HIGH-RESOLUTION ANALYSIS OF THE 83.3 μm TORSIONAL BANDS OF THE Clono $_2$ Molecule F. KWABIA TCHANA, ANUSANTH ANANTHARAJAH, JEAN-MARIE FLAUD, CNRS - Université de Paris - Université Paris Est Créteil, LISA, Créteil, France; LAURENT MANCERON, Synchrotron SOLEIL, CNRS-MONARIS UMR 8233 and Beamline AILES, Saint Aubin, France; JOHANNES ORPHAL, Karlsruhe Institute of Technology, IMK, Eggenstein-Leopoldshafen, Germany. Chlorine nitrate (ClONO₂) is a very important atmospheric "reservoir" of ClO and NO₂, destroying stratospheric ozone through catalytic cycles^a. It was detected for the first time by infrared (IR) spectroscopy^b, a detection confirmed and extended by the MIPAS^c and the ATMOS satellite experiments^d. Many high-resolution microwave and mid-IR spectroscopy studies of ClONO₂ have been published^e. However, ClONO₂ presents 4 fundamentals in the far-IR region below 600 cm⁻¹, with the lowest one corresponding to the torsional mode ν_9 around 83.3 μ m. This band has been observed at low resolution^f but without precise determination of the band center. More recently, the analysis of the mid-IR ν_8 and ν_8 + ν_9 band spectral regions of ³⁵ClONO₂ allowed the indirect but accurate determination of the ν_9 band center^g. In this work, the 83.3 μ m region of ClONO₂ has been recorded at high resolution (0.001 cm⁻¹) using a Fourier transform spectrometer and the SOLEIL synchrotron light source. The spectrum corresponds to the absorption of the torsional mode, ν_9 around 123 cm⁻¹ and a series of $n\nu_9$ -(n-1) ν_9 hot bands. In this talk, the analysis of the ν_9 bands of 35 ClONO₂ and 37 ClONO₂ and $^{2}\nu_9$ - ν_9 band of 35 ClONO₂ will be presented. In turn, this will enable an analysis of the hot bands involving low energy levels in the mid-IR region where ClONO₂ is detected and modelled. ^aP. J. Crutzen, Quart. J. Royal Met. Soc. 96, 320 (1970); M. J. Molina and F. S. Rowland, Nature 249, 810 (1974). ^bD. G. Murcray et al., Geophys. Res. Lett. **6**, 857 (1979). ^cH. Fischer et al., Atmos. Chem. Phys. 8, 2151 (2008). $[^]d$ R. Zander et al., Geophys. Res. Lett. 13, 757 (1986). ^eJ. Orphal, M. Birk, G. Wagner, and J.-M. Flaud, Chem. Phys. Lett. 690, 82 (2017). ^fJ. W. Fleming, Infrared Phys. 18, 791 (1978); K. V. Chance and W. A. Traub, J. Mol. Spectrosc. 95, 306 (1982). gJ.-M. Flaud, W. J. Lafferty, J. Orphal, M. Birk, and G. Wagner, Mol. Phys. 101, 1527 (2003).