CHORALEARN: A SYSTEM THAT LEARNS FROM EXAMPLES TO WRITE SIMPLIFIED FIGURED BASS HARMONIZATIONS OF CHORALES USING THE PLS1 CLUSTERER

by

David Winsor Sirkin

August 1987

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN · URBANA, ILLINOIS
ACKNOWLEDGEMENTS

First of all, I thank my advisor, Professor Larry Rudolph. The PLS1 clusterer is his creation. He also made very useful criticisms of the dissertation and helped me design the method for Section V.

I thank David Wexler for teaching me how to write computer programs to "many listen" to Bach being played (very slowly) on his synthesizer.

I thank my other fellow workers in the Artificial Intelligence Laboratory for helping me with Unix and otherwise answering the questions of one new to the programming business. A special thanks goes to Raymond Rees, who, in addition to helping me with some programming problems, also played some of the computer's first harmonizations on the piano and recorded them on tape for me. A special thanks also to Raj Srin, whose encouragement may have been crucial for the metamorphosis of my original idea into a successful project.

I thank the computer operating staff of the Department of Computer Science, especially Mike Schwager and George Karamakos for their assistance with all kinds of problems — from tape to dealing with Unix.

I thank Linold Haken, Harri Gross, G"ottlicher, and Edward Carse of CRRL Music/PLATO for preparing and printing the harmonization samples of Bach's chorales with their interactive Music System and for providing their support for the construction of ChoraleARN. I also thank Diane Cook for some other music graphics made with her system at the Computer Music Laboratory of the School of Music.

I thank Professor Jerold Hamilton for playing some of ChoraleARN's simplified figured bass harmonizations on the organ at the first public demonstration of the system and also for valuable discussions. For the latter I thank also Professor James Ronchamp, Thomas Fredriessen, Salvatore Martirano, and Robert Stepp.

I thank Lillian Bock for her careful reading of the manuscript, and finally, I thank Sharon Collins for typing and for putting up with my sometimes idiomatic English.

CHORALEARN: A SYSTEM THAT LEARNS FROM EXAMPLES TO WRITE SIMPLIFIED FIGURED BASS HARMONIZATIONS OF CHORALES USING THE PLS1 CLUSTERER

Mathematical notation appears on page one of the next chapter.

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1987

Urbana, Illinois
Gombrich, Ernst Gombrich: A SYSTEM THAT LEARNS FROM EXAMPLES TO WRITE SIMPLIFIED EUCLIDEAN SPACE HARMONICALLY OF DRAWINGS USING THE FIVE CLUSTER

BY

DAVID WINDSOR STERN

L.A. Amherst College 1960
L.P.D. University of North Carolina 1961

THESIS

Funded by the Ford Foundation as a postdoctoral fellowship in the years 1963-1965 to do research at the University of North Carolina-Chapel Hill, 1964-1965.
ACKNOWLEDGEMENTS

First of all, I thank my advisor, Professor Larry Rendell. The PLS1 clusterer is his creation. He also made very useful criticisms of the manuscript, and helped me design the method for handling feedback from a Bach expert, which is proposed in Section V. Christopher Matheus also contributed a valuable suggestion for that method.

I thank David Tcheng for writing the program that allowed the computer to really "listen" to Bach being played (very slowly) on his synthesizer.

I thank my other fellow workers in the Artificial Intelligence Laboratory for helping me with Unix and otherwise answering the questions of one new to the programming business. A special thanks goes to Raymond Board, who, in addition to helping me with some programming problems, also played some of the computer's first harmonizations on the piano and recorded them on tape for me. A special thanks also to Raj Seshu, whose encouragement may have been crucial for the metamorphosis of my original idea into a successful project.

I thank the computer operating staff of the Department of Computer Science, especially Mike Schwager and George Karahalios for their assistance with all kinds of weird problems — from taping to dealing with sudden zaps.

I thank Lippold Haken, Kurt Hebel, Carla Scaletti and Edward Carney of CERL Music/PLATO for preparing the music notation graphics in this thesis with their Interactive Music System and for providing a forum for the first public demonstration of ChoraLearn. I also thank Diane Cook for some other music graphics made with her system at the Computer Music Laboratory of the School of Music.

I thank Professor Jerald Hamilton for playing some of ChoraLearn's simplified figured bass harmonizations on the organ at the first public demonstration of the system, and also for valuable discussions. For the latter I thank also Professors James Beauchamp, Thomas Fredrickson, Salvatore Martirano, and Robert Stepp.

I thank Lilian Beck for her careful reading of the manuscript, and finally, I thank Sharon Collins for typing and for putting up with all my nonsense.
ORGANIZATIONAL

The United States armed forces are organized into three branches: the Army, the Navy, and the Air Force. These branches are further divided into the Regular Army, the National Guard, and the Reserves. The Army and the Air Force focus on land and air operations, respectively, while the Navy specializes in maritime activities. The National Guard and Reserves serve as part-time forces that can be called up by the federal government for national emergencies or conflicts.

Military personnel are trained in various specialties, including engineers, soldiers, mechanics, and pilots. This specialized training allows for a wide range of roles within the military. The military also plays a crucial role in national defense, disaster response, and international peacekeeping missions.

The military is a significant source of economic activity, providing employment opportunities and contributing to the nation's economic growth. It also contributes to national security by maintaining a strong defense capability.
PREFACE

This thesis presents a software system, ChoraLearn, that applies a general inductive learning program, the PLS1 clusterer, to the problem of harmonization in music. The work described represents the first time that a harmonizing program has induced rules from examples. The examples it has been given are from the chorale harmonizations of J.S. Bach.

I have tried to accommodate more than one kind of reader, recognizing that there will be only a few who have a strong background (or a strong interest) in both machine learning and music theory. This preface gives some indication (and there are additional guidelines in the body of the thesis) as to what parts of the thesis are aimed at all readers, and what parts are likely to interest only some. The latter parts can be skipped without loss of continuity.

Section I of the thesis is a brief introduction that first summarizes previous work on harmonization by computer, and then explains what the PLS1 clusterer is.

Section II defines some terms, and then outlines what is involved in harmonizing a chorale melody. It goes on to specify the particular piece of the task that the current system has been learning, which can be described in musical terms as recognizing good two-chord progressions.

Section III explains how the system works. Part A explains how the system learns, i.e., how the Bach training examples are prepared for the clusterer, and what the clusterer does with them. It goes on to explain how the learned rules, as represented in the output of the clusterer, are utilized by the system in harmonizing a melody. Part B lists the features that are used by the system to describe two-chord progressions. A good choice of features is the key to successful learning with the clusterer, because the clusterer deals exclusively with descriptions that are in terms of the chosen features. However, the reader with no background in harmony may wish to skip this part, and still will be able to follow the rest of the thesis.

Section IV presents some harmonizations by ChoraLearn and attempts to evaluate the progress the system has made so far in learning to recognize Bach-like two-chord progressions. Part E discusses issues that may interest some readers more than others, and may be skipped without loss of continuity.

Section V is a proposal for a way to supplement the current learning-from-examples machinery with a method for learning from a teacher who can recognize errors in the machine’s performance. The proposed methodology may make inductive learning with the PLS1 clusterer more practical in other problem domains too.

Section VI relates to Section II in considering the task learned by the present system in the context of the complete task of chorale-style harmonization.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Computers and Music</td>
<td>1</td>
</tr>
<tr>
<td>B. Computer Harmonization</td>
<td>1</td>
</tr>
<tr>
<td>1. The Task</td>
<td>1</td>
</tr>
<tr>
<td>2. Previously developed systems</td>
<td>1</td>
</tr>
<tr>
<td>C. The PLS1 Clusterer</td>
<td>2</td>
</tr>
<tr>
<td>D. Objectives of This Project</td>
<td>3</td>
</tr>
<tr>
<td>II. DEFINITIONS OF TERMS AND TASKS</td>
<td>3</td>
</tr>
<tr>
<td>A. Definitions of Terms</td>
<td>3</td>
</tr>
<tr>
<td>B. Defining the Computer's Task—Music Perspective</td>
<td>4</td>
</tr>
<tr>
<td>1. Simple explanation</td>
<td>4</td>
</tr>
<tr>
<td>2. Musically detailed explanation</td>
<td>4</td>
</tr>
<tr>
<td>3. Significance</td>
<td>7</td>
</tr>
<tr>
<td>C. The Task as Concept Learning—Artificial Intelligence Perspective</td>
<td>7</td>
</tr>
<tr>
<td>1. Restating what is being learned</td>
<td>7</td>
</tr>
<tr>
<td>2. Assessing the amount of learning</td>
<td>7</td>
</tr>
<tr>
<td>III. CHORALEARN: THE METHOD</td>
<td>9</td>
</tr>
<tr>
<td>A. Overview of the System</td>
<td>9</td>
</tr>
<tr>
<td>1. Learning</td>
<td>11</td>
</tr>
<tr>
<td>2. Performing (harmonizing)</td>
<td>12</td>
</tr>
<tr>
<td>B. Features</td>
<td>14</td>
</tr>
<tr>
<td>1. Feature 1: BassInterval</td>
<td>15</td>
</tr>
<tr>
<td>2. Feature 2: BassRegister</td>
<td>16</td>
</tr>
<tr>
<td>3. Feature 4: SopranoRegister</td>
<td>16</td>
</tr>
<tr>
<td>4. Feature 5: SopranoInterval</td>
<td>16</td>
</tr>
<tr>
<td>5. Feature 6a: BassScaleElement</td>
<td>16</td>
</tr>
<tr>
<td>6. Feature 7: HarmonicProgression</td>
<td>17</td>
</tr>
<tr>
<td>7. Feature 8: parallel and hidden fifths and octaves</td>
<td>17</td>
</tr>
<tr>
<td>8. Features 9, 10, and 14: SopranoChordElement and BassChordElement</td>
<td>17</td>
</tr>
<tr>
<td>9. Features 11 and 13a: Triad</td>
<td>17</td>
</tr>
<tr>
<td>10. Feature 12: Seventh</td>
<td>17</td>
</tr>
<tr>
<td>IV. CHORALEARN: TESTS AND RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>A. Choosing a Progression: "OKChord," "GoodChord," or "BestChord"</td>
<td>18</td>
</tr>
<tr>
<td>B. Pruning the Set of Possible Choices for a Progression: Examples Obtained with Two Different Feature Sets</td>
<td>19</td>
</tr>
<tr>
<td>C. Some Harmonizations Generated by ChoraLearn Using Feature Set 6</td>
<td>20</td>
</tr>
<tr>
<td>D. Evaluation of the Learning Done by the Clusterer</td>
<td>27</td>
</tr>
<tr>
<td>1. The need for two different measures</td>
<td>27</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

I. INTRODUCTION
 A. Scope and Method
 B. Computer Terminology
 C. The Computer
 D. Algorithms and Data Structures

II. DEFINITIONS OF TERMS AND TABLES
 A. Definitions of Terms
 B. Table of Computer Terms
 C. Mathematical Notation
 D. Significance

III. CHORALIZATION TECHNIQUE
 A. Overview of the Process
 B. Procedures
 C. Functions
 D. Techniques
 E. Issues
 F. Examples
 G. Applications

IV. SUMMARY AND CONCLUSIONS
 A. Summary
 B. Future Directions
 C. Acknowledgements
 D. References
 E. Appendices
2. The test

3. Importance of the learning done so far

E. Other Points of Discussion

1. Effect of increasing the number of training examples
2. The problem of extraneous features
3. Concept learning with noisy data—how to tune the learning system for best results
4. Sources of bias

V. PROPOSED USE OF FEEDBACK FROM AN EXPERT USER

A. The Problem
B. One Solution

VI. WHERE DO WE GO FROM HERE? A BRIEF SUMMARY

OF THE TASKS THAT REMAIN FOR A COMPLETE
CHORALE-WRITING PROGRAM

VII. CONCLUSIONS

REFERENCES
I. INTRODUCTION

The first two sections of this introduction summarize previous work relating to harmonization by computer. The third section explains briefly what the PLS1 clusterer is. In the fourth and final section I explain what our objectives were in developing the ChoraLearn harmonization system.

A. Computers and Music

Computers have been used in various areas within the broad field of music, including analysis, instruction, composition, and electronic sound production. (Hiller, 1970; Roads, 1980; Gross 1984). Computer composition began here at the University of Illinois with the composition of the Illiac Suite in the late 1950's (Hiller and Isaacson, 1959; Hiller, 1981). Artificial intelligence techniques of induction and pattern recognition have been applied to some problems in music (Roads, 1980; Michalski and Stepp, 1983), but apparently not to composition or harmonization.

B. Computer Harmonization

1. The task

Harmonization of a chorale or hymn tune is an exercise confronted by nearly every student beginning the study of music theory. The task is to take a given melody (soprano line) and to write the parts for the alto, tenor, and bass, such that the four voices together produce a sequence of chords that is pleasing to the ear. Typically, there is a new chord on every quarter-note beat. Some of the over 400 Chorale harmonizations by Bach (Terry, 1929) are often given to the student as good examples. The student, even when strictly adhering to the rules and guidelines found in standard texts such as Piston's (1962), usually produces much poorer results.

2. Previously developed systems

Because the textbook rules by themselves are inadequate to achieve Bach-like chorale harmonizations, the task of harmonizing a chorale tune seems to be one that would be appropriate for a computer system that performs inductive inference, or learns from examples. However, previous attempts to produce good (in one case specifically Bach-like) chorale harmonizations by computer have used exclusively implementations of rules found in books and additional rules provided by the programmers (rather than machine-induced rules). The most recent of these are the systems of Ebcioglu (1984, 1986) and Thomas (1985). Besides these there was a system of D. G. Champernowne created around 1960 (described in Hiller, 1970). A system that performed a task similar to harmonization of a melody, namely turning an unfigured bass into a figured bass, was developed by Rothgeb in the 1960's (Rothgeb, 1980).

The previous system closest to ours in conception was written by another University of Illinois student, Alberto Segre, while he was on a Fulbright fellowship in Milan, Italy, in 1980 (Segre, 1981). His system also examined examples of Bach chorales. Although it was designed to generate chorales, including the melodies, Segre could have modified it to make it

Footnote: At any given moment, however, one or more of the four lines of music may be moving (changing notes) at a faster than quarter-note rhythm. Then the chord for the beat may exist only for the first or second half of the beat, the other half containing notes not in the chord, or "nonharmonic tones."
able to harmonize a given melody, provided the melody were similar enough to the Bach examples (i.e., the melody would have to move by intervals that occurred in the examples). However, Segre’s system was a rote learning system, meaning that it was restricted to rearranging elements that occurred in the Bach examples. Also, it was designed to handle only a small number of Bach examples, thus limiting the range of its possible outputs. Our system can accommodate a much larger number of examples, and it is not restricted to using elements (in our case, chord progressions) found in the examples. The latter ability is obviously an advantage for any music composition system, provided of course that the new elements are consistent with the style of the examples. ChoraLearn contains a mechanism, built around the PLS1 clusterer, for inducing, from the examples themselves, which of the many possible new elements are likely to be consistent with the style of the examples. We will see in Section IV.D. that the clusterer is quite effective in this task. It is the inclusion of such an induction mechanism that distinguishes ChoraLearn from other music composition programs.

C. The PLS1 Clusterer

PLS1 is Rendell’s simplest implementation of his probabilistic learning system, which is particularly effective and efficient in uncertain and incremental learning environments (Rendell, 1983; 1986c). The heart of PLS1 is the clusterer. Its purpose is to classify and describe objects in terms of their degree or probability of class membership. For example, the category of objects might be “plans for constructing aircraft.” The clusterer might be given a collection of plans for aircraft, and would be told that each of them would result in a viable product (positive examples of an aircraft that flies). It would also be given a collection of negative examples — aircraft that would never get off the ground. Its job would be to induce from these examples a scheme for assigning to any new object (aircraft plan) an estimated probability that it belongs to the class of good objects. This learning from examples is the discovery of an uncertain or “fuzzy” concept. When a system uses such a classification scheme in performing some task, we speak of performing.

The clusterer does not actually deal with objects themselves, but rather with descriptions of them. The descriptions must be in terms of a predetermined, finite set of features, and each feature must have a finite set of values. For example, a feature might be “ratio of wingspan to fuselage length,” and the possible values might be 1, 2, and 3, representing “less than one,” “one,” and “greater than one,” respectively. An object description can thus be thought of as a feature vector having dimension equal to the number of predetermined features. From this point of view, each feature is a dimension of a feature space. The two collections of objects (positive and negative, or “good” and “bad”) are then two sets of vectors in a feature space. In uncertain environments, the “good” collection may contain a small percentage of bad objects and vice versa.

1Segre ran his system with 4 Bach chorales as examples (Segre, personal communication). His system generated all possible chorales of a given length, phrasing, and key that could be constructed with elements from the Bach examples before choosing one of them. Therefore, increasing the number of examples, and thereby increasing the number of available elements, would have caused a combinatorial explosion that would have drastically increased the time to generate chorales. ChoraLearn, on the other hand, does not take a significantly longer time to harmonize a phrase if its set of training examples is enlarged. This is because the “GoodChord” choosing procedure enables the system to generate a relatively small number of harmonizations, with a high probability that some of them will be good (see Sections IV.C and IV.D). Also, increasing the number of training examples does not necessarily increase the number of choices for a chord (see Section IV.E.1).
What the clusterer does is partition the feature space such that good objects with similar descriptions are grouped together and isolated as much as possible from bad objects. The result is that the feature space is divided into regions, each having an associated utility. The utility is the probability of class membership — the number of good points in the region divided by the number of total points in the region. Rendell (1986a) has studied such learning systems in detail.

D. Objectives of This Project

In ChoraLearn, the system described in this thesis, we have used the PLS1 clusterer to induce rules of harmonization from examples from Bach (the rules are represented in a set of feature space regions that result from clustering). We will present evidence that the clusterer has achieved useful learning for the harmonizing system. From the musical perspective, the goal of the project has been to demonstrate that, using a modern machine learning tool, we can develop a system that induces its own rules of harmonization from a set of examples. Such a system has several advantages over rule-based systems, one of them being that the style of music it writes is changeable, being determined by the set of examples it is given to examine (other advantages will be discussed later).

From an artificial intelligence perspective, the goal is to demonstrate that the PLS1 clusterer, which has already been applied successfully in several other domains, is a general learning tool whose applicability is broad enough that it also can succeed with harmonization. As already mentioned (Section B.1), harmonization is a task that cannot be mastered easily. Although our current system does not write complete chorale harmonizations, the part of the task that it is on the way to mastering is the one which perhaps more than any other distinguishes a great harmonization from a mediocre one (see below, Section II.B.2).

II. DEFINITIONS OF TERMS AND TASKS

A. Definitions of Terms

Several musical terms are used in this paper. Some are used only to explain details to the more musical reader. However, it is necessary that we make clear to all readers how we will be using certain of the musical terms.

A **chord** is a set of notes sounded together simultaneously. In this paper the term chord will usually mean a melody (soprano) note and a bass note with an associated “figure,” or instruction that partially specifies the alto and tenor notes. This might be called more correctly, “a figured bass plus melody note specification for a chord,” but we will simply call it a chord.

We will use the term **progression** to mean a two-chord progression, or sequence, i.e., two chords, one following immediately after the other. The first chord of a progression will be called **Chord**, and the second **NextChord**. A progression will sometimes be referred to as an object, because progressions are the objects (see Section I.C above) that so far have been examined by the learning machinery of ChoraLearn.

A chorale **phrase** is a sequence of typically 4 to 10 chords. The last two or three chords of a phrase constitute the **cadence**, a final or temporary stopping point.

A **simplified figured bass harmonization** is a written harmonization of a melody, consisting of a sequence of figured bass chord representations. The word, “simplified,” is used to indicate that the **bass line** (and associated figures) moves only on quarter-note beats.
B. Defining the Computer’s Task—Music Perspective

The task of harmonization was briefly explained in Section I.B.1. I will explain here more precisely what we wanted the computer to do. I will present this "definition of the task" twice, first in a simplified way for the reader who is not concerned with the musical details and rationales, and then more fully. Finally, I will briefly discuss the significance of the chosen task definition.

1. Simple explanation

The computer’s task was to make a classification scheme for progressions, using a set of progressions taken from Bach’s chorale harmonizations as the collection of "good objects" (see Section I.C above). It was then to construct simplified figured bass harmonizations3 for a given melody (except for the last two or three notes, which belong to the cadence4) by joining together progressions that were Bach-like according to this classification scheme (and that also satisfied the constraints imposed by the particular melody). It would be left to another system (a "second level subsystem"—not yet developed) to choose the best harmonizations for a short melody (soprano line of a phrase) by using a classification scheme for phrases. In other words, the objects for this other system would be phrases rather than individual progressions).

2. Musically detailed explanation

Harmonizing a chorale phrase is a process that is usually done in well-defined stages. First, some basic decisions must be made. One is what kind of cadence (end of phrase) formula to use. Another is what key (or keys) to harmonize the phrase in. By this I do not mean register (as in 'Give me 'Melancholy Baby' in the key of G-flat"), but rather I am referring to the fact that a short sequence of notes (some chorale phrases are only 4 or 5 notes long) can be understood in more than one key. For example, the sequence f g a g can be understood as being in the key of C major, or F major, or B-flat major, to name only 3 of the possible keys. It is also possible to change keys (modulate) in the middle of a phrase.

After these decisions are made, the next step typically is to write what is called a figured bass. This is a bass line, with figures (numbers) indicating the harmony (chord type) that is to be formed by the four voices on each beat. Sometimes movement of a voice (or voices) on the half-beat is also indicated by the figures. The final step is then to fill in the inner voices (tenor and alto).

For the present study I chose one part of the chorale phrase harmonization process for the computer to learn. That part is the construction of a simplified figured bass harmonization (defined below) for the noncadential portion of a phrase. I chose the noncadential portion because the cadence tends to fall into one of a fairly small number of

3 Because a figured bass does not specify precisely the alto and tenor notes (see Section A, above), the final output of the system was routed only to a music notation graphics system (and not to a sound synthesizer). Some organists are skilled in reading figured bass. Such an organist can improvise the alto and tenor parts from a figured bass score. Otherwise, someone who has studied harmony must fill in the alto and tenor parts before the music can be performed. ChoraLearn has a module that fills in the alto and tenor parts in a simple, regular way, but it is a temporary kluge — it does not involve any learning from the examples.

4 The task for the current system did not include the generation of a cadence. Rather, the first chord of the cadence (that a human would have had to write for the given melody) was given to the computer as a starting point from which to join progressions extending backwards towards the beginning of the phrase (the way the program did this is explained in Section III.A.2 below).
well-defined categories. Thus the cadence should probably be treated separately from the rest of the phrase, and, as a separate problem, it would seem to be easier (and less interesting) than the problem of harmonizing the rest. Writing the bass line (with figures) for the noncadential portion of a phrase can be regarded as the heart of chorale harmonizing. More than any other part it is the one that distinguishes a great harmonization from an ordinary one. As Riemenschneider (1941) has noted, Bach’s harmonizations owe their power especially to their strong bass lines. In fact, there are chorale melodies for which Bach wrote only a figured bass, leaving the organist to improvise the exact placing of the inner voices (Terry, 1929; Riemenschneider, 1941).

Figure 1a shows an example of a chorale phrase fully harmonized by Bach. Figure 1b shows his figured bass harmonization for the same chorale (and corresponding exactly to the full harmonization). I decided to simplify the task for the computer still further, by defining a "simplified figured bass." This is made by reducing the bass line to quarter-note harmonic tones and removing figures that pertain to eighth-note movement. The simplified version of the figured bass in Fig. 1b is shown in Fig. 1c. To illustrate the meaning of a figured bass to the reader who has not studied music theory I have also provided Fig. 1d, which shows explicitly the chords implied by the simplified figured bass in Fig. 1c. In other words, Figs. 1c and 1d contain the same information. However, the chords in Fig. 1d have in all cases the alto and tenor parts as close to the soprano as possible. This is a simple, regular way to meet the specifications given by the figured bass, but it often results in bad voice-leading. A composer, or an organist experienced in playing from a figured bass score, would not fill in the inner voices in such a regular fashion. [For this reason, all the output presented in Section IV is in the Fig. 1c format, although our system was also capable of generating files for the music graphics program that would have resulted in output in the Fig. 1d format.]

Thus the task for the computer can be summarized as follows: given a chorale phrase melody, the key in which to harmonize it in, and the cadence (harmonized), write a simplified figured bass for the rest of the phrase. The task is illustrated graphically in Fig. 1e. The first part of the figured bass in Fig. 1c is missing in Fig. 1e, and this is the job of the computer to write. The notes and figures in Fig. 1e are what is given to the computer as an input.

I restricted the problem still further by limiting the domain to phrases that are to be harmonized in a major key (the phrase in Fig. 1 is in minor) without modulation. Furthermore, I decided to divide the process of learning to write a good simplified figured bass into two stages. In the first stage the computer is to learn only what constitutes a good progression, i.e., going from one chord (as defined by the figured bass plus the melody note) to the next. The second stage would require a second level subsystem, which would deal with attributes of a whole phrase. At this writing, only the first level (progression level) subsystem has been developed. That is why the notes in Fig. 1e include only the first of the cadence chords. The first level subsystem needs to examine only the first cadence chord, and that only for the purpose of choosing the figured bass for the soprano note immediately preceding it. The other cadence chords need never be examined.
Figure 1. Several representations of a chorale phrase (a, b, c, d, and e are explained in the text).
3. Significance

The present study deals only with an isolated part of the chorale harmonization problem, but it is a fundamental part, which can be regarded as forming a foundation for much of the rest. It is an underlying premise of the present study that if the PLS1 clusterer can be used successfully to learn the restricted task I have defined, then it could also be used in a similar manner to learn most, if not all, of the other parts of the chorale harmonization problem, such that piecewise, the whole problem could be learned by machine. It would be unthinkable to use the PLS1 clusterer to learn all the parts at once. The overall size of the problem has been estimated by Ebcioglu (1986) to be almost 10^{300} (number of possible chorales for a typical chorale melody).

C. The Task as Concept Learning—Artificial Intelligence Perspective

1. Restating what is being learned

From the preceding section we can see that what the current ChoraLearn system does in terms of learning is learn the single concept, "Bach-like progression" (assuming that the examples it is given are from Bach). The system uses its understanding of this concept when it classifies trial objects (two-chord progressions) as either Bach-like or non-Bach-like. The not yet implemented second level learning subsystem (discussed above, Section B) will have to learn the single concept, "Bach-like phrase." The phrases that the corresponding second level classification subsystem will be given to classify are those generated by the current system, i.e., phrases composed of progressions classified by the current system as Bach-like.

2. Assessing the amount of learning

After a learning system has been developed, it is the job of the researcher to determine whether the learning has been effective, and, if possible, to quantify the amount of learning. If the learning element of the system is the PLS1 clusterer, this job can be described also as, "determining the usefulness of the classification scheme arrived at by the clusterer" (see Section I.C).

As we will see below (Section III.A.2), ChoraLearn uses the classification scheme as a final step in limiting its choices of progressions. Here, I will just give a simplified summary of the procedure. The system uses "generate and test" to choose (two-chord) progressions. About 300 trial progressions are generated for each progression that the computer chooses to be part of a harmonization. The trial chords go through three screenings before those that remain are classified according to the scheme from the clusterer. This sequential reduction of the number of possible choices for a progression is represented graphically in Fig. 2.
Referring to that figure, we see that measuring the usefulness of the classification scheme amounts to determining how much closer the set of progressions classified as Bach-like comes to being coincident with the set of truly Bach-like progressions than does the set of progressions submitted to be classified (reduced from the originally generated set by the preliminary screens). In other words, we want to determine how much the clusterer has accomplished towards learning the concept "Bach-like" progression. We have attempted to make this measurement in two ways: by recruiting a Bach expert to examine some of our system's output for quality, and by seeing if our system would be capable of generating some of the harmonizations Bach wrote. This two-part evaluation of the learning done by the clusterer will be explained in Sections IV.D.1 and IV.D.2.

It should be kept in mind that the current system strings together progressions to make phrases. The importance of what the current system has learned about progressions must ultimately be judged by how much that learning will contribute to the task of generating Bach-like phrases. A quantitative estimate of this contribution is presented in Section IV.D.3. The number of possible ways to harmonize a phrase is obviously much greater than the number of ways to harmonize a single note (harmonizing a single note is what the current system does when it chooses a progression—see Fig. 5). If phrases were to be constructed...
using progressions chosen randomly from one of the larger sets in Fig. 2, then obtaining a
Bach-like phrase would be about as probable as obtaining Hamlet's soliloquy from the
proverbial monkey at a typewriter. For example, with the original set of 300 progressions
(largest set in Fig. 2), the number of possible phrases containing 5 (noncadential) progressions
is 300^5, or 2×10^{15}. By limiting the choices for each progression to those that are for the most
part Bach-like, the current system increases the likelihood of obtaining a Bach-like phrase.
The achievement could be likened to giving the monkey a typewriter that typed a word out
of Shakespeare's vocabulary for every key stroke. However, while the monkey's chances of
replicating Hamlet's soliloquy would still be next to nil, our current system's chances of
replicating a Bach phrase are not too bad, as we shall see in Section IV.C.

III. CHORALEAR\textsc{n}: THE METHOD

A. Overview of the System

As explained by Buchanan et al. (1978), a learning system can be thought of as
consisting of a few basic elements, two of which are a learning element and a performance
element (see above, Section I.C). In ChoraLearn the learning so far has been entirely from
Bach examples, and so there has been no interaction between the learning and performance
elements except, obviously, that the performance element has utilized the output of the
learning element. The overall system is schematized simply in Fig. 3. Figure 4 diagrams the
system in more detail.

The learning element consists of several Pascal programs: the PLS1 clusterer and programs
to prepare the input files for the clusterer and to reformat the output for use by the
performance element. The performance element is a single Pascal program that takes a
melody and a first cadence chord (see Fig. 1e) and, with reference to the clusterer output,
produces a simplified figured bass harmonization of the melody. (The output was fed to the
music notation graphics system of CERL Music/PLATO at the University of Illinois.)
Figure 4: More detailed diagram of ChoraLearn.
1. Learning

As explained in Section I.C, the clusterer needs to be given feature vectors for a collection of good objects and for a collection of bad objects in order to partition the feature space, and in so doing create a classification scheme. The good objects for our system were 301 progressions from Bach chorale harmonizations (each progression was either typed in according to a numeric code, or played in from a synthesizer keyboard). The collection of bad objects was created by having the computer generate all alternative progressions (within certain constraints) for each Bach progression. This collection included a small number of good progressions also, since, it is safe to say, there is usually more than one Bach-like progression that can be used in a particular place. Therefore we will no longer refer to the objects in this collection as bad objects, but rather as non-Bach objects.\footnote{One of the nice things about the PLSI clusterer is that it can make a useful classification scheme even when it is given collections of “good” and “bad” objects that contain some wrongly classified objects (i.e., it still functions when the environment is noisy).}

The clusterer was run and it output a list of feature space regions with associated utilities (see Introduction). Another program, Reformat, stored this list in a form in which it could be used by the performance element of ChoraLearn.

[The rest of this section explains in more detail (for the most part musical detail) how the Bach and non-Bach collections were created, and may be skipped without loss of continuity.]

Phrases were chosen from chorales at the beginning of the Riemenschneider (1941) collection of four-voiced chorales. The phrases had to satisfy the constraint that they lie within the problem domain, i.e., they had to be in a major key and not modulate. Each phrase, from first chord to first cadence chord, was input to a chord file editor as a sequence of four-quarter-note chords (the key was also input). The quarter-note chords were obtained by my reducing each phrase to a form similar to that shown in Fig. 1d, the only difference being that instead of the alto and tenor notes being as close to the soprano note as possible, they would be the notes that Bach actually wrote. For the most part this reducing process consisted simply of disregarding nonharmonic tones, but in many cases there was eighth-note movement such that the first and second halves of the beat could be analyzed as two separate chords. In such cases I had to decide which was the more important chord. Whenever this decision was difficult, I chose the chord of the first half of the beat.

The four notes of each chord were represented simply as numbers, which were either typed in or played in (via a synthesizer-computer interface). The chord file editor stored the key as well as a description of each chord in the phrase (the description included the actual input values for the four notes as well as figured bass information extracted from them: type of triad or seventh chord, and inversion). The chord file editor also screened the input. First of all, only triads and seventh chords were accepted. The editor would prompt me to complete ambiguous chord descriptions. For example, is a particular seventh chord with a missing third based on a major or minor triad? Or, is a particular triad with a missing fifth to be analyzed as diminished or minor? A second screen (called MajorKeyScreen) accepted only those chords that were in the key. In addition to triads and seventh chords built on the seven scale degrees, those chords included secondary dominant chords and all diminished seventh chords. MajorKeyScreen does not accept second inversions of triads (six–four...
chords). It also rejects any chord that has the leading tone in both soprano and bass, and any inversion of a seventh chord if the soprano doubles the bass. In the first 23 chorales of the Riemenschneider collection, among the phrases that are in major keys and do not contain modulations (except possibly at the cadence), two had to be rejected because they contained secondary VII_6 chords, and one had to be rejected because it had a noncadential six-four chord for a quarter-note harmony (there were also two six-four chords in chorale 7, and two in chorale 11, each on the second beat of a three-beat measure, which I just skipped over). MajorKeyScreen is thus a bit too restrictive.

After the file of Bach phrases was prepared using the chord file editor, a program called Histos (not shown in Fig. 4) read through the file, examining each chord progression, and made tabulations of the number of times each value of certain features occurred (the features will be explained in Section B). These tabulations were used in some cases to set bounds on feature space dimensions, and in some cases for grouping and/or reordering of values of nominal features (this was done by hand, but the latest version of the PLS clusterer reorders nominal feature values automatically on the basis of frequency of occurrence). A program related to Histos, MakeHistosFile, stored the same tabulations in a file that could be read by the system (programs plslnput and Harmonize—see Fig. 4) for automatic conversion of primitive measures to feature values (for certain features—for others it was not necessary).

The program plslnput read the Bach chord file again to create an input file for the clusterer. The input file consisted of two lists of feature vectors, a "Bach list" and a "non-Bach list." These lists were constructed by the program as follows. For each object in the file (recall that an object, or progression, consists of two successive chords, "Chord" and "NextChord") the program calculated the feature vector and added it to the Bach list. Then it generated all other possible MajorKeyScreened chords (about 60) that had the same soprano note as did Chord of the Bach progression. Each of these, considered together with NextChord, was a new object, and its feature vector was also calculated. If this feature vector was within the bounds of the feature space, it was added to the non-Bach list. (As stated above, the feature space bounds were determined from the preliminary tabulations obtained from the chord file. Of the roughly 60 objects whose Chords passed the MajorKeyScreen, the number that were in bounds was on the average 4 or 40, depending on which set of features was used—see below, Section IV.B.)

2. Performing (harmonizing)

The performance element took as input a melody with a first cadence chord (Fig. 1e). It wrote a figured bass for the melody notes, starting with the last note (the note immediately preceding the first cadence chord), in the following manner (see Fig. 5 for a cartoon of the method). Trial objects were generated corresponding to every possible chord containing the last melody note (there were usually about 300 such objects). Each object consisted of one of the trial chords (Chord) and the first cadence chord (NextChord). As mentioned above (Section II.C.2 — see Fig. 2), the initial set of trial objects was reduced by some preliminary screens. The first screen eliminated cases in which the bass note of Chord was not at least

6To help the clusterer, for some features, values that never occurred in the Bach training examples were made "out of bounds" (see Section B).

7 The remaining chord (or chords) of the cadence also had to be supplied by the user, but it (they) was (were) not considered by the current harmonizing system (see above, Section II.B.2).
some minimal distance below the melody note (e.g., a fifth for triads and a seventh for seventh chords in root position). The second screen, the MajorKeyScreen mentioned above, reduced the number of possibilities to about 60. The third screen was the bounds of the feature space. After these preliminary screens, the output of the clusterer (from the learning stage) was used in the final screen: the feature vector was calculated for each of the objects remaining after the preliminary screens, and the progression was given the utility of the feature space region into which the vector mapped. [The regions were found simply by going sequentially through the region file until the region containing the object's feature vector was found. For improved efficiency, the file was ordered so that the most frequently encountered regions were at the beginning.] After one of the positive-utility progressions was chosen (see next paragraph), the Chord of that progression became NextChord for the next set of progressions to be evaluated, namely those having Chords containing the next to last melody note as the soprano note. This whole process was iterated until Chord contained the first melody note of the phrase.

ChoraLearn can generate harmonizations for a phrase in two modes: "tree mode," in which every harmonization that could be constructed with positive-utility progressions (objects) is generated with a depth-first algorithm (Rich, 1983), and "choosing mode," in which a single such harmonization is generated, with the choice for each progression being

*In a sense it is a figured bass harmony for the soprano note of Chord that is being chosen at any given point. The harmony for the soprano note of NextChord will have been chosen already, and the two soprano notes will have been input by the user. However, the harmony of Chord is not evaluated by itself, but as part of the progression. Therefore, I will always speak of choosing a progression rather than choosing a harmony. The reader should keep in mind that the choice is always from among objects differing from each other only in the harmony of Chord (see Fig. 5).
made completely randomly, or randomly with a weighting formula, from among the positive-utility objects. In the choosing mode, if there are no objects with positive-utility (a dead end), ChoraLearn will “back up” (move towards the cadence chord) three notes (or until it reaches the note preceding the first cadence chord if the latter were less than three notes away) and reharmonize from that point. Dead ends occurred more often with some sets of features than with others.

In addition to the two doubling rules contained in MajorKeyScreen (Section 1 above), the performance element contained one other explicit rule: “do not accept a sequence of 5 bass notes with none more than a whole step from the first.” The purpose of this rule was to screen out some boring bass contours. When the second level subsystem, which will use features of a whole phrase (see above, Section II.B) is implemented, this rule will be superfluous (moreover, some Bach bass lines violate this rule).

B. Features

Rendell (1986b) has analyzed the role of features in tasks such as playing checkers or solving the fifteen puzzle. He estimates that of the knowledge that is represented in a feature space after clustering, less than half lies in the clustering itself, the rest being in the feature definitions. The choice of features is therefore important.

In developing a system that utilizes the PLS1 clusterer, an appropriate set of features may be determined by experimentation. The user begins by defining and programming those features deemed useful from a priori considerations. The clusterer will dismiss any features that in fact will not discriminate good from bad examples (for a given set of examples and a given set of clusterer parameters). Moreover, by observing the deficiencies in the current performance, the user may elaborate the feature set appropriately.

The following features were used to construct the feature sets that were used in the tests that will be discussed in the next section. The explanations are mainly for the reader who has some knowledge of harmony. For others, it is sufficient to keep in mind that the features are used to describe objects that are progressions. Each feature, with the exception of Features 7 and 8, is a basic part of the musical description of Chord or NextChord, or else describes the change in pitch of the soprano or bass in going from Chord to NextChord. Feature 8 is sort of a cheat—a rule disguised as a feature. Feature 7 is also sort of a cheat, being a check of whether a partial specification of the progression, called the harmonic progression, occurred in the training examples. Because use of Feature 7 amounts to a partial look-up of the progression, it limits the range of progressions that can be induced as being Bach-like. Feature 8 was included in every feature set, while Feature 7 was omitted from some of them, including the currently most “advanced” one.
1. Feature 1: BassInterval

The BassInterval is defined as the movement of the bass from Chord to NextChord, i.e., the difference: NextBassTone - BassTone (measured in half-step units). This feature had 17 values, corresponding to the 17 different BassIntervals found in the set of training examples. The BassIntervals were ordered approximately from greatest descending interval to greatest ascending interval, but with a couple of adjustments made on the basis of the frequency of occurrence (in the training example set) of a particular BassInterval. The purpose of these adjustments was to make it possible for progressions having different frequently occurring BassIntervals to be clustered together (by the PLS1 clusterer) without having to include progressions having infrequently occurring BassIntervals. The resulting order is shown in Fig. 6.

```
procedure CalcFeat1; (BassTone, NextBassTone: integer;
var BassI: integer;
begin
  BassI := NextBassTone - BassTone;
  if (abs(BassI) > 12)
    then Featl := 20
  else case BassI of
    -10: Featl := 1;
    -8: Featl := 2;
    -6: Featl := 3;
    -7: Featl := 4;
    -5: Featl := 5;
    -4: Featl := 6;
    -3: Featl := 7;  \{CURRENT VALUES FROM \}
    -2: Featl := 8;  \{Bach. 12 (303 objects)\}
    -1: Featl := 9;
     0: Featl := 10;
     1: Featl := 11;
     2: Featl := 12;
     3: Featl := 13;
     5: Featl := 14;
     4: Featl := 15;
     7: Featl := 16;
    12: Featl := 17;
   -12,-11,-9, 6, 8, 9, 10, 11: Featl := 20
  end;
end; \{CalcFeat1\}
```

Figure 6. Code for Feature 1.

The intervals listed on the bottom, all given the feature value of 20, did not occur in the training examples (downward skip of octave, major seventh, major sixth, upward skip of tritone, major and minor sixth, major and minor seventh). Any trial object having a value of 20 for Feature 1 was considered to be out of the feature space bounds (see Section A above).
2. Feature 2: BassRegister

Bach's bass range was from 1 to 27 (in my convention, 25 is middle C and 1 is two octaves below it). This range was divided into five registers (five feature values). In later feature sets only two registers (feature values) were defined: the value 1 for very low notes (1 to 5) and the value 2 for all other notes.

3. Feature 4: SopranoRegister

The soprano range (25 to 45) was divided into 4 segments.

4. Feature 5: SopranoInterval

The SopranoInterval was defined similarly as the BassInterval (Section 1 above), but the intervals were grouped to form 7 feature values: rarely or never occurring upward skips, frequently occurring upward skips, upward steps, no movement, downward steps, frequently occurring downward skips, rarely or never occurring downward skips.

5. Feature 8a: BassScaleElement

The BassScaleElement was one of the twelve degrees of the chromatic scale (tonic = 1, leading tone = 12). These were ordered according to their frequency of occurrence in the set of Bach training examples (Fig. 7).

```pascal
procedure CalcFeat6a (Key, BassTone: integer; var Feat6a: integer!
var BSE: integer;
begin
  case BSE of
    1: Feat6a:=1; {most common}
    2: Feat6a:=2;
    3: Feat6a:=3;
    4: Feat6a:=4;
    5: Feat6a:=5;
    6: Feat6a:=6;
    7: Feat6a:=7;
    8: Feat6a:=8;
    9: Feat6a:=9;
   10: Feat6a:=10;
   11: Feat6a:=11;
   12: Feat6a:=12;
end;
end; {CalcFeat6a}
```

Figure 7. Code for Feature 6a.

Degree 4 (lowered third degree) did not occur in the training examples (which were all in major keys) and was given the value 20, putting it out of feature space bounds.
6. Feature 7: HarmonicProgression

The HarmonicProgression was defined as the sequential harmonic analyses of the Chord and NextChord. The harmonic analysis of a chord was in turn uniquely specified by the BassScaleElement, the type of triad (major, minor, or diminished), the inversion, and the kind of seventh (major or minor third higher than the fifth), if there was one. This information was represented in a four-digit code.9

To assign a feature value to an object, the HarmonicProgression was calculated and looked-up in a table containing all the HarmonicProgressions of the training examples. Frequently occurring HarmonicProgressions were given a value of 1, infrequently occurring harmonic progressions were given a value of 2, and those not in the table were put out of feature space bounds. Inclusion of this feature thus restricts the range of progressions that can be induced, and it was therefore not included in the most advanced feature set (see Section IV.C).

7. Feature 8: parallel and hidden fifths and octaves

Feature 8 is the only feature that took the form of a rule. If an object had parallel fifths or octaves between the soprano and the bass, it was assigned a Feature 8 value of 3. If it had a hidden fifth or octave between soprano and bass it was assigned a Feature 8 value of 2.10 Otherwise it was assigned a Feature 8 value of 1. None of the objects in the Bach training examples had a Feature 8 value of 3, so this value was made out of feature space bounds. There were, however, two cases of Feature 8 value 2 in the training examples (both hidden fifths). A nice result of clustering, then, would be if objects having a Feature 8 value of 2 were evaluated to have a positive utility only if they were similar to the two Bach examples.

8. Features 9, 10, and 14: SopranoChordElement and BassChordElement

Features 9 and 10 specified the chord element (root, third, fifth, or seventh) of the soprano and bass respectively of Chord. Feature 14 specified the chord element of the bass of NextChord.

9. Features 11 and 13a: Triad

Feature 11 specified whether Chord was based on a major, minor, or diminished triad (augmented triads were screened out by MajorKeyScreen). Feature 13a did the same for NextChord.

10. Feature 12: Seventh

This feature specified whether Chord was a seventh chord, and if so, whether the seventh degree was a major or minor third above the fifth.

9The entire job of ChoraLearn, as stated above, is to learn what constitutes a good progression. A progression, i.e., the object consisting of Chord and NextChord, consists of the HarmonicProgression plus the two soprano notes.

10Piston's (1962) definitions were used: a hidden fifth is a fifth approached by similar skipwise motion; a hidden octave is an octave approached by downward skipwise motion in both voices, or by upward motion of both voices (except if soprano moves upward by half-step and bass by skip).
IV. CHORALEASE: TESTS AND RESULTS

In this section some of the results obtained using ChoraLearn will be discussed. The feature sets used were as follows (see previous section for explanations of individual features):

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1, 2 (5 values), 4, 5, 6a, 7, 8, 9, 10</td>
</tr>
<tr>
<td>3</td>
<td>1, 2 (5 values), 4, 5, 6a, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>4</td>
<td>1, 2 (2 values), 5, 6a, 7, 8, 9, 10</td>
</tr>
<tr>
<td>5</td>
<td>1, 2 (2 values), 5, 6a, 8, 9, 10, 11, 12</td>
</tr>
<tr>
<td>6</td>
<td>1, 2 (2 values), 5, 6a, 8, 9, 10, 11, 12, 13a, 14</td>
</tr>
</tbody>
</table>

Feature Set 1 was used in very preliminary tests, and will not be discussed.

A. Choosing a Progression: “OKChord,” “GoodChord,” or “BestChord”

Up to the present state of development, ChoraLearn has been learning how to evaluate, or classify, single progressions (a progression consists of a Chord and a NextChord — see above). It can string progressions together, choosing those that it classifies as Bach-like, to create a harmonization for the noncadential portion of a phrase. The objective has been to be able to generate, for a given phrase, a set of such harmonizations that is likely to include some that are overall Bach-like (see above, Section II.C.2).

One set of harmonizations that the present ChoraLearn can generate is simply the set of all harmonizations that can be constructed with progressions having positive utility (the “tree mode” mentioned in Section III. A. 2). In this case utility is reduced to a boolean function (this is not always done in other applications of the PLS1 clusterer).

The number of possible ways to harmonize a phrase with \(k \) noncadential melody notes is \(N^k \), where \(N \) is the number of positive-utility progressions for a given melody note and NextChord. (Using the melodies of the training examples and Feature Set 6, I obtained, with the help of a program, an average value of 3.6 for \(N \).) Thus, for long phrases, the size of the set of all possible harmonizations is unmanageably large (e.g., if \(k \) is 10, the estimated number of possible harmonizations is about \(4 \times 10^3 \)).

There are several ways to generate a smaller set of harmonizations. I will discuss now only two of the ways that have been implemented in ChoraLearn. One way was simply to choose at random one of the positive-utility progressions for each successive melody note. A harmonization generated this way I called an “OKChord” harmonization. ChoraLearn could be asked to generate as many OKChord harmonizations as desired to create a set of arbitrary size. The other way was similar, except that the random choice was weighted such that the probability of a given progression being chosen was proportional to its utility divided by the sum of the utilities of all the possible progressions (for the given soprano note and NextChord). A harmonization generated this way was called a “GoodChord” harmonization.
In considering the relative merits of a GoodChord harmonization and an OKChord harmonization, one must recognize that some potentially important information is lost in reducing utility to a boolean function. Recall from Section I.C that the utility of a region is the number of good objects divided by the total number of objects in the region. In ChoraLearn, the feature space was filled with Bach progressions and all possible alternatives to them (see Section III.A.1). Thus, in our system, the utility of a region is the number of times Bach used a progression from that region divided by the number of times he could have used one in that region (in the training example situations).\footnote{Following this line of thinking, one might think it possible to extract rules from those regions that had a 1.0 utility, because Bach used a chord from such a region every time he could (in the training examples). In fact, in the results I have examined, there were at most two such regions in any clustering of a space containing 150 to 300 Bach objects, and each of these regions had only 5 or 6 objects in it. Furthermore, the 5 or 6 points were not always closely related, and the regions were very dependent on the feature set and the number of training examples. Such regions thus seemed rather to represent fortuitous interactions of feature sets and training examples than consistent practices of Bach.} Thus it makes sense for ChoraLearn to preferentially choose progressions with high utilities. Of course, we could also have made this choice deterministic, i.e., chosen the highest utility progression every time, but there would be only one such “BestChord” harmonization. We know that we need to generate a set of harmonizations because the choice of a good harmonization will require examining global as well as local features (the second level subsystem, mentioned above).

Preliminary tests with two fragments of chorale phrases (not included in the training examples), using a program that calculated the average utility of the chords in each possible harmonization, showed (in both cases) that the Bach versions had average utilities that were near the highest possible. The GoodChord choosing procedure also produced versions with high average utilities, sometimes reproducing the Bach version. The BestChord version had in one case the highest average utility, and in the other, the second highest (in neither case was it the same as the Bach version).

B. Pruning the Set of Possible Choices for a Progression: Examples Obtained with Two Different Feature Sets

In this short section we will get an idea of the actual sizes of the sets of available progressions as they are successively reduced by the screening operations of ChoraLearn (see Fig. 2). The final screen is the classification according to feature space regions. The next to final screen is the feature space bounds. The number of progressions it screens out depends very much on the feature set. In particular, if Feature 7 is included in the set, the bounds are very restrictive (they screen out a lot of progressions). This leaves less work for the clusterer to do, but the disadvantage of not allowing the system to generalize as much (see Section III.B.6) is a real one, as will be seen in the next section (see also footnote in section D below).
An example of an OKChord harmonization using Feature Set 2 is shown in Fig. 8. Let us consider the fourth text entry below the music. It contains some information about how Chord no. 4 was chosen. The total number of trial Chords generated was 294. Of these, 63 passed the MajorKeyScreen (see Section III) for the key of D. Of these 63, only 6 were in the feature space bounds, and of these 6, 3 were in regions having positive utility ("good" regions). The chord chosen had a utility of 0.3636 ("Eval" is the utility multiplied by ten thousand). In going from the MajorKeyScreened chords to the positive utility chords, the problem has been reduced from choosing one chord out of 63 to choosing one chord out of 3.

Figure 9 shows an output similar to the one shown in Fig. 8. However, it comes from a trial in which Feature Set 3 was used. Looking at the text entries, we see that there is a big difference between Fig. 8 and Fig. 9 in the number of objects that were in feature space bounds. The number in bounds in the first entry of Fig. 9, 38, is typical for Feature Set 3.

The major difference between Feature Sets 2 and 4, on the one hand, and Feature Sets 3, 5, and 6 on the other, is that the former include Feature 7, which refers to the list of HarmonicProgressions found in the training examples, whereas the latter rely on Features 11, 12, 13a, and 14, which, together with some of the other features, contain the information to partially specify a HarmonicProgression. With Feature Sets 2 and 4, in order for a trial object to be in feature space bounds, it had to have a HarmonicProgression identical to the HarmonicProgression of one of the training examples. This is a very restrictive condition, and for this reason the number of in-bounds trial objects was so small with Feature Sets 2 and 4. The greater amount of work done by the clusterer with Feature Set 6 (lacking the restrictive Feature 7) than with Feature Set 4 is seen in the number of in-bounds non-Bach training objects (11,802 vs. 1,399) and in the cpu time for clustering (62 min vs. 7 min).

C. Some Harmonizations Generated by ChoraLearn Using Feature Set 8

In this section and the next we will concentrate on the system's performance using Feature Set 6, the most advanced of the feature sets, and a set of 301 Bach training examples. Here I present some computer-generated harmonizations, and in the following section I present an evaluation, partly based on them, of the learning done by the clusterer. In this section we will see that, at least for a short phrase, a small set of harmonizations generated by ChoraLearn has a good chance of containing some that are overall Bach-like.

We asked the computer to generate all possible harmonizations (using progressions that map into positive-utility regions) for the first phrase of the chorale "O Gott, du frommer Gott."

The results are shown in Fig. 10. In addition to the figures below the bass notes, which are the figures of the figured bass, there are also some numbers and letters in between the treble and bass staves. These numbers mark the progressions that were induced, i.e., the

12The components of the HarmonicProgression specification that cannot, in general, be found from a feature vector in Feature Set 3 or 5 are three of the four that constitute the harmonic analysis (see Section III. B. 6) of NextChord. Only the BassScaleElement of NextChord is computable from the BassScaleElement of Chord and the BassInterval (going from Chord to NextChord). In Feature Set 6, Features 13a and 14 specify the NextChord Triad and BassChordElement respectively, leaving only the NextChord Seventh unspecified. The fact that the HarmonicProgression is not completely specified by the features in Feature Sets 3, 5, and 6 did not affect the number of trial objects that were in feature space bounds; i.e., even if one of these sets had contained features that together completely specified the HarmonicProgression, that set would still not be similar to the sets that contain Feature 7. Feature 7, in fact, does not specify the HarmonicProgression. The procedure that calculates a Feature 7 value for a progression must compute the HarmonicProgression on the way, but finally the progression gets one of only three possible Feature 7 values.
Chord chosen is no. 4 of 63 MajorKeyScreened chords. Total no. of chords generated was 294 no. in Bach feature space bounds: 13 no. in "good" clustered regions: 3 11 3 2 5 5 1 1 1 2 Eval= 8000

Chord chosen is no. 36 of 55 MajorKeyScreened chords. Total no. of chords generated was 231 no. in Bach feature space bounds: 7 no. in "good" clustered regions: 4 9 3 1 3 1 2 1 1 4 Eval= 2500

Chord chosen is no. 47 of 69 MajorKeyScreened chords. Total no. of chords generated was 251 no. in Bach feature space bounds: 1 no. in "good" clustered regions: 1 13 2 2 6 3 2 1 3 1 Eval= 6667

Chord chosen is no. 40 of 63 MajorKeyScreened chords. Total no. of chords generated was 294 no. in Bach feature space bounds: 6 no. in "good" clustered regions: 3 14 2 2 7 2 1 1 2 1 Eval= 3636

Figure 8. Example of a harmonization generated with Feature Set 2.
Chord chosen is no. 1 of 63 MajorKeyScreened chords. Total no. of chords generated was 294.
no. in Bach feature space bounds: 38
no. in "good" clustered regions: 4
14 2 2 5 6 1 1 1 1 0 Eval = 1667

Chord chosen is no. 3 of 55 MajorKeyScreened chords. Total no. of chords generated was 231.
no. in Bach feature space bounds: 33
no. in "good" clustered regions: 2
11 2 1 3 8 2 1 2 1 0 Eval = 4000

Chord chosen is no. 27 of 69 MajorKeyScreened chords. Total no. of chords generated was 251.
no. in Bach feature space bounds: 49
no. in "good" clustered regions: 7
7 2 2 6 3 1 3 1 1 1 Eval = 2000
progression not in Bach file

Chord chosen is no. 40 of 63 MajorKeyScreened chords. Total no. of chords generated was 294.
no. in Bach feature space bounds: 38
no. in "good" clustered regions: 4
14 2 2 7 2 1 2 1 2 0 Eval = 3750
progression not in Bach file

phrase written to file C291a08
cpu time was 2.69330000000000e+01 seconds

Figure 9. Example of a harmonization generated with Feature Set 3.
Printed using the Interactive Music System on cerl PLATO.

Figure 10. All possible harmonizations of a phrase generated by ChoraLearn with Feature Set 6 (beginning).
Figure 10 (continued).
progressions whose feature vectors are not represented in the Bach training examples. There are 19 such progressions, though many of these occur more than once. The first time one of these progressions occurs it has either a "v" or a "p" underneath it. A "p" indicates that the HarmonicProgression of the progression did not occur in the Bach training examples; i.e., it had a Feature 7 value of 3. A "v" indicates that the HarmonicProgression did occur in the training examples, although the particular feature vector did not. We asked a musician well-acquainted with the chorales of Bach (hereafter referred to as "the Bach expert") to examine briefly the marked progressions. She said she could imagine that all but five of them might have been used by Bach in some context in a chorale.13 These five, some of which she considered weak or questionable, are identified by a "b" (for "bad") next to the "v" or "p." It should be noted that the twelve progressions marked with a "p," of which only two were marked bad, could not have been induced using a feature set that included Feature 7.

We also asked the Bach expert to make a quick survey of the set of harmonizations to see if she could imagine that any of the whole-phrase simplified figured bass harmonizations had been written by Bach (actually, the cadence in each case, consisting of the last two chords, was copied from Bach, not generated by computer). She judged five of them to be Bach-like. These are marked with a "B" at the beginning of the phrase.

It is interesting to note that the two harmonizations consisting entirely of progressions whose feature vectors occurred in the Bach training examples (versions 27 and 28) were not among the five that the Bach expert judged to be Bach-like. If we assume that this was not just an oversight of our expert, it illustrates two things: (1) the value of being able to produce progressions similar to, but not identical to, those in the training examples (i.e., being able to induce good progressions), and (2) the necessity of eventually being able to look at features of a whole phrase, or at least a measure, of music.

Another thing to note in Fig. 10 is that the third chord from the end, which was not a cadence chord, is the same in every version. This is because it was the only chord, which, considered together with the first cadence chord following it, mapped into a positive-utility region. This was not the chord that Bach used, and so the Bach version (actually, there are two Bach versions of this phrase, which differ only in the first chord) is not included in Fig. 10. If, however, we replace the third chord from the end by the corresponding chord from Bach's version, then the rest of the progressions (working towards the beginning) in the Bach version all map into positive-utility regions, and so could be generated by ChoraLearn (actually, this is true only for one of the Bach versions — in the other one, the first progression evaluated to zero). In fact, it appeared as one of the first ten versions generated with the GoodChord choosing procedure (see Section A above). These are illustrated in Fig. 11 (the Bach version is number 7). This might not seem very impressive, since the computer is only generating three chords. However, if we assume an average of 40 in-bounds progressions for each choice and were to choose randomly from them, the chances of getting a particular result in 10 trials is about one in 6,500. We tried to see if we could reproduce Bach in another case, in which the computer had to generate four progressions, and for which there were three Bach versions that would be possible to reproduce. In this case, a Bach version did not occur in the first 10 trials, but did in the first 30 trials. The chance of one of the three Bach versions occurring in 30 trials if the computer chose at random from in-

13In some cases it was difficult for the Bach expert to decide whether Bach might have used a particular progression somehow, somewhere or not.
bounds chords is about one in 30,000. These figures indicate that the choices influenced by the clusterer’s action are much better than random. In other words, the system has learned something from the Bach examples. Further quantitative evidence for this is presented in the next section.

Figure 12 shows the first 10 GoodChord versions of a phrase from an Indonesian folk song (the fermata in the middle of the line does not represent a cadence). In this case, almost every feature vector did not occur in the training examples because the melody is quite different from any of the Bach examples (v and p have the same meanings as in the previous two figures). Nevertheless, even to an untrained ear, the harmonizations sound considerably more like Bach than do harmonizations constructed by randomly choosing in-bounds progressions.

D. Evaluation of the Learning Done by the Clusterer

1. The need for two different measures

The concept that ChoraLearn has been learning is "Bach-like progression." We would like a quantitative estimate of how much closer the set of Bach-like-according-to-the-clusterer progressions comes to being identical to the set of truly Bach-like progressions than does the set of all in-bounds progressions. A straightforward way to obtain such an estimate is to test the system. The test should consist of two parts. In one part, the system should be allowed to generate objects (two-part progressions). Its performance would be measured by the fraction of these objects that are good (Bach-like). In the other part of the test, the system should evaluate a set of good (Bach) objects. Its performance in this part would be measured by the fraction that it correctly classifies as good.

It is easy to see the necessity of two parts or measures. If a system were judged only according to how few bad objects it generates, then a system could be too restrictive, i.e., capable of generating only a very limited number of progressions, and yet be considered to be good. On the other hand, if a system were judged only according to how many good objects it is capable of generating, then a system could be not restrictive enough, i.e., capable of generating many good objects, but also many bad objects, and yet be considered to be good.

2. The test

For Part I of the test, we used the set of 28 possible harmonizations that the system wrote for phrase 1 of “O Gott, du frommer Gott,” because these were evaluated for us by a Bach expert (Fig. 10). In these harmonizations, the system generated a total of 32 different progressions. Of these, 13 had feature vectors identical to progressions in the training examples, and so were assumed to be good. Of the remaining 19, 14 were judged to be Bach-like by the expert. Thus 27, or 84%, of the computer-generated objects were good.

In the current clustering (using Feature Set 6), 9.1% of the total in-bounds points are in positive-utility regions. We assume that the percentage of points that would be in positive-utility regions in a completely correct clustering would be approximately the same. Therefore, 9% is a rough estimate of the proportion of good objects that would be generated by a system that accepts any object in the space (no learning). [We could get approximately the same estimate from Fig. 9 by dividing the number of progressions in “good” regions by the number in the feature space bounds, because Feature Set 3 is similar to Feature Set 6.]

For Part II of the test, 30 progressions from Bach chorales not in the training examples were evaluated by ChoraLearn (using the same clustering as for Test I). Of these, 24 (80%)
Figure 11. The first ten GoodChord choice harmonizations of the first three notes of the phrase in Fig. 10.
Figure 12. The first ten GoodChord choice harmonizations of a phrase from an Indonesian folk song (beginning).
Figure 12 (continued).
were correctly evaluated as being good (positive utility).14 Of the remaining six, one had a movement of the bass that was outside feature space bounds, and two others had a chord that was not MajorKeyScreened as one of its chords (Chord or NextChord). Thus, a perfect clustering, within the given constraints, would have resulted in a score of 90%. A nonrestrictive system with no clustering at all, i.e., a system that accepts any object in the feature space, would also get a score of 90%.

Adding the scores from the two tests together, we get the composite scores of 99 (out of 200) for the nonclustered system, 164 for the clustered system, and 190 for a perfect system. Normalizing, we find that the clusterer, with the current set of training examples, has gone 71\% of the linear distance from considering everything in the feature space to be good15 to having learned perfectly which points in the space are good and which are not. We anticipate that the proposed feedback mechanism, which is described in Section V, will enable the system to go most of the remaining distance.

The test scores mentioned above for the current system may not seem very impressive, but in fact they represent learning that has made a very substantial contribution towards the goal of being able to generate Bach-like harmonizations for a phrase. This is explained in the following section.

14 Five of the correctly evaluated Bach progressions had HarmonicProgressions that were not in the training examples, and therefore would have had a zero utility according to a system that used a feature set containing Feature 7.

15 If, instead of taking a completely nonrestrictive system as a zero-learning baseline, we take an almost completely restrictive system, e.g., one that has learned one progression by rote and considers everything else to be bad, we get a similar result. That is because such an "almost no learning" system would score 100 on Part I (assuming that the phrase(s) it were given to harmonize allowed it to use its single learned progression) and zero, or close to zero, on Part II, yielding again a composite score of about 100.
Figure 13. Abstract representation of the sets of harmonizations that could be constructed with different sets of progressions. The exponent k is the number of non-cadential chords in the phrase. The CB region represents the set of harmonizations that are constructed from progressions that are each classified as Bach-like (positive-utility progressions). The TB region represents the set of harmonizations that are piece-wise Bach-like (constructed from progressions that are each truly Bach-like). The starred region represents the harmonizations that are overall Bach-like. The representative numbers 40 and 4, for in-bounds and positive-utility progressions respectively, are specific to Feature Set 6.

3. Importance of the learning done so far

Recall that the goal of the system thus far has been to be able to generate a set of piecewise-Bach-like harmonizations for a phrase, so that a future second-level subsystem will be able to select a smaller set of overall-Bach-like harmonizations using a feature space constructed from more global features than those of the current progression-level subsystem.

It follows that we want the phrases generated by the present system to have a reasonable probability of being overall-Bach-like. This goal obviously becomes more difficult to achieve as the length of the phrase increases. Figure 13 illustrates abstractly what the system accomplishes. As the number k of noncadential chords in the phrase grows, so do the relative differences in size between the various regions. I have assumed again that the average number of truly Bach-like progressions is approximately the same as the average
number of positive-utility progressions available (given a NextChord and a soprano note for Chord) when Feature Set 6 is used. (As mentioned earlier, this average is 3.6. Here, I have rounded it off to 4.) The number of overall-Bach-like phrases, 3^k, was roughly extrapolated from the information in Fig. 10 from our Bach expert that for $k=4$, 5 of 20 piecewise-Bach-like phrases were overall Bach-like.

The probabilities of generating overall-Bach-like phrases of different lengths are estimated in Table 2. The column on the far right contains the estimates for a system that has perfectly learned to recognize Bach-like progressions. The column to the left of it is for the current system, and was calculated using the 84% score on Part I of the test mentioned above (the probability of generating a phrase with all progressions Bach-like is 0.84^k, and the probability of generating an overall Bach-like phrase given that all its progressions are Bach-like is $3^k/4^k$). I assumed that the imperfection represented by the less than perfect score on Part II of the test, while limiting slightly the variety of possible Bach-like results, would not appreciably affect the proportion of generated phrases that would be overall Bach-like (increasing the number of available Bach-like progressions would increase the number of possible overall Bach-like phrases, but also the number of possible non-Bach-like phrases with all progressions Bach-like).

Looking at Table 2, we easily can see the great advantage of the current clustering (positive-utility progressions) over choosing randomly from in-bounds progressions. For a phrase with ten noncadential notes the advantage is the difference between a probability of 0.01 for generating an overall-Bach-like phrase versus a probability of 6×10^{-2}, a factor of 2×10^2. The importance of improving upon the 84% correctness (measured on Part I of the test) of the current system is not so obvious. Making the score perfect would only increase the probability that a phrase is overall Bach-like by a factor of 2 for short phrases (3 or 4 noncadential chords), and a factor of 6 for longer phrases (8 to 10 noncadential chords). In fact, however, it is very important to decrease the probability of generating a non-Bach-like progression. The reason is that such progressions cannot be screened out in the second (phrase) stage of learning, because that stage will operate in a space of features of a whole phrase (more global features). An 84% Bach-like progression rate means that even for a short phrase (4 noncadential chords) the probability that it will be marred by at least one non-Bach-like progression is 50%. It should be recognized also that the average listener usually will be more disturbed by a bad two-chord progression than by a flaw at a more global level (thus, finishing the job of screening out non-Bach-like progressions is of more basic importance for the quality of the music than implementing the phrase stage of learning).

From the analysis in this section we conclude that the learning done by the clusterer in our current system has made a very substantial contribution towards the goal of being able to generate Bach-like harmonizations of a chorale phrase melody.
E. Other Points of Discussion

1. Effect of increasing the number of training examples

Using Feature Set 2 and Feature Set 3, I tested ChoraLearn first with a set of 155 training examples, and then again when the set was increased to 301. Two things were expected to increase along with the training example size: the number of possible harmonizations for a chorale phrase (using positive-utility chord progressions) and the correctness ("Bach-likeness") of the chord progressions.

In the case of the Feature Set 3 version, the number of possible harmonizations increased substantially. This was not the case with the Feature Set 2 version. In the latter case, the limiting factor was Feature 7—the trial object had to have a HarmonicProgression that occurred in the training examples in order to have a positive utility. The number of different HarmonicProgressions increased only modestly by doubling the number of training examples. On the other hand, the total number of objects input to the clusterer doubled (because the number of Bach objects doubled, the number of non-Bach objects necessarily doubled also—see Section III. A. 1). Because of this increase in the total number of objects, the Bach objects could be concentrated in smaller regions, i.e., the size of the positive-utility regions shrank (reason explained in next paragraph). As a result, the number of possible harmonizations of the test melody actually decreased (from 11 to 10).

The reason why the positive-utility regions shrank in size with an increase in number of objects has to do with a PLS1 clusterer parameter, mintotal, that specifies the minimum total number of objects that a region may contain. This parameter was set at 5 for both the small and large sets of training examples. Thus, for example, in the case of a Bach object that is far away from any other Bach objects, just increasing the average density of non-Bach objects in the space will have the effect of making the region containing the Bach-object and its 4 nearest non-Bach neighbors smaller. The problem of choosing the right value for mintotal will be discussed in Section 3, below.
By looking at the Feature 8 dimension, it was easy to see that the smaller positive-utility regions resulting from the increased number of training examples with Feature Set 2 were more correct. With the smaller number of training examples (large regions), every region in the space spanned both of the two in-bounds values of Feature 8. In other words, no region boundaries separated the half of the space in which every object has a hidden fifth or hidden octave from the other half of the space, even though there was only 1 Bach object with a hidden fifth (and none with a hidden octave). In contrast, with the larger number of examples (smaller regions), there were very few positive-utility regions that allowed the value of Feature 8 corresponding to a hidden fifth or hidden octave.

2. The problem of extraneous features

After running the clusterer with Feature Set 2, I checked to see if three Bach objects that were not in the set of training examples mapped into positive-utility regions (this job can be done quickly using a little program called TestEval). One of them did not, although its harmonic progression was the same as that of two objects that were among the training examples. I then determined that it missed being in a positive-utility region because of its value for Feature 2 (bass register). So I simplified Feature 2, distinguishing only the very low bass notes from the rest (making Feature 2 have 2 possible values instead of 5), and got rid of Feature 4 (soprano register) altogether. Using this new feature set (Feature Set 4), the clusterer partitioned the space so that the Bach object that evaluated to zero before, now mapped into a positive-utility region. On the other hand, changing Feature Set 3 in the same way (to create Feature Set 5) resulted in the same Bach object being moved from a positive-utility region to a zero-utility region. This was determined to have been a case of serendipity.17

17Removing a feature from a set has two effects, which influence how many objects will be in positive-utility regions in opposite ways. The distinguishability of different good objects is decreased, which tends to decrease the proportion of objects in positive-utility space, and the distinguishability of good objects from "bad" objects is also decreased, which tends to increase the proportion of objects in positive-utility space. With Feature Set 3, there were many regions containing exactly one good object. Because of the minimum total points rule (see Section 1 above) each of these regions was forced to be large enough to include at least 5 points altogether (adding good and "bad"). Removing Feature 4 and simplifying Feature 2 resulted in some of the formerly different good points becoming indistinguishable from each other. Thus there were fewer positive-utility regions, and some of the regions that contained only 1 good point were replaced by regions containing 2 or more, so that they needed to include fewer "bad" (non-Bach) points. The overall effect was a decrease in the proportion of objects in positive-utility space and thus fewer possible harmonizations. The particular Bach object in question was in a region containing one good training point, using Feature Set 3. In Feature Set 5, that good point became indistinguishable from another good point, and so they obviously were in the same region. Both of these training objects differed from the test object with regard to their values of Feature 9, soprano chord element, and that is why the test object moved from a positive-utility region to a zero-utility region. In contrast, with Feature Set 2, there were fewer regions containing very small numbers of good points, and therefore the second effect of removing a feature, the decreased distinguishability of good and "bad" objects, predominated. Thus there was an increase in the number of "bad" points included in positive-utility space, an outcome of a greater number of possible harmonizations.

It should also be noted that a serendipitous effect could result from any kind of change in the clusterer's input, whether it be a change in the training example file, a change in the mistotal parameter, or an alteration in the feature set. This is due to the fact that the clusterer does not, in general, create optimal clusterings, and the particular outcome, especially when we are concerned with zero utility vs. positive utility, can be substantially different (although approximately equally good) as a result of small changes. The clusterer makes successive optimal splits of regions, starting with the whole space (Rendell, 1983). But each split is permanent. In other words, when the splitting is finished, the clusterer does not go back and try different initial splits to see if the final clustering might be improved (another system, PLS2, which has been used in other domains, optimizes clusterings with respect to performance—see Rendell, 1985). Thus, if, for example, the addition of one good point to the training examples were to result in the first split occurring perpendicular to the feature X dimension instead of to the feature Y dimension, the final clustering might be significantly different.
Extraneous (irrelevant or weakly relevant) features separate otherwise similar objects. Because of random effects, a system using a feature set that contains extraneous features will in general require more training examples for a given amount of learning than a system using a similar feature set but without the extraneous features.

3. Concept learning with noisy data—how to tune the learning system for best results

If all of the "non-Bach" feature vectors given to the clusterer were non-Bach-like, then it would have been best to partition the feature space in such a way that the Bach and non-Bach vectors would have been completely segregated in separate regions. However, surely some of the non-Bach vectors were in fact Bach-like (see Section III.A.1). Therefore, in order not to make the regions containing Bach vectors (positive-utility regions) overly restrictive, it is a good idea to allow them to contain some non-Bach vectors as well (actually, since there were probably many non-Bach vectors coincident with Bach vectors, it would have been impossible not to allow it).

A PLS1 clusterer parameter "tsubalphaclus" determines how significantly different two parts of a region must be (in terms of the respective numbers of Bach and non-Bach vectors in them—a statistical calculation is performed) in order for them to be separated by a new partition (splitting the original region to create two new ones). The parameter "mintotal" already mentioned above (Section 1) can also be adjusted ad hoc to deal with noisy data. By putting a lower limit on the total number of vectors that a region may contain, a mintotal value prevents a too-small group of Bach vectors from being isolated. In all the results discussed here, tsubalphaclus was set at zero (meaning that a minimally significant difference was sufficient for splitting) and mintotal at 5. In this section I discuss some effects of varying mintotal.

For a given set of training examples and a given feature set, there must be an optimum value or optimal range of values for mintotal. Obviously, increasing the minimum number of objects that a region may have will result in fewer and larger regions. This, in turn, will result in a larger portion of feature space being contained in positive-utility regions. Since we are using utility essentially as a boolean function (Section A above), this means more possible Chords for a given soprano note and NextChord. The effect of increasing mintotal with Feature Set 6 and the set of 301 Bach training examples can be seen in Table 3.
TABLE 3

<table>
<thead>
<tr>
<th>mintotal</th>
<th>cpu time</th>
<th>no. of regions</th>
<th>no. of possible harmonizations*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>for clustering</td>
<td>in feature space</td>
</tr>
<tr>
<td></td>
<td>(min:sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>62:12</td>
<td>295</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>57:08</td>
<td>265</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>56:58</td>
<td>245</td>
<td>122</td>
</tr>
<tr>
<td>10</td>
<td>53:47</td>
<td>204</td>
<td>not measured</td>
</tr>
<tr>
<td>20</td>
<td>41:32</td>
<td>129</td>
<td>not measured</td>
</tr>
<tr>
<td>30</td>
<td>35:45</td>
<td>97</td>
<td>1406</td>
</tr>
</tbody>
</table>

*of a test phrase requiring 4 chords to be filled in by ChoraLearn (only positive-utility progressions were accepted)

The test phrase used to generate the data in Table 3 was phrase 1 of “O Gott, du frommer Gott” (No. 291 in the Riemenschneider collection — the same phrase harmonized in Figs. 10 and 11). Of the 4 Bach objects corresponding to the 4 chords that were to be filled in by computer, only one had a feature space description identical to one of the Bach objects in the set of training examples (using either Feature Set 4 or Feature Set 6). The other three did, however, have HarmonicProgressions that occurred in the training examples. With Feature Set 4, it was possible to find a value for mintotal that was large enough so that all three of those objects mapped into positive-utility regions, but was also small enough that some regions were separated by boundaries along the dimension of Feature 8 (an indication of discrimination — see Section 1 above). This was not possible with Feature Set 6.

The value for mintotal could have been adjusted to achieve the highest score on a two-part test like the one described in Section D above. Such a calibration of the clusterings was not performed in the present study. As we will see in Section V below, the clusterings of the Bach data that have been discussed here should be regarded as a “rough sketch” of the concept “Bach-like progression.” No matter how we choose the clustering parameters, the result will need refinement. In Section V a way of achieving such a refinement will be proposed.

4. Sources of bias

As Watanabe (1969) has proven, and Mitchell (1980) reiterated, bias, which influences what generalizations will be made from a set of examples, is essential (unavoidable) in making any generalization. In this small section, I wish to point out just two of the sources of bias in ChoraLearn.

The choice of features is an obvious source of bias. The choices of features I made were based on my limited knowledge of music and my own biases as to what was important. In addition, I made a decision that the system should be quite general in the melodies it could harmonize. Therefore, I avoided using soprano scale element as a feature, for then if a
melody contained scale elements that were rare or absent from the training examples, it would be difficult, or, impossible for the system to harmonize it. Similarly, the interval between consecutive soprano notes (Feature 5) was given only 7 possible values, with intervals absent from the training examples being grouped together with rare intervals.

Another source of bias is due to the definition of the problem (Section II.B). The problem was chosen as a piece of the larger problem of generating a complete chorale from a given melody. This larger problem might have been broken up quite differently, if, for example, one were to have used Schenkerian analysis as in Ebcioğlu's (1984, 1986) expert system.

V. PROPOSED USE OF FEEDBACK FROM AN EXPERT USER

A. The Problem

In the preceding sections I have explained that in ChoraLearn's use of the PLS1 clusterer, any hyperrectangle (region) in the clustered feature space that has a positive utility is considered essentially good (see especially Section IV.A). Ideally, we would like to have a perfectly partitioned feature space, i.e., one in which the feature vector for every good object is located in a good (positive-utility) region, and in which the feature vector for every bad object is located in a bad (zero-utility) region. The importance of being able to come closer to this goal than we currently are was emphasized in Section IV.D.

One way to help might be to increase the number of training examples. However, imperfections in the features might demand a lot of data. [The features used by ChoraLearn are mostly rather "primitive," i.e., they are for the most part basic features rather than appropriately chosen conglomerates of basic features,18 and they have "rough" spots, i.e., the adjacency of feature values along a dimension does not always imply a high degree of similarity.] And even a system with nearly perfect features may demand more data than are easily available. For example, a human expert harmonizing a chorale in the style of Bach draws on her knowledge not only of Bach's chorale harmonizations, but of Bach's other works, of the works of Bach's contemporaries and predecessors, and of rules that were established by the time of Bach. If Bach had harmonized only one chorale, it would still be possible to talk about harmonizing chorales in the style of Bach, but the data contained in the one chorale harmonization would clearly be inadequate.

B. One Solution

To improve the performance of ChoraLearn, a human Bach expert could provide some feedback. A simple way to provide feedback takes advantage of the way the clusterer works. The presence of even a single Bach progression ("good point") in a region makes the region acceptable. Similarly, truly "bad points" could carve out "bad regions."19 For practical purposes, we only need to eliminate bad subregions that lie within the current good regions.

18 Being primitive, the features are highly interdependent, i.e., the "goodness" of a particular feature value depends upon the values of the other features. [My use of the term, interdependent, is perhaps misleading. Two features could be independent random variables and yet be interdependent in the sense I mean.]

19 The non-Bach progressions in the input file for the clusterer cannot serve as the desired bad points. They clearly contain some good points, since Bach could have written, and sometimes did write, several different harmonizations for a chorale phrase.
[I will explain the method as it would work with ChoraLearn, but its generality will be obvious.] The expert user (human Bach expert) would give ChoraLearn a melodic phrase to harmonize. She would then examine a set of output harmonizations. When she found a progression she thought would be bad (un-Bach-like) in every conceivable context, then the feature vector for that progression would be added to a list of bad progressions.

The proposed feedback-handling system would do two things with a vector on the "bad list." First, it would check if the vector were also on the Bach list (from training examples). If so, then it would remove it from the Bach list, perhaps first prompting the expert user to think again about the quality of progressions having the feature vector in question. In this way, mistakes that were in the training example file could be corrected.

The other thing that the system would do with objects on the bad list is use them for a separate clustering against the objects on the Bach list. In other words, in a fresh copy of the feature space, the good objects (Bach list) and the newly discovered bad objects (but not the non-Bach objects from the original feature space) would be mapped and then clustered. Because of the checking procedure described in the previous paragraph, no bad object could map into the same point as a good object. When the PLS1 clusterer partitions the space (with the clustering parameter, mintotal, set to 1), each of the resultant regions will contain either good points or bad points, never a mixture.

In subsequent performances (uses of ChoraLearn to harmonize a melody), the new feature space would be used as follows. If a trial object maps into a positive-utility region in the first feature space (which may have been changed due to removal of bad objects from the Bach list and reclustering), then it is mapped into the new feature space. If there it maps into a region containing bad points, it is unacceptable (reevaluated to zero utility); otherwise, it is acceptable. Use of this new feature space as a final screen in this way has the nice characteristic of being partly deterministic and partly probabilistic. It is deterministic in that no object having the same feature vector as the object that was deemed bad by the expert user can ever again be acceptable. It is probabilistic in that some other feature vectors that are clustered together with discovered bad points also become unacceptable. These are "induced" bad points.

The user can also easily add new, supplementary, objects to the Bach list. If the melodic phrase she gives to ChoraLearn to harmonize is a phrase that Bach harmonized (but is not in the original training examples), then she can ask the system to check if the vector of each progression of the Bach version is in the current Bach list. If not, she can simply add the phrase to the Bach example file.

This cycle of testing and correcting may result in an improved system that is capable of generating most of the progressions Bach would have used, and only very rarely generates a bad progression. A key aspect of the proposed feedback mechanism is that an expert user will be able to improve the program without doing any programming.

20 This procedure depends on the feature set being complete enough to distinguish always a bad object from a good one.

21 In truth, certain configurations could result in a mixed region, but the likelihood of such a configuration occurring is remote. If such an instance were to occur, the system could decide to classify the region as bad and sacrifice the ability to use the good points.

22 If it is a concern of ours that the utilities of the regions reflect the frequency with which Bach used objects in them, then it is better to add a whole phrase, with associated non-Bach objects, than just a single progression.
One might think that it would be most efficient to deal only with Bach points and bad points, and to omit the clusterer’s action on Bach and non-Bach points. This is probably not the case. The initial running of the clusterer achieves a great deal, and does so rather rapidly. As we have already mentioned, our current clustering (based on 301 Bach progressions) eliminates 91% of in-bounds progressions. The expert user therefore needs to identify only a very restricted set of bad objects: those that map into the small portion of the feature space that the clusterer thinks is good. Thus, in the new system we are proposing, learning from a set of training examples makes a rapid sketch of the concept, and learning from feedback given by an expert user fills in the details with a fine brush.

VI. WHERE DO WE GO FROM HERE? A BRIEF SUMMARY OF THE TASKS THAT REMAIN FOR A COMPLETE CHORALE-WRITING PROGRAM

I have approached the task of making a chorale out of a given melody in a way similar to that of Thomas in her rule-based system, Vivace (Thomas, 1985); i.e., by deciding that it should be broken up into modular subtasks. The subtask of writing a figured bass for the noncadential portion of a phrase I have divided further into the serial operations of writing a simplified figured bass (quarter notes only) and then adding eighth notes where appropriate. The first of these, writing a simplified figured bass for a phrase, I decided to attack by first generating a set of simplified figured basses that are piecewise good (from one note to the next) and then from these selecting those that are overall good. So far, ChoraLearn has come close to succeeding in producing a set of piecewise good simplified figured bass harmonizations for the noncadential portion of phrases in major keys.

At this point, we could also very easily extend the performance to minor keys. All that is needed is a MinorKeyScreen (analogous to the MajorKeyScreen described in Section III.A.1) and a set of training examples in minor keys.

The proposed feedback-from-an-expert-user mechanism described in the last section is expected to remove the errors in the piecewise good harmonizations. When this is completed, there remain some decisions to be made as to how to proceed in finding overall-Bach-like harmonizations of phrases. For example, in the case of long phrases, it might be efficient to first select measures (sequences of three or four chords) that are overall Bach-like and use these to build sets of phrases that are measure-wise Bach-like, from which overall-Bach-like phrases would subsequently be selected. An alternative would be to have a wider “sliding window” (the current system has a “window” that is two chords wide, because it examines features of two-chord progressions, but such a window could be widened to examine three or four chords of a developing phrase). However, this sliding window alternative would involve more second-level evaluations than the measure-by-measure approach.23

The other major subtasks, besides writing figured basses for noncadential portions of phrases, are filling in the middle voices (alto and tenor) and writing the cadences. Then there is the problem of joining the phrases together. This might be achieved simply as follows: consider the soprano note of the final cadence chord of a phrase (phrase A) as the first note of...

23I am assuming that two feature spaces would be involved: the current one, which uses a two-chord-wide window, and a new one that would use a wider window. One might imagine that we could instead use just one large feature space that had all the features of the current feature space plus additional features to extend the descriptions to longer sequences of chords. I believe, however, that this would drastically slow down learning, i.e., the number of training examples would have to increase greatly. It is important in attacking large problems like chorale harmonization to keep each of the modular subtasks to a manageable size (divide and conquer).
the next phrase (phrase B). Then accept only harmonizations of phrase B that have as their first chord the same chord as the already determined final cadence chord of phrase A.

Finally, there is the most global task of deciding what key to harmonize each phrase in, and where to make modulations (changes of key).

Probably none of the remaining pieces of the chorale-writing task is more difficult than the one that ChoraLearn now can almost do correctly, after being exposed to only a small number of training examples. The possibility of being able to develop a complete chorale-writing system based on learning with the PLS1 clusterer is therefore likely.

VII. CONCLUSIONS

Ebcioğlu, in his 1986 thesis on his rule-based harmonization system, stated that it is unreasonable to expect that an artificial system could be developed that would be capable of "writing its own rules." What we have seen with ChoraLearn indicates that a machine learning system can achieve something in the problem domain of harmonization. Ebcioğlu's argument is that the task is too large. But like most large tasks, the task of chorale writing can be broken down into smaller, manageable tasks (Ebcioğlu's system appears to be able to do all of them in an almost Bach-like style). We have started with a piece of the task that is manageable for the PLS1 clusterer, but which is nontrivial (see Section I.D). Of course, the refinement method we suggested in Section V, using feedback from an expert user, means that a live body will be used to help ChoraLearn "write its own rules." Still, there is an important conceptual and also practical distinction to be made between what we are proposing and the use of rule-based methods. What we are proposing with user feedback is a way that an expert user can improve the system without having to write new code and without having to extract rules himself.

Because a learning approach to chorale writing (or to any problem) makes inherently fewer programming demands than a rule-based approach, it should prove cheaper and faster to develop. There are two additional advantages of our approach over a rule-based one. First of all, once the system is developed it has great flexibility; a different set of training examples (e.g., from a different composer) will rapidly result in a system that harmonizes in a different style. Second, the feature space representation of rules used by the clusterer might be able to represent some "rules" of Bach's (or another artist's) style that would be quite complex and, therefore, difficult for a music theorist or programmer to discover and formulate in words. As D. Michie has been quoted as saying (Lamb, 1984), "Really expert knowledge is intuitive, and it is not necessarily accessible to the expert himself." Thus, it is possible that the learning by clustering approach will ultimately yield a performance that is truer to the master. Also, the rules discovered by the clusterer (which can be translated into logic or natural language) will be of potential interest to the musicologist, composer, or any other serious student of music, because they will help answer questions like, "What is it that makes Mendelssohn sound like Mendelssohn and not like Brahms?"
REFERENCES

CHORALEARN: A SYSTEM THAT LEARNS FROM EXAMPLES TO
WRITE SIMPLIFIED FIGURED BASS HARMONIZATIONS OF CHORALES
USING THE PLS1 CLUSTERER

The PLS1 clusterer, a machine learning tool that performs inductive inference,
was applied to the problem of harmonization of a melody in music. In the
resulting system, ChoraLearn, a feature space was defined for two-chord
progressions. The system learns from examples by mapping them into the feature
space and then using the clusterer to partition the space into regions that are
similar or dissimilar to the examples. The knowledge represented in the
partitioned feature space is used to harmonize melodies. In the current
implementation, ChoraLearn writes what is called a simplified figured bass
harmonization for an input melodic phrase (except for the cadence, the harmony
that ends the phrase). ChoraLearn was tested by training it with 300 examples
from Bach chorales. What the system learned from these examples represented a
significant first step towards the goal of Bach-style chorale writing. Finally,
a method is described by which a knowledgeable user can guide the system towards
preferred harmonizations. This work represents the first time that a learning
system has been applied to harmonization, and illustrates the versatility of the
PLS1 clusterer.

induction
learning
clustering
music
harmonization