INFRARED PHOTODISSOCIATION SPECTROSCOPY OF Co\(^+\)(H\(_2\)O)RG WITH He, Ne, AND Ar RARE GAS TAGGING.

JOSHUA H MARKS, MICHAEL A DUNCAN, Department of Chemistry, University of Georgia, Athens, GA, USA; EVANGELOS MILIORDOS, Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.

Complexes of Co\(^+\)(H\(_2\)O) and Co\(^+\)(D\(_2\)O) are produced via laser vaporization of cobalt metal in a supersonic expansion of rare gas seeded with water. Infrared photodissociation spectroscopy is accomplished with the aid of rare gas tagging by He, Ne, or Ar. The effect of Co\(^+\) on the ortho-para nuclear spin statistics of H\(_2\)O and D\(_2\)O are investigated. The OH stretching frequencies of water were found to red shift by about 40 cm\(^{-1}\), and the water bending mode was found to blue shift by 23 cm\(^{-1}\). Rotational resolution was achieved for helium tagged water complex. The combined effect of spin-orbit coupling and spin-rotation coupling in these complexes is discussed and compared to the previously studied systems Sc\(^+\)(H\(_2\)O) and Ti\(^+\)(H\(_2\)O). Electronic structure calculations with CASSCF/cc-pVTZ were used to determine the single reference character of the ground electronic state. MN15/cc-pVTZ was used to compute vibrational frequencies.