Unitary group approach for effective potentials in 3D systems

Renato Lemus Casillas

Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México
Content

1. 3D harmonic oscillator
2. Unitary Group Approach
3. Connection between algebraic and configuration space
 - Energy, coordinates and momenta representations
4. Algebraic representation of 3D systems
5. Morse potential
 - Energy levels and wavefunction
 - Dipole moment
6. A realistic case: O_2
7. Conclusions
3D harmonic oscillator

\[\hat{H}_{cs} = \frac{1}{2m} \mathbf{p}^2 + \frac{m\omega^2}{2} \mathbf{q}^2. \]

(1)

The corresponding eigenfunctions are

\[\Psi_{nlm}(q, \theta, \phi) = A_{nl} q^l e^{-q^2/2} L_{(n-l)/2}^{l+1/2}(q^2) Y_m(\theta, \phi). \]

(2)
The Hamiltonian takes the form
\[\hat{H}_{\text{h.o.}} = \hbar \omega (\hat{n} + 3/2) \]
with \(\hat{n} = \sqrt{3} [a^\dagger \times \tilde{a}]_0^{(0)} \), and eigenfunctions
\[|nlm\rangle = B_{nl} (a^\dagger \cdot \hat{a}^\dagger)^{(n-l)/2} \mathcal{Y}_m^{l}(\hat{a}^\dagger)|0\rangle \]
where
\[\mathcal{Y}_m^{l}(\hat{a}^\dagger) = 2^{-l/2} (\hat{a}^\dagger \cdot \hat{a}^\dagger)^{l/2} Y_m^l(\hat{a}^\dagger). \]

Renato Lemus Casillas (ICN, UNAM)
Addition of a scalar boson $s^\dagger(s)$.

Bilinear products are generators of the $U(4)$ group

$$\hat{n}_a = \sqrt{3}[a^\dagger \times \tilde{a}]_0^{(0)}; \quad \hat{n}_s = s^\dagger s,$$

$$\hat{L}_\mu = \sqrt{2}[a^\dagger \times \tilde{a}]_\mu^{(1)}; \quad \hat{D}_\mu = a^\dagger_\mu s - s^\dagger \tilde{a}_\mu,$$

$$\hat{Q}_\mu = [a^\dagger \times \tilde{a}]_\mu^{(2)}; \quad \hat{R}_\mu = i(a^\dagger_\mu s + s^\dagger \tilde{a}_\mu).$$

The algebra $U(4)$ provides the following three chains

$$U(4) \supset U(3) \supset SO(3) \supset SO(2),$$

$$U(4) \supset SO(4) \supset SO(3) \supset SO(2),$$

$$U(4) \supset \overline{SO}(4) \supset SO(3) \supset SO(2),$$

with the following generators

$$G_{U(3)} = \{\hat{n}_a, \hat{L}_\mu, \hat{Q}_\mu\},$$

$$G_{SO(4)} = \{\hat{D}_\mu, \hat{L}_\mu\},$$

$$G_{\overline{SO}(4)} = \{\hat{R}_\mu, \hat{L}_\mu\}.$$
The CSCO associated with this chain establishes the basis

\[\hat{N} |[N]_{n_a LM}\rangle = N |[N]_{n_a LM}\rangle \]

\[\hat{n}_a |[N]_{n_a LM}\rangle = n_a |[N]_{n_a LM}\rangle \]

\[\hat{L}^2 |[N]_{n_a LM}\rangle = L(L+1) |[N]_{n_a LM}\rangle \]

\[\hat{L}_z |[N]_{n_a LM}\rangle = M |[N]_{n_a LM}\rangle, \]

explicitly given by

\[|[N]; n_a LM\rangle = C_{Nn_p L} (s^\dagger)^{N-n_a} (a^\dagger \cdot \hat{a}^\dagger)^{(n_a-L)/2} \gamma^L_M (\hat{a}^\dagger) |0\rangle. \]

with branching rules

\[n_a = 0, 1, \ldots, N; \quad L = n_a, n_a - 2, \ldots, 1 \text{ or } 0; \quad -L \leq M \leq L. \]

\(U(3) \) basis versus harmonic oscillator basis

\[\sum_{n_a} \sum_{L, M} |[N]_{n_a LM}\rangle \langle [N]_{n_a LM}| = 1, \]

\[\sum_{n} \sum_{l, m} |nlm\rangle \langle nlm| = 1 \]
We propose the mapping

\[|nlm\rangle \leftrightarrow |[N];n_aLM\rangle; \quad n_a = 0, 1, \ldots, N. \]

(19)

with \(n \leftrightarrow n_a; \ l \leftrightarrow L \) and \(m \leftrightarrow M \).

We introduce the density operator

\[\hat{\rho} = \sum_{nlm} p_{nlm} |nlm\rangle \langle nlm| \approx \sum_{n_a=0}^{N} \sum_{LM} p_{n_aLM} |[N];n_aLM\rangle \langle [N];n_aLM|,\]

(20)

with \(p_{nlm} = p_{n_aLM} \) and normalization \(\sum_{n=0}^{N} \sum_{lm} p_{nlm} = 1 \).

Algebraic realization of \(\hat{F}_{cs} \)

\[\hat{F}_{alg} \approx \sum_{s,m} \alpha_s^{(m)}(F_{cs}) \hat{Y}_s \hat{P}_m,\]

(21)

where \(|m\rangle \rightarrow |[N];n_aLM\rangle \), \(\hat{Y}_s \) are generators of the \(U(4) \) group, \(\hat{P}_m \) are projection operators.

\[\hat{P}_m = |[N];n_aLM\rangle \langle [N];n_aLM|,\]

(22)
The state dependent coefficients $\alpha^{(m)}_s(F_{cs})$ are determined through the set of equations

$$
\sum_s \alpha^{(m)}_s(F_{cs}) \langle m|\hat{Y}_r \hat{\rho} \hat{Y}_s|m\rangle = \langle m|\hat{Y}_r \hat{\rho} \hat{F}_{cs}|m\rangle.
$$

(23)

Consider the expansion with

$$
Y_1 = a^\dagger_{\mu} s, \quad Y_2 = s^\dagger \tilde{a}_{\mu}.
$$

(24)

We obtain

$$
\hat{Q}_{\mu} = \frac{\lambda_0}{\sqrt{2N}} (a^\dagger_{\mu} s - s^\dagger \tilde{a}_{\mu}) = \frac{\lambda_0}{\sqrt{2N}} \hat{D}_{\mu},
$$

(25a)

$$
\hat{P}_{-\mu} = -i(-)^{1-\mu} \frac{\hbar}{\lambda_0} \frac{1}{\sqrt{2N}} (a^\dagger_{\mu} s + s^\dagger \tilde{a}_{\mu})
= -(-)^{1-\mu} \frac{\hbar}{\lambda_0} \frac{1}{\sqrt{2N}} \hat{R}_{\mu}.
$$

(25b)

Anharmonization procedure

$$
q_{\mu} \bigg|_{a_{\mu} \rightarrow b_{\mu}} \rightarrow Q_{\mu}; \quad p_{\mu} \bigg|_{a_{\mu} \rightarrow b_{\mu}} \rightarrow P_{\mu}.
$$

(26)
Algebraic Hamiltonian

\[\hat{H}_{alg}^{U(4)} = \frac{1}{2m} \mathcal{P}^2 + \frac{\omega^2 m}{2} \mathcal{Q}^2. \quad (27) \]

in terms of the generators

\[\hat{H}_{alg}^{U(4)} = \frac{\hbar \omega}{4} \left[\frac{R^2 + D^2}{N} \right]. \quad (28) \]

which can be recast in the following form

\[\hat{H}_{alg}^{U(4)} = \hbar \omega \left[\left(1 - \frac{1}{N} \right) \hat{n}_a + \frac{3}{2} - \frac{\hat{n}_a^2}{N} \right]. \quad (29) \]

This result leads to the identification of the \(U(3) \) chain as the energy representation with eigenkets

\[\hat{n}_a | [N] n_a LM \rangle = n_a | [N] n_a LM \rangle. \quad (30) \]
For $SO(4)$ we have $\hat{C}_{SO(4)} = \hat{D}^2 + L^2$, and consequently

$$\hat{C}_{SO(4)} = \hat{W}^2 = N \frac{2m\omega}{\hbar} Q^2 + \hat{L}^2.$$ (31)

In similar form we have

$$\hat{C}_{SO(4)} = \hat{W}^2 = N \frac{2}{\hbar m\omega} P^2 + \hat{L}^2,$$ (32)

with $\hat{C}_{SO(4)} = \hat{R}^2 + L^2$.

Identification of the dynamical symmetries according to energy, coordinates and momenta representation.

<table>
<thead>
<tr>
<th>Chain</th>
<th>Basis</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(4) \supset U(3) \supset SO(3) \supset SO(2)$</td>
<td>$[N]n_{a}LM$</td>
<td>Energy</td>
</tr>
<tr>
<td>$U(4) \supset SO(4) \supset SO(3) \supset SO(2)$</td>
<td>$[N]\zeta LM$</td>
<td>Coordinates</td>
</tr>
<tr>
<td>$U(4) \supset \overline{SO(4)} \supset SO(3) \supset SO(2)$</td>
<td>$[N]\bar{\zeta} LM$</td>
<td>Momenta</td>
</tr>
</tbody>
</table>

The corresponding eigenvectors associated with the coordinates and momenta representations satisfy

$$\hat{W}^2 [N]\zeta LM \rangle = \zeta(\zeta + 2) [N]\zeta LM \rangle,$$ (33a)

$$\hat{W}^2 [N]\bar{\zeta} LM \rangle = \bar{\zeta}(\bar{\zeta} + 2) [N]\bar{\zeta} LM \rangle,$$ (33b)

with branching rules $\zeta, \bar{\zeta} = N, N - 2, \ldots, 1$ or 0, and $L = 0, 1, \ldots, \zeta(\bar{\zeta})$.
Algebraic representation of 3D systems

3D Hamiltonian:

$$\hat{H} = \frac{1}{2m} \hat{p}^2 + V(\sqrt{\hat{q}^2}).$$ \hfill (34)

The corresponding algebraic Hamiltonian is:

$$H_{alg}^{U(4)} = \hat{H} \bigg|_{\hat{q} \to Q, \hat{p} \to P} = \frac{1}{2m} P^2 + V(\sqrt{Q^2}).$$ \hfill (35)

A practical convenient form is:

$$H_{alg}^{U(4)} = \hbar \omega \left[\left(1 - \frac{1}{N} \right) \hat{n}_a + \frac{3}{2} - \frac{\hat{n}_a^2}{N} \right] + \epsilon V'(\sqrt{Q^2}).$$ \hfill (36)

where

$$V'(\sqrt{Q^2}) = -\frac{m \omega^2}{2} Q^2 + V(\sqrt{Q^2}),$$ \hfill (37)

with $\epsilon [0, 1]$. Taking into account the scalar character of Q^2

$$\langle [N] \zeta' LM | Q^2 | [N] \zeta LM \rangle = \frac{\lambda_0^2}{2} \frac{[\zeta(\zeta + 2) - L(L + 1)]}{N} \delta_{\zeta', \zeta}. \hfill (38)$$
Hence the matrix elements of the Hamiltonian (for a given L) in the energy representation take the general form

$$H^{(E)} = \Lambda^{(E)} + \epsilon T^\dagger \Lambda^{(Q)} T,$$

where

$$||\Lambda^{(E)}|| = \hbar \omega \left[\left(1 - \frac{1}{N} \right) \hat{n}_a + \frac{3}{2} - \frac{\hat{n}_a^2}{N} \right] \delta_{n'_a, n_a},$$

$$||\Lambda^{(Q)}|| = \hbar \omega \left[- \frac{1}{2} \frac{\xi(\zeta, L)^2}{2N} + \frac{1}{\hbar \omega} V \left(\lambda_0 \frac{\xi(\zeta, L)}{\sqrt{2N}} \right) \right] \delta_{\zeta, \zeta'},$$

with $\xi(\zeta, L) = \sqrt{\zeta(\zeta + 2)} - L(L + 1)$. The T matrix stands for the transformation brackets: $T = ||\langle [N] \zeta LM | [N] n_a LM \rangle||$.
Consider as an example the Morse potential

\[V'(Q) = -\frac{m\omega^2}{2}Q^2 + D(1 - \exp[-\beta(\sqrt{Q^2} - r_0)])^2, \]

(42)

with matrix representation

\[||\Lambda^{(Q)}|| = \left[-\frac{1}{2} \frac{\xi(\zeta, L)^2}{2N} + \bar{D} \left(1 - e^{-\bar{\beta} \left(\sqrt{\frac{1}{2N}} \xi(\zeta, L) - \bar{r}_0\right)}\right)^2 \right] \delta_{\zeta, \zeta'}. \]

(43)

We have taken \(\hbar \omega \) and \(\lambda_0 = \sqrt{\hbar/(m\omega)} \) for energy and length units respectively. In these units the following relations are satisfied

\[\bar{\beta} = \sqrt{\frac{1}{2\bar{D}}}; \quad \kappa = 2j + 1 = 4\bar{D}, \]

(44)

where the bar refers to dimensionless coordinates. As a particular system we consider the following parameters :

\[j = 9; \quad \bar{D} = 4.75; \quad \bar{\beta} = \sqrt{\frac{1}{2 \times 4.75}}, \]

(45)
Correlation diagram from the harmonic oscillator ($\epsilon = 0$) to the Morse potential ($\epsilon = 1$). To simplify only the levels with $L = 0, 1, 2, 3$ have been included just to show the rotational bands induced by the displaced potential. The parameters were taken to be (45) together with $N = 2500$.
Rotational bands emerged from the displaced Morse oscillator for $\epsilon = 1$. To simplify only the levels with $L = 0, 1, 2, 3$ have been included. The parameters were taken to be (45) together with $N = 2500$.
In our approach the $|\psi_{v,LM}^N\rangle$ eigenstate takes thus the form

$$|\psi_{v,LM}^N\rangle = \sum_{n_a=0}^{N} \langle [N] n_a LM | \psi_{v,LM}^N \rangle | [N] n_a LM \rangle,$$

(46)

with $v = 0, 1, \ldots, j - 1$.

Comparison between analytic (dashed line) and calculated (continuous line) radial wave function $\langle \bar{r} | \Psi_{5,0}^{N=2500} \rangle$ and $\langle \bar{r} | \Psi_{8,0}^{N=2500} \rangle$ for the Morse potential using (39) with parameters (45) for $N = 2500$ and $\epsilon = 1$. As expected for small r the analytic solution is not valid.
Calculated radial wave functions $\langle \vec{r} | \Psi_{5,L}^{N=2500} \rangle$ and $\langle \vec{r} | \Psi_{8,L}^{N=2500} \rangle$ for the Morse potential using (39) with parameters (45) for $N = 2500$ and $\epsilon = 1$, corresponding to angular momenta $L = 0, 1, 2, 3$.
For the dipole transitions the intensities $I(vL \rightarrow v'L')$ are:

$$I(vL \rightarrow v'L') \approx \sum_{MM'} |\langle \Psi_{v'L'M'} | \hat{T}^{(1)}_{\lambda} | \Psi_{vLM} \rangle|^2$$

$$= (2L' + 1) |\langle \Psi_{v'L'} | \hat{T}^{(1)}_{\lambda} | \Psi_{vL} \rangle|^2. \quad (47)$$

The explicit form of the dipole operators is

$$\hat{T}^{(1)}_{\lambda} = Q_{\lambda} \mu_e(r), \quad (48)$$

where a reasonable proposal is

$$\mu_e(r) = e^{-\gamma r}. \quad (49)$$

In our formalism the matrix elements are recast in matrix form in the following form

$$\langle \Psi_{v'L'} || \hat{T}^{(1)} || \Psi_{vLM} \rangle = C^{L'}_v Q \mathbf{T}^\dagger \Lambda^{(\mu_e)} \mathbf{T} (C^L_v)^\dagger, \quad (50)$$

where

$$||\Lambda^{(\mu_e)}|| = \left[e^{-\frac{\gamma}{2N}} \xi(\zeta,L) \right] \delta_{\zeta,\zeta'}. \quad (51)$$

The matrix Q corresponds to

$$||Q|| = ||\langle [N]n'L' || Q^{(1)} || [N]n''L \rangle||. \quad (52)$$
Plot corresponding to \(\log(I(0L \rightarrow vL + 1)) \) vs \(v \) for the cases \(L = 0, 1, 2 \). The dipole function \(\mu_e \) was taken to be (49) with \(\bar{\gamma} = 1 \).
Let us now consider the rotational spectrum

Rotational spectrum showing the P and R branches for the vibrational transition $0 \rightarrow 1$. The R-branch shows the band head, a turning point in the spectrum.
A realistic case: O_2

A potential energy surface (PES) obtained for O_2 can be modeled as an expansion

$$V(r) = \sum_{k=0}^{7} a_k \exp\left[-\alpha \beta^k r^2\right].$$

(53)

The units are: α in Å^{-2}, β is dimensionless, and a_k are in miliHartree.

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.785</td>
<td>1.307</td>
<td>-2388.5641690</td>
<td>18086.977116</td>
<td>-71760.197585</td>
<td>154738.09175</td>
</tr>
<tr>
<td>a_4</td>
<td>a_5</td>
<td>a_6</td>
<td>a_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-215074.85646</td>
<td>214799.54567</td>
<td>-148395.42850</td>
<td>73310.78145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graphs of potential energy surface](image)
A realistic case: O_2 Vibrational states

Vibrational states

Vibrational term values $G_{v+1} - G_0$ (in cm$^{-1}$) for O_2 as obtained by: i) Ref. [1] (black line), ii) this work (green line), and iii) the known experimental data (red dots).

Vibrational energy spacings $G_{v+1} - G_v$ (in cm$^{-1}$) for O_2 as obtained by: i) Ref. [1] (black line), ii) this work (green line), and iii) the known experimental data (red dots).

Rotational states

In Ref. [1] the spectroscopic rotational factors B_v and D_v are calculated and compared to experimental data. These factors are obtained by a linear regression of $\frac{F_v}{L(L+1)}$ vs $L(L+1)$ for L from 0 to 10 for each v–value using

$$\frac{F_v}{L(L+1)} = \frac{E_{v,L} - E_{v,o}}{L(L+1)} = B_v - D_v L(L+1).$$

Rotational constant B_v (in cm$^{-1}$) as a function of v for O$_2$: i) experimental (red dots), ii) calculation in Ref. [1], and iii) present results (green line).

Rotational centrifugal constant D_v (in 10$^{-6}$ cm$^{-1}$) as a function of v for O$_2$: i) experimental (red dots), ii) calculation in Ref. [1], and iii) present results (green line).
Conclusions

- The Unitary Group Approach provides a simple methodology to describe 3D systems in a purely algebraic scheme.
- The key to be able to apply this approach to general potentials is the identification of the bases in coordinate and momentum representations.
- The transformation brackets are calculated only once for a given N, giving a method to obtain solutions for different potentials in a simple way.
- Our approach represents an algebraic approach with a clear connection with configuration space, taking advantage of the additional bases to simplify the description.

M. Rodríguez-Arcos et al, Mol.Phys. Submitted