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ABSTRACT

Deterministic Bellman residual minimization is the problem of learning values in a Markov

Decision Process (MDP) by optimizing for the Bellman residuals directly without using

any heuristic surrogates. Compared to the traditional Approximate Dynamic Programming

(ADP) methods, this approach can have both advantages and disadvantages. One of the

advantages of such an approach is that the underlying optimization problem can provably

converge to the desired solution with better theoretical sample efficiency guarantees, while

ADP heuristics are prone to divergence and have worse theoretical sample efficiency. On

the other hand, the disadvantages of Bellman residual minimization is the requirement

of two independent future samples, a.k.a. the double sampling requirement, in order to

form an unbiased estimate of the Bellman residual. Despite that some versions of BRM

have superior theoretical properties, the superiority comes from the double sampling trick,

limiting their applicability to simulator environments with state resetting functionality. Hence

the algorithms cannot be applied to non-simulator environments where state resetting is

not available. This requirement can trivially be waived for deterministic dynamics, since

any combination of observations and actions are guaranteed to generate identical future

observations. For this double sampling requirement, Bellman residual minimization methods

tended to be overlooked in the literature, and this work tries to evaluate the efficacy of this

approach compared to the more common ADP heuristics.

In this work, we make a simple observation that BRM can be applied without state

resetting if the environment is deterministic, which Baird [2] has hinted in his original

paper. The resulting algorithm is simple, convergent, and works well in benchmark control

problems. Also, its implementation could be as simple as changing a line of code in their

ADP counterparts. We compare Q-learning to its DBRM version theoretically, confirm

the theoretical predictions from experiments, and also discover some surprising empirical

behaviors and provide explanations.
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Chapter 1: INTRODUCTION

In reinforcement learning (RL) with function approximation, there are two general strategies

to addressing the temporal credit assignment problem and learning (optimal) value functions:

approximate dynamic programming (ADP [6]; e.g., Q-learning and TD), which learns from

bootstrapped targets, and Bellman residual minimization (BRM; e.g., residual gradient [2]),

which minimizes the Bellman residual directly.

A crucial distinction between the two approaches is that BRM methods require the double

sampling trick to form an unbiased estimate of the Bellman residual,1 that is, these algorithms

require two i.i.d. samples of the next-state from the same state-action pair. While BRM with

double sampling enjoys some superior properties compared to DP (see Section 3), the double

sampling operation requires state resetting and is only available in relatively simple simulated

environments. When state resetting is not available, can we still run BRM algorithms?

While this is difficult in general, we note that in deterministic environments, double

sampling can be trivially implemented without state resetting as a second i.i.d. sample would

be identical to the first one. This gives rise to very simple and convergent algorithm, which we

call Deterministic Bellman Residual Minimization (DBRM) and should work well in (nearly)

deterministic environments. Given that many empirical RL benchmarks are deterministic or

only mildly stochastic [9], it is surprising that such a method has not received any attention

besides being lightly mentioned in Baird [2]’s original paper (to the best of our knowledge).

We fill this hole in literature by providing a study of the DBRM algorithm. In particular,

we consider Q-learning as a representative ADP algorithm, and compare it to its DBRM

counterpart both theoretically and empirically. Below is a summary of our results:

1. We review and compare the theoretical properties of ADP and DBRM, showing that

DBRM has superior approximation guarantees and can also handle mild stochasticity

(Section 3).

2. On benchmark control problems with deterministic dynamics, we show that on-policy
1There are BRM algorithms that do not require double sampling, such as modified BRM [1] and SBEED

[11], but they are closer in relation to ADP than to BRM with double sampling in terms of the approximation
guarantees. See Section 3.2 for further discussions.
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DBRM simply works as expected,2 sometimes outperforming Q-learning (Section 4.1). As

a side-product, our results also shed light on the approximation guarantees of Q-learning.

3. We inject different levels of stochasticity into the environment and observe DBRM to

gradually break down, again as expected from theory. As another side-product, we argue

that determinism of dynamics is ill-defined in the usual sense, and DBRM provides a way

to test such determinism in a more canonical manner (Section 3.2 and 6).

4. We also compare Q-learning and DBRM on off-policy data (Section 4.3). Perhaps

surprisingly, DBRM completely brakes down in Acrobot while the environment is fully

deterministic. By further investigation, we find that DBRM is more sensitive to non-

exploratory data than ADP methods, and we provide a concrete tabular MDP example to

illustrate the difference in their behaviors. We also propose a preliminary solution to the

issue by promoting a residual minimization strategy that is more robust to distribution

mismatch (Section 4.3.2).

2Q-learning and its DBRM counterpart are both off-policy algorithms. See the meaning of “on-policy” in
Section 4.
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Chapter 2: BACKGROUND

2.1 MARKOV DECISION PROCESS (MDP) PRELIMINARIES

An infinite-horizon discounted Markov Decision Process (MDP) is often specified by

(S,A, P, R, γ), where S is the state space, A is the action space, P : S × A → ∆(S) is

the transition function, R : S × A → [0, Rmax] is the reward function, and γ ∈ [0, 1) is the

discount factor (where ∆(F) denotes the set of all probability distributions over F , otherwise

known as the Credal set of F). A policy π : S → ∆(A) specifies a distribution over actions

for each state. We call an MDP finite, if both its state and action spaces are finite sets. A

random trajectory τ = (s1, a1, s2, a2, · · · ) can be induced from a policy π given a starting

state s as described in Algorithm 2.1.

The expected sum of discounted rewards as a function of starting state s is called the value

function of π, that is,

V π(s) := E[
∞∑
t=1

γt−1rt
∣∣ s1 = s; π]. (2.1)

We can define Qπ(s, a) similarly by conditioning on s1 = s and a1 = a:

Qπ(s, a) := E[
∞∑
t=1

γt−1rt
∣∣ s1 = s, a1 = a; π]. (2.2)

In an infinite-horizon discounted MDP, there always exists an optimal policy π? that maximizes

V π and Qπ for all starting states (and actions) simultaneously, and as a shorthand we let

V ? := V π? , Q? := Qπ? . In particular, Q? satisfies the Bellman optimality equation Q? = T Q?,

where T : RS×A → RS×A is defined as

(T f)(s, a) := R(s, a) + γEs′∼P (s,a)[max
a′∈A

f(s′, a′)]. (2.3)

It is known that T is a γ-contraction under `∞, hence repeatedly applying T to any function

will eventually converge to Q?, known as the value iteration algorithm [25].
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Algorithm 2.1: Sampling Trajectories in an MDP
Require: The initial state s.
Require: The policy π.
1: Initialize the state s1 = s.
2: for i = 1, 2, . . . do
3: Sample the current action from the policy π given the current state s: ai ∼ π(si).
4: Take a step in the transition dynamics to generate the next state: si+1 ∼ P (si, ai).
5: end for
6: return The trajectory τ = (s1, a1, r1, s2, a2, r2, · · · ).

2.2 THE METHOD OF LEARNING FROM TEMPORAL DIFFERENCES

The Temporal-Differences (TD) learning procedure of Sutton [30] for predicting state

values is formally described in Algorithm A.2 of Appendix A. This method builds upon the

Least Mean Squared (LMS) adaptive filter of Widrow and Stearns [36], which is shown in

Figure A.1 and is formally defined in Algorithm A.1 of the appendix. The discussion into the

connection between the LMS filter and the TD-learning method, and their commonly used

delta update rule is left to Section A.1 of the appendix as well. In short, the TD-learning

method can be tuned to either (1) act as a Monte-Carlo value learner on one extreme, or

(2) perform value iteration by bootstrapping to approximate the Bellman operator on the

other extreme. This can be done using a continuous control parameter λ, hence justifying

the TD(λ) naming of the algorithm. Figure A.2 of the appendix visualizes the effect of the λ

parameter on the resulting algorithmic behavior. The rest of our discussion focuses on the

bootstrapping extreme of the TD-learning method, which is commonly known as the TD(0)

variant. This algorithm is the backbone of the Q-learning policy training method, which we

will analyze and compare against our DBRM method.

2.3 Q-LEARNING AND FUNCTION APPROXIMATION

When the state of an MDP is high-dimensional and/or continuous, function approximation

is often deployed to generalize over the state space. Let fθ denote a parameterized Q-value

function, and the goal of the algorithm is to find θ such that fθ ≈ Q?. Let Θ be the set of

possible parameter values, and F := {fθ : θ ∈ Θ} be the corresponding function class. We
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say F is realizable if it captures the Q? of the MDP, that is, Q? ∈ F .

Given a dataset of transition tuples D = {(s, a, r, s′)}, define

LD(f ; f ′) := 1
|D|
∑

(s,a,r,s′)∈D (f(s, a)− r − γmaxa′∈A f(s′, a′))2 . (2.4)

For the ease of exposition we will assume (s, a) pairs are drawn i.i.d. from some fixed data

distribution in our theoretical arguments, although the real data is more complicated and the

(s, a) pairs can be correlated and nonstationary. LD(f ; f ′) is the loss of f as a predictor for a

regression problem, where the input is (s, a) and the expected value of the label is (T f)(s, a).

This motivates Fitted Q-Iteration [15],

fk ← arg min
f∈F

LD(f ; fk−1), (2.5)

which solves the regression problem over F to approximate a value iteration step. Q-learning

can be viewed as the stochastic approximation of FQI, that is,

θ ← θ − η · ∇θLD(fθ; f
−
θ ), (2.6)

where f−θ is the same as fθ except that the former is treated as a constant function in gradient

calculation, and η is the learning rate. Also note that any gradient term of the form ∇θL(·),

can always be replaced by its stochastic gradient on a single (s, a, r, s′) tuple or a minibatch.
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Chapter 3: DETERMINISTIC BELLMAN RESIDUAL MINIMIZATION
(DBRM)

3.1 THE ALGORITHM

The DBRM version of Q-learning is simply

θ ← θ − η · ∇θLD(fθ; fθ). (3.1)

Comparing to Eq.(2.4), the only difference is that we now pass gradient into the second fθ.

This essentially corresponds to applying gradient descent to the optimization problem

arg min
f∈F

LD(f ; f). (3.2)

Most ADP algorithms (including FQI and Q-learning) can diverge under function approxima-

tion [18, 34, 35], as they are fundamentally iterative algorithms (Eq.(2.5)) and lack a globally

consistent objective. In contrast, DBRM is obviously convergent as it simply minimizes the

objective in Eq.(3.2). So why don’t we use it?

3.2 THEORETICAL ANALYSES AND COMPARISONS

To find fθ ≈ Q? we need to minimize the Bellman residual ‖f − T f‖. The problem with

DBRM in stochastic environments is that Eq.(3.2) is in general a biased estimation of the

Bellman residual. To see why, let L(f ; f) := ED[LD(f ; f)], and we have

L(f ; f) = E(s,a,r,s′)[(f(s, a)− (T f)(s, a))2] + γE(s,a)[Vs′∼P (s,a)[max
a′∈A

f(s′, a′)]], (3.3)

The first term on the RHS is the Bellman residual under the marginal distribution of (s, a) in

the data (see our i.i.d. assumption of (s, a) in Section 2), which is the desired quantity. The

trouble is in the second term, which inappropriately penalizes f with large variance under

the transition distributions.

Indeed, prior works have tried to overcome this difficulty, by either approximating the
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second term and subtracting it [1, 11, 23], or avoiding it to appear in the first place with

double sampling [2, 21]. None of these are necessary in deterministic environments where

P (s, a) is a point mass and Vs′∼P (s,a)[·] = 0, and DBRM can be viewed as a special case of

BRM with double sampling in this case.

In fact, we show that DBRMworks under more general conditions: As long as Vs′∼P (s,a)[V
?(s′)]

is small, DBRM can provably find a good approximation to Q?, as shown next:

Proposition 3.1. Let εdtmn := γE(s,a)[Vs′∼P (s,a)[V
?(s′)]]. Fixing any f̂ ∈ F , define εestm & opt :=

L(f̂ ; f̂)−minf∈F L(f ; f). Then if Q? ∈ F , we have

‖f̂ − T f̂‖ := E(s,a,r,s′)[(f̂(s, a)− (T f̂)(s, a))2] = εdtmn + εestm & opt.

Proof. LHS ≤ L(f̂ ; f̂) ≤ L(Q?;Q?) + εestm & opt

= ‖Q? − T Q?‖+ γE(s,a)[Vs′∼P (s,a)[max
a′∈A

V ?(s′)]] + εestm & opt ≤ εdtmn + εestm & opt. QED.

In the proposition we use εestm & opt to summarize the error due to the finite sample effect

and imperfect optimization, in the sense that with infinite data we would have L = LD
(assuming uniform convergence of F); plus the exact optimization of Eq.(3.2), we would have

εestm & opt = 0. The proposition shows that f̂ has small Bellman error on the data distribution

if the environment is mildly stochastic and estimation & optimization errors are small. Note

that small Bellman error of f̂ can be easily translated into the performance guarantees of its

greedy policy, which we do not detail here [1, 10].

One important implication of Proposition 3.1 is in the way we measure stochasticity, as

requiring εdtmn to be small is much more lenient than requiring deterministic dynamics. For

example, if the stochastic factors of the environment do not interfere with the agent’s decision-

making process (e.g., ignoring them results in approximate bisimulations [20]), Proposition 3.1

still guarantees that Eq.(3.2) is a sensible objective for learning. Moreover, as we will argue

in Section 6, determinism of dynamics is an ill-defined notion in the first place, and running

DBRM may be a better way of testing it.

Another important property, which is also shared by the versions that require double
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sampling, is that DBRM only requires realizability as the representation assumption on F ,

while ADP methods are known to diverge or suffer from exponential sample complexity under

realizability [12]. Indeed, finite sample analyses of ADP algorithms often characterize the

approximation error of F as inff∈F supf ′∈F ‖f − T f ′‖, known as the inherent Bellman error

[23]. When assumed to be 0, this corresponds to requiring F to be closed under Bellman

update (∀f ∈ F , T f ∈ F), a condition far stronger than realizability [10]. We will see

empirical results consistent with these theoretical predictions later in Section 4.1, where

Q-learning finds value functions that are significantly further away from Q? than DBRM.

Given the superior approximation guarantees of DBRM, one would naturally wonder: does

it actually work in practice?
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Chapter 4: EMPIRICAL EVALUATIONS AND ANALYSIS

In this chapter, we verify the performance of DBRM and compare it to Q-learning em-

pirically on standard control benchmarks. As we will see, DBRM (the on-policy version;

see definition below) works very well and compares favorably to Q-learning, and some-

times achieves significantly better results thanks to its stable optimization and superior

approximation power.

4.1 ON-POLICY EXPERIMENTS IN DETERMINISTIC ENVIRONMENTS

4.1.1 Environments

We conduct all our experiments in this work on 3 classical control domains: Mountain-Car,

Cart-Pole, and Acrobot from the OpenAI Gym collection [9]. These domains have continuous

state space of dimensions 2, 4, and 6, and discrete action spaces of cardinalities 3, 2, and 3,

respectively.

4.1.2 Function Approximation

For both DBRM and Q-learning[22], we use the same neural network architecture. The

neural net consists of two hidden layers, each with 64 neurons. The input and output

dimensions are determined by the state space dimension and the action space size of each

individual domain. Tanh is used as the activation function.

4.1.3 Exploration Scheme

In this section we compare the “on-policy” versions of Q-learning and DBRM;1 the com-

parison of their off-policy versions will be done in Section 4.3.2. On-policy agent uses the
1Both algorithms are off-policy algorithms. By “on-policy”, we mean that the data collection policy is

determined by the algorithm itself, so different algorithms will collect different datasets. In contrast, we will
compare the algorithms in the off-policy mode in Section 4.3.2, where all algorithms use exactly the same
dataset.

9
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Figure 4.1: Comparison between Q-learning and DBRM (on-policy). The top row shows the
Monte-Carlo evaluation results, and the bottom row shows the training loss. All error bars
in this work show a 95% confidence interval for the mean using 1000 bootstrap samples.
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standard ε-greedy strategy for exploration, that is, taking uniformly random actions with

probability ε. ε starts with 0.1, ends with 0.02, and is linearly interpolated during training.

4.1.4 Algorithm Details

Our on-policy agents maintain a replay buffer consisting of 50, 000 most recent samples

collected. The mini-batch size and the learning rate are fixed at 32 and 5× 10−4, respectively,

with the Adam optimizer used in all experiments. The discount factor was set at 0.99. In the

on-policy settings, learning did not start until after 1000 samples were collected. Q-learning

needs a target network for bootstrap sampling, which is updated every 500 training steps.

(BRM does not need a target network.) Similar to popular implementations, we use huber

loss instead of squared loss for Q-learning. For BRM we use the squared loss just to avoid

undesired disconnections from the theory; we did experiment with the huber loss and the

behavior of the algorithms was qualitatively similar.

4.1.5 Evaluation

During training, around every 3000 training steps (or 6000 steps, depending on the total

duration) we freeze training and perform Monte-Carlo policy evaluation on the current policy

(with ε=0.02). The evaluation is conducted for a total of 11 times during the training period,

including the beginning and the end. During the evaluation, there is no discounting, the

episode length is capped at 1000, and the total rewards are averaged across 100 trajectories

with randomly generated initial states. Besides MC return, we also record the training losses

(f(s, a)− r −maxa′∈A f(s′, a′))2 and smooth the curves with a window size of 6250.

4.1.6 Results

We plot the MC returns and the training losses averaged over 10 runs in Figure 4.1. As we

can see, DBRM’s performance compares favorably to Q-learning in Acrobot and MountainCar,

and significantly outperforms the latter in CartPole.

Another interesting observation comes from the Acrobot and MountainCar results, where
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Q-learning and DBRM achieve similar performance via very different solutions. In particular,

DBRM finds value-functions with very low squared losses LD(f ; f) as fully expected. Q-

learning finds functions with much higher losses, which is also expected from the theory

(Section 3.2). However, while the functions learned by Q-learning are further away from Q?

than DBRM, the resulting policies are equally performing. We will leave the investigation of

this intriguing phenomenon to future work.

4.2 EXPERIMENTS IN STOCHASTIC ENVIRONMENTS

In this subsection we test the robustness of DBRM against varying extents of violation to

the deterministic assumption. To have a set of comparable and well controlled experiments,

we convert the environments used in Section 4 into stochastic environments by redefining

the action space to contain inherent randomness. In particular, the environments are

manipulated to take a uniformly random action with a certain probability regardless of the

action commanded by the agent. For instance, when the stochasticity level is 0.4, it meant

that 60% of the actions taken are exactly the ones commanded to the environment, and the

rest 40% taken actions were uniformly random. Note that this is different from the random

actions in ε-greedy exploration, as the agent cannot observe the actual action taken, and only

has access to the redefined actions, encompassing the randomness as part of the environment

inherently.

4.2.1 Results

We show the results for the MountainCar environment in Figure 4.2. As we increase the

level of stochasticity, Q-learning’s performance degenerates slightly as the task becomes

genuinely more difficult to control. In contrast, the performance of DBRM drops gradually

but also significantly as stochasticitiy increases, which are consistent with the theoretical

predictions. As the stochasticity increases, the natural double-sampling trick within deter-

ministic environments (which only required a single sample in practice) gradually becomes

ineffective. Since BRM relies on the double-sampling trick to form unbiased estimates of the

Bellman residual, DBRM’s performance starts to deteriorate.
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4.3 ON THE SENSITIVITY OF DBRM TO OFF-POLICYNESS AND DISTRIBUTION
MISMATCH

While the results in Section 4 are informative, the comparisons are not fully apple-to-apple:

The “on-policy” experiments introduce a distracting factor, that the two algorithms collect

their own datasets. Since we are mostly interested in the capability of Q-learning and DBRM

in solving the temporal credit assignment problem, such a distracting factor makes it difficult

to determine if the differences in performance should be attributed to the algorithms or

the datasets. Therefore, it is important that we compare their performance in a completely

off-policy manner.

To compare the two algorithms off-policy, in each trial of the experiment we first run

Q-learning with ε-greedy exploration for 1.875 million steps to collect a dataset, and feed

this dataset to two agents: one running Q-learning and one running DBRM, both in a

completely off-policy manner. The rest of the settings are exactly the same as in Section 4.1.

Note that the off-policy Q-learning agent would not exactly reproduce the behavior of the

on-policy agent that generated data, as the on-policy agent generates the dataset in a rather

non-stationary fashion (later trajectories are generally closer to optimal), while the off-policy

agent has access to the entire dataset from the very beginning.

4.3.1 Results

The results are shown in Figure 4.3. The curves for Q-learning look similar to their

on-policy counterparts in Figure 4.1, showing that Q-learning is not sensitive to off-policy

data and is consistent with that reported by Fu et al. [16]. On the other hand, we see that

DBRM’s performance degrades significantly in CartPole and MountainCar, and the agent

completely breaks down in Acrobot.

Comparing this surprising negative result to the success of DBRM in Section 4.1, we

speculate that it is likely due to the sensitivity of DBRM to off-policy data and distribution

mismatch—that the data distribution is different from that induced by the agent’s policy.

While distribution mismatch is in general an issue to most RL algorithms, it has been reported

that Q-learning is not very sensitive to off-policyness of the data Fu et al. [16]. In fact, we

13
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Figure 4.3: The off-policy ADP and BRM methods performance comparison. The top row
shows the Monte-Carlo evaluation during 10 points of training. The bottom row shows the
training loss used in each optimization method.

are able to construct an example, shown in Figure 4.4, where distribution mismatch is in its

most severe form—non-exploratory data.

While all algorithms will generally fail under non-exploratory data, Q-learning may still

give sensible solutions sometimes, especially when the values of state-action pairs with missing

data are initialized in a pessimistic manner [17]. Indeed, in the specific example considered

in Figure 4.4, we only have data about taking action “R” in all states and know nothing

about the consequences of taking “L”. With appropriately initialized values, Q-learning still

converges to a sensible estimation and yields a policy that takes actions “R”, as the influence

of the pessimistic values of “L” is blocked by the max operator and never propagates through

the Bellman updates. With the same initialization and the same dataset, however, DBRM

learns a value function far off the track, and the values of “L” do influence the learning process

and cause wide estimates.

4.3.2 Preliminary Solution: Objectives with Higher Norms

We propose a preliminary idea to mitigate the sensitivity of DBRM to distribution mismatch

and provide primary results validating the idea. Since the distribution mismatch is often
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Figure 4.4: We show an example of chain MDP (with a tabular representation of value
functions) where Q-learning and DBRM behave very differently under non-exploratory data.
The top-right corner shows the MDP, which has two actions “L” and “R” with the same
deterministic state transitions. They only differ in rewards and “L” gives very negative rewards
and is suboptimal. The top left table shows the off-policy data-set which is non-exploratory
(“L” never taken). Sub-figure (a) shows an initial Q-function, which will be updated using
DBRM (b–d) and Q-learning (e–g) respectively on its right, with a learning rate of 0.25.
The dashed arrows denote s, a → s′, a′ where a′ = arg maxa′′ Q(s′, a′′). In other words, a
state-action pair without an arrow pointing to it has its influence blocked out in that iteration
of learning. These arrows remain on the optimal policy using Q-learning. However, DBRM
suffers from an early drift, and due to the lack of exploratory data it never recovers from it.

reflected as important states and actions appearing in the data less frequently than they

should, a natural idea is to suppress it by minimizing the `∞ norm of Bellman error instead

of `2 norm.2

Unfortunately, `∞ norm is too conservative and not amendable to optimization. Also, using

the `∞ norm may result in the reduction of the effective sample size, which may therefore

cause the algorithm to require much larger sample sets for producing optimal policies. As an
2In fact, `∞ norm is commonly used in the theoretical analyses of tabular RL to handle distribution

mismatch.
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Figure 4.5: Training off-policy 10-norm objective for a large number of steps. The data
collected here were the same 2.5 million samples used in the last experiment, but the
optimization lasted for 10 million iterations. Horizontal lines represent the performance of
the DBRM agent in Figure 4.3 at the end of training.

intermediate solution, we propose changing the objective of DBRM to

1

|D|
∑

(s,a,r,s′)∈D

∣∣∣∣f(s, a)− r − γmax
a′∈A

f(s′, a′)

∣∣∣∣p , (4.1)

for p ≥ 2. DBRM’s objective is the special case of p = 2. As p increases, optimization

becomes more difficult and more samples may be needed.3 We test this modification with

p = 6 and p = 10 under the same setup as the off-policy experiments described earlier in this

section, and indeed the progress of optimization is slower than p = 2 (see Figure B.1 in the

appendix). However, given enough optimization steps, we see that the agent with p = 10 is

able to learn non-trivial policies in Acrobot, where it completely fails previously with p = 2,

and still maintain reasonable performance in the other two domains.

3From a theoretical point of view, loss of sample efficiency is due to the fact that the concentration
behavior of (·)p will get worse as p increases.
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Chapter 5: RELATED WORK

The convergence of TD-learning and ADP is a complex analytical issue even when con-

sidering perfect state representations. To name a few, Dayan [13], Dayan and Sejnowski

[14], Sutton [31], and Jaakkola et al. [19] provide some of the fundamental analytical results

for the convergence of the TD-learning in the absence of function approximation. Section A.3

of Appendix A offers a more detailed account of these results. In short, there are strong

theoretical guarantees about the convergence of the TD-learning method to the optimal value

function on finite MDPs with reasonably practical assumptions.

On the other hand, the convergence of the TD-learning method under function approxima-

tion is a much more complicated matter. There are many theoretical and practical scenarios

where TD-learning under function approximation is proven to fail or diverge (e.g., see Baird

[3], Boyan and Moore [7], Gordon [18, 18], Tsitsiklis and Van Roy [33, 33], and Bertsekas

[5]), whereas other analyses could prove its convergence under certain assumptions (e.g.,

see [18, 29], and Tsitsiklis and Van Roy [34]). A detailed explanation of these results and

their distinctions is provided in Section A.4 of Appendix A. In short, (1) off-policy sampling

of states and actions and (2) utilizing non-linear function approximation classes are two of

the dominant factors causing the TD-learning method to provably diverge or fail to learn

any optimal value predictors.

Tsitsiklis and Van Roy [34] proved the convergence of ADP under linear function approx-

imation. Baird [2] showed divergence example for linear value approximation using ADP

for off-policy training, or on-policy training with environment restart. Bradtke [8] proposed

BRM with quadratic function approximation with convergence guarantees. Williams and

Baird [37] proved tight bounds for relating the Bellman residuals to the policy performance.

Baird [2], Sutton et al. [32] proved BRM methods converge to a local optimum using any

function approximation. Dayan [13] reported some conditions where ADP diverges. Baird

[2], Tsitsiklis and Van Roy [34] also reinforced this matter with either on-policy or off-policy

examples of divergence. As for the speed of convergence, Schoknecht and Merke [28] used

spectral analysis to prove the faster nature of ADP, but did not generalize to function

approximation. To address the issue of slower convergence for residual gradients relative to
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ADP, Baird [2] proposed a super set of algorithms called residual algorithms.

Scherrer [27] studied the stability versus faster convergence trade-off between BRM and

ADP with linear function approximation, and concluded ADP methods yield marginally

better performance, but their inherent numerical instability makes them overall less appealing

than BRM. Recently, Zhang et al. [38] explored utilizing BRM as a replacement to ADP

methods in the Deep Deterministic Policy Gradient (DDPG) algorithm, and found that BRM

shows superior empirical results. We also refer the readers to the references in Zhang et al.

[38] for a more comprehensive summary of previous understanding on ADP vs BRM. Despite

that the relationship between ADP and BRM has been extensively studied in literature, our

focus on deterministic environments where BRM can be run without state resetting is novel

to the best of our knowledge.
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Chapter 6: CONCLUSION

In this work we have examined the simple idea of running Bellman Residual Minimization

algorithms on deterministic environments without state resetting or double sampling, which

has not received its deserved attention in the literature. By comparing Q-learning to its

DBRM counterpart empirically, we confirm a number of theoretical predictions, and also

observe interesting behaviors of DBRM, for example, that it is sensitive to distribution

mismatch.

While DBRM shows promising results on simple control benchmarks, and our Proposi-

tion 3.1 shows that it requires a weaker condition than deterministic dynamics, it is still

unclear if such performance will scale to complex environments even if they are deterministic.

In fact, the determinism of an environment in the function approximation setting is an

ill-defined notion, as all RL environments can be viewed as deterministic (with random

initial states) [24]. In other words, misspecified function approximation and stochasticity are

inherently indistinguishable, and it does not make sense to talk about deterministic dynamics

without reference to the function approximation in use. This hints at an interesting use of

DBRM: We can use it to test the true stochasticity of an environment (just as in Figure 4.2),

as the success of the algorithm indicates that the environment is, in a sense, deterministic

under the particular choice of function approximation.
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Appendix A: LEARNING VALUES BY TEMPORAL DIFFERENCES

The method of Dynamic Programming was formally defined by Bellman and Dreyfus

[4], which could be applied to the problem of learning values in a finite MDP with known

transition dynamics. However, such assumptions are too strong for most reinforcement

learning applications. This motivated the work on solving the temporal credit assignment

problem [30].

Before jumping to introduce the Temporal Difference (TD) algorithms, we would like to

take a step back and present the delta update rule. Earlier than Sutton [30], a lot of research

was conducted on developing adaptive filters, which had many applications in the areas of

pattern recognition, signal processing, and adaptive control. One of such adaptive learning

strategies was the Least Mean-Squared (LMS) filter, which utilized the delta update rule and

will be briefly presented next.

A.1 THE LEAST MEAN SQUARED FILTER AND THE DELTA UPDATE RULE

The adaptive filtering problem was to predict the next observation given a fixed-length

history of observations as shown in Figure A.1. One approach to solve such a problem was

to construct a data-set of observations for supervised learning, and solve the task using

empirical risk minimization techniques for regression. However, this does not comply with

the adaptive nature of the problem, where learning parameters and collecting samples must

be performed simultaneously. Instead, the LMS filter [36] allows for making predictions and

utilizing them while running the trajectory as described in Algorithm A.1.

The Stochastic Approximation (SA) used within the LMS filter can be interpreted as

objectively minimizing the least mean squared error δ2 := Et∼U [δ2t ] where U is the nearly

uniform distribution over the entire trajectory’s time steps. Trying to directly compute the

gradients for δ2 requires obtaining δ2t values in the first place, which is a luxury that cannot

be afforded in online learning. Instead, the LMS filter uses SA and treats δ2t as an unbiased

estimate for δ2 at each time step t. The particular update rule used within the LMS filter

θi ← θi− ηt · δt · ∂v̂t∂θi
is otherwise known as the delta update rule, and would turn out to inspire
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Algorithm A.1: The Least Mean Squared (LMS) Adaptive Filter
Require: The initial state s1 and the policy π.
Require: The prediction target estimator vTarget.
Require: The learning rate parameter ηt.
Require: The adaptive filter length k.
Require: The initial k prediction parameters θ1, θ2, · · · , θk.
1: Run the policy π for k initial steps to obtain (s1, s2, · · · , sk).
2: for t = 1, 2, . . . do
3: Set T ← t+ k − 1.
4: Sample the current action from the policy π given the current state sT : aT ∼ π(sT ).
5: Take a step in the transition dynamics to generate the next state: sT+1 ∼ P (sT , aT ).
6: Construct an estimate of the prediction target vtTarget as a function of the most recent

partial trajectory st, st+1, · · · , sT .
7: Construct a linear prediction of target using the current parameters and the recent

history of observations v̂t =
∑T

i=t siθi−t+1.
8: Find the delta δt = vtTarget − v̂t.
9: Make a delta update for each θi:

θi ←θi − ηt ·
∂

∂θi

[1
2
δ2t
]

=θi − ηt · δt ·
∂v̂t
∂θi

.

10: end for
11: return The adaptive filter parameters θ = (θ1, θ2, · · · , θk).

the TD-learning algorithm.

A.2 THE TEMPORAL-DIFFERENCE LEARNING ALGORITHM TD(λ)

The Temporal Differences (TD) learning’s task is to predict the values for each state in a

MDP, and is formally defined in Algorithm A.2. In short, the procedure is quite similar to

the LMS filter with a few subtle distinctions:

• First, the target value is not only a function of the observations, actions, rewards, and

the transition dynamics, but also uses the current set of parameters θ to construct an

estimate of the target value.

• Second, the predicted value function is assumed to only be a function of the current

state v̂t := V (st; θ).
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Target

Figure A.1: The Least Mean-Squared (LMS) prediction filter. The filter length is supposed
to be k, and θ1, θ2, · · · , θk are the filter’s adaptive (i.e., learned) parameters. the target for
prediction is denoted by vTarget, which was originally intended to be the next state st+1.
However, this target can be substitute by the Q-values for each state, as would be done later
in the TD(1) algorithm.

• Finally, the λ parameter provides a control for the importance of future-looking target

predictors.

Each of these distinctions cause algorithmic consequences that will be discussed next.

The TD-learning algorithm uses the current parameters to estimate the next state’s value,

as if the current parameters provide “ground truth” estimates independently. This assumption

is obviously incorrect, especially at the early stages of the learning process. However, this

practice can form a powerful learning approach, and is commonly referred to as bootstrapping

the current estimator for the purposes of gradient construction. This causes certain benefits

to the optimization process of the algorithm, which were discussed in Section 4.3. This

practice is key in studying the convergence of the algorithm and its sample-efficiency bounds.

It is worth noting that the relationship θnew − θold ∝ ∇θδ
2
t is held for the LMS adaptive

filter, as the vtTarget values are independent of the parameters θ in the adaptive filter’s problem

formulation. However, vtTarget is defined as a function of θ in the TD-learning algorithm, which

makes θnew − θold 6∝ ∇θδ
2
t in this case. This is, in an essence, where the Bellman Residual

Minimization (BRM) algorithms are different from the TD-Learning methods; instead of

computing the TD-learning semi-gradient, BRM algorithms try to exactly construct the ∇θδ
2
t

gradient and use it for updating the parameters.

To understand the role of the λ parameter, it is useful to simplify the resulting algorithm

for both λ = 0 and λ = 1 extremes. Figure A.2 shows the flow in which the target value is

computed given an arbitrary λ. It also visualizes the simplified algorithm in the cases of

λ = 0 and λ = 1. When λ = 0, the target value is built only as a function of the next state
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Target

(a) The TD(λ) algorithm

Target

(b) The TD(0) algorithm

Target

(c) The TD(1) algorithm

Figure A.2: (a) The construction of the delta for the TD(λ) algorithm with 0 < λ < 1.
(b) The simplification of the TD(λ) flow for the limit λ = 0 case. The dashed red arrow
and the dashed black arrow indicates that only st+1 and rt are necessary for computing the
target value VTarget, respectively. (c) The simplification of the TD(λ) flow for the limit λ = 1
case. As can be seen, the much later observation sT and all the rewards in between (i.e.,
rt, rt+1, · · · , rT−1) are required for computing VTarget.
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Algorithm A.2: The Temporal Difference-Learning TD(λ) Algorithm
Require: The initial state s1, the policy π, and the discount factor γ.
Require: The λ parameter.
Require: The learning rate parameter ηt.
Require: The history length k (where we should ideally have k ' O((1− λ)−1)).
Require: The initial prediction parameters θ.
1: Run the policy π for k initial steps to obtain (s1, r1, s2, r2 · · · , sk−1, rk−1, sk).
2: for t = 1, 2, . . . do
3: Set T ← t+ k − 1.
4: Sample the current action from the policy π given sT : aT ∼ π(sT ).
5: Take a step in the transition dynamics to get the next state: sT+1 ∼ P (sT , aT ).
6: Construct an estimate of the bootstrapped prediction target:

vtTarget := (1− λ)
T−2∑
j=t

λj−t+1(

j∑
i=1

γi−tri + γj−t+1V (sj+1; θ)).

7: Construct a value prediction of st using the current parameters v̂t := V (st; θ).
8: Find the delta δt = vtTarget − v̂t.
9: Make a delta update for θ:

θ ← θ − ηt · δt · ∇θv̂t.

10: end for
11: return The value prediction parameters θ.

st+1. This limit conserves the online-learning characteristics of the TD-learning algorithm,

and stresses the bootstrapping approximations the most. On the other hand, when λ = 1

and T is set to be much larger than t (i.e., k →∞ in Algorithm A.2), the target value would

mostly consist of a Monte-Carlo estimate of the payoff, and the bootstrapping approximations

vanish.

A.3 CONVERGENCE OF TD(λ) WITH PERFECT REPRESENTATION

The method of learning through temporal differences was formally introduced in Sutton

[31]. This work proposed two theoretical results about the introduced method. First, the

TD-learning Algorithm A.2 degenerates to the LMS filter, which was given in Algorithm A.1,

in the special λ = 1 case. The intuition for this proposition can be deduced by visually
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comparing the LMS filter of Figure A.1, and the TD(1) simplification shown in Figure A.2; if

k is asymptotically large and linear function approximation is used, TD(1) becomes a special

case of the LMS adaptive filter. This tied the new method of TD-learning to an abundance of

existing literature and convergence guarantees derived for adaptive filters and helped it gain

some theoretical footing [31, 36]. On the other hand, the TD(0) extreme was less studied,

and the idea of being able to learn target values through mere single step differences was

novel at the time.

Initially, Sutton [31] proved that for a finite MDP with an underlying absorbing Markov

chain and no inaccessible states, the TD(0) algorithm’s predictions converge in expectation

to the ideal values if linear value predictors and a small enough learning rate η were used.

Although this facilitated a proper introduction of the TD-learning method, this particular

guarantee was rather weak since it only provided insurance about convergence of the mean

rather than convergence in the mean; having

lim
t→∞
|E[θt]− θ∗| = 0 (A.1)

is much weaker than having

lim
t→∞

E[|θt − θ∗|] = 0. (A.2)

Also, the derivation assumed tabular settings, a specific λ value, and having a fixed learning

rate η. Most importantly, only linear function approximation was considered in this result.

Dayan [13] proved a similar result for the general case of λ ∈ (0, 1). Specifically, it proved

convergence of the mean for general λ values. Later, Dayan and Sejnowski [14] provided the

stronger theoretical guarantee of convergence in the mean for λ ∈ (0, 1) with probability

1. All such efforts were pursued within the domain of dynamic programming, whereas the

TD-learning algorithm can also be viewed as an instance of Stochastic Approximation (SA)

methods through the realm of optimization. In fact, Jaakkola et al. [19] used the latter

approach, and provided similar theoretical guarantees from a more general SA perspective for

both TD and Q-learning methods while assuming typical SA requirements for convergence

(e.g., having the learning rate sequence ηt converge neither too fast nor too slow to zero).
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A.4 CONVERGENCE OF TD(λ) WITH FUNCTION APPROXIMATION

None of the results described so far touched on the issue of function approximation in detail,

and assumed tabular settings and perfect state representations, where the number of trainable

parameters equals the cardinality of the state space |S|. This is obviously impractical with

continuous or exponentially large state spaces, and calls upon function approximation to be

involved. Adding function approximation to the mix introduces a few issues:

1. In the presence of large state spaces, computing the Bellman operator T (f) is practically

impossible as it would require intractable amounts of samples.

2. The Bellman operator’s projection to the function approximation class may introduce

substantial errors to the process.

Furthermore, even in the absence of these complications, using function approximation and

tying different states predicted values by shared parameters could cause divergence itself. For

instance, consider the following example:

Figure A.3: The MDP used in Example A.1 to illustrate the possibility of divergence in the
presence of function approximation even with finite MDPs. This example assumes access to
all transition samples and uses the least squares update rule for value iteration.

Example A.1. Least-squares value iteration’s counter example of Tsitsiklis and

Van Roy [33] Consider the MDP shown in Figure A.3 with the state space S = {1, 2},

the action space A = {0}, the reward function R(s, a) = 0, and the value function class

F = {fθ|fθ(s) = θs, θ ∈ R}. Using the least squares update rule

θk+1 ← arg min
θ

∑
s∈S

(fθ(s)− T (fθk)(s))2 (A.3)
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with γ > 5/6 will lead to divergence.

It is worth noting that all states in Example A.1 have a value of zero, leading the optimal

value function to be realizable (i.e., V ∗ ∈ F). This goes to show the complications induced

by incorporating function approximation in value learning even under ideal conditions.

To tackle the first issue, learning compact features for states were pursued as a solution, so

that TD-learning would be tractable in the compact feature space. In other words, these

efforts tried to outsource the problem of large state spaces to representation learning and

properly aggregating states together. Under this state aggregation strategy, Tsitsiklis and

Van Roy [33] upper bounded the resulting TD-learned feature-based predictor’s error linearly

by the maximal state-aggregation error (and similarly for the corresponding greedy policy).

Singh et al. [29] proposed the soft state aggregation model, where each state was softly

represented by a probabilistic mixture model. Under such a fixed representation, Singh

et al. [29] showed that TD-learning would provably converge to a solution where the Bellman

equations would be held in the cluster space. Since even the best solution for the Bellman

equations in the cluster space may be sub-optimal if such a representation was weak, the

paper also proposed adaptively tuning the representations while applying TD-learning, but

no proof of convergence was given for such an approximation strategy.

As for the second issue, Gordon [18] tried to incorporate function approximation into

a common contraction-map analysis by treating the projection to function class step as

an operator attached to the Bellman operator. Showing that the Bellman operator was a

contraction map was a typical way of analyzing value and policy iteration methods without

function approximation. Gordon [18] showed that if the projection step was a non-expansion

w.r.t. the l∞ norm, then applying TD-learning would converge to a unique solution. However,

that unique solution may not be optimal unless the optimal value function was closed to

a fixed point solution of the projection operator. Although such an analysis guaranteed

convergence for a broad class of approximators such as the k-nearest neighbor class, it could

not be applied to many popular function classes, such as linear regression models and neural

networks, as their induced projection operators could be expansion maps.
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Since the introduction of the TD-learning algorithm, many examples were published where

the TD-learning method was shown to fail under function approximation [3, 5, 7, 18, 33].

However, one of the common threads amongst all of them is the independence of the sampling

process from the underlying MDP’s transition model. Tsitsiklis and Van Roy [34] applying

linear approximators for TD-learning on a single endless trajectory of an irreducible aperiodic

Markov chain, would have guaranteed convergence with a probability of one. This is one of

the strongest theoretical results for TD-learning’s convergence, and it shows that convergence

for linear approximators is guaranteed when the states are sampled according to the MDP’s

steady-state distribution. However, it also shows an example where even though the states are

sampled from the steady-state distribution, the presence of non-linear function approximation

for TD-learning causes the learned parameters to diverge.
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Appendix B: EXPERIMENT DETAILS AND ADDITIONAL RESULTS

B.1 FURTHER DETAILS ON THE EXPERIMENTS WITH HIGH-NORMS

For the off-policy version where we used a higher p-norm, since we need exploratory data,

we do not use the replay buffer created when training the on-policy agent. Instead, we take

the final policy learned by the on-policy agent and sample trajectories with a 0.6 chance of

exploration, ans use this data to train the off-policy agents with higher-norm objectives.
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Figure B.1: The effect of higher p-norms on the DBRM off-policy training process. The
exploration buffer was used in this experiment instead of the replay buffer. The training
here used 2.5 million steps. The 10-norm was chosen for further training, since it seemed
to be performing better on the problematic acrobot environment. The top row shows the
Monte-Carlo evaluation during 10 points of training. The bottom row shows the training loss
used in each optimization method.

B.2 FURTHER DETAILS ON THE RESIDUAL DRIFT ISSUE IN PRACTICE

The residual drifting issue in the Acrobot domain is better illustrated in Figure B.2. The

experiments were conducted with 20 restarts, and 10 different independent off-policy and

on-policy trails. The trajectories were cut off after 200 time steps. The fitted on-policy and

off-policy Q functions are denoted as Qon and Qoff, respectively. Their corresponding greedy

policies are denoted as πon and πoff, respectively. The residuals shown in each subplot are

defined as below

δ(a)(t) = Qoff(st, πon(st))−R(st, πon(st))− γmax
a
Qoff(st+1, a) (B.1)
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δ(b)(t) = Qon(st, πon(st))−R(st, πon(st))− γmax
a
Qon(st+1, a) (B.2)

δ(c)(t) = Qoff(st, πon(st))−R(st, πon(st))− γ Qoff(st+1, πon(st+1)) (B.3)

δ(d)(t) = Qoff(st, πoff(st))−R(st, πoff(st))− γmax
a
Qoff(st+1, a) (B.4)

Figures B.2 (a) and (b) show that the off-policy optimization is successful, and the objective

is much smaller for the off-policy agent. However, comparing (a) and (c) suggests that the

off-policy agent is utilizing the residual drift phenomenon to achieve this level of small

residuals.

Figure B.2: Residual drift suggestions in the Acrobot domain. The horizontal axis represents
time steps during the simulated trajectories, and not training progress (i.e. other words,
the plots were created with fully trained off-policy and on-policy agents). See above for
clarification on each type of residuals plotted.
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Appendix C: LIST OF ABBREVIATIONS AND NOMENCLATURE

C.1 LIST OF ABBREVIATIONS

ADP Approximate Dynamic Programming

BRM Bellman Residual Minimization

DBRM Deterministic Bellman Residual Minimization

DDPG Deep Deterministic Policy Gradient

DP Dynamic Programming

FQI Fitted Q-Iteration

LMS Least Mean Squares

MDP Markov Decision Processes

MRI Major Research Instrumentation

RL Reinforcement Learning

SA Stochastic Approximation

TD Temporal Differences

C.2 LIST OF NOMENCLATURE

Markov Decision Processes Elements

A Action Space

S State Space

γ Discount Factor

R Reward Function

Rmax Maximal Reward Value

P Probabilistic Transition Function

π Policy

τ Trajectory

D Dataset of Transition Tuples
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Value Functions and Operators

V π Value Function of Policy π

Qπ Q-Value Function of Policy π

T Bellman Operator

Mathematical Notations and Operators

∆ Credal Set Operator

lp Minkowski’s p Norm

Function Approximation Elements

F Function Approximation Family

f Value Function Approximator Instance

θ Approximation Parameters to be Learned

ηt Learning Rate Sequence

λ The Temporal Difference Learning Parameter
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