A SIMULTANEOUS FIT OF THE TORSION-WAGGING-ROTATIONAL LEVELS FROM THE EXCITED ($V_t = 0, 1$ and 2) STATES OF METHYLAMINE USING A HYBRID (TUNNELING AND NON-TUNNELING) HAMILTONIAN FORMALISM

ISABELLE KLEINER, Université Paris-Est Créteil et Université de Paris, Laboratoire Interuniversitaire des systèmes atmosphériques (LISA), CNRS UMR7583, Creteil, France; IWONA GULACZYK, MAREK KREGLEWSKI, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland; R. A. MOTIYENKO, PRAKASH GYAWALI, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, University of Lille, CNRS, F-59000 Lille, France; V. ILYUSHIN, Radiospectrometry Department, Institute of Radio Astronomy of NASU, Kharkov, Ukraine.

We used our hybrid program^{*a*} to fit an extended dataset consisting of almost 30000 rotational-torsionial-wagging transitions in the MW and FIR of $v_t = 0$, 1 and 2 of CH₃NH₂. The program can fit rotational levels in molecules with one CH₃ internal-rotation large-amplitude motion, one NH₂ inversion large-amplitude motion. Our data set contains around 3000 MW and 26848 FIR transitions, which are fit to a weighted standard deviation of 1.75 using 102 parameters. Most of the FIR transitions are taken from recent measurements of the $v_t = 1$ -0 band centered near 265 cm-1^{*b*}, and the ground torsional state transitions are from Motiyenko et al.^{*c*}. Around new 340 and 176 microwave transitions were also assigned in the $v_t = 1$ -1 and $v_t = 2$ -2 states respectivelly. We hope to be able to fit all this data simultaneously with the far-infrared data from $v_t = 2$ -1, 2-0 and 2-2^{*d*}.

^aI. Kleiner and J. T. Hougen, J. Mol. Spectrosc., 368, 111255 (2020)

^bI. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc. 342 (2017) 25-30

^cR.A. Motiyenko, V.V. Ilyushin, B.J. Drouin, S. Yu, L. Margulès, Astron.Astrophys. 563 (2014) A1

^dPart of this work has been funded by the Programme National de Physique Chimie du Milieu Interstellaire (PCMI) and French ANR Labex CaPPA through the PIA under Contract No. ANR-11-LABX-0005-01