Chirality Aspects in the Dimerization of Vicinal Diols

Beppo Hartwig

Institut für Physikalische Chemie
Georg-August-Universität Göttingen

17.06.2019
Outline

1. Motivation

2. Experimental Techniques

3. Comparison of ED and CD
 - Nomenclature and Comparison of the Monomers
 - Energetic Predictions
 - Experimental Spectra
 - Comparison of Experiment and Theory

4. Summary and Outlook
Motivation

What sparked this Project?

- 1,2-Ethanediol (ED) studied experimentally and theoretically
- transiently chiral

 ![Molecule Diagram]

- energetic preference for hetero chiral dimers
- formation of homo dimers uncertain

What am I doing?

- trans-1,2-Cyclohexanediol (CD) studied experimentally and theoretically
- permanently chiral

- (R,R)

 ![Molecule Diagram]

- (S,S)

 ![Molecule Diagram]

- lack of interconversion could help understanding the formation of homo dimers in ED

Motivation

What sparked this Project?

- 1,2-Ethanediol (ED) studied experimentally and theoretically
- transiently chiral

\[\text{ED} \]

- energetic preference for hetero chiral dimers
- formation of homo dimers uncertain

What am I doing?

- *trans*-1,2-Cyclohexanediol (CD) studied experimentally and theoretically
- permanently chiral

\[\text{CD} \]

- lack of interconversion could help understanding the formation of homo dimers in ED

Experimental Techniques

Experimental Setups

- FTIR- and Raman-jet-setup
- resolution of ca. 1 – 2 cm$^{-1}$
- no restrictions regarding compounds besides vapor pressure
 ⇒ If we can get it in the gase phase we can measure it!

Advantages of Jet-Spectroscopy

- cooling of the rotational and vibrational levels
- better comparability with quantum chemical calculations
- relaxation of less stable conformers (barriers > 5 kJ mol$^{-1}$ cannot be overcome)
- reduced Doppler broadening
Experimental Techniques

Experimental Setups

- FTIR- and Raman-jet-setup
- resolution of ca. 1 – 2 cm\(^{-1}\)
- no restrictions regarding compounds besides vapor pressure
 ⇒ If we can get it in the gase phase we can measure it!

Advantages of Jet-Spectroscopy

- cooling of the rotational and vibrational levels
- better comparability with quantum chemical calculations
- relaxation of less stable conformers (barriers > 5 kJ mol\(^{-1}\) cannot be overcome)
- reduced Doppler broadening
Comparison of ED and CD

Nomenclature and Comparison of the Monomers

- **M**
 - 0.0 kJ mol^{-1}
 - $\angle \text{OCCO} - 62.2^\circ$
 - $\angle \text{O}_D \text{O}_A \text{H}_A 140.4^\circ > 120^\circ$

- **M'**
 - 1.3 kJ mol^{-1}
 - $\angle \text{OCCO} - 57.5^\circ$
 - $\angle \text{O}_D \text{O}_A \text{H}_A 109.0^\circ < 120^\circ$

- **M**
 - 0.0 kJ mol^{-1}
 - $\angle \text{OCCO} - 60.1^\circ$
 - $\angle \text{O}_D \text{O}_A \text{H}_A 144.8^\circ > 120^\circ$

- **M'**
 - 1.0 kJ mol^{-1}
 - $\angle \text{OCCO} - 55.9^\circ$
 - $\angle \text{O}_D \text{O}_A \text{H}_A 110.2^\circ < 120^\circ$
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation

CD het4 : hom3' : hom3'' : hom2''
\[\Rightarrow 3 : 1 : 1 : 1 \]

ED het4 : hom3' : hom3'' : hom3a
\[\Rightarrow 3 : 1 : 1 : 1 \]
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation
- CD het4 : hom3' : hom3_b : hom2''
 \[\Rightarrow 3 : 1 : 1 : 1 \]
- ED het4 : hom3' : hom3_b : hom3a
 \[\Rightarrow 3 : 1 : 1 : 1 \]
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation

- CD het4 : hom3' : hom3'b : hom2" ⇒ 3 : 1 : 1 : 1
- ED het4 : hom3' : hom3'b : hom3a ⇒ 3 : 1 : 1 : 1
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation

CD het4 : hom3' : hom3' : hom3''
 ⇒ 3 : 1 : 1 : 1

ED het4 : hom3' : hom3' : hom3a
 ⇒ 3 : 1 : 1 : 1
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation
- CD het4 : hom3' : hom3'^' : hom2”
 \[\Rightarrow 3 : 1 : 1 : 1 \]
- ED het4 : hom3' : hom3'^' : hom3a
 \[\Rightarrow 3 : 1 : 1 : 1 \]
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation

For CD:
- het4 : hom3’ : hom3’’ : hom3b
 \[\Rightarrow 3 : 1 : 1 : 1 \]

For ED:
- het4 : hom3’ : hom3’’ : hom3a
 \[\Rightarrow 3 : 1 : 1 : 1 \]
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation

CD het4 : hom3' : hom3_b' : hom2''
⇒ 3 : 1 : 1 : 1

ED het4 : hom3' : hom3_b' : hom3a
⇒ 3 : 1 : 1 : 1
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation
- CD het4 : hom3' : hom3'_b : hom2''
 \[\Rightarrow 3 : 1 : 1 : 1 \]
- ED het4 : hom3' : hom3'_b : hom3a
 \[\Rightarrow 3 : 1 : 1 : 1 \]
Comparison of ED and CD

Energetic Predictions of the Dimers

- B3LYP-D3(BJ,abc)/def2-QZVP
- zero point corrected
- double harmonic approximation
- CD het4 : hom3' : hom3':hom3' : hom2''
 $\Rightarrow 3 : 1 : 1 : 1$
- ED het4 : hom3' : hom3':hom3' : hom3a
 $\Rightarrow 3 : 1 : 1 : 1$
Experimental Spectra

Experimental Raman Spectra
- Wavenumber range: 3700 to 3300 cm\(^{-1}\)
- Peaks at 28 cm\(^{-1}\) (M and M')
- Racemic 1,2-Cyclohexanediol

Experimental IR Spectra
- Wavenumber range: 3700 to 3300 cm\(^{-1}\)
- Peaks at 19 cm\(^{-1}\) (M and M')
- Racemic 1,2-Cyclohexanediol

Beppo Hartwig
Chirality in the Dimerization of Vicinal Diols
Experimental Spectra

Experimental Raman Spectra

Experimental IR Spectra

Beppo Hartwig

Chirality in the Dimerization of Vicinal Diols

17.06.2019
Experimental Spectra

Experimental Raman Spectra

Experimental IR Spectra

Beppo Hartwig
Chirality in the Dimerization of Vicinal Diols
17.06.2019
Experimental Spectra

Experimental Raman Spectra

Experimental IR Spectra

Beppo Hartwig Chirality in the Dimerization of Vicinal Diols 17.06.2019
Experimental Spectra

Experimental Raman Spectra

Experimental IR Spectra

Beppo Hartwig
Chirality in the Dimerization of Vicinal Diols
17.06.2019
Comparison of Experiment and Theory

Ethanediol

Cyclohexanediol

![Graphs showing harmonic wavenumber differences for Ethanediol and Cyclohexanediol.](image)

- difference relative to free OH mode of M
Summary

- ED and CD both exhibit energetic chirality recognition
- Dimers are structurally very similar
- Dimers form statistically "missing" ED homo-dimers due to shared population among multiple conformers
- Dispersion interactions are crucial for chiral discrimination

Outlook

- Tuning the hetero↔homo energy gap by chemical substitution
 - Transiently chiral systems
 - Pinacol
 - Ethanediamine
 - Permanently chiral systems
 - Cyclopentanediol
 - Mixed systems
 - Propanediol
- Perform dispersion interaction density analysis
Thank you for your attention!
Experimental Setup²

CD Monomer Relaxation Study

Beppo Hartwig
Chirality in the Dimerization of Vicinal Diols
17.06.2019
ED Dilution

[Graph showing relative intensity counts per second versus wave number (cm$^{-1}$). Peaks are labeled M, M', and T.]
Simulated Spectra

Raman Spectra

IR Spectra

Beppo Hartwig
Chirality in the Dimerization of Vicinal Diols
17.06.2019