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Abstract 

Although nowadays Internet users are better and better protected by advanced encryption mechanisms, 

their privacy is still not yet well protected:  eavesdroppers can use the patterns of network traffic to 

learn sensitive information. One such attack is website fingerprinting, which adopts machine learning 

techniques to detect which webpage the user is visiting. In this thesis, we try to answer the question to 

what extent new web technologies, particularly HTTP/2 and server push, could interfere with website 

download packet traces, and hence defend against website fingerprinting. In our experiment, we 

extracted our website models from real world-sites and evaluated HTTP/2 server push and size padding 

with website fingerprinting on these models. The result shows that HTTP/2 and server push could lower 

the accuracy of website fingerprinting, and random size padding could further decrease this accuracy. 
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1. Introduction 
Although protocols like TLS encrypt contents of packets in website browsing to prevent eavesdropping, 

the sizes, numbers and directions of packets are still visible to anyone who can see the network traffic 

such as ISPs and routers. Hence, the connections between clients and servers are still vulnerable to 

website fingerprinting attacks, which can reveal the specific webpage the user is visiting by observing 

network traffic.  

In our experiment, we studied the influence of HTTP/2 server push on website fingerprinting. HTTP/2 

streams the downloading, eliminates the time overhead due to the website structure and hence reduces 

the information that could be potentially learned. In addition, we also tested random size padding in our 

experiment which could further prevent a website from being recognized according to its total size. 

Meanwhile, server push eliminates time needed for requests after the initial one, and hence decreases 

the possibility of information leakage due to delay in time caused by the dependency structure. 

To be able to observe the whole process of website downloading, we extracted models from real world 

sites, specifically the top 99 sites from the Alexa top sites list [1].  These models have the same sizes and 

dependency hierarchy as the original sites. We performed measurements of website fingerprinting on 

these models and compare the accuracy with interference techniques applied. 

Our results show that HTTP/2 server push and size padding could reduce the vulnerability to website 

fingerprinting.  
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2. Background 
Generally speaking, In HTTP/1.1 when a client sends a request with URL of a website to the respective 

server, the server will return a document list html file, which contains names of files to be downloaded 

next; the client will then send a request for each file mentioned in this html file and the server will send 

a response for each file requested, which may incur further requests and responses afterwards. 

Downloaded html files, JavaScript files and style sheets could trigger downloads of more files, and hence 

formulate a tree-like dependency structure of website downloading. This is a strict hierarchy as the 

browser must finish downloading a file before performing the downloading of any other files that it 

initiates. From traffic analysis, there is a clear time gap between the downloading timeline of this 

initiator, and downloading of the following files. 

Website fingerprinting is the technique of extracting features of timing, packet direction and packet size 

information from network traffic, with machine learning algorithms, to tell the website that the client is 

visiting. When adversaries watch the traffic of website browsing from the router, although the client-

server connection is encrypted, and the packet content is invisible to them, they may still gather the 

traffic information and conducts attacks. Previous studies show that eavesdroppers can even perform 

such attacks on the Tor network [2, 3].  

Different from HTTP/1.1, HTTP/2 uses multiplexing. When the browser starts to visit a website, all the 

requests go through one singe TCP connection, while all the responses are also sent through this 

connection, in parallel, asynchronously. There is no forceful dependency structure in downloading, and 

hence there is less strict time order.  

In our studies, we want to verify the idea that using HTTP/2 could be a defense against the website 

fingerprinting attack, as the attackers may lose timing information due to the lack of dependency 

hierarchy. Previous work on defenses against website fingerprinting [4, 5, 6] manipulated several 

features but are shown to be ineffective when the adversaries use more advanced machine learning 

skills [7, 8]. Recent approaches of the defenses [9, 10] adopt the constant-rate stream of communication 

between server and client, which has a provable upper bound of information website fingerprinting 

attackers could get. Our defense with HTTP/2 server push and padding also has constant rate, and we 

want to find out the efficiency of such countermeasures in our experiment. 
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3.Research Approach 
To fully understand the process of browsing, we build models of websites based on browser 

instrumentation [11] so that we can observe the whole process of a browser visiting a website. These 

models are supposed to have the same dependency structure and same size for each file. 

In Chromium browser, the downloads triggered by visiting a website can happen in parallel if they do 

not have dependency relationships. In our case, we only considered five types of responses: script, 

document, stylesheet, image and fonts. Among these five, fonts and images are not able to initiate 

downloads, and they are always leaf nodes in the dependency tree structures of websites. On the other 

hand, scripts, documents and stylesheets are able to initiate downloads: documents, files with “.html” 

suffix, could initiate downloads of all five types of files; scripts, java scripts with “.js” suffix, could also 

initiate downloads of all five types of files; stylesheets, files with “.css” files, could only initiate 

downloads of other stylesheets and fonts. Specifically, the Chromium browser instrumentation assumes 

that all fonts are downloaded from html files even though fonts may refer to stylesheets and within a 

single website, all fonts start downloading in parallel as soon as the all stylesheets finish downloading. 

In our experiment, we used the embedded functions of the Chromium browser. Specifically, four 

functions are used: requestWillBeSent, loadingFinished, responseReceived, and dataReceived. These 

functions are triggered accordingly at different stages in the downloading process of corresponding to 

their names. We obtained information about the download of each file from the parameters of these 

functions. When we collected data for a website, we always waited for 5 seconds first, visited only one 

site at a time, created a tab, visited the website in this tab while recording the information, waited for 

loading for another 30 seconds, and finally closed the tab. Hence, the traces of two websites would not 

interfere with each other.  

From these functions, we can know the URL, type, initiator, and size of each file downloaded. In the 

dependency tree structure, every file has an initiator besides the root, the top-level document. Based on 

the information, we could produce a dummy website that mimics the downloading behaviors of a real-

world website and hence has similar downloading traces. An essential characteristic of the downloading 

traces is the size of each file downloaded, and hence we needed to produce files of given sizes, and we 

achieved that by writing comments of computed sizes. Meanwhile, loading commands and some of the 

formattings are still necessary; for instance, the Chromium browser aborts downloading an image when 

the first 65536 bytes of the image are not in the right format, as the browser categorizes the image as 

corrupted. Thus the reproduced images must have a correct format. Meanwhile, we believe that the 
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differences between formats within one of the five types have no effects on the overall downloading 

traces, and thus we picked one format for reproduced files of each type: all images are in gif format, 

with repeated comment blocks; all fonts are in woff format, with simply repeated “A” characters as 

correctness of font file is not checked while downloading. As mentioned before, these two types of files 

have no loading commands. In addition, the Chrome browser attributed the loading commands in 

stylesheets, either to load a font or to load another stylesheet to the nearest document (nearest parent 

document file in loading structure, recursively). Admittedly, we lost information about the structure of 

stylesheets loading here and in our models stylesheets could not load other files either, so they consist 

of only comments starting with “/*”, ending with “*/” and consisting of repeated characters “A” in 

between. In the scripts, we used “document.write(…);” commands loading stylesheets, other scripts, 

and images. All files have their corresponding tags. Documents are loaded by 

“document.createElement(‘iframe’);” and “document.body.appendChild(…);” while fonts are loaded by 

“document.createElement();” and “document.fonts.add();”. Comments starting with “/*”, ending with 

“*/” and consisting of repeated characters “A” in between follow the loading commands. In HTML 

documents, in the head part, stylesheets are loaded first, documents next and then the scripts. If there 

are fonts loaded from this document, there is also a style part at the end of the head part. Each font file 

is loaded independently in a font family by the font-face rule and a class of this font-family is claimed. 

Following the head part, there is a body part with images loaded first and then there is a character “A” 

with span tag for each font class to force loading the font. Ultimately in the body part there are 

comments starting with “<!--”, ending with “-->” and consisting of repeated characters “A”. Repeated 

characters “A” appear in the later four types of files. The number of “A” is such that the size of the file 

equals the size of the corresponding original file. This is always feasible since a character is always one 

byte. For each model, all files we generated are in a single directory. 

To generate the hierarchy within each model, we started by labeling the files that need to be generated. 

Besides “index.html”, other documents are named “index0.html”, “index1.html” … while images were 

named “image0.gif”, “image1.gif” …and fonts were named “font0.woff”, “font1.woff” … Stylesheets and 

scripts have similar names. These names also appear in the loading commands. Then we went over all 

the information that was collected from the four embedded functions of the Chromium browser and 

stored in a json file. We firstly went over all the file information and found the document file with no 

initiator and with the earliest starting time, which is most likely to be our top-level document. As there 

are possible redirecting issues, we did not limit this document to files that come from servers with the IP 

address or URL that our initial request was sent to. Then we went over the information of all other files. 
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Now we only considered files with initiator, as we did not consider XHR, and data connections with no 

initiator were not and should not be taken into account. For eligible files, as we mentioned, since in our 

models assume that stylesheets, images, and fonts cannot trigger further downloading, if the file 

belongs to these three types, we generated the corresponding file directly. Otherwise, where the file is 

either a script or a document, for each of the five categories of other files, we found all files that are 

initiated from the current file. Then we wrote the loading commands of different categories in their 

corresponding places and wrote comments with calculated sizes so the total file size is the same as the 

original one. By doing this, we built the loading structure of our models. 

In order to prove that these mimic websites have the correct size and loading hierarchy characteristics, 

we also loaded websites that we produced, by running Apache2 inside docker to serve the mimic 

website on our own server while using the headless chromium browser to visit this server and measure 

the sizes of this download as we did before. After comparing with size characteristics of original 

corresponding real-worlds site, we could make sure that these two sites are same with respect to sizes. 

Figure 1 and 2 show the structure of a website with its corresponding model. 

Figure 1: the dependency structure of an original site 
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Figure 2: dependency structure of the model site 

There are already established website fingerprinting techniques, such as Wang’s k-nearest neighbors’ 

method, which uses 3766 features. Each visit of a website is recorded as a vector of 3766 elements.  In 

our experiment, we found that recursively reducing the 3766 features to 100 most relevant features 

could boost the accuracy, and we built a random forest classifier which uses these 100 features. In our 

tests, we use closed-world classification, which could have generally higher accuracy than open-world, 

and thus could better show the results of interference on website fingerprinting. 
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4. Description of Research Results 
Table 1: Website fingerprinting accuracy with different server settings 

Experiment Accuracy 
Original sites 91.3%±4.3% 

One model per site, HTTP/1.1 99.9%±0.5% 
One model per trace, HTTP/1.1 80.2%±3.8% 

HTTP/2 with server push 74.2%±4.3% 
HTTP/2 without server push 80.4%±2.5% 
HTTP/2 with 25% padding 68.5%±4.6% 

HTTP/2 with 25% padding, padded filenames 63.5%±8.0% 
We used docker containers, independent computer environment in our experiment as both the client 

side and server side. We listened to traffic between them. The client side is a docker that contains a 

headless Chromium crawler, performs as a browser of the client. The server side could be either real-

world websites, or docker containers with Caddy web servers. Caddies are web server models that allow 

us to set to HTTP/1, HTTP/2, or HTTP/2 server push mode. The process is shown in the picture below. 

Three kinds of information are taken from traffic: directions, relative time and sizes of packets. 

We started with the Alexa top 100 sites. One of the websites was down during our experiment, so we 

ended up with 99 sites. Thirty instances are recorded for each site, and there are 99*30=2970 such 

instances. We collected the trace of original websites by running a tcpdump while visiting the sites in a 

headless chromium browser, one at a time. The pcap file generated then could be parsed into the 

formatted data that website fingerprinting needs, which includes time, package size and direction 

information. The result of our random forest website fingerprinting shows that these websites have high 

susceptibility to website fingerprinting. 

Figure 3: the data collecting process 



8 
 

Then we collected models from these 99 sites as mentioned above. We create one model for each 

website. For each model, all files we generated are in a single directory which has the same name as the 

URL of the website corresponding to the model. Then for each of them, we create a docker network, 

attached a docker image using the model we created onto it and collected 30 instances using a crawler() 

to generate pcap files. After parsing these pcap files from docker networks, we have an extremely high 

accuracy in this new dataset.  

In order to further improve our modeling process, we visited each original website 30 times from the 

Chromium browser while collecting information with the embedded functions and generating models 

according each trace of the visit. There are 99*30 models. In this dataset, only one instance is collected 

from each model, so there are also 2970 instances in this dataset. 

Admittedly, there are still differences between our models and the real websites and that would 

influence the classification accuracy measurement. The classification results on these datasets show that 

while the classification has higher accuracy when the dataset originates from one model per site, it has 

much lower accuracy when the dataset originates from one model per trace, even lower than the 

original website. This is expected, as even the same webpage does not have the same size for each visit, 

and Figure 4 shows the size distribution looks our 99 sites. The web servers could have dynamic site 

behavior, as the website may not be the same upon each visit. For example, YouTube may prompt 

different videos. In addition, we padded the URL, as we found that the URL alone generates 3.2 bits of 

entropy in our dataset, and website fingerprinting can always distinguish websites of different URL 

length by just watching the length of the first request. 

Figure 4: Size distribution of the 99 sites 
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In addition, to eliminate potential information leakage from different lengths of the ClientHello request 

due to website names, we label and each website from 0 to 98 and each visit of the same website (from 

0 to 29). We named the models with, instead of original website names or anything related to that, a 14 

character string, starting with character s, followed by the website label in 6 digits, followed by a ‘_’ 

character and then the visit label in 6 digits For instance, the model built according to website 14, visit 6 

would be called “s000014_000006”. This is also one of the reasons that one model per trace has 

significantly lower accuracy, as the site name has 3.2 bits of entropy in our datasets. 

To study the efficiency of website fingerprinting on HTTP2 Push traffic, each of the caddy files also 

contains push commands and pushes all resource in the model besides the index.html file. This push 

command is not activated in the HTTP/1.1 mode but utilized in the HTTP2 mode. Like before, we started 

a docker network, attached a caddy image to it, but with HTTP2 option this time, and used the crawler 

to generate 1 instance of downloading traces. The classification results show that HTTP2 Push could 

decrease the accuracy of website fingerprinting 

However, the accuracy is still quite high. One main feature that contributes to this accuracy is the total 

size of websites. In fact, if we train a random forest classifier using only the total size feature, the 

accuracy is around 58.1%. A common method to minimize information leakage from sizes is padding, 

which adds random size “garbage” information to the website and is ultimately not displayed to users. 

To learn the efficiency of size padding as a defense against website fingerprinting, we also build new 

models with padding. The padding file is a javascript, named “padding.js” that contains only comments 

that consist of comment symbol “/**/” and “A” characters between the symbols. The size of the 

padding file is a uniformly distributed random number, between 4 bytes and 50% of the total size of the 

original files, i.e. with an average of 25% of original size. The padding file must be at least 4 bytes as that 

is the size of the comment symbols. The padding file is in the same directory as all other files of that 

model. Meanwhile, padding.js is added to the corresponding caddy file as the last push parameter, and 

it is also added to index.html as the last item loaded in the body, right in front of all the comments. 

Figure 5 shows how padding interferes with website fingerprinting, while we use HTTP/2 server push, 

when we use only the total size feature and when we recursively select the top 100 features. From our 

test results we can tell that with HTTP/2 server push, a small amount of padding could significantly 

lower the accuracy of website fingerprinting, and the more the padding is, the lower the accuracy is. 

Nonetheless, with average 10% padding and HTTP/1, the accuracy of classification is 79.1%±4.3%. 
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Compared to the accuracy of 80.2%±3.8% in the dataset of HTTP/1 with no padding, it shows that 

padding alone does not have much effect on website fingerprinting in HTTP/1. 

Furthermore, we did feature analysis to find out which features contribute the most, i.e. have the 

highest weights in classification. We used recursive feature elimination and greedy search. The top 

Figure 5: Differences in website fingerprinting when using only size features 
and using all features 

Figure 6: Website fingerprinting accuracy when using the top four features 
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features used by classification are total number of packets received (1), total page loading time(3), the 

maximum burst size(3705) and size of the 12th packet in the trace(3727). The accuracy of using these 

features is shown in the graph below (with average 25% padding).  

While features 1,3,3705 are related to total website sizes, the 12th packet contains the first push 

promise, which contains the name of the file pushed. The graph below shows the distribution of the 

length of this packet, all ranging from 154 to 156 bytes. Hence, we change the naming in our modeling 

process, padding the name of all files generated to the same length. After the file name is padded, there 

is a observable drop in the accuracy of website fingerprinting. 

  

Figure 5: Distribution of sizes of the 12th packet, i.e. feature 3727 
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5. Conclusion 
We measured the influence of HTTP/2 server push and padding on website fingerprinting. Based on test 

results on our models, we can tell that the combination of these three methods could significantly 

reduce the accuracy of website fingerprinting. We thus recommend websites with user privacy 

requirements to implement these methods as countermeasures against website fingerprinting. It is also 

notable that all these three methods could be implemented with no changes on client side and using 

existing web server software. 
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