PRECISE SEMI-EXPERIMENTAL EQUILIBRIUM STRUCTURES OF SULFUR-CONTAINING HETEROCYCLES: THIOPHENE (C₄H₄S) AND THIAZOLE (C₃H₃NS)

BRIAN J. ESSELMAN, VANESSA L. ORR, MARIA ZDANOVSKAIA, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; YOTARO ICHIKAWA, Department of Physics, University of Toyama, Toyama, Japan; AATMIK R. PATEL, Department of Chemistry, Lawrence University, Appleton, Wisconsin, USA; SAMUEL M. KOUGIAS, LAURA S. SOWIN, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; KAORI KOBAYASHI, Department of Physics, University of Toyama, Toyama, Japan; JOHN F. STANTON, Quantum Theory Project, University of Florida, Gainesville, FL, USA; R. CLAUDE WOODS, ROBERT J. McMAHON, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

As has recently been demonstrated with pyrimidine, using multiple isotopic substitution combined with coupled-cluster calculations treating the vibration-rotation interaction and the electron mass, it is possible to determine highly precise semi-experimental equilibrium structures (r_{eSE}). The CCSD(T)/cc-pCV5Z equilibrium structure of pyrimidine agrees with the r_{eSE} structure within the 2σ uncertainties for all parameters. With the intent of improving the structure determinations of thiophene (8 – 360 GHz) and thiazole (130 -360 GHz), spectra have been collected. For each molecule, the main isotopologue vibrational ground state spectrum has been fit to a sextic Hamiltonian with low error (σ < 35 kHz). All heavy atom isotopologues (34S, 13C, 15N, 33S) were detectable at natural abundance and similarly fit to sextic Hamiltonians. To obtain many more isotopologues, several deuteration strategies were employed: 1) acid-catalyzed H/D exchange, 2) base-catalyzed H/D exchange, and 3) lithium-halogen exchange using brominated forms of these species with subsequent addition of D₂O. These samples have resulted in a total of over two dozen isotopologues for each of the sulfur-containing heterocycles, including multiple substitutions of each atom. The resulting r_{eSE} structures will be discussed, including an exploration of the number of isotopologues to sufficiently determine all parameters, computational treatment of the rotational constants, and comparison to theoretical r_e structures containing sulfur. With pyrimidine, these structure determinations set a new standard of accuracy and precision for semi-experimental equilibrium structures (r_{eSE}).