1998
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 2000
Fellow, University of Illinois Center for Advanced Study, 1990
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Fall 2001

Judith S. Liebman, Emeritus
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1978, 1986
Honorary Knight of St. Pat, College of Engineering Student Service Award, University of Illinois, 1981
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1982
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1984
Special Recognition Award, University of Illinois College of Medicine, 1994
President, Operations Research Society of America, 1987; Past President, 1988
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1995
George E. Kimball Medal, Institute for Operations Research and Management Science, 1996
Distinguished Engineering Alumni Award, University of Colorado College of Engineering and Applied Science, 1997
Alumni Recognition Award, University of Colorado at Boulder, 2002
Fellow, Institute for Operations Research and Management Science, 2002
Omega Rho Distinguished Lecturer and Honorary Member, 2003

Chang Liu
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 2001
Faculty Early Development Program (CAREER) Award, National Science Foundation, 2000
Elected Senior Member, Institute of Electrical and Electronics Engineers, 2002

Thomas J. Mackin
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 1994, Spring and Fall 1995, Spring 1999
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1996
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1996
Faculty Early Development (CAREER) Award, National Science Foundation, 1996
AT&T Special Opportunity Award, 1996
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1998
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2001
White House Executive Office Fellow, American Society of Mechanical Engineers, 2002

Norman R. Miller
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Fall 1981; Spring 1982; Spring 1983; Spring 2003
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1990
Engineering Council Advisor List for Outstanding Advising, University of Illinois, 1997

Society of Automotive Engineers Award for Excellence in Oral Presentation, Society of Automotive Engineers World Congress, 2001

Ty A. Newell
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring and Fall 1982, 1983; Spring, 1984; Spring and Fall 1985, 1986; Spring 1987; Spring and Fall 1993, 1994; Spring 1995; Spring and Fall 1996
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1989, 1990, 1993
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1990, 1999, 2001, 2003, 2004

Fulbright Scholarship, Universidad Nacional de Salta, Argentina, Summer 1992
Commander’s Award for Distinguished Public Service, U.S. Army Construction Engineering Research Laboratory, 1992
Invited Lectureship, Ain Shams University/Egyptian Government, 1993
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1995
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1995, 2001, 2002, 2003 2004
College of Engineering Award for Teaching Excellence, University of Illinois, 1997
Campus Award for Excellence in Undergraduate Teaching, University of Illinois, 2000
Alumni Association Educator’s Award, University of Illinois Alumni Association, 2000
BP Amoco Award for Innovation in Undergraduate Instruction, University of Illinois College of Engineering, 2003

Udatta S. Palekar
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 1988; Fall 1989, Fall 1993; Spring 1994; Spring 2003
Outstanding Young Manufacturing Engineer Award, Society of Manufacturing Engineers, 1990
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1992
Outstanding Mentoring of Graduate Students (Finalist), University of Illinois, 1997
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2002

Arne J. Pearlstein
Presidential Young Investigator Award, National Science Foundation, 1985
Union Oil Young Faculty Award, 1985-1988
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1993
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1995, 1997
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2002

Curtis O. Pedersen, Emeritus
Fellow, American Society of Heating, Refrigerating and Air-Conditioning Engineers
International Member, Doctoral Jury, University of Liege, Belgium, 1981, 1986
Commander’s Award for Distinguished Public Service, U.S. Army Construction Engineering Research Laboratories, 1992

Michael L. Philpott
Senior Fulbright Scholarship, 1988
Initiation Award, National Science Foundation, 1991
CIM LEAD Award, 1993-1994
Stanley H. Pierce Award, University of Illinois College of Engineering, 1995
Five-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1996
Two-Year Effective Teacher Award, University of Illinois Department of Mechanical and Industrial Engineering Alumni Board, 1997
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1997-1999
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2001
Collins Award for Innovative Teaching, University of Illinois College of Engineering, 2003
Global Business Plan Competition Finalist, 2003
Harvard Business Plan Competition Winner, 2003

Leslie M. Phinney
Churchill Scholarship, 1990-1991
GE Scholar, University of Illinois, 1998
GE Fellow, University of Illinois, 1999
Contributing Editor, Proceedings of the ASME Heat Transfer Division, 1999
Faculty Early Development (CAREER) Award, National Science Foundation, 2000
NASA/ASSE Summer Faculty Fellowship, Jet Propulsion Laboratory, 2000
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2001
Member, Editorial Board, ASME Heat Transfer Recent Contents, 2001-2004

Andreas A. Polycarpou
Fellowship, Israel Council for Higher Education on Tribology, Haifa, Israel, 1995, 1996
Reviewer of the Year Award, Journal of Tribology, 1997
Marquis Who’s Who in the World, 1997
Burt L. Newkirk Award, American Society of Mechanical Engineers, 2001
Marquis Who’s Who, 2001-2002
Strathmore’s Who’s Who, 2001-2002
National Science Foundation Faculty CAREER Award, 2003
Kritzer Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006

M. Tahef A. Saif
Faculty Early Development (CAREER) Award, National Science Foundation, 1998
GE Scholar, University of Illinois, 1998
Strathmore’s Who’s Who, 2002-2005
Who’s Who in Engineering Education, 2002
Xerox Award for Faculty Research, University of Illinois College of Engineering, 2003
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students” for Spring 2003
Willett Faculty Scholar Award, College of Engineering, 2003-2006

Huseyin Sehitoglu
Institution of Mechanical Engineers Award, The City University, London, England, 1979
Listed in the Daily Illini "Incomplete List of Teachers Ranked as Excellent by Their Students," Fall 1984, 1985; Spring and Fall 1986; Fall 1987; Spring 1988; Fall 1995
Research Initiation Award, National Science Foundation, 1984
Research Award, Ford Foundation, 1987
Certificate of Recognition, American Society of Mechanical Engineers, Pressure Vessel and Piping Division, 1988
Director, Mechanics and Materials Program, National Science Foundation, 1991-1993
Beckman Associate, University of Illinois Center for Advanced Study, 1993
Marcus Grossman Award, American Society for Metals International, 1998
Grayce Wicall Gauthier Professor, University of Illinois Department of Mechanical and Industrial Engineering, 2000-2005
Editor, Journal of Engineering Materials and Technology, 2002
Best Presentation Award, American Society of Testing Materials, 2003

Peter Seiler
O. Hugo Schuck Award for Best Paper at the 2002 American Control Conference (888 papers were presented), 2003

Mark A. Shannon
Listed in the Daily Illini "Incomplete List of Teachers Ranked as Excellent by Their Students," Fall 1998, Spring 2002
Faculty Early Development (CAREER) Award, National Science Foundation, 1997
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2002, 2003
Kritzer Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006
Xerox Research Award, College of Engineering, 2004

Darrell F. Socie
Listed in the Daily Illini "Incomplete List of Teachers Ranked as Excellent by Their Students," Spring 1984
Fellow, American Society for Metals International, 2001
Fellow, American Society for Testing and Materials, 2000
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 1980
National Aeronautics and Space Administration Summer Faculty Fellow, Lewis Research Center, 1983
Commander's Award for Distinguished Public Service, U.S. Army Construction Engineering Research Laboratories, 1990
Distinguished Alumni Award, College of Engineering, University of Cincinnati, 1991
Annual Fatigue Lecture, American Society for Testing and Materials, 1991
Fatigue Achievement Award, American Society for Testing and Materials, 1992
Arch T. Colwell Award, Society of Automotive Engineers, 1994
Editor, Fatigue and Fracture of Engineering Material and Structures, 1997-1999
Japan Society for the Promotion of Science Fellowship, 1997
Oral Presentation Award, Society of Automotive Engineers, 1997, 1998
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 2000
Award of Merit, American Society for Testing and Materials, 2000
Wohler Medal, European Structural Integrity Society, 2000
Fellow, American Society for Metals International, 2001
Honorary Member, Deutscher Verband für Materialforschung und-prüfung, 2003

Wilbert F. Stoecker, Emeritus
Fellow, American Society of Heating, Refrigerating and Air-Conditioning Engineers
Fellow, American Society of Mechanical Engineers
Honorary Professional Degree in Mechanical Engineering, University of Missouri-Rolla
Honorary Member, APEC Consulting Engineers Association
National Science Foundation Faculty Fellowship, 1960-1961
Foundation Teacher Study Grant, 1961-1962
Danforth Foundation Teacher Study Grant, 1961-1962
Western Electric Award for Effective Teaching University of Illinois/Indiana Section Five-Year Effective Teacher Award, University of Illinois Department of Mechanical and Industrial Engineering Alumni Board, 1966, 1976, 1978, 1985
Two-Year Effective Teacher Award, University of Illinois Department of Mechanical and Industrial Engineering Alumni Board, 1971, 1975, 1975, 1982, 1985
E. K. Campbell Award, ASHRAE, 1973
Award for Best Technical Paper, Annual ASHRAE Meeting Distinguished Service Award, ASHRAE, 1976
F. Paul Anderson Award, Highest Technical Award of ASHRAE, 1978
Halliburton Engineering Education Leadership Award, University of Illinois College of Engineering, 1978
Ralph Coats Roe Award, Mechanical Engineering Division, American Society for Engineering Education, 1980
International Activities Award, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 1985
Hall-Thermotank Gold Medal, British Institute of Refrigeration, 1986
Outstanding Alumnus Award, University of Illinois Department of Mechanical and Industrial Engineering, 1989
Oettesen Memorial Medal, Danish Refrigeration Association, 1991
Life Membership, International Institute of Ammonia Refrigeration, 1992
Distinguished Fifty-Year Member Award, ASHRAE, 2002

James A. Stori
Faculty Early Development (CAREER) Award, National Science Foundation, 2000
Society of Manufacturing Engineers Outstanding Young Manufacturing Engineer Award, 2003

Brian G. Thomas
Presidential Young Investigator Award, National Science Foundation, 1989
Who's Who in America, 1990
Outstanding Young Manufacturing Engineer Award, Society of Manufacturing Engineers, 1990
Best Investment Casting Paper, American Foundry Society, American Foundry Society Transactions, 1990
Xerox Award for Faculty Research, University of Illinois College of Engineering, 1991
Rossiter W. Raymond Memorial Award (Best Paper), American Institute of Mining, Metallurgical, and Petroleum Engineers, 1991
John Chipman Award (Best Paper), Iron and Steel Society, 1996
Steelmaking Conference Award (Second Best Paper, Authors under 40), Iron and Steel Society, 1997
Frank B. McKune Award (Best Paper, Authors under 40), Iron and Steel Society, 1997
Marcus A. Grossmann Young Author Award (Best Paper, Authors under 40), American Society for Metals International, 1997
Andersen Consulting Award for Excellence in Advising, University of Illinois College of Engineering, 1998
Robert W. Hunt Silver Medal (Best Paper), Iron and Steel Society, 1998

Extraction and Processing Technology Award (Best Series), Minerals, Metals, and Materials Society, 1998
Engineering Council Award for Excellence in Advising, University of Illinois College of Engineering, 1998
Best Experimental Paper Award, Modeling of Casting, Welding, and Advanced Solidification Processes VIII Conference, 1998
Charles H. Herty, Jr. Award (Best Paper), Iron and Steel Society, 1998
Robert W. Hunt Silver Medal (Best Paper 1998), Iron and Steel Society, 1999
Best Paper Award, Metallurgical Society of the CIM, 1999, 2000
Dr. J. Keith Brimacombe Lecturer, Electric Furnace Conference, Iron and Steel Society, 2001
W. Grafton and Lillian B. Wilkins Professor of Mechanical and Industrial Engineering, 2003-2008
Robert W. Hunt Silver Medal, Association for Iron and Steel Technology (Best Paper on Iron and Steel Published by AIST between July 2002 and June 2003), 2004

Daniel A. Tortorelli
General Motors Advanced Engineering Staff Fellowship, 1986-1988
Teaching Fellowship, University of Illinois Department of Mechanical and Industrial Engineering, 1987
Listed in the Daily Illini “Incomplete List of Teachers Ranked as Excellent by Their Students,” Spring 1995
Arnold O. Beckman Award, University Research Board, University of Illinois, 1991
Associate Technical Editor, Inverse Problems in Engineering, 1992-1997
Young Investigator Award, National Science Foundation, 1993
Associate Editor, Mechanics of Structures and Machines, 1997-
Editorial Board Member, Structural Optimization, 1999-
Treasurer, Executive Committee, International Society of Structural and Multidisciplinary Optimization, 2000-
Schaller Faculty Scholar, Department of Mechanical and Industrial Engineering, 2003-2006

Charles L. Tucker
Fellow, American Society of Mechanical Engineer, 1996
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 1980
Everitt Award for Excellence in Undergraduate Teaching, University of Illinois College of Engineering, 1981
Two-Year Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1983, 1992
Five-Year Alumni Effective Teacher Award, Department of Mechanical and Industrial Engineering Alumni Board, University of Illinois, 1987, 1998, 2000
Union Oil Young Faculty Award, 1983
TRW Postdoctoral Award in Manufacturing Engineering, 1984
Presidential Young Investigator Award, National Science Foundation, 1984
Outstanding Young Manufacturing Engineer Award, Society of Manufacturing Engineers, 1985
Best Paper Award, Society of Plastic Engineers Annual Technical Conference, Engineering Structure and Properties Division, 1988
Harriet and Charles Luckman Undergraduate Distinguished Teaching Award, University of Illinois, 1994
W. Grafton and Lillian B. Wilkins Professor, University of Illinois Department of Mechanical and Industrial Engineering, 1998-2003
Member, Editorial Board, International Polymer Processing
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2003
Alexander Rankin Professor, Department of Mechanical and Industrial Engineering, 2003-2007

Alexander F. Vakakis
Research Initiation Award, National Science Foundation, 1992
Young Investigator Award, National Science Foundation, 1994
Fellow, Center for Advanced Study, University of Illinois, 1994-1995
Junior Xerox Award for Faculty Research, University of Illinois College of Engineering, 1995
University Scholar, University of Illinois, 1996
Xerox Award for Faculty Research, University of Illinois College of Engineering, 2000

S. Pratap Vanka
Fellow, American Society of Mechanical Engineers, 1997
Associate Fellow, American Institute of Aeronautics and Astronautics, 1992
Editorial Board, Journal of Numerical Heat Transfer, 1998-
Associate Editor, Journal of Heat Transfer, 2002-2005
Robert W. Hunt Silver Medal, Iron and Steel Society (Best Paper on Iron and Steel Published between July 2002 and June 2003), 2003

John S. Walker
Fellow, American Society of Mechanical Engineers, 1994
Pi Tau Sigma Gold Medal, American Society of Mechanical Engineers, 1976
Halliburton Engineering Education Leadership Award, University of Illinois College of Engineering, 1985
Campus Award for Excellence in Undergraduate Teaching, University of Illinois, 1990
C. J. Gauthier Professor in Mechanical Engineering, University of Illinois Department of Mechanical and Industrial Engineering, 1999-2004
Accenture Award for Excellence in Advising, University of Illinois College of Engineering, 2002

Robert A. White, Emeritus
Associate Fellow, American Institute of Aeronautics and Astronautics
Fulbright Scholarship, 1960-1961
NATO Senior Fellowship in Science, 1968
Thord-Gray Fellow in Physics, Scandinavian-American Foundation, 1968
Ralph R. Teetor Educational Award, Society of Automotive Engineers, 1986
Outstanding Faculty Advisor Award, Society of Automotive Engineers, 1991, 1996
Department of the Air Force, Medal and Award for Meritorious Civilian Service, 1991

Xudong Zhang
Industrial Ergonomics Best Student Paper Award, Human Factors and Ergonomics Society, 1996
Editorial Board Member, International Journal of Industrial Ergonomics, 1999
Career Development Award (K01 Award), Center for Disease Control and Prevention/National Institutes for Health, 2003
Xerox Award for Faculty Research, College of Engineering, 2004