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ABSTRACT 

Hurricanes are one of the most disastrous natural hazards impacting the U.S. coastal regions 

causing a huge damage to property every year. The damages and losses during hurricanes can be 

attributed to the simultaneous occurrence of two major events - high intensity wind and heavy 

rainfall. Moreover, since hurricane is an atmospheric phenomenon, any changes in the present 

climate could impact both hurricane wind and rainfall, and the corresponding damages and losses. 

Studies have shown that future climatic conditions could be different compared to present with an 

overall increase in the sea surface temperature. This increase is found to be non-uniform spatially 

based on the projections provided by Intergovernmental Panel on Climate Change (IPCC 2013). 

This could lead to varying effects on hurricane hazard and the corresponding losses across the 

different regions, resulting in some low risk regions observing a huge change in future hurricane 

risks whereas others observing only a slight change.  

Additionally, if the hurricane-prone regions are inhabited by marginalized population, then the 

overall hurricane risk in those regions would be even higher. Many studies have found that some 

population groups are more vulnerable to the hazard impact compared to others. In other words, 

the differences in vulnerabilities of the different population groups could result in regions inhabited 

by marginalized population to be more sensitive to the hazard compared to others. Consequently, 

assessment of climate-dependent hurricane risk considering the population vulnerability of the 

region could provide a more holistic information in estimating the potential assistance needs of the 

impacted population. 
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Accordingly, in this research, a detailed analysis is performed to evaluate the regional hurricane 

risk across different U.S. coastal regions by considering the climate change impact on hurricane 

hazard, hurricane building damages and the corresponding losses. Residential buildings are 

selected for the damage and loss assessment since they are the most vulnerable structures to the 

hurricane hazard. Further, this research investigates climate change impact on hurricane risks 

considering the vulnerability of the impacted population.  

It is found that the wind speeds for different locations across the U.S. south and east coast increase 

by around 30-50 mph in future climate (year 2100 under RCP 8.5) compared to the present climate 

(year 2005). The increase in wind speed led to an increase in the average individual building losses 

by almost 3.5 times in future compared to present. This in turn greatly increases future regional 

hurricane losses. However, different regions are found to have different degrees of increase in the 

future losses, with higher percentage increases found to be in the northeast coast compared to the 

southeast coast. In addition, it is also found that regional hurricane risks are greatly affected by the 

vulnerability of the impacted population. 
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CHAPTER 1:  INTRODUCTION  

1.1 Research Motivation 

In the United States, hurricanes are one of the most devastating natural disasters which cause a 

huge toll to properties and human lives. Since 1990, out of the top ten costliest catastrophes 

(inflation-adjusted) in the U.S., seven are due to hurricane damages (Insurance Information 

Institute 2017). The average annual hurricane loss from 1900 to 2017, normalized with respect to 

2018 socio-economic conditions, is estimated to be around 17 billion U.S. dollars for the 

continental United States (Weinkle et al. 2018). 

Hurricanes present such a hazardous situation as they are a combination of two extreme events - 

high wind speed and heavy rainfall. The simultaneous occurrence of these two events trigger a 

number of hazardous conditions which can lead to structural damage, tree fall, damage to crops 

and livestock, etc. Further, the interaction of these two events could result in combined losses to 

buildings much greater than if the individual events had occurred separately. This could be 

distinctively observed in residential buildings where high wind speeds damage the external 

structures through which rainfall can enter damaging the interiors and contents. 

Due to the likelihood of hurricanes passing through various regions in the U.S. and their huge 

impacts on the building structures, wind load has been listed as one of the major loadings in the 

current building design load standard, ASCE 7-16. Further, the design in accordance with the code 

are meant to prevent the damages due to wind, which also inherently prevents the damages of the 

interior of building due to rain ingress from the impinging rain. The design wind load in ASCE 

was determined based on both hurricane and non-hurricane winds and is provided in the form of 
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wind speed maps for different occupancy categories of structures. The hurricane wind load adopted 

in the code is developed originally in Vickery et al. (2010), using the methodology described in 

Applied Research Associates (2001), Vickery and Wadhera (2008), and Vickery et al. (2000, 

2009a, 2009b and 2010). This methodology utilizes Monte Carlo simulation to generate hurricanes 

based on a number of hurricane parameters. The statistics of the hurricane parameters are based 

on hurricane data from 1990 to 2006. In Vickeryôs model, one of the hurricane parameters, 

hurricane central pressure, is modeled as a relative intensity parameter which is a function of sea 

surface temperature (SST). However, ASCE 7-16 does not consider any probable effect of changes 

in SST on the wind loads under future climatic conditions. 

The United Nations Intergovernmental Panel on Climate Change (IPCC) reported that the period 

of 1983 to 2012 was the warmest 30-year period of the last 1400 years in the Northern hemisphere 

and this warming trend is expected to continue in future (IPCC 2013). IPCC has attributed the 

increase in temperature to both natural and anthropogenic processes. Based on the anticipated level 

of these processes in future, IPCC has projected four different climate change scenarios. All of 

these climate change scenarios show moderate to significant increases in mean sea surface 

temperature in future. The rapid increase in temperature is unprecedented, hence the consequence 

of climate change on damages and losses due to hazards that have some dependence on 

atmospheric temperature, like hurricanes, drought, crop yield, etc. has not been fully understood 

yet. 

Studies based on the anticipated future climate have found an increase in hurricane wind speeds in 

future climate (Emanuel 2008, Knutson et al. 2010, Oouchi et al. 2006). Besides, studies have 

shown a positive relationship between rainfall rate and wind speed (Lonfat et al. 2004, Marks and 
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DeMaria 2003, Tuleya et al. 2007). This could cause increases in the future hurricane losses in 

residential buildings. Further, the impact of climate change on hurricane losses could vary by 

location. Even at present, hurricane hazard varies widely across different regions as could be 

observed from historical data. This is because hurricane hazard in a given location depends upon 

a lot of factors, including proximity to the ocean, temperature of neighboring ocean, Coriolis 

effect, etc. Besides, the IPCC projected climate change including the SST is distributed non-

uniform spatially. Thus, the non-uniform SST in conjunction with the above listed factors could 

culminate into variable degree of changes in hurricane hazard and the corresponding losses across 

different locations in the U.S. Additionally, if these regions are inhabited by vulnerable population 

groups, then it might lead to a huge magnification of their overall regional hurricane vulnerability.  

Many studies have found that some population groups are more vulnerable to the hazard impacts 

compared to others. For instance, studies have found that certain demographic groups, including 

people with low income, non-white race, children and old people, are known to suffer more 

severely following a hazardous event (Fothergill et al. 1999, Elliott and Pais 2006, Sastry et al. 

2009, Hamama-Raz et al. 2014, Landry et al. 2007). More specifically, low-income population 

were found to be more adversely affected in terms of their education, health and other needs 

following a natural hazard (Kareem and Noy 2016). Similarly, non-white race was found to have 

difficulty evacuating following a hurricane, suffer higher job loss (Zottarelli 2008, Chaganti and 

Waddell 2015). Accordingly, the different vulnerabilities of the different demographic groups 

could further project in population-based regional hurricane risk, resulting in regions inhabited by 

marginalized population to be more sensitive to the hazard compared to others. 
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A holistic approach of assessing regional hurricane risk by considering population vulnerability 

can help identify the regions where people are most impacted by the hazard and thus help prioritize 

resources to those regions, which could be useful in pre-disaster planning phase. Such approach 

would be especially beneficial for large-scale hazards like hurricanes, since they require massive 

resource allocation, and hence need to be planned carefully. Further, since both hurricane hazard 

and demographic composition could vary spatially, this could result in huge variabilities in hazard 

risks across different regions. Accordingly, a comprehensive hurricane risk assessment 

considering potential impact of climate change and population vulnerability helps provide valuable 

guidance to prepare for future hurricane risk, by identifying the regions where people will be in 

the most need of assistance.  

Thus, this research aims to investigate in detail the potential effect of future climate on the regional 

hurricane risk across the U.S. coast. Eight counties across the U.S. south and east coast are selected 

for the assessment of the hurricane risk. The impact of climate change on hurricane hazard, 

building damage and the corresponding monetary losses are thoroughly investigated across these 

counties. Currently, damages are investigated only for residential buildings since they are one of 

the most vulnerable structures to hurricane damage. Additionally, non-monetary hurricane 

impacts, including need of emergency shelter and job loss are also evaluated considering the 

vulnerability of the hazard-impacted population. It is noted that since the intent of this study is to 

investigate the impact of climate change on future hurricane risks only, any potential changes in 

building fragility, exposure, population, and building code changes in future are not considered at 

this time. Further, this study only considers the damage from wind and rain ingress; i.e., other 
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modes of hurricane damage, such as storm surge, flooding, are not considered. Accordingly, the 

following section discusses the objective and the major tasks of this research.  

 

1.2 Research objectives and specific tasks 

This study aims to investigate the potential change in the U.S. hurricane risk profile in future under 

climate change scenarios.  

1.2.1 Research objectives 

Below are the research objectives of this research. 

Objective 1. Develop hurricane scenarios for present and future using a model capable 

of capturing the impact of climate on the hurricanes. 

Objective 2. Develop a hurricane loss assessment framework for residential buildings. 

Objective 3. Evaluate the impact of climate change on the regional hurricane risk across 

the U.S. coastal regions without considering population vulnerability.  

Objective 4. Evaluate the impact of climate change on the regional hurricane risk across 

the U.S. coastal regions by considering population vulnerability. 

  

1.2.2 Research tasks 

Below are the specific tasks to realize the above research objectives.  

¶ Tasks for Objective 1: 
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Task 1.1. Develop a model for storm system simulation incorporating sea surface 

temperature. 

Task 1.2. Obtain the sea surface temperature data for present and future climate 

scenarios.  

Task 1.3. Validate the hurricane simulation model. 

 

¶ Tasks for Objective 2:  

Task 2.1. Develop a hurricane damage model considering effects from both hurricane 

wind and rainfall for residential buildings. 

Task 2.2. Develop a hurricane loss assessment model capable of capturing the wind 

and rain damages in residential buildings. 

Task 2.3. Validate the hurricane damage and loss models. 

 

¶ Tasks for Objective 3: 

Task 3.1. Obtain prototype residential building structures and building inventory for 

selected locations.  

Task 3.2. Assess hurricane hazard and the corresponding damage in each residential 

building prototype for each region under the climate-dependent hurricane 

scenarios. 

Task 3.3. Evaluate regional losses for present and future climate scenarios by 

combining the hurricane losses in individual building prototypes for the 

corresponding scenarios. 
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¶ Tasks for Objective 4: 

Task 4.1. Develop a model for assessing hurricane impacts considering the 

differences in post-disaster response of different demographic groups. 

Task 4.2. Gather past hurricane data to develop the model, along with the data 

regarding the demographic composition for the selected counties.  

Task 4.3. Evaluate regional population vulnerability-considered hurricane impacts 

across the selected counties for present and future climate conditions. 

 

1.3 Organization of Dissertation 

This dissertation describes in detail the methodologies adopted to accomplish the tasks listed 

above, along with the findings of the study. The remainder of this dissertation consists of six 

chapters, followed by a list of references. Chapter 2 reviews the existing studies investigating the 

impacts of climate change on hurricane risk. Chapter 3 discusses the methodology adopted to 

develop climate-dependent hurricane risk model. Chapter 4 provides the findings of the effect of 

climate change on hurricane building damage. Chapter 5 discusses the findings of effect of climate 

on hurricane risk across the U.S. coast. Chapter 6 discusses the findings of population 

vulnerability-considered regional hurricane risk across the U.S. coast. Chapter 7 then summarizes 

the findings of this research and discusses the remaining future works.  
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CHAPTER 2:  EXISTING STUDIES INV ESTIGATING  THE 

CLIMATE CHANGE IMPAC T ON HURRICANE RISK 1 

2.1 Climate change 

The global mean surface temperature has increased since the late 19th century (IPCC 2013). The 

global surface temperature data shows a mean warming of 0.85°C (land and ocean combined) over 

the period from 1880 to 2012. The upper 75 m of ocean surface alone is found to have a mean 

warming of 0.11°C per decade over the period from 1971 to 2010. Further, this trend is expected 

to continue, with the future projected to have a much warmer climate compared to present 

(Andregg 2010, Bray 2010, Verheggen et al. 2014, Carlton et al. 2015, et al. 2016). 

One of the leading bodies working on climate change is Intergovernmental Panel on Climate 

Change (IPCC). IPCC has developed several reports by assessing the numerous published climate 

change researches and can be considered as the most in-depth and state-of-the-art climate change 

studies which have been widely accepted and used in the scientific community. IPCC has 

published five assessment reports to date, with the fifth assessment report being the most current 

one. IPCC has attributed the warming to a number of natural and anthropogenic processes and 

substances that alter the earthôs energy balance. The anthropogenic substances include greenhouse 

                                                 

1 Part of this dissertation has been published in  

Pant, S., Cha, EJ. (2018). Effect of climate change on hurricane damage and loss for residential buildings in Miami-

Dade County. Journal of Structural Engineering, 144(6), 04018057. doi:10.1061/(ASCE)ST.1943-541X.0002038 

Pant, S., Cha. EJ. (2019). Wind and rainfall loss assessment for residential buildings under climate-dependent 

hurricane scenarios. Struct Infrastruct E, 15(6), 771-782. 

Pant, S., Cha, EJ. (2019). Potential changes in hurricane risk profile across the United States coastal regions under 

climate change scenarios. Structural Safety, 80, 56-65. 
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gases (GHG) and short-lived gases and aerosols, among which GHG are known to contribute the 

most to the global surface warming.  

The change in the Earthôs energy balance can be quantified using radiative forcing and is expressed 

in watts per square meter. Considering the anticipated radiative forcing, climate feedbacks and the 

storage of energy by the climate system, the fifth IPCC report has projected the rate and magnitude 

of global climate change for future in terms of four representative concentration pathways (RCP): 

RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Each RCP is named as per the projected radiative forcing 

values expected in the year 2100. Consequently, the higher the radiative forcing, the higher is the 

surface temperature increase. If stringent mitigations are taken to lower the GHG emissions, it will 

result in lower radiative forcing corresponding to RCP2.6. However, without stringent mitigation, 

the climate change scenario is expected to be within RCP4.5 to RCP8.5. 

For each of the RCP scenarios, the temperature was projected both for near-term and long-term 

future, for land as well as ocean surface. Figure 1 shows the projection of SST change for near-

term future based on concentration-driven Coupled Model Intercomparison Project Phase 

5(CMIP5) simulations by IPCC (2013). The global mean surface temperatures (land and ocean 

combined) for 2081ï2100 is projected to increase relative to 1986ï2005 by 1°C (RCP2.6), 1.8°C 

(RCP4.5), 2.2°C (RCP6.0) and 3.7°C (RCP8.5). For the same time periods, the mean ocean 

temperature alone is projected to increase by 0.8°C (RCP2.6), 1.5°C (RCP4.5), 1.9°C (RCP6.0) 

and 3.1°C (RCP8.5). 
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Figure 1: Projected change in mean sea surface temperature relative to 1986-2005 for different 

climate change scenarios. 

 

2.2 Hurricane frequency 

Since hurricane is an atmospheric phenomenon, future hurricane hazard could be impacted under 

climate change. One of the metrics of hurricane hazard is hurricane frequency. There have been 

many studies that have investigated the impact of future climate on hurricane frequency. Out of 

these, some studies have found an increasing trend of annual hurricane frequency for climate 

change scenario (Mann and Emanuel 2006, Mudd et al. 2013, Liu 2014) based on the analysis of 

HURDAT. However, various researchers have argued the completeness of HURDAT and insisted 

that a large portion of past hurricane data is missing owing to lower hurricane-reporting ship 

density as well as other observational and recording restrictions prior to satellite and aircraft 
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reconnaissance era (Landsea et al. 2010, Knutson 2010), hence analysis of unadjusted HURDAT 

data to obtain frequency trend can be misleading. 

Different methodologies have been devised to account for the missing data in HURDAT. Mann et 

al. (2007) adjusted for missing data by comparison of pre-aircraft reconnaissance era (1870ï1943) 

to recent data from 1944-2006 to estimate number of TC (Tropical Cyclone) missed and found an 

undercount of 1.2 TC per year. After adjusting for the undercount, the frequency of TC was still 

found to have an increasing trend with time. On the other hand, Landsea et al. (2010) and Knutson 

et al. (2010) found no significant change when adjustment for missing TCs was done. Landsea et 

al. (2010) based their analysis on adjusting medium and long-term hurricanes based on ship density 

and other limitations in pre-satellite era. They also found that the increasing trend in hurricane data 

was mostly due to short duration TCs which they attributed to changes in hurricane observing and 

recording practices. 

Further, various high-resolution models showed a decrease in frequency due to climate change 

(Bengtsson et al. 2007; Emanuel et al. 2008; Knutson et al. 2008; Knutson et al. 2015; Bender et 

al. 2010) but an increase in high intensity storms. For example, Bengtsson et al. (2007) suggested 

that even though the climate will be warmer in future, however the increase in the static stability 

and reduced vertical circulation could contribute to the reduction in number of storms. Knutson et 

al. (2015) using GFDL high resolution atmospheric model performed hurricane simulation for 

SSTs corresponding to 1980-2005 and late 21st century based on RCP4.5 scenario. It was found 

that tropical cyclones will be fewer in future climate, but frequency of intense category 4 and 5 

storms will increase. Bender et al. (2010) found nearly a doubling of frequency for category 4 and 

5 storms by the end of the 21st century, despite a decrease in the overall frequency of tropical 
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cyclones, using an operational hurricane-prediction model. Yoshida et al. (2017) based on high-

resolution simulations from global atmospheric models found that for a 4K surface warming 

climate, the global number of TCs decrease by 33%. However, TCs were found to increase in the 

central and eastern parts of the extratropical North Pacific. Sugi et al. (2017) by using statistical 

downscaling of ensemble of many high-resolution global model experiments found that in future 

climate the frequency of very intense tropical cyclones will increase in most regions but decrease 

in the south western part of Northwest Pacific, the South Pacific, and eastern part of the South 

Indian Ocean. Thus, based on the review of the existing studies, it is found that climate change 

effect on hurricane frequency is still a contended subject.  

 

2.3 Hurricane intensity 

In addition to hurricane frequency, another parameter to measure hurricane hazard is hurricane 

intensity. Various studies have investigated how the increase in SST could impact hurricane 

intensity. For example, Emanuel (2005) had found that a degree Celsius increase in SST could 

increase the maximum wind speed of tropical cyclones by 5%. Emanuel (1988, 2008) had also 

used physics-based model and found an increase in the hurricane wind speed with an increase in 

the SST.  Based on the averaged SST data for all the basins in the tropical cyclone season, Elsner 

et al. (2008) had found that a 1ºC rise in SST increases the wind speed by 1.9 ± 2.9m/s in the value 

of 80th percentile and 6.5 ± 4.2m/s in the value of 90th percentile. NOAA (2019) had also found 

that tropical cyclone intensities globally will likely increase on average by 1 to 10% according to 

model projections for a 2ºC global warming. Yoshida et al. (2017) based on high-resolution 



13 

 

simulations from global atmospheric models found that for a 4 K surface warming climate, lifetime 

maximum surface wind speeds and precipitation rates are amplified globally. 

As stated in Section 2.1, future climate is expected to be warmer than the present climate. 

Accordingly, studies have assessed future hurricane intensity under climate change. For example, 

Oouchi et al. (2006) had developed tropical cyclones (TCs) using high resolution, global 

atmospheric model, based on which the increase in the maximum wind speeds for the future 

climate under IPCC A1B scenario in 2080-2099 to the present climate was found to be 7.3 m/s for 

the Northern Hemisphere and 3.3 m/s for the Southern Hemisphere. Murakami et al. (2012) had 

also found an increase in high intensity storms in future climate based on the analysis using 

atmospheric general circulation models. Nishijima (2012) performed risk assessment of typhoon 

event from simulation based on super-high resolution atmospheric general circulation model. It 

was found that at most locations of Japan, extreme wind events are most likely to occur in future 

than at present. Knutson et al. (2010) found that hurricane wind speeds may increase by 2ï11% in 

the twenty-first century, globally. Knutson et al. (2015) performed hurricane simulation for SSTs 

corresponding to 1980-2005 and late 21st century based on RCP4.5 scenario using GFDL high 

resolution atmospheric model and GFDL hurricane model. The average cyclone intensity as well 

as precipitation rates is found to increase in future climates. Bengtsson et al. (2007) had also 

suggested that the increase in temperature and water vapor in future climate would provide more 

energy for the storms resulting in more intense storms.  

Further, using statistical approaches, Mudd et al. (2014) had investigated the impact of climate 

change on hurricane intensity for the year 2100 under RCP 8.5 scenario. It was found that for 

ASCE 7-10 design category II wind speed, the majority of the Northeast U.S. coastline could see 



14 

 

an increase of about 15% in 2100 compared to the present climate corresponding to the year 2012. 

The increase in wind speed in future climate was also found in Mudd et al. (2014). Other studies 

(Mudd et al. 2017, Rosowsky et al. 2015) had found increases in both rainfall rate as well as the 

wind speed in 2100 under RCP 8.5 scenario compared to 2012. Accordingly, most studies agree 

that hurricane intensity will increase in the future climate.  

 

2.4 Hurricane losses 

The increase in hurricane intensity could result in the increase of hurricane losses under climate 

change. This has also been investigated in various studies. For example, Emanuel (2011) had 

evaluated the property losses for hurricanes land-falling U.S. Gulf and East coasts under constant 

climate as well as IPCC A1B scenario until 2100. The property loss calculation was based on 

empirical model which relates wind speed to fraction of the property loss. The accumulated loss 

since 2000 was found to almost double in 2100 for A1B scenario compared to constant climate 

conditions. Nordhaus (2010) had investigated the impact of global warming on hurricane losses 

and had estimated the U.S. hurricane losses to increase by 10 billion U.S. dollars due to the climate 

change corresponding to doubling of atmospheric CO2 concentrations. Choi and Fisher (2003) had 

investigated the impact of climate variability like El Nino on hurricane losses for North Carolina 

by performing regression analysis on historical data and found the climate variability to have a 

significant impact on hurricane losses. Hallegatte (2007) had generated synthetic hurricanes using 

model based on physical mechanism for the U.S. Atlantic and Gulf coasts. For future climate 

scenario based on a 10% increase in potential intensity, a higher percentage of intense hurricanes 
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were observed resulting in the increase of the annual hurricane damage by 54% in the future 

climate scenario. Bouwer (2013) had projected future extreme weather losses including losses due 

to TCs by analyzing results given in other studies. For TCs, the increase of average annual losses 

in 2040 compared to 2000 was found to be between 9% and 417%, with a median of 30%. 

However, it has been suggested that for the year 2040, the contribution of the increase in losses 

could be more due to increasing exposure rather than due to anthropogenic climate change. Li et 

al. (2016) had investigated the impact of increase in hurricane damages due to increase in hurricane 

wind speeds. For an annual 5% increase in wind speed, the annual probability of failure was found 

to increase by 10% in 50 years. Wang and Rosowsky (2017) had also simulated hurricanes under 

climate-dependent RCP 8.5 scenario for the year 2100 in Charleston, SC and evaluated the loss 

based on HAZUS software for present as well as the climate-dependent scenarios. The probability 

of exceedance of losses were found to be higher in the climate-dependent scenario. 

Further, some studies have investigated and compared the climate change impact on hurricane 

losses across different regions. For example, Liu (2014) had used Vickeryôs model (2000) to 

simulate hurricane for present and IPCC projected future climate scenarios and used HAZUS 

software directly to evaluate the regional hurricane losses for Orleans, Miami, Charleston and New 

York. The future hurricane scenarios were modeled considering only a change in intensity or 

change in both intensity and frequency. In the model considering only the change in intensity, the 

average increase in wind speed between RCP 8.5 scenario for the year 2100 and a no climate 

change scenario was found to be between 9-19m/s for a return period of 10 to 1700-year. The 

increase in 700-year return period hurricane losses were found to be 1.8, 0.8, 1.2 and 9.9 and for a 

300-year return period was 3.8, 1.1, 2.6 and 9.3 for Orleans, Miami, Charleston and New York 
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respectively. Bjarnadottir et al. (2014) had also compared the increase in hurricane damage cost in 

2100 RCP 8.5 scenario for three locations- Miami-Dade, New Hanover and Galveston - due to 

change in hurricane frequency and/or wind speed. For a 10% increase in wind speed, an increase 

in annual damage cost was found to be 18%, 30% and 24% respectively in the above listed counties 

assuming a foreshore exposure. In summary, most of the existing studies have found that hurricane 

losses will increase in future climatic condition with varying degree of the increase by location. 

 

2.5 Population vulnerability -considered hurricane impact 

There are only a few studies that have investigated the potential effect of climate change on 

regional hurricane risks considering population vulnerability. Bjarnadottir, Li and Stewart (2010) 

had developed a metric to assess hurricane risk called coastal community social vulnerability index 

to quantify vulnerability of hurricane-prone areas under climate change.  This metric was evaluated 

as a product of hazard and weighted vulnerability factors, which were scaled based on the method 

given in Davidson and Lambert (2001). The coastal community social vulnerability index is useful 

in comparing the overall population vulnerability-considered regional hurricane risks of different 

regions. In this study, the potential impact of climate change on future hazard is accounted by 

changing the present value of both wind and storm surge hazard from -5 to 15% at an increment 

of 5%. Accordingly, hurricane risk considering population vulnerability is not well investigated 

yet.  
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2.6 Limitations of existing works 

From the review of the existing studies, it is noted that various studies have concluded that the 

anticipated increase in temperature will have an effect on the magnitude of future hurricanes, 

which will increase the degree of outer and interior damages in buildings. In most of these studies, 

hurricane losses are directly assessed for a given wind speed by using simple equations developed 

based on losses incurred during past hurricanes and expert judgment. However, this approach 

could potentially lead to loss of valuable information, especially for analysis performed under 

climate-dependent hurricane scenarios. Assessment of hurricane risk involves a lot of inherent 

uncertainties, and a detailed analysis considering the uncertainties could help get better estimates 

of the results. 

Further, even though it is intuitive that during hurricanes, wind damage causes rain ingress leading 

to even more damage, the nature of this dependency has not been studied well. Besides, though 

both wind and rain ingress are the primary modes of hurricane damages, however most studies use 

a single fragility curve combining both modes for hurricane loss evaluation. However, since both 

wind and rain hazard can be affected under climate change, the nature of their dependency might 

as well be affected. This could affect the nature of the combined fragility curve in climate change 

scenarios. 

Moreover, it is also noted that studies performing a thorough assessment of hurricane risks, 

especially across different locations are still lacking. However, since the spatial variation of 

climate change could impact hurricane risk across the different regions differently, some low-risk 

regions could observe a huge change in future hurricane risks whereas others could see only a 
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slight change. If this factor is not properly accounted, then regions with historically lower 

hurricane risks might not have enough preparedness to resist future hurricanes. In addition, if these 

regions are inhabited by marginalized population, then the overall hurricane risks inflicted on the 

people could be even higher. 

Currently, there are extremely few studies that have investigated hurricane risk under climate 

change by considering population vulnerability. One of such studies as listed above is by 

Bjarnadottir et al. (2014). It is noted that though this study tries to account for the changing hazard, 

the hazard is not directly assessed as a function of potential future climatic condition. Further, the 

metric developed in the study is useful in comparing the vulnerability of a region relative to other 

regions; i.e., it can be used to rank different regions in terms of their vulnerability. However, the 

metric is not easily related to the parameters in real physical world and provides limited insight on 

the need of helps against hazard impacts. For example, the individual metrics cannot be directly 

interpreted in terms of financial implications for a region, such as emergency shelter needs, 

evacuation needs, medical needs. 

Thus, a comprehensive hurricane risk assessment considering climate change could be valuable in 

long-term region-focused planning for disaster preparedness. Accordingly, this study investigates 

the changes in hurricane risk profile across the U.S. south and east coast under the anticipated 

climate change scenario, with consideration of population vulnerability. This study deviates from 

other studies in that it uses a state-of-the-art method to evaluate the overall loss in a building by 

performing a detailed analysis of hurricane damage for each individual building component under 

different climate scenarios. The analysis is performed for each predominant building in a selected 

county and the losses for all buildings are summed to get the overall regional loss. The aim of this 
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study is not only to understand the effect of climate change on hurricane losses for a whole region 

but also to investigate the variations in the effect on various types of buildings. Further, this study 

has also considered demographic composition of a region in evaluation of regional hurricane risk, 

in cases where applicable. The details of the methodology are explained in the following sections. 
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CHAPTER 3:  CLIMATE -DEPENDENT HURRICANE RISK 

ASSESSMENT MODEL  

3.1 Development of climate-dependent hurricane scenarios  

A tropical cyclone (TC) is a rotating, organized system of clouds and thunderstorms that originates 

over tropical or subtropical waters and has a closed low-level circulation. (NOAA 2018b). TC that 

occurs in the Atlantic Ocean and northeastern Pacific Ocean is called a hurricane, if the one-minute 

maximum sustained wind speed of the cyclone is greater than 74 mph. TCs with lower intensity 

than hurricanes are called tropical storms. 

Currently, there are various approaches used to model the tropical cyclones. These approaches can 

be broadly divided into two main categories based on the underlying modeling techniques ï one 

using statistical methods and the other using physics-based mathematical equations. In statistical 

models, past data from HURDAT is analyzed to draw statistical inferences for TC parameters 

which is then used to simulate TCs. Models using this approach include CLIPER model (NOAA 

2018b), Georgiou (1983), Georgiou, Davenport and Vickery (1983), Vickery (2000), etc. In 

physics-based models, various atmospheric processes like surface pressure, temperature, radiation, 

cloud, etc. are used as inputs to simulate TCs using complex mathematical equations. For example, 

NOAAôs GFDL model uses this approach. It is to be noted that though the physics-based models 

can capture various atmospheric processes, however they require rigorous computation making 

them extremely time consuming. 

In this study, Vickeryôs model (2000) is adopted for tropical cyclone simulation. This model 

considers the genesis of TCs from the ocean as well as development and progress with time until 
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the final dissipation. This is a statistical model, however also incorporates physics-based equation 

to limit central pressure within suitable range as dictated by atmospheric conditions and runs much 

faster than other physics-based models. Besides, this model uses SST as an input, thus making it 

easier to even incorporate climate change studies. This model has already been used in various 

research studies including building design load standards ASCE 7 (ASCE 2016) as well as 

hurricane hazard studies under climate change (Mudd 2014, Liu 2014). It is noted that even though 

the main focus of this proposed research is hurricane level winds since they cause the major 

devastating damage, however both forms of TCs (hurricanes and tropical storms) need to be 

considered in the origin and development phase since a tropical storm could intensify to a hurricane 

and a hurricane could weaken to a tropical storm. 

The following sections detail the methodology adopted for the simulation of climate-dependent 

hurricane scenarios in this research. Section 3.1.1 introduces IPCC projections on climate change 

and the procedure of extracting the climate data for present and IPCC projected future scenarios. 

Section 3.1.2 discusses the methodology adopted for the hurricane simulation. 

 

3.1.1 Climate change model 

Climate is often described by various atmospheric parameters and the changes in these parameters 

could change future climate significantly compared to the present. One of the dominant and leading 

work in this field is done by IPCC. Their reports show that various driving forces, the most 

dominant being concentration of greenhouse gases in atmosphere can appreciably affect the 

climate. More elaborately, they predicted radiative forcing in future using climate model based on 
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changes in concentration of greenhouse gases due to the anticipated changes in human activities. 

Four different climate scenarios - RCP2.6, RCP4.5, RCP6 and RCP8.5 were presented based on 

the radiative forcing in the year 2100. Among these, RCP2.6 has the lowest difference between 

current and future climate and RCP8.5 has the highest difference. However, it is also noted that 

based on the warming to date, a recent study by IPCC (2018) has predicted that the future warming 

will likely  exceed RCP 2.6 scenario. 

In this research, climate is inputted in terms of SST in the hurricane model. Particularly, SST is 

used to simulate the central pressure difference and translation velocity of hurricanes. The 

changing climate is introduced in terms of SST. The analysis for the present climate is based on 

the year 2005. The year 2005 is also in conformance with the range of years considered for 

hurricane simulation in ASCE-16 (2016). Accordingly, for the present climate corresponding to 

the year 2005, the SST is obtained from COBE data set as provided in NOAA (Ishii et al. 2005, 

NOAA 2017a). COBE is one of the most comprehensive historical databases and was developed 

by obtaining historical in-situ observations from sources which include Kobe collection, ICOADS 

release 2, buoy data sets and weather reports. These were then processed for monthly mean SST 

starting from 1990 for a 1°longitude x 1°latitude across the ocean (Ishii et al. 2005), which are 

provided in NOAA (2017a). In this study, hurricane is simulated for the warmer months of May 

to November. Figure 2 shows the average of the monthly mean SST for these warmer months for 

the year 2005. 
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Figure 2: Distribution of SST (in Kelvin)  for the year 2005 based on COBE database. 

For the future climate, only IPCC RCP 8.5 is considered. The projected climate for the RCP 8.5 

scenario is based on the results from Coupled Model Intercomparison Project (CMIP). The models 

under this project follow specific protocol so as to provide a consistency among various climate 

models running under this project. The latest protocol in conjunction with IPCC assessment report 

5 is CMIP5. NOAAôs GFDL has run climate scenarios using the CMIP5 protocol under the 

radiative forcing as dictated by the RCP scenarios (NOAA 2017b). These values are also given as 

monthly mean for 1°longitude x 1°latitude across the ocean. These values are directly adopted in 

this study. As expected, these values are not uniformly distributed across the ocean. The difference 

between the average SST of future climate corresponding to RCP 8.5 scenario in the year 2100 

and the present climate for the selected warmer months is shown in Figure 3. From the figure, it is 

clearly observed that the highest increase in SST in future is found to be near the ocean adjacent 
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towards the northeast side of the U.S. Further, it is also observed that SSTs are not provided for 

some grids as seen in Figure 3. For our analysis, these areas were assumed to have the same SST 

as the neighboring grids.  

 

Figure 3: Difference of SST (in Kelvin) between 2005 and 2100 based on IPCC projected RCP 

8.5 scenario. 

 

3.1.2 Tropical cyclone simulation model considering climate impact 

This study considers the genesis of TCs over ocean as well as its progress and development with 

time. The TCs are simulated by month, particularly for the warmer months from May to November 

that were found to comprise more than 98% of past TCs formed in the North Atlantic Ocean 

(NOAA 2018b). Their corresponding track and strength are assessed at each time step in terms of 

translation velocity, approach angle and central pressure difference. The time step for this study is 
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taken to be 6-hour interval. The following sections give the complete details of TCs genesis, their 

propagation over ocean as well as land, validation of the simulated TCs and finally the evaluation 

of corresponding wind and rainfall rate at desired locations.  

 

3.1.2.1 TC genesis and propagation over ocean 

To initiate and simulate the storms, the North Atlantic Ocean including the Gulf Coast is divided 

into a 5x5  grid. Then, for each of the warmer months, TCs are randomly generated in each grid 

using Poisson distribution. As stated in the literature review, currently there is not a clear consensus 

among the scientific community on how climate change could impact hurricane frequency. Thus 

for this study, mean hurricane frequency is taken to be a constant and is obtained from historical 

data. Accordingly, the mean monthly TC genesis frequency is obtained by analyzing the data 

obtained from HURDAT. This frequency calculation is based only on the data after 1944 since 

various studies (Knutson et al. 2010, Landsea et al. 2010) have shown that the earlier data may be 

incomplete due to inadequate TC observing technologies.  

The TCs are randomly initiated using the monthly frequency and then simulated for a given climate 

scenario using the SST data obtained as discussed in Section 3.1.1. The initial parameter values 

for translation velocity, approach angle and central pressure difference are randomly sampled from 

historical data, which describe the initial state of the randomly generated TCs. Then, the parameter 

values are updated for the next time-steps using statistical relationships to the relevant variables. 

These relationships are obtained by performing regression analysis on past storm data obtained 

from HURDAT (Landsea et al. 2015), which are explained below in detail.  
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The central pressure difference is related to central pressure difference in previous time steps as 

well as SST by using the method provided in Vickery et al. (2000), which is given below. 

ὰὲὍ ὧ ὧ ὰὲὍ ὧ ὰὲὍ ὧ ὰὲὍ ὧ Ὕ ὧ Ὕ Ὕ ‐      ( 1 ) 

where Ὅ is the relative intensity, Ὕ is sea surface temperature and ‐ is a random error term. The 

subscript Ὥ  represents the time step and since each time step is a 6-hour period, Ὥ ρ and Ὥ ς 

represent 6-hour and 12-hour before the current time in the simulation. The relative intensity is 

defined as the ratio of central pressure difference for a given tropical cyclone to the maximum 

central pressure difference that climate conditions allow (Emanuel 1988, Darling 1991). Relative 

intensity is used for simulating central pressure since it helps to bound central pressure difference 

within the maximum allowable as dictated by the climate conditions (Darling 1991, Vickery et al. 

2000). 

The translation velocity ὠ is evaluated by building upon the equation provided in Vickery et al. 

(2000). To better reflect the effect of climate, potential dependence of translation velocity on SST 

was investigated. It was found that translation velocity is negatively correlated to the SST at the 

center of the storm, i.e. as SST decreases translation velocity increases. A linear regression analysis 

between the two for all the past North Atlantic TCs yielded a negative correlation with a p-value 

almost zero, suggesting temperature could be a meaningful addition for evaluating translation 

velocity. The inclusion of temperature for evaluating translation velocity was also found in Mudd 

(2014). The following equation is used for the simulation of translation velocity (Mudd 2014). 

ὰὲὠ ὥ ὥ  ὥ ‗ ὥ ὰὲὠ ὥ — ὥ Ὕ ‐    ( 2 ) 



27 

 

where  and ‗ are the latitude and longitude of the storm center, ὠ is the translation velocity and  

— is the approach angle. Similarly, approach angle is related to location, translation velocity and 

approach angle at previous time step using Eq. (3). 

ῳ— ὦ ὦ  ὦ ‗ ὦ ὰὲ ὠ ὦ — ὦ — ‐      ( 3 ) 

This equation builds upon the model by Vickery et al. (2000). One difference is that ÌÎ 6  is used 

instead of 6. This is because approach angle was found to be more highly correlated with ÌÎ 6  

and its residual was closer to Gaussian distribution than 6. Besides, dependence of approach angle 

on SST was also investigated. However, no significant relationship between the two was found. 

The coefficients of the Eqs. (1), (2) and (3) are determined for each 5 x5  grid over the ocean by 

linear regression analysis. The updating of TC parameters using Eqs. (1), (2) and (3) is continued 

until the storm makes a landfall or dissipates in the ocean. 

 

3.1.2.2 TC propagation over land 

Once the TC landfalls, the TC decays. The decay of TC is modeled through central pressure 

difference using Eq. (4) (Vickery 2005). 

ῳὖὸ ῳὖ Ὡὼὴ  ὸ          ( 4 ) 

where ῳὖὸ is the central pressure difference at time ὸ after landfall, ῳὖ is the central pressure 

difference at landfall, and  is the decay constant. The value of the decay constant  varies by 

region and are reported in existing studies (Liu 2012,  Rosowsky et al. 1999, Vickery 2005). The 

values for the study region are obtained from Vickery (2005). The approach angle and translation 
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velocity are calculated for each time-step after landfall as well, using the Eqs. (2) and (3) without 

the SST terms. The coefficients for approach angle and translation velocity in land are calculated 

from the data in HURDAT similarly to the way they are calculated for TCs in ocean. If there are 

insufficient data to calculate coefficient for a given grid, then the coefficients from the neighboring 

grid is assumed to be used. The neighboring grid is taken to be the former grid from which the 

storm had traversed. The track and strength of TC at each time-step is simulated until the central 

pressure difference of the storm decays to less than 1 mb. Following this procedure, 40,000 years 

of the TCs for the year 2005 and 2100 are simulated. The simulation for year 2100 is done based 

on projected RCP8.5 climate scenario. 

 

3.1.2.3 Validation 

The simulated results for the parameters (frequency, central pressure difference, translation 

velocity and approach angle) of TCs landfalling U.S. have been compared with actual data 

obtained from HURDAT for validation of the model. These parameters are chosen for comparison 

since all the other storm parameters in this study are calculated as a function of these parameters. 

The values are compared for different locations along the coastline at time-step just before landfall. 

Figure 4 shows the location of considered mileposts. For the considered mileposts, the root mean 

square error between the simulated mean and actual mean is found to be 0.046, 1.23 KPa, 12.1 

and 1.7 m/s (3.8 mph) for frequency, central pressure difference, approach angle and translation 

velocity, respectively. Figure 5 shows the means with one standard deviation above and below the 

means for each parameter from simulated result and actual data. It is noted that the number of 
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actual samples is quite low. The number of recordings is even lower for pressure parameter since 

the data is properly recorded only after around 1979. In spite of these limitations, the simulated 

values are found to match well with the historical values.  

 

Figure 4: Location of mileposts for comparison of TC parameters. 
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Figure 5: Comparison of the simulated TC parameters with the actual TC parameters. 

Note that even though this methodology generates TCs which include both tropical storms and 

hurricanes, only the TCs that make a landfall as hurricane (based on the sustained wind speed 

given in ASCE 7-16) are selected for damage and loss evaluation in the rest of the study. 
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3.1.2.4 Wind speed evaluation 

The wind speed is evaluated using the hurricane parameters obtained from the tropical cyclone 

simulation. For this study, the gradient wind speed (ὠ) at a distance Ò from the center of storm is 

calculated as given below (Georgiou 1983). 

ὠ ὠϽ ίὭὲὪϽὶ ὠϽίὭὲὪϽὶ
Ͻ
Ͻ Ὡὼὴ      ( 5 ) 

where   is the heading angle, Æ is the Coriolis parameter, ” is air density, ɝ0 is the central pressure 

difference, ὄ is pressure profile parameter, and Ὑ  is radius to maximum wind speed. Ὑ  can 

be calculated from ɝ0 and , and ὄ can be calculated using  Ὑ , Ὢ, ɝ0, and SST. These 

relationships have been studied for hurricanes that had made a landfall in U.S. in Vickery and 

Wadhera (2008), which are used in this study. 

The gradient wind speed is then converted to the mean surface wind speed in two steps: first to the 

wind speed at 300 m and then to 10 m. This two-step conversion is necessary because conversion 

characteristic changes at 300m (Franklin et. al 2003). The first conversion is done by using 

conversion factors provided in Franklin et al. (2003). These factors were obtained from the tests 

to calculate mean vertical profile of wind speed using data from dropwindsonde tests and are given 

as a function of distance with respect to Ὑ . The wind speed at 300 m (ὠ ) is converted to 10 

m (ὠ ) using Eq. (6) (Franklin et al. 2003, Pita et al. 2012).  

ὠ ὠ Ͻ             ( 6 ) 
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where ᾀ is the surface roughness length. The surface length is taken from HAZUS, which provides 

these values at census tract level. The mean surface wind is finally converted to gust wind speed 

using the conversion factor of 1.46 as provided in ESDU model (ESDU 1983). 

 

3.1.2.5 Rainfall evaluation 

Besides intense wind, another characteristic of hurricane is heavy rainfall. Rainfall is the major 

cause of interior and content damage (Crandell 1998, Stegman 1993, Stubbs and Perry 1993, Van 

de Lindt et al. 2007) and thus rainfall evaluation is equally important for loss assessment. More 

specifically, not only the rainfall through a horizontal plane but wind driven rain, i.e. the rainfall 

flowing through a vertical plane is needed to properly quantify the amount of rain entering through 

the breaches. 

The rainfall through a vertical plane is obtained based on the rainfall through a horizontal plane 

and the effect that wind has on changing the direction of rain. The relationship developed by 

Straube and Burnett (2000) is used for this conversion in terms of the rainfall rates in the two 

directions, which is given in Eq.(7). 

ὙὙ ὙὙ ὶϽὠ ϽὈὙὊ         ( 7 ) 

where ὙὙὶ  is the vertical rainfall rate, i.e. rainfall rate through a horizontal plane at a distance 

ὶ from the storm center location, ὠ  is the horizontal sustained wind at the height of interest and 

ὈὙὊ is the driving rain factor. The ὈὙὊ for hurricane level winds is taken to be 0.185 as calculated 

in Pita et al. (2012). 
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The rainfall rate through a horizontal plane is calculated based on R-Cliper model. R-Cliper model 

is developed based on analysis of satellite-based rainfall data recorded in Tropical Rain Measuring 

Mission. The detail of the model is provided elsewhere (Lonfat et al. 2004, Marks and DeMaria 

2003; Tuleya et al. 2007). The vertical rainfall rates are calculated by using Eq. (8). 

ὙὙ ὶ
 Ὕ Ὕ Ὕ Ͻ                                       ὶ ὶ

 Ὕ ϽὩὼὴ                                               ὶ ὶ
       ( 8 ) 

where ὶ  is the radial extent of the inner-core rain rate Ὕ , ὶ is the measure of radial extent of 

the tropical system rainfall, and Ὕ is the rainfall rate at ὶ=0. The above parameters, Ὕ, Ὕ , ὶ, ὶ, 

are suggested to be functions of maximum wind speed of storm at each time in Tuleya et al. (2006). 

These relationships are directly used in this study.  

 

3.2 Hurricane loss model for residential buildings 

In this study, hurricane loss is evaluated for residential buildings since they are one of the most 

susceptible structures to hurricane damage and their damage affects peopleôs lives considerably in 

many different aspects. The overall loss in a residential building can be categorized into three 

specific types of losses: structural, interior and content loss. The structural loss is attributed to 

wind damage of external components of a building whereas the interior and content losses are 

attributed mainly to damage due to rain ingress. The following sections detail the methodology 

adopted in this study to evaluate the hurricane damage and loss in individual buildings. 
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3.2.1 Damage model for individual structural components  

The first step to evaluate the hurricane loss is to assess the damage due to wind. As noted above, 

high intensity wind is the primary cause of structural damage during hurricanes. In this study, the 

extent of structural damage for individual structural components in a building is estimated in terms 

of damage ratio. The structural component-types at the most risk during wind loading are identified 

based on past observations (FEMA 2013, Cope 2004), which include roof-sheathing, roof cover, 

windows and doors, roof to wall connections, and wall, as shown in Figure 6. Since each 

component-type can have multiple components (for e.g. there could be multiple windows), the 

damage in each component of the component-type is assessed; and the final output is recorded in 

terms of damage ratio which provides the proportion of damage to the component-type.  

 

Figure 6: Vulnerable structural component-types in a residential building (Cope 2004). 

To introduce the variability in material strength and workmanship, the resistances are 

probabilistically modeled. Statistics of individual strength capacities of the structural components 
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for prototype buildings (see Section 3.3.2 for details of prototype buildings) are mostly obtained 

from HAZUS (FEMA 2013). These statistics are based on different experimental tests, analytical 

models and expert judgment. The capacities of the components used in this study are provided in 

Table 1. For the window, both damage due to wind pressure as well as wind-borne debris is 

considered. The debris damage model given in Cope (2004) is utilized.  

Table 1: Strength of vulnerable structural components considered in this study. 

Structural component Distribution  Mean COV Notes 

Sheathing Panel (6d)  Lognormal 54.6psf 0.11 6" center, 12"edges (nailing 

pattern) 

Sheathing Panel (8d)  Lognormal 103psf 0.11 6" center, 12"edges (nailing 

pattern) 

Sheathing Panel (8d)  Lognormal 133psf 0.11 6" center, 6"edges (nailing 

pattern) 

Cover Normal 70psf 0.4 
 

Window/Sliding Glass 

Door Pressure  

Normal 40psf 0.2 
 

Entry Door Pressure  Normal 50psf 0.2 
 

Roof-to-wall connection  Normal 1200lb 0.2 Strap-up lift resistance 

Wooden wall 

(connections of wall) 

Normal 2142lb 0.25 Damage due to damage of 

connection 

Concrete wall Normal 47.2psf 0.2 Damage evaluated based on 

yield theory 

 

The wind load is calculated based on ASCE 7-16 (ASCE 2016), with some modifications to reflect 

the actual loading condition as well as to realize the probabilistic nature of wind loading. The 

method introduced by Cope (2004) is adopted. For example, Eqs. (9) and (10) are used to calculate 

the wind load in a structural component (ASCE 2016). 

ή πȢππςυφὑϽὑ ẗὑ ẗὠ          ( 9 ) 
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ὴ ὙὊϽήϽὋὅὴὖ         ( 10 )   

where ὑ represents velocity exposure coefficient and is calculated based on formula given in 

ASCE 7-16 and ὑ  represents topographic factor and assumed to be 1. ὙὊ represents the reduction 

factor and has a value of 0.8. The ὙὊ is introduced to negate the safety factor embedded in the 

pressure coefficients of the ASCE 7 wind load equation (Cope 2004). ὠ represents 3-sec gust wind 

speed. Ὃὅὴ represents product of external pressure coefficient and gust effect factor. To reflect the 

uncertain nature of wind load, pressure coefficients (Ὃὅὴ) for roof and wall are assumed to follow 

a normal distribution with mean equals to the nominal value given in the code and COV of 0.1. ὖ 

is the internal pressure and is calculated based on the external damage to the structure. Thus, 

velocity pressure (ή) is obtained from (9), which is inputted into Eq. (10) to get wind pressure (ὴ) 

for a given structural component. 

Further, since the direction of orientation of the building is not known, a given wind speed is 

applied through eight angles at increments of 45; and the final damage ratio is taken as the average 

of damage ratios for all directions. The pressure coefficient zone is remapped as a function of wind 

direction and the directionality factor ὑ  is taken as 1. The complete details of these modifications 

can be found in Cope (2004).  Thus, for each hurricane scenario, the corresponding wind speed at 

a given time and given angle of incidence is used to calculate the wind load in all the components. 

This is then compared with the wind resistance of the component to determine the initial failure of 

components. The initial failure statuses are updated by considering the interdependence of the 

component failures. For example, if the sheathing has already failed, the roof cover also fails by 

default. Then, the internal pressure is recalculated as the average of the external pressure at the 
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location of broken doors and windows. The comparison of load and resistance is repeated to record 

any further damage due to the change in internal pressure. This process is repeated three times, 

after which the damage is typically found to be constant. The damage in a component type is 

recorded in terms of damage ratio which indicates the average damage considering all the 

components and all the directions of the same type in the building.  

 

3.2.2 Damage model for interior and content  

In addition to structure, interior and content also comprise the major asset of a building. Various 

post-storm surveys (Crandell 1998, Stegman 1993, Stubbs and Perry 1993, Van de Lindt et al. 

2007) have conceded that rain ingress is the major cause of damage to interior and content. 

However, at present majority of loss studies either calculate overall loss as a function of wind 

speed using empirical formulas without differentiating the different modes of loss (Emanuel 2011, 

Huang et al. 2001) or in some studies calculate interior and content loss as a function of damage 

in other structural components (Gurley et al. 2005). Recently, a few studies (FEMA 2013, Pita et 

al. 2012) evaluate interior loss based on rainfall depth. Accordingly in this study, a detailed 

assessment is done to evaluate interior and content damage by assessing the amount of rain ingress 

inside a building.  

 

3.2.2.1 Rain ingress 

As stated above, to evaluate the interior and content damage, the amount of rain ingress in a 

building needs to be determined. This rain enters through the openings or breaches caused due to 



38 

 

wind damage in structural components. Further, there could also be pre-existing breaches due to 

deficiencies like vents, uncaulked windows, doors, etc. This study considers both form of breaches 

to evaluate rain ingress. The deficiencies considered for this study included window deficiency, 

door deficiency, wall deficiency, bathroom vent, dryer vent, kitchen vent and outlet. The average 

deficiency area provided in American Society of Heating, Refrigerating and Air-Conditioning 

Engineers Handbook (ASHRAE 2001) is used for the calculation of rain ingress. From these 

breaches, wind driven rain (WDR) can enter the building either impinging directly or in the form 

of surface runoff from nearby undamaged envelope surface.  

To calculate the amount of rain ingress, an empirical relationship developed by Baheru (2014) is 

used in this study. The relationships are provided in terms of two sets of coefficients - rain 

admittance factor (ὙὃὊ) and surface runoff coefficient (ὛὙὅ) at different locations and wind 

directions. These coefficients are based on a wind tunnel test and for low rise buildings in suburban 

terrain, the pictorial representation of which is shown in Figure 7. The ὙὃὊ is representative of 

impinging rain and ὛὙὅ is a representative of surface runoff. The values for ὙὃὊ was provided 

for both gable and hip roofs and for winds flowing at 0, 45  and 90. The values for ὛὙὅ was 

provided only for gable roof and thus the same values are used for hip roof for this study. Based 

on these coefficients, the rain ingress due to a particular damaged component is calculated as 

ὠέὰ ὙὃὊϽὃ ϽὙὙ ὛὙὅϽὃ ϽὙὙ Ͻὸ      ( 11 ) 

where ὙὙ is the horizontal rain rate i.e. rain rate passing through a vertical plane, ὃ is the area 

of opening,  ὃ  is the area for surface runoff and ὠέὰ is the total volume of water accumulated 
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due to the opening during time interval ὸ. The depth of water is then calculated by dividing the 

volume accumulated from all the breaches by the floor area.  

 

Figure 7: Rain ingress test performed to get RAF and SRC values: (a) Test wind direction, (b) 

RAF values when the wind direction is 0º (Baheru 2014). 

 

 

3.2.2.2 Interior and content damage ratio 

As stated above, many studies agree that the major cause of interior damage is rain ingress, thus 

the interior damage in this study is evaluated based solely on rain ingress. This study utilizes a 

similar relation as given in Pita et al. (2012) and HAZUS (FEMA 2013) to model interior damage. 

The interior damage is assessed in terms of interior damage ratio, which is calculated using Eq. 

(12).  

(a) (b) 
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ὍὈὙ
ϽὨ                                       Ὠ ὸ

 ρ                                                 Ὠ ὸ  
      ( 12 )  

where ὍὈὙ is interior damage ratio, Ὠ  is the depth of water and ὸ is the threshold depth of water 

that represents complete interior damage.  In this study, the value of threshold depth Ô is assumed 

to be 1 inch, which is the same value used in Pita et al. (2012). This value was validated in this 

study by examining four historical hurricane losses - Hurricane Andrew, Hugo, Erin and Opal. For 

this validation, the hurricane loss data were obtained from existing studies (Crandell 1998, 

Bhinderwala 1995, FEMA 2013).  

Similarly, content damage is calculated as a function of depth of water. Content comprises of 

furniture, goods, appliances, clothes, etc. inside a building. Content damage has been found to be 

highly correlated to interior damage of building and hence assumed to be accrued at a certain rate 

of interior damage in various studies (FEMA 2013, Gurley et al. 2005). In this study, content 

damage ratio is related to interior damage ratio using the relationship provided in Gurley et al. 

(2005), which is then used to relate content damage ratio to the depth of water.  

 

3.2.3 Loss ratio for individual buildings 

In this study, the losses in the buildings are assessed in terms of loss ratio which is defined as the 

value of the loss divided by the insured value of the building. Since loss ratio is independent of the 

actual cost of the building, it helps better visualize the proportion of damage and losses to 

individual buildings as well as compare the severity of the hurricane losses in one building to 



41 

 

another regardless of their individual values. The loss ratio (ὒὙ) is obtained from damages of 

individual components using Eq. (13).  

ὒὙ В ὈὙϽὙὅὙ         ( 13 )  

where ὈὙ represents damage ratio in the lth component, ὙὅὙ represents replacement cost ratio 

for the l th component, and ὲ is the number of all the considered individual components which 

include the structural components like sheathing, windows, doors, etc. as well as interior and 

content. The replacement cost ratio is defined as the cost of replacing the component divided by 

the insured value of the building including the contents. The replacement costs from Gurley et al. 

(2005) are used for this study.  

 

3.2.4 Validation 

The damage and loss models are validated with the actual loss data from past hurricanes. The loss 

data for two past hurricanes used for this analysis are: (1) Hurricane Andrew for South Florida and 

(2) Hurricane Hugo for South Carolina. The actual losses in the regions following the hurricanes 

are provided in existing studies (FEMA 2013, Bhinderwala 1995), which were originally obtained 

from insurance claim data. In the records, loss ratio is defined as the total claim paid divided by 

the insured value of the structure and its contents. The corresponding wind speed obtained via a 

reconnaissance aircraft and the ratios of buildings falling under the subcategories of building types 

are also provided in the same literatures. By considering the ratios of buildings under the 

subcategories, the mean loss ratios of individual subcategories obtained from the simulated model 

are combined to determine the total mean loss ratios. The total mean loss ratios of buildings in the 
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two affected regions given wind speeds are plotted together with the corresponding loss data, 

which are shown in Figure 8. It is shown that the predicted loss ratios are in good agreement with 

the loss ratios from the data. 

 

Figure 8: Comparison of mean hurricane loss ratio of simulated model to actual loss data from 

(left) Hurricane Andrew and (right) Hurricane Hugo. 
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3.3 Regional hurricane loss model for the U.S. coast 

One of the intents of this research is to assess regional hurricane losses under climate change 

scenarios. This assessment is done at county level, and the counties are selected such that they are 

dispersed throughout the U.S. south and east coast. The following sections provide the details of 

the methodologies of the climate-dependent regional hurricane loss assessment. 

 

3.3.1 Selection of study regions and building inventory  

Eight U.S. coastal counties are selected for hurricane risk assessment, which are listed below and 

presented in Figure 9. These counties contain cities which have been historically found to be 

hurricane prone. For example, Chatham County contains Savannah city, Harris County contains 

Houston city, etc.  

ω New Orleans, LA 

ω Mobile, AL  

ω Miami-Dade, FL 

ω Chatham, GA  

ω Charleston, SC 

ω Norfolk, VA 

ω New York, NY 
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Figure 9: Locations of the counties. 

The regional loss is calculated for 1 and 2 story wooden or masonry-walled buildings. The process 

adopted in evaluating the regional hurricane loss in the selected coastal counties is described below 

in detail.  

 

3.3.2 Prototype structures 

The first step in evaluating the regional hurricane loss is assessing the building inventory in the 

region. Residential building inventory in a region contains a wide array of building types. In this 

study, for simplification, prototype structures are selected to represent the damage and loss 

characteristics of the overall housing inventory. The prototypes are chosen by considering the 

wind-resistant characteristics of different residential building types and the composition of the 

residential building types in the region. The following wind-resistant structural variations were 
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found common amongst the residential buildings in the U.S. coastal regions (FEMA 2013, Vickery 

et al. 2006, Gurley et al. 2005, Cope 2004) and hence considered for this study. 

¶ Type of wall: masonry or wood-framed 

¶ Type of roof: hip or gable  

¶ Roof cover: shingle or tile  

¶ Roof nailing: 6d with 6/12ò nailing pattern, 8d with 6/12ò nailing pattern or 8d with 6/6ò 

nailing pattern   

¶ Number of stories: one-story or two-story 

The percentage of each structural variation in the different regions are listed in HAZUS software 

(2018), which are used in this study.  

The one-story buildings are assumed to have a plan area of 1800 sqft (167.2 m2) with a height of 

9 ft (2.7 m) and the two-story buildings are assumed to have the same plan area with a height of 

17 ft (5.2 m). The buildings have a roof pitch of 4/12 and roof sheathing nailing pattern is 6/12, 

i.e. the spacing is 6ò (15.2 cm) on the edges and 12ò (30.5 cm) for intermediate supports. The 

overall configuration of the buildings is similar to as given in Cope (2004). 

 

3.3.3 Regional hurricane loss model 

Using the methodologies given in Section 3.1 and 3.2, climate-dependent hurricane scenarios are 

simulated and the loss ratios evaluated for the prototype buildings listed in Section 3.3.2. The 

regional hurricane loss for the county, assessed in terms of annual aggregated loss (ὃὃὒ) is 
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evaluated from the hurricane loss ratios, ὒὙ (see Eq. (13), of the individual prototypes using Eq. 

(14).   

ὃὃὒВ В В ὒὙ  Ͻ ὲ  Ͻ Ὅὠ      ( 14 ) 

where Ὅὠ is the median insured value of residential buildings in the j th zone, ὲ  is the number of 

the Ὥbuilding type in the j th zone and ὲὦ is the number of building prototypes, ὲὬ is the total 

number of hurricane per year, and ὒὙ represents the proportion of hurricane loss in a building to 

its insured value. ὲ  in a given region is obtained from FEMA (2013) and Census (2018). Each 

zone mostly comprises of 10 census tracts. Figure 10 shows the census tracts in one of the counties 

considered in this study ï Miami-Dade County. In our study the counties have 8 to 79 zones, 

depending upon the size of the county. For this study, the insured external structure and interior 

value is taken to be 50% of the median building value given in Census (U.S. Census Bureau 2005). 

This percentage value is based on a study done by Davis and Palumbo (2008) which estimated the 

external structure and interior value to be around 40-76% of the total building value with the 

remaining percentage attributed to value of land for buildings in Miami-Dade County. Further, 

content insured value is assumed to be 50% of the total value of external structure and interior 

(Bhinderwala 1995).  
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Figure 10: Census tracts in Miami-Dade county. 
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3.4 Population vulnerability -considered hurricane impact model for 

the U.S. coast 

This study also investigates the regional hurricane risks by considering the population 

vulnerability. Non-monetary hurricane impacts are considered for the investigation, which are 

short term need of emergency shelter immediately after hurricane, long term need of emergency 

shelter after a month following a hurricane event and job loss. Accordingly, in this section a 

population vulnerability-considered regional hurricane impact model is developed which 

incorporates the discrepancies in the behavior of the different demographics against the hurricane 

impacts. The following sections detail the existing studies that have investigated hazard risk 

considering demographic factors, followed by the details of the proposed model. 

 

3.4.1 Existing studies investigating hazard impact considering demographic 

factors 

Inequity in the disaster impact experienced by different demographic groups has been noted in 

many studies (Fussell and VanLandingHam 2009, Peacock et al. 2014, Kareem and Noy 2016, 

Zottarelli 2008). Fussell and VanLandingHam (2009) have found that among the displaced 

residents, African-American residents returned to the city at a much slower pace than white 

residents based on the analysis of Hurricane Katrina survey data. Similarly, Elliot and Pais (2006) 

have found a strong difference on pre-hurricane evacuation based on peopleôs race and socio-

economic status by analyzing Hurricane Katrina data. For example, most of the African-American 

population were found to evacuate only after the hurricane and low-income group were found to 

not evacuate at all. Zottarelli (2008), Chaganti and Waddell (2015) found that African-Americans 
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suffered more job loss than Whites following hurricane Katrina. Peacock et al. (2014) have found 

that housing in higher-income neighborhoods suffered less damage and recovers more quickly 

based on the data from Hurricane Andrew and Hurricane Ike. Kareem and Noy (2016) analyzed 

results of 38 papers (Rodriguez-Oreggia et al. 2013, Mogues 2011, Hou 2010, Jakobsen 2012, 

Reardon and Taylor 1996), which investigated impact on poverty by a wide variety of natural 

disasters including floods, rainfall, tropical cyclones, droughts, earthquakes in Asia, Africa, 

Central America, South America and Oceania. Using meta-regression analysis of the data reported 

on these papers, Kareem and Noy have concluded that disasters have economic impact on peopleôs 

lives and the poor households have a tendency of smoothing consumption by reducing 

consumption of non-food items like health and education. Thus, the above studies along with many 

others suggest that certain demographic groups, including low-income people, children and old-

age people, non-white race, have a higher vulnerability to hazard impact compared to others. 

Accordingly, some studies have tried to account the hazard impact by considering the differences 

in the vulnerabilities of the affected population. For example, Cutter (2003) has introduced a metric 

to measure the vulnerability of the population in a region called Social Vulnerability Index (SoVI) 

which is a summation of the normalized vulnerability factors. SoVI has been used in studies to 

integrate social vulnerability into hazard impact assessment. For instance, Boruff, Emrich and 

Cutter (2005) have evaluated erosion hazard vulnerability of the U.S. coast as a summation of 

SoVI and coastal vulnerability index, where the coastal vulnerability index is a function of physical 

indicators of hazard (mean tidal range, mean wave height, coastal slope, rate of relative sea level 

rise, shoreline erosion and accretion rates, geomorphology). Schmidtlein, Shafer, Berry and Cutter 

(2011) have performed a regression analysis between the loss due to earthquake and PGA, distance 
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and SoVI for historical earthquakes. Similarly, Emrich and Cutter (2011) have presented the 

overall vulnerability for southern United States using bivariate maps that include both SoVI and 

vulnerabilities for climate sensitive hazards (drought, flooding, hurricane winds and sea level rise). 

Although SoVI has been incorporated into hazard vulnerability analysis for a more comprehensive 

assessment in many studies, SoVI has a limitation of not allowing relative weights for individual 

factors (Cutter et al. 2003). In other words, each factor is assumed to have an equal contribution 

on the overall vulnerability. This assumption can lead to inaccurate results if some factors indeed 

have a higher influence on the social vulnerability than others. It is also noted that most of the 

above-mentioned studies integrate hazard and social vulnerabilities by adding or multiplying the 

two without considering their relative weights.  

Besides the studies using SoVI, other studies have also considered both hazard and population 

vulnerability on the evaluation of the overall impact. In these studies, a metric is introduced which 

assesses impact as a product of scaled hazard and vulnerability parameters (Davidson and Lambert 

2001, Hernandez et al. 2018, Bjarnadottir, Li and Stewart 2010). For example, Davidson and 

Lambert (2001) have proposed a metric called hurricane disaster risk index to compare hurricane 

disaster in the U.S. coastal counties, considering factors for both hazard and population 

vulnerability along with exposure and recovery capability. All the considered factors are scaled to 

get a dimensionless value and multiplied considering their weightage to obtain the risk index. 

However, it is noted that in the above studies it is difficult to assess the parameters of the scaling 

function and the weights, and the results can be sensitive to those parameters.  

The afore-mentioned studies introduce various metrics to measure impact by considering 

population vulnerability. These metrics are useful in comparing the vulnerability of a region 
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relative to other regions; i.e. they can be used to rank different regions in terms of their 

vulnerability. However, the metrics are not easily related to the parameters in real physical world 

and provide limited insight on the need of helps against hazard impacts. For example, the 

individual metrics cannot be directly interpreted in terms of financial implications for a region, 

emergency shelter needs, evacuation needs, medical needs. Without the real physical parameter to 

relate the metric, it is difficult to ascertain the influence of the different hazard and vulnerability 

factors on the metric, which resulted in a lack of the comprehensive assessment of the weights in 

the above studies. Moreover, the hazard and vulnerability terms are simply multiplied or added 

together in the metrics in the  above studies. However, two cases with a same value of metric 

obtained by combining (1) low hazard and high vulnerability and (2) high hazard and low 

vulnerability may not have the same consequence in real world. Further, the influence of the 

vulnerability and hazard factors might be different depending on the impact, therefore a single 

metric evaluated in the above studies might not be the representative of all the aspects of the hazard 

impacts.  

Some other studies have specifically considered the vulnerability of the population for a specific 

hazard impact by employing a factor to increase the hazard impact for the vulnerable population 

group. Sutley et al. (2017a) have developed odd ratios for different demographic groups based on 

past earthquakes, that indicate how the demographic groups were impacted relative to the baseline 

population group following the earthquake. By multiplying the odd ratios of all the individuals in 

the county to their respective baseline hazard impact, Sutley et al. (2017b) have obtained the 

overall hazard impacts at county-level in terms of injuries, fatalities, PTSD and dislocated 

households. Similarly, FEMA (2003) has also provided coefficient for each individual 
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demographic group for assessing the need of emergency shelter following a seismic event, based 

on the study done by Harrald et al. (1994). These coefficients have also been used to evaluate the 

need of emergency shelter for hurricane events (FEMA 2013). Khazai et al. (2012) have also 

presented a model to evaluate the demand for emergency shelter following earthquake damage 

using a multi-criteria decision model that considers inhabitability of building, shelter accessibility 

analysis and socio-economic factors. This model has been integrated into MAEVIZ earthquake 

loss estimation model, where the user can assign weights to the selected indicators. Although the 

above studies have tried to assess different hazard impacts considering both hazard and population 

vulnerability, however these studies have some inherent assumptions which could impact the final 

result. For example, the relative weights for a lot of factors in these studies are based on expert 

judgment. Further, the different demographic factors could be correlated, and it is not clear how 

the above studies consider the correlation between the demographic factors.   

From the review of the existing studies, it is noted that many studies agree that certain demographic 

groups are more vulnerable to the hazard impacts. Accordingly, there have been efforts made to 

account for the hazard impact considering both hazard and the population vulnerability. However, 

in most of the existing studies, hazard and population vulnerability are integrated to obtain a metric 

which is useful to compare different regions in terms of their overall vulnerability but does not 

provide much insights on the regional need of helps against specific hazard impacts. In a few 

studies that have looked at the specific hazard impacts considering the population vulnerability, 

majority of factors are based on expert judgment or have not considered correlation of the 

demographic factors, as noted in the above paragraph. Further, most of the existing studies only 

focus on hazard for present climatic scenario, but for climate-dependent hazards like hurricanes, 
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these assessments might not be able to capture the long-term impacts. Accordingly, this study has 

developed a methodology to assess regional hurricane hazard impact considering demographic 

composition based on a comprehensive analysis of past hurricane impact record. This methodology 

also considers hurricane building damage in hazard impact assessment, making it capable of 

accounting for the changing hurricane scenarios under the climate change conditions. The details 

of the methodology are explained in the following sections. 

 

3.4.2 Population vulnerability-considered hurricane impact model 

This study analyzes past hurricane survey data to develop population vulnerability-considered 

hurricane impact model by not only considering the direct hurricane risk but also the demographics 

of the affected population. The direct hurricane risk considered in this study is hurricane building 

damage. Hurricane building damage is selected since it is representative of the consequence of the 

hazard on the built environment; and is reflective of the hurricane risk on peoplesô lives. Further, 

other studies have also found building damage to be one of the prime indicators of various types 

of hurricane risks. The demographic factors considered in this study are gender, age, income and 

race. Accordingly, the hurricane impact model developed in this study incorporates both building 

damage and the demographic factors to assess the following hurricane impacts ï need of 

emergency shelter immediately after hurricane (NESi), need of emergency shelter after a month 

following a hurricane event (NESm) and job loss (JL). Assessment of NESi and NESm helps plan 

for emergency shelters in hurricane prone regions; whereas JL helps gauge the financial 

implications of hurricane events.  



54 

 

The hurricane impact model in this study is developed by statistically analyzing the behavior of 

different demographics following a hurricane event. For this, the data from Hurricane Katrina 

Survivors poll (Gallup/CNN/U.S.A Today/Red Cross Poll # 2005-45) is used, which was 

conducted over the phone by Gallup organization between the dates of September 30, 2005 to 

October 9, 2005. Hurricane Katrina is one of the most devastating natural hazards that affected 

various regions in the U.S.; and has been rigorously studied, with considerable amount of records 

in the public domain. The Hurricane Katrina Survivors poll used in this study has records of the 

building damage state, the demographic composition (gender, age, income and race), and a 

measure of the hurricane impact for each of the surveyed individual; making it suitable to develop 

a population vulnerability-considered hurricane impact model considering both the hazard 

consequence (building damage) and the demographics. Further, 1,510 people were surveyed in 

this poll who had residence prior to the hurricane in Louisiana, Mississippi, and Alabama; thus, 

the data is representative of the hazard-impact behavior of people living in different regions across 

the U.S. southeast coast.  

The composition of the different demographic groups in the total surveyed population as well as 

in the portion of the surveyed population impacted by NESi, NESm and JL are shown in Figure 

11. A comparison of demographic compositions of the total surveyed population and the hazard 

impacted population shows that some demographic groups are more vulnerable to the hurricane 

impact than others. For example, in the total surveyed population, the non-white race comprises 

60.3%. However, the proportion of non-white race is higher in the portion impacted by NESi, 

NESm and JL, i.e. 80.3%, 82.1% and 75.6%, respectively, suggesting that non-white races are 

more vulnerable than white race to the hurricane impact. Accordingly, the population 
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vulnerability-considered hurricane impact model developed in this section tries to account for the 

behaviors of different demographic groups on the hurricane impact. Besides the demographic 

factors, the survey data also has records of the building damage state of each interviewee classified 

into four categories - completely destroyed, damaged and unlivable, damaged but livable and no 

damage. 

Logistic regression is used to develop the hurricane impact model considering the building damage 

and the demographic composition of the individuals affected by the hazard. Logistic regression 

can incorporate binary data for dependent variable and both categorical and continuous data for 

independent variable, making it suitable for this analysis. Besides, logistic regression has the 

advantage of providing the detailed statistical information that helps in understanding the extent 

of influence of the independent variables on the output, compared to other approaches like Support 

Vector Machine (SVM), neural network, etc. Logistic regression has also been employed by other 

studies to investigate the impact of demographic factors on hurricane impacts. For example, Elliot 

and Pais (2006) have analyzed Hurricane Katrina survey data using logistic regression to assess 

how race and class affect the source of emotional support (e.g. family and friends, religious faith, 

formal organization, etc.) after disaster. Hamama-Raz et al. (2015) have used logistic regression 

to assess the impact of gender in psychological reactions to Hurricane Sandy. Landry et al. (2007) 

have used logistic regression on Hurricane Katrina data to investigate evacueesô preference to 

return to their pre-disaster residence based on their income, college education, race, age, etc. Riad 

et al. (1999) have used logistic regression to predict evacuation decisions following hurricanes 

with consideration of evacueesô race, gender, damages, ownership, social support, etc. 

The general form of logistic regression is as given below. 
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ὰώ  В Ͻὼ         (15) 

where ὰώ is the log-odds of the dependent variable ώ, s are the coefficients, ὼ represents each 

considered independent variable and ὲ is the total number of the independent variables. For this 

study, each ὼ is either a function of each of the considered demographic factors or the building 

damage state of the surveyed individual. Among the four demographic factors (gender, age, 

income and race) used in this analysis, income and age are taken as continuous variables whereas 

gender and race are taken as categorical variables. The building damage state is taken as ordinal 

variable. Out of the five above-mentioned variables, the final model consists only of the variables 

selected based on the best fit according to AICc (Akaike information criterion with correction). 

The variables that are not selected are also found to be insignificant for a p-value of 0.1. It is noted 

that the p-value of each variable is used to test the null hypothesis that the coefficient for the 

variable is 0, with lower p-value suggesting a lower probability of the coefficient being 0. The 

polynomial degrees of the variables also are selected in accordance with the best fit for AICc. 

Thus, using the methodologies as described above, the final population vulnerability-considered 

hurricane impact model is developed for each of the considered hurricane impact and is listed in 

Eq. (16), Eq. (17) and Eq. (18) . The coefficients of these equations are provided in Table 2. 

ὰὔὉὛὭ  ὈὛ   ὃὋ  ὄὙ  ὌὙ  ὕὙ  Ὅὔ      (16) 

ὰὔὉὛά   ὈὛ  ὄὙ  ὌὙ  ὕὙ             (17) 

ὰὐὒ   ὈὛ πȢσσφσχᶻ Ὃ  ὄὙ  ὌὙ  ὕὙ  ÌÏÇ Ὅὔ (18) 

where ὰὔὉὛὭ is the log-odds of the need of emergency shelter immediately following a 

hurricane, ὰὔὉὛά is the log-odds of the need of emergency shelter a month after hurricane 
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event, ὰὐὒ is the log-odds of job loss as a result of hurricane, ὃὋ is the age of the impacted 

individualȠ Ὃ is a function of the gender with 0 representing male and 1 representing female; ὄὙ, 

ὌὙ and ὕὙ represent African-American race, Hispanic race and the remaining other races (except 

African-American, Hispanic and White race), respectively, with 1 representing that race and 0 

representing not, Ὅὔ is the income (in 10000$) for the impacted individual; and ὈὛ represents the 

damage state of the building inhabited by the individual. As stated above, the survey data records 

the building damage state into four categories - 1 (completely destroyed), 2 (damaged and 

unlivable), 3 (damaged but livable) and 4 (no damage). Since this analysis considers the hurricane 

impacts only in the event of building damage, thus only data with damage states 1, 2 and 3 are 

considered. 

Table 2: Coefficients of the logistic regression for the various hurricane impacts. 

Factor NESi NESm JL 

Intercept (♫ ) -0.41411* -3.3564*** 0.79848** 

Gender (♫╖) N/A N/A 0.3404* 

Damage state 

(♫╓╢) 

-0.09044*** -0.02521*** -0.00937*** 

Age (♫═╖) -2.48E-08 N/A N/A 

Race 
   

   African -

American (♫║╡) 

0.96729*** 0.77211 0.52122** 

   Hispanic (♫╗╡) 0.54961 -98.399 0.8899 
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Table 2 cont 

   Other (♫╞╡) 1.1648*** 1.5675** 1.2138** 

 Income (♫╘╝) -0.16996*** N/A -0.38002** 

 

***  p -value less than 0.001  

**    p-value less than 0.05  

*      p-value less than 0.1 

From Table 2, it is suggested that damage state is a significant predictor for all the considered 

hurricane impacts with a p-value of 0.001. Income level is also suggested to be significant for 

NESi and JL with a p-value of at least 0.05. For the race, the reference category is taken to be the 

White. It is suggested that compared to the White race, all the other races are significantly more  

vulnerable to the hurricane impacts, with most of them having a p-value of at least 0.05. Besides 

building damage state, income and race, gender is found to be significant only for JL for a p-value 

of 0.1. Age is found to be insignificant in predicting the vulnerability of the population for any of 

the considered hurricane impact.  

It is noted that log-odds ὰώ in logistic regression is a linear combination of the independent 

variables. In logistic regression, the probability of occurrence of ὴὶώ could be determined in 

terms ὰώ as given below.  

ὴὶώ
Ͻ

            (19) 
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From Eq. (19), it is observed that as ὰώ increases, ὴὶώ also increases. Thus, a positive 

coefficient in Eq. (16) to Eq. (18) indicate that an increase in the value of the independent variable 

leads to an increase in the log-odds and correspondingly the probability of the considered hurricane 

impact, and vice-versa. In the above equations, it is noted that DS has a negative coefficient for all 

the considered population hurricane impacts. Since DS = 1 indicates the highest damage degree 

and DS = 3 indicates the lowest damage degree in this study, this suggests that as the degree of 

damage increases, the probability of hurricane impact increases. Similarly, the income level has a 

negative coefficient suggesting that as income increases, the probability of both NESi and JL 

decrease. For the race, the reference category is taken to be the white, thus a positive coefficient 

for any other race indicates the probability of hurricane impact to be higher for that race compared 

to the White race, and vice versa. In the above equations, all the other races are found to have a 

positive coefficient, therefore all the other races are found to be more vulnerable to hurricane 

impact compared to the White race. In the function for gender, Ὃ has a value of 1 for female and 

0 for male. Since the coefficient for Ὃ is positive for JL, it indicates that the probability of JL 

increases when Ὃ is 1, suggesting that females were more vulnerable to JL than males.  

Thus, using the methodology described above, the demographic factors that have the most 

influence on hurricane impacts are identified and the degree of their influence is also quantitatively 

assessed. Further, the population vulnerability-considered hurricane impact model includes the 

hazard parameter in terms of building damage, making it possible to extend the model to climate-

dependent hurricane scenarios. This analysis is next used to evaluate regional hurricane impact 

considering the relative weights of each demographic factors and the hazard parameter, as 

described in the Section 3.4.3. 
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3.4.3 Population vulnerability-considered regional hurricane impact  

The population vulnerability-considered hurricane impact model developed in the above section 

helps assess the hurricane impact on each individual, based on the demographic factors and the 

building damage state of the individualôs residence. This model can be used to assess regional 

hurricane impact by considering regional demographic composition. Mean proportion of 

population affected by the hurricane impacts is used as a metric of the regional hurricane impacts 

for this study. In this section, the regional hurricane impacts are evaluated for fixed damage states 

for the selected counties (Harris, New Orleans, Mobile, Miami-Dade, Chatham, Charleston, 

Norfolk, New York) to study regional variability in population vulnerability. 

The four demographic factors considered in the hurricane impact model developed in Section 3.4.3 

are gender, age, income and race. Thus, for the regional hurricane impact assessment, these 

demographic factors are obtained from the census data (Census 2010) for each of the selected 

counties. The most recent and detailed census data is available for the year 2010, thus it is used in 

our study. The values of the demographic factors for this census data are provided at census tract 

level. Figure 11 shows the demographics of the selected counties as reported by the census data. 
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To assess the average value of the proportion of the hazard-impacted population, Monte-Carlo 

simulation is employed. The average proportion of the hazard-impacted population is obtained 

from 500 simulations. For each simulation, 480 individuals are randomly sampled per each zone 

based on the demographic composition of the county. The hurricane impact is evaluated for each 

selected individual by considering their demographic composition and a fixed damage state.  

The average value of the proportion of the hazard-impacted population given fixed damage state 

is shown in Table 3. In addition, these results are compared with the regional hazard impacts 

Figure 11: Demographic composition of the considered counties. 






























































