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Abstract

Search and rescue (SAR) operations are challenging in the absence of a medium of communication be-

tween the rescuers and the rescuee. Natural signaling, grounded in rationality, can play a decisive role

in achieving rapid and effective mitigation in such rescue scenarios. In this work, we model a particular

rescue scenario as a modified asymmetric rendezvous game where limited communication capabilities are

present between the two players. The scenario can be modelled as a co-operative Stackelberg Game where

the rescuer acts as a leader in signaling his intent to the rescuee.

We present an efficient approach to obtain the optimal signaling policy, as well as its robust counterpart,

when the topology of the rescue environment is unknown. We also analyse the sensitivity of the optimal

signaling policy to the velocities of the two players as a further motivation for the robust solution. We

observe that a completely robust approach in designing the signaling policy can lead to highly conserva-

tive solutions. To address this conservativeness, we then introduce a stochastic nature on the unknown

topology and provide a signaling policy which probabilistic performance guarantees.
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Chapter 1

Introduction

Unmanned Aerial Vehicle (UAV) usage in Search and Rescue (SAR) applications has been extensively stud-

ied in recent years. The primary challenge that is addressed by these UAVs in SAR scenarios is to quickly

sweep large swaths of area with the goal of finding the rescuees and in certain situations, providing relief

in the form of air-drops. In the absence of any communication, this problem is akin to a ‘hide-and-seek’

game of one player finding another in a known environment in the minimum time possible. Alpern and

Gal (2003) discussed and studied various strategies for such co-operative rendezvous games between non-

communicating players. These strategies take actions with the aim of minimising the expected time until

rendezvous and assume complete absence of communication between the players during the game. On

the other hand, having complete communication between the two players allows them to plan for a fixed

rendezvous point and meet there.

We look at the more realistic situation arising between these two extremes, wherein there is limited

communication between the UAV and the rescuee. In our work, we will look at the specific application of

such limited communication capabilities in establishing some mode of co-ordination between the rescuee

and the rescuer. A natural question when considering this scenario - What constitutes an ‘intuitive signal’

between the rescuee and the rescuer? It would be unreasonable to expect that the two agents in the scenario

have a pre-established set of communication protocol that can be used to communicate effectively. For

an answer to this question, we turn to a topic of rising interest in the Human Robot Interaction (HRI)

community - ‘legibility’ and ‘predictability’ of robotic motion.

There has been increased interest in studying intent-expression and legibility of robotic motion in recent

years. Dragan, Lee, et al. (2013) and Dragan, Bauman, et al. (2015) studied legible motion for robotic arms

in settings involving human-robot collaboration. Szafir et al. (2014) studied the communicative ability of

a UAV using modified trajectories, while in their later work (Szafir et al. (2015)) they looked at a more

explicit medium of communication, using lights to convey directionality. Both these works illustrate the

limited signaling capabilities that UAVs can exploit in the absence of formal communication channels.

In our work, we will not delve into the specifics of how such limited communication capabilities are
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realized but make reasonable assumptions on their existence. Specifically, we will assume there are certain

‘targets goals’ in our search and rescue topology that can be indicated using our signaling mechanism. We

wish to see how such signaling capabilities can be exploited to influence the rescuee into taking certain

actions which can mutually benefit both the agents. We proceed by formalizing the interaction between the

rescuee and the rescuer as a game.

Game theory has been used extensively to model human-robot interactions in recent years Yua et

al. (2018); Li et al. (2016). The signaling ability of the leader in a Stackelberg type game has been studied and

exploited in applications like market structure (Etro (2013)) and security (Tambe (2011) and Rabinovich et

al. (2015)). We show that an interaction between a human and an autonomous agent can also be modelled

and studied in a similar framework. The autonomous agent (rescuer) acts as the leader and sends out a

signal to the rescuee. It is assumed that the rescuer has ex-ante knowledge that the rescuee is observing this

signal. Based on the received signal, the rescuee interprets the goal of the rescuer and takes an action, say,

walk to the goal interpreted from the signal. Our work seeks to arrive at a signaling policy that the rescuer

can implement to achieve its goal. To better motivate this framework we present below an illustration of a

rescue scenario.

1.1 Motivating Illustration

Henceforth in our work, we will use the terms ‘rescuee’ and ‘human’ interchangeably. Likewise ‘rescuer’

and ‘UAV’ are also used interchangeably. As a very simple example, consider a hilly-terrain (Fig. 1.1) with

two plains (red circles) to the east and west of the rescuee’s initial location (blue circle). Assume that the

rescuer believes that rescuee is aware of these two locations as well. A fixed-wing UAV flying in from an

initial location (green circle) in the south can signal either of these locations as its intended target through

its motion. The rescuee is initially at a location inaccessible to the UAV and the latter wishes to influence

the rescuee to move to an alternate accessible location.

A key assumption we make is that the rescuer believes that the signal is observed and interpreted

correctly by the rescuee; a reasonable assumption at that as the rescuee might expect the UAV to require a

flat patch to land and can interpret the signal as an indication of the chosen landing spot. This assumption

is key for the problem to be analyzed as a Stackelberg game. Note that it is not in-fact necessary for the UAV

to reach these plains to land, but these plains are simply the ‘target goals’ we exploit to forward our signal.

The UAV may choose some other accessible point along the path taken by the rescuee to rendezvous.

Both the rescuer and the rescuee are assumed to have constant velocities over the terrain. In moving
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across obstacles (like, hills and clouds) the players incur an increased path cost and thus, take more time

to traverse. The constant velocity assumption allows us to work with the path cost and the travel time

interchangeably. The rescuee will seek to reach the target in minimum time, or equivalently, minimise its

path cost to the goal. The rescuer will try to minimise both the path cost for the rescuee and its own path

cost to the point of rendezvous.

Figure 1.1: Rescue area topology. The two ‘plain’ regions (red dots) are used as target goals. Rescuee takes
optimal path (blue) to perceived target of the rescuer. The rescuer picks an optimal rendezvous point (red
cross) to meet the rescuee. Clouds (blue shading) act as obstacles to the UAV and hills (green shading) act
as obstacles to the rescuee.

In other words, given a signal, the rescuee interprets the goal that the UAV is flying to and plans the

shortest path to that goal. The rescuer, modelled as a rational player, assumes the human is going to behave

as expected (i.e. take the shortest path to the perceived goal) and plans out its path to intercept the human’s

path. There are multiple implicit assumptions we have made in the game as presented above.

Assumption 1 The ability of the rescuee to compute the shortest path relies on his knowledge of the precise terrain

in the region under consideration. We make this assumption on his knowledge of the topology around him.

Assumption 2 The formulation presented above also relies on the rescuee’s ability to precisely compute these shortest

paths given the region topology. We assume that the rescuee possesses such abilities.
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Assumption 3 We assume that the topology surrounding the rescuee is common knowledge to both the rescuee and

the rescuer.

Assumption 4 Finally, the rescuer is assumed to have complete knowledge of the velocities of both the human and

itself.

Given these assumptions, we seek to obtain the optimal signaling policy that the rescuer should employ

to achieve his goals. These are very strong assumptions and in the latter part of our work, we will relax

these and obtain signaling policies that do not rely on such a fairly restricted and ideal world view.

1.2 Roadmap Ahead

We are specifically interested in answering the following questions

1. How can we arrive at the signaling policy that the rescuer should employ to minimise its cost?

2. How sensitive is our approach of finding the optimal signaling policy to changes in velocity of the

players and changes in the environment topology? This translates to relaxing the assumptions 3 and

4 above.

3. How do we account for such uncertainty in designing a better approach to find the optimal signaling

policy?

In Chapter 2 we will formalize our problem as a Stackelberg game. We will also present the baseline

optimal signaling policy to be implemented under the assumptions 1,2,3 and 4 listed in the previous section.

Chapter 3 then illustrates the sensitivity of the approach in Section 2 to the velocity of the rescuer. It

also presents the challenges faced in designing the signaling policy when the travel costs over the rescue

topology are uncertain. Chapter 4 provides one possible answer to the final question we posed above.

In doing so, we present a novel algorithm to find feasible points for the rescuer to rendezvous with the

rescuee despite the uncertainty in knowing the rescuee’s path. The robust counterpart of the signaling

policy accounts for any unknown but bounded uncertainty in the path travel costs over the rescue topology.

Chapter 5 then highlights some issues with the approach designed in Chapter 4 and presents a modified

approach to mitigate the drawbacks of the latter approach. In doing so, we will treat the path travel costs

over the rescue topology as stochastic random variables in Chapter 5.
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Chapter 2

Optimal signaling Policy

We assume a discretized terrain (e.g grid) for the rendezvous problem in this work. Equivalently, we can

study the problem as defined over an undirected finite graph G = (V , E). Path costs for travel over an edge

between nodes i and j for the rescuee and the rescuer are defined as edge weights wr
ij and wR

ij respectively.

Nodes vr and vR denote the initial position of the rescuee and rescuer respectively. The rescuer can send

messages m from a finite non-empty supportM and vm corresponds to the goal indicated by message m.

Let P denote the set of all paths on the graph. Pi→j denotes the set of all paths starting from node i and

terminating at node j. φr and φR are real-valued functions defined on P that give the path cost for any path,

for the rescuee and rescuer respectively.

2.1 Rescuee Policy

The rescuer, acting as the leader in the Stackleberg game, sends out a message m ∈ M to the rescuee. The

rescuee then acting as the follower, observes this message and seeks to minimize

Ur(m, P) = φr(P) (2.1)

over paths P ∈ Pvr→vm . This optimization problem is simply the shortest path problem on an undirected

graph. Dantzig (1963) gave a natural linear program formulation for the shortest path problem. Minimising

(2.1) is equivalent to solving the linear network flow problem,

min
xij≥0

∑
ij∈E

wr
ijxij (2.2)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vm

0 otherwise.

(2.3)
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xij here can be intuitively seen as an indicator variable for whether the edge (i, j) is a part of the shortest

path. The constraints in (2.3) is a node-wise constraint and balances the inflow and outflow at every non-

terminal edge. At the source node (vr) the net outflow is 1, indicating that there is no edge of the shortest

path going into the source. Likewise at the terminal node (vm) the net inflow is 1 indicating that no edge of

the shortest path exits this node.

When the edge weights are known with certainty the linear program in (2.2) can be solved using the

simplex method. The same problem may also be solved using the Dijkstra’s Algorithm presented by Dijk-

stra (1959). Note that the minimizer to (2.2) needn’t be a unique path.

Lemma 1 The directed subgraph constructed from the set of all shortest paths between two nodes forms a DAG. In

particular the one obtained from the set of minimizers to (2.2) forms a DAG. Additionally, every path in the sub-graph

is a shortest path between the source and the sink node in the original graph.

Definition 1 Let Gm = (Vm, Em) denote the directed sub-graph obtained as the minimizer to (2.2). We can define

the candidate rendezvous points set Xm as,

Xm = {v ∈ Vm|v ∈ P ∀P ∈ Pm
vr→vm}

where Pm
vr→vm denotes the set of path between vr and vm in the directed graph Gm.

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

1

3

1

1

(a) An example graph

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

1

3

1

1
vr v2

v4

vm

(b) The candidate rendezvous points set for this graph.

Figure 2.1: As an illustration, consider the graph in (a). For the edge-weights given we have two shortest
paths from vr to vm, one along vr− v1− v2− v4− vm and one along vr− v3− v2− v4− vm. The set of points
that lie on every shortest path is highlighted in red in (b). Thus for this graph Xm = {vr, v2, v4, vm}.

By definition, irrespective of the actual shortest path taken by the human, he will necessarily pass

through every point in the candidate rendezvous points set. As the name suggests, this is the set of points

that the rescuer will consider as potential points to rendezvous with the human. We make an additional

assumption on the behaviour of the human.

Assumption 5 The rescuee chooses one path at random from the paths in Gm to move towards the indicated target
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vm. Unless intercepted by the rescuer at any point in the path, the rescuee stops only once he reaches the indicated

target vm and continues to wait there.

Claim 1 Xm is non-empty and finite.

By definition, vm, vr ∈ Xm andXm is a subset of a finite set V . By virtue of non-emptiness there always exists

a point where the rescuer can potentially rendezvous with the rescuee. As a result, Xm can be considered

by the rescuer as the set it is creating for itself by sending message m. We will distinguish vm as the terminal

rendezvous point.

2.2 Rescuer Optimal Policy

The rescuer must take its action with the best interests of the rescuee in mind. At the same time, it must also

ensure it is passing through regions with low path cost (for example, in ensuring flight path in a relatively

safe environment). Accordingly, we define the cost function for the rescuer as,

UR(m, vx, PR, Pr) = k1φR(Px
R) + k2φr(Px

r ) (2.4)

where vx ∈ Xm is the rendezvous point, Px
R ∈ PvR→vx and Px

r ∈ Pvr→vx . k1 and k2 are tunable parameters

that determine the relative importance of the path cost to rescuee and the path cost to rescuer when the

rescuer is seeking to optimize its total cost. If k1 is set very high, then the rescuer tries to minimise the

distance it travels and places more priority on trying to get the human to travel to a favourable rendezvous

point. If k2 is set high, then the rescuer disregards the costs it faces in trying to get to the rescuee as quickly

as possible. In minimizing (2.4), the rescuer picks both the message m to be sent and the rendezvous point

vx. The chosen optimal vx and the corresponding paths Px
r and Px

R must satisfy the constraint

(
φR(Px

R)

VR
− φr(Px

r )

Vr

)
1vx 6=vm ≤ 0 (2.5)

where VR and Vr are the constant velocities of the rescuer and rescuee respectively. The first two terms

in the left hand side of (2.5) can be interpreted as the time taken by the rescuer and rescuee respectively,

to reach the chosen rendezvous node vx . The third term in the constraint is an indicator variable that

takes the value 1 if the chosen rendezvous node is not terminal and 0 if it is. This constraint indicates

that the rescuer must reach the rendezvous point before the rescuee, for any point that is not the terminal

rendezvous point. It can be observed that this constraint is in line with our Assumption 5 in allowing for a

successful rendezvous.
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Defining the ratio of velocities VR
Vr
, kv we can re-write the optimisation problem to be solved by the

the rescuer as,

min
m∈M

min
vx∈Xm

k1φ∗R(vx) + k2φ∗r (vx) (2.6)

S.T. (φ∗R(vx)− kvφ∗r (vx))1vx 6=vm ≤ 0 (2.7)

Where, φ∗R(vx) , min
P∈PvR→vx

φR(P) (2.8)

φ∗r (vx) , min
P∈Pvr→vx

φr(P) (2.9)

Equation (2.9) arises from our assumption that the rescuee takes shortest paths to the indicated goal and

by Principle of Optimality, also takes the shortest path to any vx ∈ Xm. Both (2.9) and (2.8) are once

again the shortest path problems on a graph and we can solve their equivalent linear problem formulations

instead. For any rendezvous point vx in the candidate rendezvous point’s set Xm we can re-write (2.9) as

the equivalent linear program (LP),

min
xij≥0

∑
ij∈E

wr
ijxij (2.10)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vx

0 otherwise

(2.11)

and re-write (2.8) as the equivalent LP,

min
xij≥0

∑
ij∈E

wR
ij xij (2.12)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vR

−1 i = vx

0 otherwise

(2.13)

As indicated in Section 2.1 we can solve the linear programs described in (2.10) and (2.12) using either

simplex methods or by implementing the Dijkstra’s Algorithm (DA). Having solved the optimisation in

(2.10) and (2.12) for each node in Xm, the constrained optimisation in (2.6) can be performed by a search

over the finite non-empty setsM and Xm.

Having obtained the optimal signaling policy for the baseline case we will now do away with some of

the assumptions we made in the introducing the problem statement. Specifically, in the next section we
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will look at the sensitivity of our signaling policy to uncertainties in the velocities of the rescuer and the

rescuee. We also briefly introduce the issues faced if there is uncertainty in the rescuers knowledge of the

topology faced by the rescuee.
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Chapter 3

Sensitivity to Uncertainties

In this chapter, we will consider the effect of removing some of the assumptions we made in introducing

the problem statement. Specifically, Section 3.1 will look at the change in the optimal signal generated by

the policy designed in the Chapter 2 with change in velocities of agents when Assumption 4 is discarded.

Then in Section 3.2 we will look briefly at the effect of discarding Assumption 3 from Chapter 1.

3.1 Sensitivity to Velocity

The effect of uncertainty in velocity can be encapsulated in uncertainty in the parameter kv. Recall that kv

is simply the ratio of velocities of rescuer and rescuee. Consider the topology as illustrated in Fig. 3.1a and

Fig. 3.1b. The illustration assumes the existence of just two messagesM = {L, R}.

(a) Rendezvous trajectories when kv = 1.6 (b) Rendezvous trajectories when kv = 1.9

Figure 3.1: Illustrating the sensitivity of the optimal signal to parameter kv. With an increase in the velocity
ration from 1.6 to 1.9 we observe that the optimal signal outputted by our policy switches from L to R.

Table 3.1 presents the optimal signal mopt and the cost UR in sending that signal for various values of the

velocity ratio kv for the topology given in Fig. 3.1a and Fig. 3.1b. The signals have been obtained using the
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policy presented in the previous chapter. We can interpret an increase in kv as either an increase in speed

of the the rescuer or decrease in the speed of the rescuee.

kv mopt UR vx

1.3 R 16 (5, 11)

1.6 L 15 (5, 3)

1.9 R 14 (5, 10)

2.5 L 10 (5, 5)

3.1 R 8 (5, 7)

Table 3.1: Variation of mopt, UR and the rendezvous point vx with increasing kv. vx denotes the position of
a grid square using the coordinates of its bottom left corner.

We see that the optimal signal to be sent switches multiple times with an increase in kv. This sensitivity

can be explained as follows. Without loss of generality we can assume that rescuee velocity is constant and

rescuer velocity is increasing with kv. Hills (green shading) take a longer time for rescuee to traverse, and

thus, give more time for the rescuer to rendezvous with him there. But once the rescuee has traversed the

hill and is passing through a region of low cost he quickly passes through it, getting out of the range of the

rescuer quickly. As the velocity of the rescuer increases, it can reach any point on the path of the rescuee

quicker and reduce the cost UR by performing an earlier rendezvous. For a small grid size like ours we

obtained 4 switches. For the locations of the players and the targets as illustrated in Fig. 3.1a we can show

that for every M ∈ Z+, we can find some minimum dimension N for the grid (N × N) and some topology

over the grid such that the number of switches is greater than M. Increasing the dimension of the grid can

be interpreted equivalently as increasing the resolution of the grid over the layout in Fig. 3.1a.

Claim 2 For any M in N, there exists a grid of size N × N (with N scaling linearly in M) and a choice of target

goals, obstacle and starting points such that the optimal signal to be sent switches M times with change in velocities

of the players.

We will provide a sketch as an illustration to justify this claim. We wish to show that there exists some

topological layout over our grid with some initial positions of the rescuee and the rescuer such that we can

get a very large number of switches in the optimal signal with increase in velocity of the rescuer. We will

consider the layout of the players and the target goals as described in 3.2. We now need to construct a

family of topological layouts that will give us the sensitive behaviour we want.
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Figure 3.2: A possible terrain to obtain multiple switches. The ’hill’ regions consist of edges having thrice
the cost to traverse compared to other regions. The initial location of the rescuer and the rescuee is given
by the green and blue circles respectively.

We will restrict our search to the layouts where the shortest path from the rescuee’s initial location to

each target goal is unique. Assuming just two target goals {L, R}, the set of candidate rendezvous points

can be represented as a graph (Fig. 3.3).

vr r1l1 . . .. . . vRvL

j = nRi = nL i = j = 0

Figure 3.3: Shortest paths for the rescuee to both target goals.

Let nodes on the rescuee’s path going to the target goal L be indexed by i and let nL be the number of

nodes in the graph representation of the path. Likewise j and nR denote the index and the number of nodes

on the path going to R. {li} and {rj} gives the set of nodes on each of the paths. Then l0 = r0 = vr, lnL = vL

and rnR = vR. Let φr(v) and φR(v) denote the path cost for the rescuee and the rescuer respectively to go

to node v from their initial position.

We will now construct a sequence of path costs for both the rescuee and the rescuer to both the goals.

We will justify the realizability of such path costs later, but for now assume they are indeed realizable. By
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construction, the sequence of path costs over the nodes are given as,

φR(li) = φR(rj) = i + 4 (3.1a)

φr(li) =


2(i− 1) i is even

2i− 1 i is odd
(3.1b)

φr(rj) =


2j− 1 j is even

2(j− 1) j is odd, j 6= 1

1 j = 1

(3.1c)

Assuming the constants k1 and k2 in the cost function for the rescuer to be both identity. The total cost

UR of rendezvous at node rj and li to the rescuer is obtained as,

UR(li) =


3i + 2 i is even

3i + 3 i is odd
(3.2a)

UR(rj) =


3j + 2 j is odd

3j + 3 j is even
(3.2b)

We will now take a look at the velocities at which we can reach each node. Since rescuer is constrained

to reach any node v before the rescuee for a successful rendezvous, we must have the velocity ratio kv

satisfying,

kv ≥
φR(v)
φr(v)

Without loss of generality we will assume the rescuee’s velocity to be a constant identity. Then, the thresh-

old velocity for the rescuer to reach any node v is simply,

VR(v) =
φR(v)
φr(v)

(3.3)

Using (3.1) we can compute the threshold velocity for each node and some algebraic manipulation (refer
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Appendix A.2) leads us to the following inequality for any even i,

VR(li) > VR(ri) > VR(ri+1) > VR(li+1) > VR(li+2) i > 5 (3.4a)

VR(li) > VR(ri+1) > VR(ri) > VR(li+2) > VR(li+1) otherwise (3.4b)

From (3.2) we make the following observation; when i = j and i is even, UR(li) ≤ UR(ri) and when j is

odd, UR(ri) ≤ UR(li). Thus, when the velocity increases from VR(ri) to VR(li) for an even i the best signal

to be sent switches from R to L. Likewise for an odd i when the velocity increases from VR(li) to VR(ri) the

the best signal to be sent switches from L to R.

We see that the number of switches can be made equal to min{nR, nL}. If the grid is made large enough

and the target goals are far enough then we can have an arbitrarily large number of switches. To see this

we need to reconsider the question of realizability of the path costs described in (3.1). It can be seen that

such a path cost sequence is actually realized up-to an index of nR = nL = 7 if each of the ‘hill’ regions are

made to have a path cost of 3 while the other regions have a cost of 1. Correspondingly, we can achieve 7

switches as described above. The grid size we considered was 20× 12.

In general, for the initial positions of rescuee and the rescuer and the target goal locations we considered,

the grid size N required for M switches is obtained as,

N ≥ 2M + 4

We showed that small changes in the ratio of the velocity of the players can strongly affect the outcome

of the optimal signaling policy. In our scenario, it might not always be possible for the rescuer to know

the exact velocity of the rescuee. Thus, there is a need for a signaling policy that is robust to uncertainty of

velocity of players.

3.2 Uncertainty in edge-weights {wr
ij} and {wR

ij}

Several difficulties arise if the rescuee’s edge weights wr
ij are not known to the rescuer with certainty. First,

the rescuer cannot determine the rescuee’s exact set of shortest paths and, a fortiori, the candidate ren-

dezvous points sets Xm’s. This, in turn, affects the rescuer’s ability to determine if and where a rendezvous

can occur. In addition, even if it knew for sure that a given node is visited by the rescuee, the rescuer would

be uncertain as to the cost of the path taken by the rescuee, thus making it challenging to evaluate its own

actions according to (2.6,2.7).
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In order to address these issues, in the following chapter, we first introduce the notion of robust can-

didate rendezvous set, which contains nodes that the rescuee will always traverse and, as we prove, can

be computed efficiently by the rescuer. Next, we introduce robust counterparts to (2.6,2.7) which allow the

rescuer to compute the optimal message in the presence of uncertainty in the rescuee’s weights.
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Chapter 4

Robust Optimal signaling Policy

From now on, we assume that the edge weights wr
ij and wR

ij are unknown but bounded: wr
ij ≤ wr

ij ≤ wr
ij

and wR
ij ≤ wR

ij ≤ wR
ij ∀ ij ∈ E . We designate the cartesian product Πij∈E [wr

ij, wr
ij] as Ωr and Πij∈E [wR

ij , wR
ij ] as

ΩR and any arbitrary element from this set is denoted by wr and wR respectively.

We make an observation that in the analysis presented in Chapter 2 the edge weights only show up

when we seek to find the shortest paths over the graph. In success critical problems such as our rescue

scenario, we wish to be completely risk-averse. A natural step forward is then to consider a robust optimal

approach in designing our signaling policy.

We presented the linear program formulation of the shortest path problem in Chapter 2. The same prob-

lem can also be presented as an integer programming problem, with each xr
ij, xR

ij ∈ {0, 1} (Dantzig (1963)).

Efficient ways to compute the robust discrete optimal solutions to this formulation were presented by Bert-

simas and Sim (2003) assuming an upper bound on the number of edge-weights that are uncertain. We will

work with the more general (and simpler) scenario where we assume all edge-weights are uncertain. In

our work, we use the notions of a robust counterpart to an optimisation problem as presented by Ben-Tal

et al. (2009).

Consider an optimisation problem given by

min
x

f (x, w) (4.1)

s.t g(x, v) < 0 (4.2)

Where, (v, w) ∈ U are uncertain constants from an uncertainty set U . Then, motivated by Ben-Tal et

al. (2009) we have the following notions.

Definition 2 An uncertain optimisation problem is the collection,

OU =
{

min
x

f (x, w) s.t g(x, v) < 0
}
(v,w)∈U (4.3)

16



Definition 3 A vector x is a robust feasible solution to OU , if it satisfies all realizations of the constraints from the

uncertainty set, that is

g(x, v) < 0 ∀(v, w) ∈ U (4.4)

Definition 4 The Robust Counterpart of the uncertain optimisation problem OU is the optimization problem,

minx
{

sup
(w,v)∈U

f (x, w) : g(x, v) < 0 ∀(w, v) ∈ U
}

(4.5)

where we are minimising over all the robust feasible solutions.

Formally we can pose our question as, “What signaling policy should the rescuer adopt to incur optimal

costs while guaranteeing a successful rescue?".

4.1 Robust Optimal Candidate Rendezvous Set

We make the assumption that the rescuee seeks the shortest path in a certain environment with a realization

wr
ij = ŵr

ij as the edge weights over the graph G. The realised path of the rescuee can then be obtained by

solving the optimisation in (2.1). The rescuer does not a priori know these realized edge weights (ŵr
ij) and

is faced with finding the set of candidate rendezvous points Xm in a graph with unknown edge-weights.

We define the set of robust candidate rendezvous points.

In Chapter 2, we easily obtained Xm as a finite set from the finite graph Gm. But obtaining X̂m using (4.6)

involves an uncountable intersections over finite sets. We seek to find the “set of points which lie in the

shortest path for all possible combination of edge-weights". Fortunately, it is possible to state the following,

Proposition 1 Algorithm 1 presented ahead terminates, computes the set X̂m and runs in O(|V|3).

Definition 5 Let X w
m be the set of candidate rendezvous points for the set of edge weights {wr

ij} as defined in Defini-

tion 1. The robust candidate rendezvous set is obtained as,

X̂m =
⋂

{wr
ij}∈Ωr

X w
m (4.6)
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(a) Edge weight over the edge (v2, v4) can be either 1 or 4.
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(b) Shortest paths for the realised edge-weights wr.
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(c) Shortest path for the realised edge-weights w′r.
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(d) Robust candidate rendezvous points are highlighted.

Figure 4.1: (a) shows the graph in consideration. We see that the edge weights over all edges except one are
constants. (b) and (c) show the shortest paths over the graph for two different realizations of edge-weights.
(d) highlights the set of robust candidate rendezvous points. So we have X̂m = {vr, v4, vm}

Algorithm 1: Algorithm to find the robust candidate rendezvous points

Result: Obtain X̂m

Set edge weights {wr1
ij } = {wr

ij} ;

Find the graph of shortest path G∗1m = (V∗1m , E∗1m ) and the corresponding set of paths {P∗}1;

Initialize X̂ 1
m = {v : v ∈ P ∀P ∈ {P∗}1 ;

Set F 1 = {ij : wr1
ij = wr

ij, ij ∈ G∗1m };

Set k = 1 ;

while F k 6= ∅ AND X̂ k
m 6= {vr, vm} do

Set wrk
ij = wr

ij ∀ (ij) ∈ F k and wrk
ij = wr(k−1)

ij ∀ (ij) ∈ E/F k ;

Find the graph of shortest path G∗k+1
m and paths {P∗}k+1 with new weights ;

X̂ k+1
m = X̂ k

m
⋂{v : v ∈ P ∀P ∈ {P∗}k+1} ;

Update F k+1 = {ij : wr
ij(k + 1) = wr

ij, ij ∈ E∗k+1
m } ;

k = k + 1

end

return X̂ k
m

A proof of correctness for this algorithm is provided in Appendix B. In an undirected graph with

positive edge-weights, all equivalent shortest paths P∗ can be obtained using a minor modification of the

Dijkstra’s algorithm. If the implementation of Dijkstra’s Algorithm runs in O(|V|2), then Algorithm 1 pre-
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sented ahead runs inO(|V|3). This polynomial time-complexity for Algorithm 1 preserves the efficiency of

our approach in finding the robust optimal signaling policy. The computational efficiency of the algorithm

allows the rescuer to compute the set of robust candidate rendezvous points on board in real time.

While we assume that the signal sent by the rescuer is correctly interpreted by the rescuee and that the

action taken by the rescuee is indeed according to the best response strategy, it may of-course not be the

case. In such scenarios the ability to quickly compute the optimal strategy again allows for ‘corrective’

signals to be sent using the same signaling mechanism. Such repetitive signaling for planning, while not

addressed in our current work, is certainly an interesting direction of consideration for future work.

4.2 Robust optimal signaling policy

We make an assumption on the ratio of velocities kv for the remainder of our work.

Assumption 6 Let

wR
max , max

ij
wR

ij

wr
min , min

ij
wr

ij

Then, we assume a lower bound on the ratio of velocities as,

kv ,
VR
Vr
≥ wR

max
wr

min
(4.7)

This assumption formalizes the notion that rescuer (UAV) can move faster on any part of the terrain

than the rescuee. It is worth noting that this assumption alone does not guarantee the existence of non-

terminal rendezvous point. It merely implies that on any given path on G, the rescuer takes less time than

the rescuee. Thus, even if the rescuee was substantially closer to the target goal than the rescuer, the larger

speed of the rescuer may still not help it reach some intermediate node on the rescuee’s path.

Definition 6 For any two nodes vm, xn in a path P ∈ Pvr→vm we define a partial ordering ‘≤’ as,

vm ≤ vn if φ∗r (vm) ≤ φ∗r (vn)

with φ∗r defined in (2.9).
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Without loss of generality, we can list all the nodes in X̂m in increasing order as, vr = vx,1 ≤ vx,2 ≤ · · · ≤

vx,L = vm, where L = |X̂m|. Assumption 6 leads us to,

Claim 3 For any m, n such that 1 ≤ m < n ≤ L and for any realization {wr
ij} ∈ Ωr, {wR

ij} ∈ ΩR we have,

φ∗R(vx,m)− kvφ∗r (vx,m) ≤ 0 =⇒ φ∗R(vx,n)− kvφ∗r (vx,n) ≤ 0

with φ∗R and φ∗r given by (2.8) and (2.9) respectively.

The proof for this claim can be found in Appendix A.3. This statement shows that if a node is a robust

candidate rendezvous point then all nodes in X̂m succeeding (ordered by Definition 6) this point are also

candidate rendezvous points. We draw the straight forward inference from Claim 3,

Corollary 1 If there exists atleast one robust candidate rendezvous point then necessarily the terminal rendezvous

point vm is also a robust candidate rendezvous point.

We are now equipped to analyse the problem of finding the optimal signaling policy when faced with

uncertain path costs. In doing so we can first break our problem into two cases.

I There always exists atleast one robust candidate rendezvous point for all possible edge-weights

II No robust candidate rendezvous point for some {wR
ij}, {wr

ij}

By Corollary 1 it suffices to check whether vm is a robust candidate rendezvous point to verify which of

the two cases we are in.

4.3 Case I: At-least one robust candidate rendezvous point

In this case, for any {wr
ij} ∈ Ωr and {wR

ij} ∈ ΩR the constraint in (2.7) simplifies to

φ∗R(vx)− kvφ∗r (vx) ≤ 0 (4.8)

Then as a direct consequence of the Definition 3 we can make the following proposition.

Proposition 2 Any robust feasible rendezvous point vx for (4.8) satisfies,

φ∗R,max(vx)− kvφ∗r,min(vx) ≤ 0 (4.9)
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Where,

φ∗R,max(vx) = min
xij≥0

∑
ij∈E

wR
ij xij (4.10)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vR

−1 i = vx

0 otherwise

φ∗r,min(vx) = min
xij≥0

∑
ij∈E

wr
ijxij (4.11)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vx

0 otherwise

The robust counterpart to the optimisation problem presented in (2.6) is then given by,

min
m∈M

min
vx∈Xm

k1φ∗R,max(vx) + k2φ∗r,max(vx) (4.12)

subject to (4.9), where, φ∗r,max(vx) can be obtained by replacing wr
ij in (4.11) with wr

ij. �

Proof: It is easy to see that the proposition noted above is a direct consequence of the definitions of

robust counterpart to an optimization problem as provided by Ben-Tal et al. (2009). Motivated by Definition

4, the robust counterpart to the uncertain optimisation problem presented in (2.6) is given by,

min
m∈M

min
vx∈Xm

max
wR

ij ,w
R
ij

k1φ∗R(vx) + k2φ∗r (vx) (4.13a)

S.T. max
wR

ij ,w
R
ij

φ∗R(vx)− kvφ∗r (vx) ≤ 0 (4.13b)

We can make the following observations.

φ∗R(vx)− kvφ∗r (vx) ≤ φ∗R,max(vx)− kvφ∗r,min(vx)

And the equality holds when each wr
ij = wr

ij and wR
ij = wr

ij. Thus, if a solution satisfies (4.9) then it satisfies

(4.13b) for all values of wr
ij and wr

ij. In other words, such a solution is robust feasible by Definition 3.

By similar reasoning we can see that maxwR
ij ,w

R
ij

k1φ∗R(vx) + k2φ∗r (vx) is attained for wr
ij = wr

ij and wR
ij =
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wr
ij. Thus, the robust counterpart to (4.13) is given by (4.12) subject to (4.9). �

Explained in simple words, (4.9) formalizes the notion that the potential nodes we will consider for the

purpose of rendezvous can always be reached by the rescuer before the rescuee irrespective of the edge-

weights over the graph. Among these nodes the minimization in (4.12), translates to finding the node with

the best worst-case cost of successful rendezvous.

4.4 Case II: No robust candidate rendezvous point

By Assumption 5, we know that the rescuee travels to the target goal (vm) and waits there. In the scenario

where we have no robust candidate rendezvous point, the only way to guarantee a successful rendezvous

is by meeting the rescuee at the target goal node vm. Then for such a message the rescuer will only consider

the cost to rendezvous at the target goal. If there exist no candidate rendezvous points for any message m,

the robust counterpart to (2.6) is simply

min
m∈M

min
vx∈Xm

k1φ∗R,max(vm) + k2φ∗r,max(vm) (4.14)

Where φ∗R,max(vm) and φ∗r,max(vm) is obtained as we did for case I in Equations 4.11 and 4.10.

4.5 Robustness to Velocity Variation

We will treat the variation in velocity of the rescuer and the rescuee as variations of the parameter kv. We

assume that kv is unknown but bounded and takes values over a range [kv, kv]. The objective function in

(2.6) is unaffected by the value of kv. The constraint (2.5) is affine in kv. The robust counterpart to the

optimisation in (2.6) subject to (2.5) is obtained as,

min
m∈M

min
vx∈Xm

k1φ∗R(vx) + k2φ∗r (vx) (4.15)

S.T. (φ∗R(vx)− kvφ∗r (vx))1vx 6=vm ≤ 0 (4.16)

with φ∗R and φ∗r are given by (2.8) and (2.9) respectively. The edge weights {wr
ij} and {wR

ij} are assumed fixed

and known above. The robustification of the optimisation in Chapter 2 with respect to the edge weights

and the parameter kv can be done independently. For the subsequent robustification of the constraint in

(4.16) with respect to edge-weight uncertainty, we only need the kv to satisfy the constraint in Assumption

6.
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4.6 Example

In the preceding sections, we formalized an approach to arrive at the robust optimal signaling policy for

a Stackelberg rendezvous game. In closing this chapter we will provide an illustrative example of the

designed signaling policy in practice.

Figure 4.2: Clouds (blue shading) act as ‘high edge weight’ regions to the UAV and hills (green shading)
act as ‘high edge weight’ regions to the rescuee. The optimal signal sent out was indicating the right target
goal.

We present the results of a simple simulation on a carefully designed rescue topology to highlight some

features of our approach. The parameters chosen are k1 = 1,k2 = 1 and kv = 3.1. All edge weights wr
ij

and wR
ij are unknown to the rescuer and are assumed to be uniformly distributed random variables. Each

edge in the graph can be of one of two types - ‘High weight edges’, where each edge weight is a random

variable supported over [2.5, 3] and ‘low weighted edges’, each supported over [1, 1.5]. It can be verified

that Assumption 6 holds for these set of edge weights and the velocity ratio kv. The topology over the

rescue terrain as well as the path’s travelled by the rescuee and the rescuer are presented in Fig. 4.2.

It can be observed that although the left target goal was spatially closer to both the rescuee and the

rescuer, the rescuer, implementing the robust optimal signaling policy, signals the rescuee to go towards

the right goal. By indicating the right(m = R) target as the intended goal, the rescuer creates the set XR,

containing grid squares (7, 6), (8, 5), (9, 5) and (11, 6), for itself. Note that we denote the position of a grid
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square using the coordinates of its bottom left corner. The rescuer can now pick one among these candidate

rendezvous points for a successful rendezvous (subject to their feasibility). If the rescuer were to signal

left(m = L), there would be no such non-terminal points in the set XL. This availability of robust candidate

rendezvous points encourages the rescuer to signal going right as the rescuer’s cost to reach some of the

points in XR is lower than the cost to reach vL. In this particular scenario, the rescuer chooses the point

(9, 5) for a successful rendezvous.
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Chapter 5

Stochastic Optimal signaling Policy

In the preceding chapter, we considered a robust approach in finding an optimal signaling policy for our

rescue scenario. Such an approach trades optimality for robustness by designing a policy that only max-

imises the rewards in the worst-case scenario. It may often be the case that the probability of the worst cases

scenario being realized is very small. And it may also be the case that optimal action in the worst cases sce-

nario is strongly sub-optimal in many of the other scenario. It is not very hard to construct a scenario that

achieves such sub-optimality in our framework.

(a) Path cost to the rescuee is 7. (b) Path cost to rescuee is 9 along both indicated paths.

Figure 5.1: The two figures illustrate two realisations of the stochastic topology over the grid. The dark
green hilly regions have a cost-to-traverse of 3 for the rescuee. All other grid squares have a cost to traverse
varying uniformly over [1, 1.5] for the rescuee. In the first graph, all these grids squares have a realized cost
of 1, while in the second figure the light green shaded grid squares have a cost to traverse of 1.5. The other
grid squares remain unchanged in the latter.

Consider the two images presented in Figure 5.1. In the first image, the shortest path for the rescuee

always passes through the grid squares with bottom left corners at (7, 5), (8, 5) and (9, 5). When looking at

the candidate rendezvous set for the realisation of edge-weights as presented in the Figure 5.1a, we see that

it contains these three squares when the signal sent out by the rescuer is to go right (m = R). It can also be
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verified that there are no non-terminal candidates rendezvous points if the rescuer signals the rescuee to

go left (m = L). If we implemented the non-robust optimal signaling policy for this scenario we would get

the result that the rescuer signals the rescuee to go right and the final rendezvous would occur at the grid

square (9, 5). The cost to the rescuer would be 15 for a rendezvous at this point. (Assuming cloudy grid

square have a cost to traverse of 2 for the rescuer and all other squares have a cost to traverse of 1.)

Now consider another realization of edge-weights as presented in Figure 5.1b. Under this scenario, by

signaling right (m = R) the (non-robust) candidate rendezvous points set generated for the rescuer consists

only of the terminal node vm and the initial location of the rescuee vr. When introducing the rescue problem

scenario, we made an assumption on vr being inaccessible to the rescuer and so the rescuer cannot hope to

rendezvous with the rescuee at this location. The reason for this lack of candidate rendezvous points is that

there are two shortest paths with no common nodes as shown in the figure. So, if we were to run the robust

optimal signaling policy over this graph, then the optimal signal to be sent would be m = L. The optimal

cost to the rescuer would be 17.

Now, it can be noted that for there to be an alternate shortest path not passing through (7, 5), (8, 5) and

(9, 5), all the light green squares in Figure 5.1b must necessarily take maximum edge-weights. Since the

cost to traverse over these squares are uniformly distributed random variables, the probability of such a

realization is 0. We could in-fact have still sent the signal m = R, as we did for the scenario in Figure 5.1a

and guaranteed a successful rendezvous at (9, 5) with an optimal cost of 16.

This illustration highlights the drawback of the robust optimal signaling policy we designed in the

previous chapter. The robust approach can, in certain scenarios, be very conservative and thus, strongly

sub-optimal. We may often have additional distributional information over the edge-weights and the ro-

bust optimal signaling policy makes no use of this available information. In this chapter we present an

approach to reduce the over-conservativeness of the robust approach.

In arriving at the robust optimal signaling policy, the first challenge we faced was in finding the can-

didate rendezvous points set. We then sought to answer the question, ‘What is the set of nodes that will

lie on all shortest paths, for every possible edge-weight over a graph?’. Then, the natural question we can

ask now is, ‘What is the set of nodes that will lie on all shortest paths with a high probability, when the

edge-weights vary stochastically?’
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5.1 Literature Review: Shortest Path on a Graphs with Random

Edge-weights

On the topic of stochastic shortest route problem, Dantzig (1963) replaced the edge weights with their

expected values and solved the resulting shortest path problem with certain weights. The problem with

this approach is that there exists a finite, and often large, probability that the resulting shortest path is

strongly sub-optimal. With a high probability the shortest path thus computed may not in-fact be the

shortest. Dantzig (1963) also presents an alternate consideration by choosing the path which minimises a

weighted sum of the path cost and variance (risk) in the path cost. This is closer in spirit to what we seek,

as it seeks to find the path which has not only a low expected cost but also remains close to this expected

cost when edge-weights are varied. But this path may still become sub-optimal with a high probability as

there may be other paths with lower cost to traverse in many cases. In our cases a failure in meeting at the

correct point, or to correctly obtain what point the human is going to pass through means we have missed

him altogether and now have to find him at the next feasible point. The methods above tell us what path

the agent who has to traverse a graph should take if he has no way of knowing the surrounding paths.

But in our scenario, we assume that the rescuee knows his precise path costs and it is the rescuer who is

unaware of the path costs faced by the rescuee.

There are also some methods which take into account probabilistic results on the shortest path. Frank (1969)

proposes the following condition for path optimality: For a specified k, consider the path that maximizes

the probability of realizing a weight less than k as the optimal path. Another approach taken by Sigal et

al. (1980) is to find the path with the greatest probability of realizing the least weight. This latter approach

is the closest to what we seek. We can extend the result to sequentially find N paths that have the highest

probabilities of realizing the least weight. Formally, these paths are solutions to

P∗ = arg max
P∈PS→ G

∏
P′ ∈PS→ G/{P}

P{L(P) ≤ L(P′)}

The path obtained above is the shortest path with the probability obtained as the objective function above

evaluated at P∗. But this approach can be computationally expensive as its evaluation requires us to iterate

over all possible paths in PS→ G. Since the number of paths on a graph is exponential in the number of

nodes in the graph this computation cannot be done in polynomial time. The usual approach in evaluating

the probabilities of the form presented above is through Monte Carlo simulations using the known proba-

bility distribution. Motivated by this idea we will design a Monte-Carlo simulation based approach to find
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our the candidate rendezvous points set.

5.2 Monte-Carlo Approach

To obtain a complete stochastically optimal policy we have three considerations to make.

1. We first need to obtain the the set of stochastic candidate rendezvous points i.e. the set of nodes that

the rescuee will pass through with a high probability.

2. Next, for any candidate rendezvous point we need to check feasibility of rendezvous. In other words,

we need to evaluate whether the rescuer can indeed reach this point before the rescuee does and thus

allow for a successful rendezvous. We may choose to pose this question in a stochastic setting as

well. The question to be asked then is, ‘Among the candidate rendezvous points, which points can

the rescuer reach before the rescuee with a high probability?’.

3. The third challenge we face is in the computation of the objective function when the edge-weights are

stochastic.

All these issues can be mitigated by an complete Monte-Carlo method approach to the problem. What

we mean by this is that, we can sample over the distribution of edge-weights for both the rescuee and the

rescuer and evaluate the optimal signaling policy as presented in Chapter 2. Having obtained the optimal

signal to every sampled edge-weight vector, we can simply pick the signal with the highest empirical

probability of being optimal.

We can make an observation here that addressing the first challenge posed above requires us to com-

pute only one set of shortest paths for each sampled edge-weight. We can then compute the empirical

probability of any node lying on shortest paths by taking a large number of samples. This will be explored

more in Section 5.2.1. For both the second and the third challenge, we need to compute shortest paths

multiple times; once each for every node in the candidate rendezvous set obtained for a given edge-weight

sample. As the size of the grid increases, the size of the candidate rendezvous set grows linearly with the

dimensions of the grid. Computing these large number of shortest paths for a large number of sampled

edge-weights can prove very challenging for on-board computing. As a solution to this, we will present

a hybrid approach which combines the reduced conservativeness of the stochastic approach while main-

taining the reduced computational complexity of the robust approach from Chapter 4. The second and the

third problem posed above will be solved using a robust approach we present in Section 5.3.
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As a first step, we address the problem of finding the set of stochastic candidate rendezvous points.

Monte-Carlo based simulations for this requires us to treat the edge-weights over the graph as stochastic.

For different values of these edge-weights, we can then compute the shortest paths and find the set of points

that lie on these shortest paths. We then seek to find the set of points which lie on some such shortest path

with high probability.

Going forward, we assume that the edge weights wr
ij and wR

ij are stochastic bounded random variables:

wr
ij ≤ wr

ij ≤ wr
ij and wR

ij ≤ wR
ij ≤ wR

ij ∀ ij ∈ E . As before, we designate the Cartesian product Πij∈E [wr
ij, wr

ij]

as Ωr and Πij∈E [wR
ij , wR

ij ] as ΩR. We can then consider the random vectors wr = {wr
ij}ij∈S and wR =

{wR
ij}ij∈S over the supports Ωr and ΩR respectively.

We will not make any assumptions on the independence of these edge-weights. On the contrary, it is

quite likely that edge-weights on edges in a neighbourhood are correlated. On a realistic terrain it is likely

that hills would occur together as a range. Similarly, it is likely that there exists a valley between two ranges

of hills. These correlations can be captured as a joint probability distribution over the edge-weights. Let F

denote the joint probability of the edge-weights over the graph. We will refer to probabilities using notation

P and P will be reserved to denote paths as before.

5.2.1 Obtaining the candidate rendezvous set

Definition 7 Let P∗m(wr) denote the shortest path taken by the rescuee to the target goal vm when the realised edge-

weights are wr. We then define a candidacy index for each node as J : V → R as,

J(v) = P(v ∈ P∗m(w
r))

We will evaluate this probability using Monte-Carlo (MC) methods. MC methods use random samplings

from a known distribution to numerically compute various statistical quantities. We can use a similar

approach in computing the candidacy index as defined in Definition 7.

A challenge to be addressed in computing the candidacy indices is the presence of multiple shortest

paths for a given vector of edge-weights wr. When the shortest path is unique P(v ∈ P∗m(wr
i )) is easier

to compute, but we need to make some additional considerations if there are multiple shortest paths for

some wr. In Chapter 2 and 4, we defined the candidate rendezvous points such that every point in this

set lies on every shortest path when there are multiple shortest paths. In the stochastic approach, we will

address this issue by assuming that when there are multiple shortest paths, each path is chosen at random
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with a uniform equal probability. Then, given the edge-weights, the shortest path taken by the rescuee is a

uniform random variable over the set of all shortest paths. For example, if there exist two paths with equal

shortest path costs from vr to vm, then each will be chosen in one sampling with a probability of 0.5.

To capture this additional stochasticity in the choice of shortest path we will treat P∗m(wr) as a random

variable in itself. We first make the observation that any probability can be written out as an expectation

over an indicator variable as,

J(v) = P(v ∈ P∗m(w
r)) = Ewr ,P∗m [1v∈P∗m(wr)]

where the expectation is taken with respect to both the distribution F over the edge-weights wr and the

uniform distribution over the choice of shortest path P∗m. We then present the following

Definition 8 Let P∗m(wr) be the set of all shortest paths from vr to vm when the edge-weights over the graph is wr.

We define the candidacy index estimator

g(v, wr) =
|P : v ∈ P, P ∈ P∗m(wr)|

|P∗m(wr)| .

We then make the following claim,

Claim 4

Ewr [g(v, wr)] = J(v)

Proof for this claim is presented in Appendix A.4. Inspired by Monte-Carlo methods, we can then

approximate the candidacy index as,

J(v) ≈ J̃(v) ,
1
K

K

∑
i=1

g(v, wr
i )

where K is a free parameter determining the number of samples we take to approximate J(v) and wr
i is

the ith sampled edge-weight vector. We can then define our stochastic candidate rendezvous set using this

definition of candidacy index,

Definition 9 For some ε > 0, we define the stochastic candidate rendezvous points set as,

X̃ ε
m = {v ∈ V : J̃(v) > 1− ε}
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Now to find this stochastic candidate rendezvous set we need to compute the candidacy indices for all

nodes. We know that the shortest paths can be computed using Dijkstra’s algorithm in O(m + n log n). The

primary computational complexity in obtaining the candidacy index then arises from the need for a large

number of samples. For a grid of size N, we have the number of edges in the order of 4N. This would

correspond to generating 4N edge-weight samples in each sampling run. This problem can be alleviated

by making a useful observation from the proof of Algorithm 1 presented in Appendix B. Proposition 5 tells

us that at the termination of Algorithm 1, the graph Gk we obtain contains all possible shortest paths in the

graph G. Since this algorithm is polynomial time, we can efficiently obtain the subgraph which necessarily

contain all shortest paths. We then only need to pick edge-weights from the distribution F for edges in this

subgraph to compute the candidacy index for nodes. We also know then that the candidacy index for all

nodes outside this sub-graph is zero.

The question now remains; For a given ε, what is the minimum number of samples K to be picked

such that the candidacy index estimate J̃(v) is a ‘good‘ approximation of the true candidacy index J(v).

Requiring a small number of samples here is key in our ability to compute the final optimal signaling

policy on board the UAV.

5.2.2 Finite Time Guarantees for Monte-Carlo Method

In this section, we seek to present a bound on the number of samples required to compute the estimate for

the candidacy index for each node with reasonable accuracy. This first requires us to show that the function

J̃(v) =
1
K

K

∑
i=1

g(v, wr
i )

is measurable. Here wr
i is the ith sampled edge-weight vector. It suffices to show that the function, g(v, wr)

is measurable for every wr. The arguments for measurability of this function are presented in Appendix C.

Having established that the candidacy index is measurable, we will set out to find the probabilistic bounds

we seek.

We will first make an assumption that each edge-weight vector wr is picked i.i.d from its distribution F

over Ωr. By Law of Large Numbers, we know that as the number of samples, K, increases the estimate of

candidacy index J(v) converges to the true candidacy index in probability J(v) as

J̃(v)
p→ E[g(v, wr)] = J(v) ∀v ∈ V . (By Claim 4).
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Then for any ε > 0 we have,

P
(
(wr

1, . . . , wr
K) ∈ ΩrK : | J̃(v)− J(v)| > ε

)
→ 0.

In more rigorous terms, for every δ > 0 we can then find a K ∈N such that for every k > K we have,

P
(
(wr

1, . . . , wr
k) ∈ Ωrk : | J̃(v)− J(v)| > ε

)
< δ. (5.1)

We now will attempt to establish a relation between the number of samples required K and the upper-

bound on the probability δ. To this end, we make use of the following

Theorem 1 (McDiarmid’s Inequality) Let Xn = (X1, X2, . . . , Xn) ∈ X n be independent random variables and

let f : X n → R be a finite difference mapping i.e. f satisfies,

| f (x1, . . . , xi, . . . , xn)− f (x1, . . . , x′1, . . . , xn)| ≤ ci ∀xi, x′i , x1 . . . xn

then

P( f −E[ f ] ≥ ε) ≤ exp
−2t2

∑n
i=1 c2

i

Through some abuse of notation we will explicitly list the dependence of J̃ on the sampled edge-weights

wr
1, . . . , wr

K as,

J̃(v, wr
1, . . . , wr

K) =
1
K

K

∑
i=1

g(v, wr
i )

We can now verify the finite difference property of this function,

| J̃(v, wr
1, . . . , wr

i , . . . , wr
K)− J̃(v, wr

1, . . . , wr′
i , . . . , wr

K)| =
1
K
|g(v, wr

i )− g(v, wr′
i )|

≤ 1
K

because 0 ≤ g(v, wr
i ) ≤ 1 from the definition of g. Then as a direct application of McDiarmid’s inequality

we have,

P( J̃(v)− J(v) ≥ ε) ≤ exp(−2ε2K).

Setting K > − log δ

2ε2 we have the result from Equation 5.1. We have presented a lower bound on the number
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of samples required to approximate the candidacy index up to a desired confidence level. We are now

equipped to compute the stochastic candidate rendezvous set and can now move onto presenting the opti-

mal signaling policy using this set.

5.3 Stochastic Optimal Signaling Policy

In the preceding section we computed the stochastic candidate rendezvous set i.e. ‘the set of points that

lie on some shortest path with a high probability when the edge-weights are varied stochastically.’ In the

beginning of section 5.2 we indicated that after employing Monte-Carlo methods to obtain the candidate

rendezvous sets, we will use the robust approach developed in Chapter 4 to design the complete stochastic

optimal signalling policy. To do this, we simply replace the robust candidate rendezvous points set in

Proposition 2 with the stochastic candidate rendezvous points set we obtained here.

We then propose the following optimisation to be solved by the rescuer to arrive at the optimal signal

to be sent when non-terminal feasible points exist.

Proposition 3 Any stochastic feasible rendezvous point vx ∈ X̃m for (4.8) satisfies,

φ∗R,max(vx)− kvφ∗r,min(vx) ≤ 0 (5.2)

Where, φ∗R,max(vx) and φ∗r,min(vx) are obtained as 4.10 and 4.11 respectively. The stochastic robust counterpart to

the optimisation problem presented in (2.6) is then given by

min
m∈M

min
vx∈X̃m

k1φ∗R,max(vx) + k2φ∗r,max(vx) (5.3)

subject to (4.9), where, φ∗r,max(vx) can be obtained by replacing wr
ij in (4.11) with wr

ij. �

Once again in the case where there are no feasible rendezvous points the optimal signal to be sent can

be arrived at by comparing the cost to rendezvous at the terminal goals. In the following section we will

present simulations results which implement this stochastic optimal signaling policy.
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5.4 Simulation results

5.4.1 Stochastic Optimal signaling Policy in Action

Figure 5.2 presents a topography with two different approaches to computing the candidate rendezvous

points set. Figure 5.2a implements the fully robust solution to the rendezvous problem as presented in

Chapter 4. For the rescuee the cost-to-traverse over hills (green shading) is a uniform random variable sup-

ported over [2.5, 3] and cost-to-traverse other regions is a uniform random variable over [1, 1.5]. Likewise,

for the rescuer, the cost-to-traverse over clouds (blue shading) is a uniform random variable supported over

[2.5, 3] and cost-to-traverse other regions is a uniform random variable over [1, 1.5]. For the given topogra-

phy, it can be checked that the robust candidate rendezvous points set can be obtained as X̂R = {xH , xR}

and X̂L = {xH , xL} in signaling m = R and m = L respectively. Since, xL is spatially closer to both the

rescuee and the rescuer we end up with m = L as the optimally signal to be sent. The result rendezvous is

illustrated in Figure 5.2a.

(a) Robust candidate rendezvous points.
(b) Candidate rendezvous points exist with a high proba-
bility.

Figure 5.2: Over the same topographical layout we observe that the optimal signal to be sent changes with
the robustness criteria we choose.

As indicated in the previous section we only introduce stochasticity based relaxation of robustness in

arriving at the candidate rendezvous points set. Whether or not these points are feasible is still checked in

a conservative robust manner. Considering Figure 5.2b, we see that the path taken by the rescuee passes

‘South’ of the ‘hill’ at [6, 8] (referenced by bottom left corner). But it is not hard to create a case where the

shortest path to the right target goal passes ‘North’ of this hill. We created such a case in Figure 5.1 in the

introduction of this chapter. We also saw that the likelihood of such a case being realized is 0. Agreeing
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with this analytic result, from Monte Carlo based computations, we observe that such a path ‘North’ of

the hill is the shortest path with a small probability. In other words, with a high probability (we picked

a threshold of 0.9), when edge-weights wr are picked from a distribution defined for this topography, the

shortest paths passes between the two ‘hills’ at [6, 8] and [4, 8]. Thus, with a high probability the optimal

message to be sent is m = R as the rendezvous point (cross) picked in Figure 5.2b is closer than going to xL

for both the rescuee and the rescuer.

5.4.2 Simulation based validation of Monte-Carlo FTG results

In Section 5.2.2, we claimed that the number of iterations n required in the Monte Carlo approach to ensure

that our empirical estimate of the expectation J̃(v) to converge to the true expectation J(v) with a high

probability satisfies,

P( J̃(v)− J(v) ≥ ε) ≤ exp(−2ε2n) < δ (5.4)

We arrived at this statistical bound using the McDiarmid’s inequality. Now, we also wish to see how good

this bound is in practice. For the purpose of this section we will assume that at most one edge has uncertain

edge weights. The scenario we will consider is presented in Figure 5.3.

In Figure 5.3, when the dark green square has a cost-to-traverse of below 2 ,the shortest path to the right

goal for the rescuee passes through this square. For values of cost-to-traverse between [2, 4] the shortest

path no longer passes through this dark green square. Since the cost-to-traverse over this region varies

uniformly between [1, 4] there is a probability of 1
3 that this the shortest path traverse this region. We will

refer to this square hence forth as a node using the coordinates of its bottom-left corner [7, 3]. The candidacy

index for this node [7, 3] is then 1
3 as the probability of a shortest path through this node is 1

3 . We can now

verify both the convergence of the estimated candidacy index to the true index and also the number of

samples required to achieve the convergence with reasonable probability.

We are interested in two things. First, we want to see how quickly the empirical estimate Ĵ(v) con-

verges to the true J(v) with increasing number of iterations. The Hoeffding-like bound obtained from Mc-

Diarmid’s inequality gives us a probabilistic guarantee, but not a deterministic guarantee, on how quickly

the estimate converges to the true value. It only tells us that, with a high-probability, the estimate will

converge to the true value when the number of iterations are greater than a given n. Figure 5.4 shows the

evolution of the estimate Ĵ(v) with increase in number of iterations.
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Figure 5.3: The weight to travel over the dark green grid square with the bottom left corner at (7, 3) takes
edge weights in the range w ∈ [1, 4]. All light green grid squares have cost-to-traverse of 1.5. All uncolored
squares have a cost to traverse of 1.

Figure 5.4: The estimate Ĵ(v) evolution with increasing number of iteration. We see convergence close to
the true value J(v) = 0.33
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Figure 5.5 shows the final estimate Ĵ(v) after multiple full runs of the MC algorithm. We wish to see in

how many runs the final estimate Ĵ(v) after n iterations falls outside the ε ball around the true expectation

J(v). For δ = 0.05 with ε = 0.05 we see that we need to have N ≈ 600 to satisfy the inequality in Eq. 5.4.

We can see that the convergence in Figure 5.4 happens in much fewer iterations than what we predicted

using the McDiarmid’s inequality. This is to be expected as performance guarantees based on McDiarmid’s

inequalities give us very loose bounds. And from Figure 5.5 we see that we exit the ε = 0.05 ball around

the true mean J(v) = 0.33 only once in 100 runs, i.e with an empirical probability of 0.01.

Figure 5.5: The estimate Ĵ(v) at the end N = 600 iterations run 100 times.

From these simulations, we can conclude that not only is the the stochastic approach effective in reduc-

ing the conservativeness of the robust optimal signaling policy, but also that we can obtain the stochastic

optimal signal using a reasonable number of samples.
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Chapter 6

Conclusions and Future Work

We can now take a step back and take a broader view on the work presented so far. We began our work

with a desire to exploit implicit signaling capabilities present in robots. But, our work is in no way limited

to implementation in these autonomous agents. It is not hard to imagine that the entire rescue scenario

we presented could be played out between a human rescuee and a human rescuer flying in a disaster

relief aircraft. The signaling methods we assume a UAV to posses are also present in a human controlled

aircraft, be it taking elaborate banked turns to indicate intent to turn or the use of flashing lights to indicate

directions. While we did not explicitly design the trajectories or signaling methods we mention in passing

here, we justified their existence by citing studies into legible and predictable robotic motion from the HRI

community. While these studies seek only to convey a robot’s intent to humans we go a step further and

exploit these intent expression capabilities to influence human behaviour.

A natural paradigm to study this ‘influencing’ behaviour of autonomous agents is as a Stackelberg game

played between the rescuer and the human. The rescuer takes the role of the leader and send out a message

to the human who is the follower. The utility of the message to the rescuer lies solely in the fact that the

human responds to the sent message by taking a particular action. We initially set out to find an optimal

signaling scheme assuming the fact that the game being played out was completely deterministic given

a message. This assumption implied that the rescuer could predict the human’s precise best response to

every message it chose to send and then the choice of message to be sent was simply obtained as a finite

space search.

The assumption we made on rescuer possessing perfect knowledge of the rescuees action is a strongly

unrealistic one. There are multiple issues that can crop up in the event of our assumption being violated.

Our assumption about the rescuer’s action is two fold. Firstly, it assumes the perfect knowledge of the

state of the world which factors into the human’s decision making process. Any ambiguity in the state

of the world immediately translates to an ambiguity in the rescuer’s knowledge of the human’s action.

The second assumption we implicitly made is that given the state of the world, the rescuer has precise

knowledge of the human’s best response to each message it sends. It may often be the case that the human’s
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best response is not deterministic given the state of the world and the message. We will leave the discussion

of this second issue to later and focus on the first one for now.

We presented multiple approaches to address the issue of the rescuer having insufficient knowledge of

the state of the world. Initially, we took a very conservative approach and sought the messaging policy

which minimised the cost in the worst-case scenario of state of the world. With this approach we were

guaranteed to have achieve our objective with an upper bound on the incurred cost. In arriving at a robust

solution to our problem, we also presented a novel algorithm to guarantee successful rendezvous between

two non-communicating players traversing a graph with uncertain edge-weights. It is easy to find ap-

plications for this algorithm in other fields like operations research and network science. As an example,

consider a variant of the last mile problem where the supply vehicle and the deliver vehicle have to meet

over a road network with uncertain traffic congestion.

The robust approach was well suited to our scenario, as, in a success critical scenario like rescue opera-

tions we could to guarantee a successful rescue. But at the same time, it may also be the case that a similar

scenario was time-critical in addition to being success-critical. In an effort to trade some robustness for

optimality, we sought to look at solutions that exploit additional information about the state of the world

in arriving at the optimal signal. In particular, we assumed some distributional knowledge over the state

of the world and employed Monte-Carlo methods to arrive at a statistical solution to the optimal signaling

policy. We also presented some performance guarantees on the number of samples required to achieve a

successful rescue with a high confidence.

We will now return to the issue of finding the optimal signal to be sent by the rescuer, in the case where

the rescuee’s action is not a deterministic function of the state of the world and the message. The rescuee,

being a human, cannot be expected to have precise computational capabilities to compute the best response

given the state of the world. While there is a subtle difference between choosing a sub-optimal response to a

message because of error or lack of computing ability and choosing a sub-optimal response by randomizing

over set of available responses, we can model the former scenario as a case of the latter. We can then once

again study this problem as a Stackelberg game where the rescuee is playing mixed strategies. While this

idea hasn’t been addressed in the work presented thus far, we intend to study this problem in more detail

in the future. Specifically, we will enlarge the rescuee’s response set from the set of shortest paths to the

set of almost shortest paths. Byers and Waterman (1984) presented the first approach to finding almost

shortest paths and later Eppstein (1999) presented a more efficient approach to arrive at the same set of

almost shortest paths. The idea behind using almost shortest paths is that, while a human cannot compute

precise path costs, their intuitive guess for which is path is shortest isn’t very far from the true shortest path
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as shown by Zhu and Levinson (2015).

In the work we presented thus far, we only considered a single signal being sent by the rescuer. We

also did not analyse the scenario where the rescuer fails to meet the rescuee after signaling. While this

possibility is non-existent when there is no uncertainty in edge-weights or when there is uncertainty and

the rescuer implements the robust optimal signaling policy, there is always a small probability of failure in

implementing the stochastic optimal signaling policy. We can then consider a multi-stage Stackelberg game

wherein the rescuer signals its intent to the rescuee multiple times. This is another avenue for future work.

At the end of the day, any model of human behaviour is subject to question. As a validation of the

efficacy of our signaling policy, it would it interesting to see the likelihood of its success in an experimental

setting. We plan to carry out some experimental work involving human subjects to evaluate the perfor-

mance of our signaling policy.
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Appendix A

Proofs for Results

A.1 Proof for Lemma 1

Every node in the obtained graph lies on the shortest path from the source node to the sink node. By

principle of optimality, the shortest path from each node to the sink node can also be found within the

same graph. Now consider a potential function over nodes, with the value of the potential function at a

node being the shortest path length from that node to the sink node. We can arrange these nodes then in

decreasing (non-strict) order of potentials with the sink node having potential 0 and the source node having

potential equal to the shortest path length between the source and the sink.

Since all edge weights are positive, any edges in shortest path between the source and the sink can

only connect nodes with higher potential to nodes with (strictly) lower potential. We have effectively

constructed a topological ordering for nodes in the given graph. Thus, we know that the graph constructed

by taking the nodes and edges from all shortest paths is DAG.

Since every edge in the graph obtained above forms a part of some shortest path(s), necessarily the cost

to traverse each edge is equal to the difference between potentials of the nodes connected by it. Then every

path consisting of such edges is a shortest paths.

A.2 Justifying the inequality 3.4

The threshold velocities for each node can be written out as,

VR(li) =


i+4

2(i−1) i is even

i+4
2i−1 i is odd

VR(ri) =


i+4

2i−1 i is even

i+4
2(i−1) i is odd
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We can observe right away that for an even i,

i + 4
2(i− 1)

>
i + 4

2i− 1
(∵ 2i− 1 > 2i− 2)

=⇒ VR(li) > VR(ri)

Similarly, we get VR(ri+1) > VR(li+1). Now we wish to show VR(ri) > VR(ri+1).

VR(ri)−VR(ri+1) =
i + 4

2i− 1
− i + 5

2i

=
5− i

2i(2i− 1)
< 0 ∀i ≥ 5

Similarly we can show that VR(li+1) > VR(li+2) ∀i ≥ 4.

A.3 Proof for Claim 3

Let ξ∗R(va, vb) = arg minP∈Pva→vb
φR(P) denote the shortest path on the graph between any two nodes va

and vb for the rescuer. Likewise ξ∗r (va, vb) denotes the shortest path for the rescuee over the graph between

the two nodes.

φ∗R(vx,n)

φ∗r (vx,n)
=

φR(ξ
∗
R(vR, vx,n))

φr(ξ∗r (vr, vx,n))

≤
φR(ξ

∗
R(vR, vx,m)) + φR(ξ

∗
R(vx,m, vx,n))

φr(ξ∗r (vr, vx,m)) + φr(ξ∗r (vx,m, vx,n))

Since vx,m also lies on the shortest path for the rescuee we have φr(ξ∗r (vr, vx,n)) = φr(ξ∗r (vr, vx,m)) +

φr(ξ∗r (vx,m, vx,n)). Since ξ∗R(vR, vx,n) is the shortest path for the rescuer to vx,n we have the triangle in-

equality φR(ξ
∗
R(vR, vx,n)) ≤ φR(ξ

∗
R(vR, vx,m)) + φR(ξ

∗
R(vx,m, vx,n)).

Hence,
φ∗R(vx,n)

φ∗r (vx,n)
≤

φR(ξ
∗
R(vR, vx,m)) + φR(ξ

∗
r (vx,m, vx,n))

φr(ξ∗r (vr, vx,m)) + φr(ξ∗r (vx,m, vx,n))
(∵ ξ∗R is the shortest path)

≤
φR(ξ

∗
R(vR, vx,m)) + wR

max(m− n)
φr(ξ∗r (vr, vx,m)) + wr

min(m− n)
(∵ wR

ij ≤ wR
max, wr

ij ≥ wr
min)

≤
kvφr(ξ∗(vr, vx,m)) + kvwr

min(n−m)

φr(ξ∗(vr, vx,m)) + wr
min(n−m)

(Assumption 6)

= kv
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A.4 Proof for Claim 4

We wish to show that Ewr [g(v, wr)] = J(v). We will drop the wr arguments for shortest path taken by the

rescuee P∗m(wr) for the sake of brevity. By the definition of candidacy index we have,

J(v) = Ewr ,P∗m
[
1v∈P∗m

]
= Ewr ,P∗m

[
∑

P∈P∗m(wr)

1v∈P · 1P=P∗m

]

where P∗m(wr) denotes the set of shortest paths from vr to vm for edge-weight wr. Then by tower property

of conditional expectation we have,

J(v) = Ewr

[
∑

P∈P∗m(wr)

1v∈P ·EP∗m [1P=P∗m |wr]

]
.

We made the assumption that when there are multiple shortest paths, one is chosen a random with a

uniform probability over the set of all shortest paths. Given wr the set of shortest paths is a deterministic

set. So we have,

J(v) = Ewr

[
∑

P∈P∗m(wr)

1v∈P
1

|P∗m(wr)|

]
= Ewr [g(v, wr)]

�
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Appendix B

Proof for Algorithm 1

Definition 10 (Graph Union) For two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph union is obtained as the

new graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2)

Definition 11 (Graph Compliment) LetH = (VH , EH) be a sub-graph of G = (V , E), then we will define the graph

compliment ofH with respect to G as,

G/H = (V , E/EH)

We will begin by re-introducing some of the notations used in presenting the algorithm. In doing so,

we will drop the subscripts m and superscript r for increased readability. G = (V , E) denotes the graph

representation of the rendezvous topology. Then, sub-graph G∗k = (V∗k, E∗k) denotes the acyclic digraph

containing the shortest paths in the kth iteration of the algorithm. We can make the claim of acyclicity since

all edge-weights in our graph G are assumed positive. We define a new digraph Gk = (V k, E k) obtained as

a graph union in each iteration as,

Gk =
k⋃

i=1

G∗k (B.1)

{wk
ij} denotes the set of edge weights at the kth iteration of the algorithm. Each edge-weight in {wk

ij} can be

obtained as,

wk
ij =


wij if (ij) ∈ E k−1

wij if (ij) ∈ E/E k−1
(B.2)

Claim 5 Algorithm 1 return a set of nodes X̂ ⊆ V such that every shortest path in the graph G for any set of

edge-weights {wij} passes through every node in X̂ .

In proving the claim 5, we first present two propositions.
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Proposition 4 Consider the graph Gk and let wk′
ij be any set of edge-weights on Gk satisfying the property

wk′
ij =


w′ij if (ij) ∈ E k−1 and wij ≤ w′ij ≤ wij

wij if (ij) ∈ E k/E k−1

for some set of w′ijs. Then, every shortest path on such a graph Gk passes through every node in X̂ k.

We defer the proof of this proposition to later.

Proposition 5 If G∗k+1 is a subgraph of Gk, then edges in G/Gk are never a part of the shortest path over G. In

particular, change in edge-weights over edges in G/Gk has no effect on the shortest path in G.

Proof: Recall that G∗k+1 is obtained as the set of shortest paths when the edge-weights are {wk+1
ij }. In this

scenario, all edges in Gk have maximum edge weight and all edges in G/Gk have minimum edge weight.

Since, the shortest path lies entirely in G∗k+1, and thus in Gk, any path that exits the graph Gk is necessarily

longer than the shortest path. Further, any changes in edge-weights in G/Gk will only increase the weight

of such a path. Effectively the edges in G/Gk play no role in determining the shortest path for any value of

edge-weights. Thus, all shortest paths in G are restricted to the subgraph Gk. �

Proof for Claim 5: We defined the set F k as,

F k = {ij : wk
ij = wij, ij ∈ E∗k}

If the termination criteria F k = ∅ is satisfied then all edges in G∗k are present in Gk−1. By Proposition 5 all

shortest paths lie in Gk−1 for any edge-weights over edges in G/Gk−1. Additionally, since G∗k is a subgraph

of Gk−1, we have Gk−1 = Gk. Thus, all shortest paths lie in Gk for any edge-weights over edges in G/Gk.

By Proposition 4 we saw that all shortest paths in Gk pass through all nodes in X̂ k for any value of edge

weight in Gk−1. We saw above that at termination Gk−1 = Gk, so equivalently all shortest paths in Gk pass

through all nodes in X̂ k for any value of edge weight in Gk. Since at termination, all shortest paths in G lie

entirely in Gk we have our result. �.

Before we prove Proposition 4 we present an additional Lemma we will use in the proof. vr is the initial

node of the rescuee and vm is the target node indicated by the rescuer’s signal.

Lemma 2 Any node v ∈ X̂ k divides the graph Gk into two subgraphs Gk
1 and Gk

2 with vr ∈ V k
1 and vm ∈ V k

2 , such

that v is the only common node, i.e. V k
1 ∩ V k

2 = {v}.
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Proof: Let v′ be another node that is common to both sub-graphs Gk
1 and Gk

2 . Recall that every path in the

graph G∗k is a shortest path from vr to vm in G with edge-weights {wk
ij}. Since Gk =

⋃k
i=1 G∗k, every node in

Gk must be a part of a shortest path for some set of edge-weights. Thus, we can find atleast one path ξ ′vr→vm

that passes through v′ such that it forms the shortest path for some set of edge-weight {wl
ij} for some l ≤ k.

Since, Gk is an acyclic digraph with all paths originating from vr and terminating at vm, we cannot have

any path that travels from Gk
2 to Gk

1 . Thus, the path ξ ′vr→vm containing node v′ cannot also contain v.

We showed that ξ ′vr→vm is a shortest path on the graph G for some value of edge-weights {wl
ij} and that

doesn’t pass through v. But, such a v cannot lie in X̂ by definition. Thus, by contradiction we have shown

we cannot have another node v′ common to both graphs Gk
1 and Gk

2 . �

vr

v1

v2

v3

v4

vm

v5

Figure B.1: A possible representation of G1. All edge weights are minimum. X̂ 1 would contain {vr, v2, vm}.
v2 here connects the two sub-graphs red and green.-

As a direct result from Lemma 2 we have,

Corollary 2

Proof for Proposition 4: From the algorithm we see that any shortest paths over the graph Gk with edge-

weights {wk
ij} necessarily passes through every points in X̂ k. We wish to show the same holds true for

edge-weights {wk′
ij }. For these edge-weights let us assume there exists a shortest path ξ ′vr→vm that does not

lie entirely in Gk. By Corollary 2, if we show that such a shortest path exiting Gk can’t exist then we have

completed the proof.
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vr

v1

v2

v3

v4

vm

v5

v6
v7

ξ ′17

Figure B.2: A possible representation of Gk. All thick edge weights are maximum and all thin edges are
minimum weight. X̂ k would contain {vr, v2, vm}. v2 here connects the two sub-graphs red and green. The
dashed lines indicate edges in G∗k sub-graph. We want to show that ξ ′17 can’t exist for any edge-weights
{wk′

ij }

Let s and t denote the node where the path ξ ′ leaves and rejoins the graph Gk. We know that it must

leave and rejoin as both the start (vr) and the end (vm) are a part of the graph. It may leave and return to

the sub-graph Gk multiple times but for the purpose of this proof we can without loss of generality assume

it does so just once each. This assumption is justified at the end of this proof. Now, let ξ ′s→t denote the slice

of the path that is outside Gk−1. We can find a path between s and t entirely in the graph Gk−1 as well and

denote such a path as ξ∗s→t. Since, ξ ′ is the shortest path with edge-weights {wk′
ij } we have,

φw′(ξ
′
s→t) ≤ φw′(ξ

∗
s→t) (B.3)

Where φw′(ξ) gives the path cost of path ξ with weights {wk′
ij }. Now, increasing the weights in the

graph Gk−1 to go from the set {wk′
ij } to {wk

ij} will still maintain the inequality (B.3), as the left hand side is

not affected by the change in costs of edges in the Gk−1 and the right hand side is increasing with {wij}.

φwk (ξ ′s→t) ≤ φwk (ξ∗s→t) (B.4)

Where φwk (ξ) gives the path cost of path ξ with weights {wk
ij}. But, (B.4) implies that there exists a shorter

path outside graph Gk (and thus outside G∗k) which is not possible. Thus, any shortest path over edge-

weights {wk′
ij }must lie in the graph Gk. Specifically, by Corollary 2 it must pass through all nodes v ∈ X̂ k.

In closing this proof we make a comment on the assumption made on ξ ′ above, that it exits the graph

Gk−1 at-most once. If it does exit and enter multiple times we can define ξ ′s→t as a collection of splices
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{ξ ′si→ti
: i ∈ [K]}where K denotes the number of splices of ξ outside Gk−1. We can consider a corresponding

collection ξ∗s→t = {ξ∗si→ti
: i ∈ [K]} of splices within the graph Gk−1 and the same proof holds with minor

changes in vocabulary used. �
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Appendix C

Measurability of Candidacy Index for
each Node

Consider an undirected graph G = (V , E) with positive stochastic-edge weights wij ∈ Ωij over each edge

ij ∈ E . Define Ω = ∏ij∈E Ωij. An element in Ω is a vector w ∈ R|E | with edge weights over each edge. Let

xij be an indicator variable over an edge belonging to a certain path P under consideration. Then the set of

all paths between two nodes vS and vT in the graph can be parametrized as the set of vectors of the form

x ∈ {0, 1}|E | satisfying some additional constraints. We will redefine this set PvS→vT as follows,

PvS→vT =

{
x : x = [xij], ij ∈ E , ∑

j 6=i
xij −∑

j 6=i
xji =


1 i = vS

−1 i = vT

0 else

}
.

We can now define the path length function f : PvS→vT ×Ω 7→ R between any two points vS and vT as,

f (x, w) = ∑
ij∈E

wijxij. (C.1)

Note that the vector x completely defines a unique path between the source (vS) and the target (vT) nodes.

Given the edge weights over the graph G, the path length is a deterministic function of the path x. For

every path x, f is a continuous function in w. In fact, it is linear in w for a fixed x. Thus, the path length

function is a measurable function from Ω to R for each vector x. For any pair of measurable functions f1

and f2, the point-wise minimum of the two functions min( f1, f2) is also measurable. We can then make the

claim that the shortest path function f ∗ : Ω 7→ R defined as,

f ∗(w) = min
x∈PvS→vT

f (x, w)

is also measurable because the point-wise infimum of finite or countably infinite measurable functions is

measurable.
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We showed above that the shortest path length function is measurable. But we are more interested

in describing the set of edges (or equivalently nodes) that form a part of the shortest path. For a pair of

measurable functions f1 and f2 that map to R, the set of points in the domain S.T. f1 ≤ f2 is measurable.

We can now define a measurable indicator function 1x : Ω→ {0, 1} for each path x ∈ PvS→vT as,

1x(w) = 1

( ⋂
y∈PvS→vT

{
w : f (x, w) ≤ f (y, w)

})

This function is measurable because indicator function over a measurable set is measurable. It is easy to

see that function 1x takes value 1 for w if x is a shortest path for the edge-weights w.

It is easy to see that the function we defined as g(v, w) where v is the node and w is the edge-weights

over the graph can be easily constructed using a linear combination of functions 1x as defined above. To

show this first we define

X (w) = ∑
x∈PvS→vT

x1x(w).

X (w) is a vector with each element being the number of shortest paths on which an edge lies given edge-

weight w. This vector has a one-one correspondence with a vector which determines how many shortest

paths a particular node of the graph lies on. To retrieve the number of shortest paths each node lies on we

will use a simple linear transformation. Consider an |V| × |E| matrix A with the ijth entry being 1 if the ith

node has the jth edge as a outgoing edge emanating from it. All other entries in the matrix are 0. Then, it

can be seen that

Y(w) = AX (w)

is a vector with |V| entries, with the kth entry being the number of shortest path the the kth node lies on.

Since, every entry of Y is obtained as a linear combinations of measurable functions 1x we know that the

Y is a measurable function. Then, when 1x(w) 6= 0 for atleast one x ∈ PvS→vT we can obtain g(v, w) as the

vth entry in,

Y(w)

∑x∈PvS→vT
1x(w)

It can be seen that g(v, w) is a measurable function over Ω for every node v. Thus, we have justified the

validity of taking probabilities and expectations over this function of random variables.
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