54TH ANNUAL ILLINOIS FIRE COLLEGE
JUNE 8 - 11, 1978

(See tentative program inside)
ADDfTION TO THE INSTITUTE FACULTY

The Fire Service Institute is proud to announce the addition of David F. Clark, of Brimfield, Illinois, to our full-time staff.

Dave is a resident of west central Illinois and is presently headquartered in Brimfield in order to better serve that area of the State.

He has been a member of the Brimfield Volunteer Fire Department since 1965 and presently serves as its chief. As a result, Dave has a good understanding of the operations and problems within a volunteer fire department.

Dave received his B.S. degree in history from Illinois State University and has taken graduate and advanced courses in history and professional education. He received his Associate Degree in Fire Science from Illinois Central College in 1977.

Prior to joining the Institute's faculty, Dave was a Senior Fire Underwriter for Pekin Insurance Company.

FIRE SERVICE INSTITUTE
PART-TIME INSTRUCTORS

The Fire Service Institute currently has forty (40) part-time instructors on the rolls. These instructors are strategically scattered throughout most of Illinois to help increase the Institute's ability to serve the changing needs of the Illinois Fire Service.

We urge any fire department that wants training or has a specialized training need to contact the part-time instructor closest to his community. The instructors are there to better serve the Illinois fire service and answer any questions concerning the Institute's training programs or available services to fire departments.

The following list will help locate the representative that is the nearest to your department.

Jack Belden*
120 N. Main, P.O. Box 12
Seneca, IL 61360

William Blagg
1515 2nd St.
Winthrop Harbor, IL 60096

George Cermak
#5 Alexander Court
Normal, IL 61761

Mardell Bellatti
R.R. #2
Mt. Pulaski, IL 62548

Paul H. Boecker
624 Columbine
Lisle, IL 60532

Lee Daugherty
1903 N. Bigelow
Peoria, IL 61604

James T. Berggren
P.O. Box 105
Serena, IL 60549

Donnie Boren
2016 Lewis St.
Zion, IL 60099

Robert Davis
Box 889
Vienna, IL 62995

Earl Bernhardt*
1806 S. 5th St.
Springfield, IL 62607

James Broman
122 W. Jefferson
Wheaton, IL 60187

Glen Fisher
1105 N. Wood St.
Shelbyville, IL 62565

* = First Aid and Rescue Instructor
Stephen Frew*
P.O. Box 1107
Rockford, IL 61101

Don Hahn*
10 Edgewood
Mt. Vernon, IL 62864

Eric Haussermann
1009 W. Hill
Champaign, IL 61820

John Hish, Jr.*
P.O. Box 86
Ridgway, IL 62979

Richard L. Horath*
202 N. Grove
Normal, IL 61701

John Lill
169 S. Addison
Bensenville, IL 60106

Carl G. Lilly*
21 S. Linden
Mundelein, IL 60060

Dean Mercer
Rea Street
Valier, IL 62891

Robert Moff
406 W. Pearl
Thomasboro, IL 61878

Robert Moskop
920 Frontenac, Apt. 4
Cahokia, IL 62206

Donald Owens
327 S. 6th St.
Monmouth, IL 61462

Keery Padfield
1805 Middlebury Road
Freeport, IL 61032

John Rish, Jr.*
P.O. Box 86
Ridgway, IL 62979

Richard L. Horath*
202 N. Grove
Normal, IL 61701

James Roberts
1042 E. Howard
Pontiac, IL 61764

David St. John
638 S. Fraser Ave.
Kankakee, IL 60901

Gerald Sappenfield
106 W. North
Ogden, IL 61859

Oliver Schwallenstecker
P.O. Box 494
620 E. Warren
Bunker Hill, IL 62014

Tom Riddle
119 E. 148th St.
Harvey, IL 60426

Paul R. Rabourn
932 S. 4th
Kankakee, IL 60901

Donald Owens
327 S. 6th St.
Monmouth, IL 61462

Terry Storer*
704 N. Montgomery
Litchfield, IL 62506

Dale Stout
1305 Eastern
Urbana, IL 61801

Jim Thompson
411 W. Magnolia
Atwood, IL 61913

Donald Twichell
314 State St.
Alton, IL 62002

Richard Viano
1308 Edgerton Drive
Joliet, IL 60435

Robert Walters
302 E. McKinley
Philo, IL 61864

Thomas C. Watson*
718 20th St.
Charleston, IL 61920

Ronald Weavel
3403 LaSalle Ave.
Rockford, IL 61111

* = First Aid and Rescue Instructor
A unique learning experience for fire fighters in the States of Iowa, Missouri, and Illinois will take place on the campus of Quincy College on May 20-21, 1978.

During a meeting last summer in Washington, D.C., the Directors of Fire Service Training from the Universities of Illinois and Missouri and an instructor from Iowa State University saw a program for a cooperative school run by two eastern universities. The logical question, "why don't we try it?" So, we are.

Six classes will be conducted. Subjects are as follows:

1. Fire Protection Systems and Equipment
2. Emergency Vehicle Operation
3. Auto Extrication
4. Breathing Equipment
5. Fire Apparatus Maintenance
6. Fire Fighting Tactics

Complete programs will be mailed soon.

Room and board will be available at Quincy College for $13.50 per night. Quincy College and the Quincy Fire Department are hosting the school and supplying facilities and equipment.

Make plans to attend this school now!

BREATHING APPARATUS DRILL - DONNING

By: John Rutledge, Instructor

Many fire fighters feel that once they learn how to don a piece of Breathing Apparatus, they will retain their proficiency until the next fire or drill which may be months away. Unfortunately, this is not the case and as a fire fighter you owe it to yourselves and to the community that you serve to constantly strive for proficiency.

This Breathing Apparatus Drill will help you to maintain your proficiency at donning the unit and more important, it will help build confidence in yourself and your unit.
A donning drill must have some ground rules to start with in order to keep a degree of uniformity in the department. Here are some of the ground rules we use at the University for donning of Breathing Apparatus.

1. Full protective clothing.
2. Unit is in box, tank valve closed, and you must be able to close lid.
3. Don according to manufacturer's recommendation.
4. Perform safety checks.
 a. Facepiece sealed
 b. Exhalation valve functioning
 c. Unit function correctly
 d. Exhalation valve function correctly

Now all that is necessary is to time the individual to check his proficiency. Repeat the drill as necessary and record the times. You will note that as he becomes faster he will also become safer in his donning procedure so that some cold winter night you won't see a 20 second time, but you will see a safe 45 second time.

Probably there is no greater opportunity to note the cumbersomeness of the Breathing Apparatus than during a donning drill. It is critical to the fire fighter that he be able to don the unit rapidly and safely in a variety of situations. Donning drill obstacle courses are of a tremendous help in making fire fighters safer and more proficient.

After the units are on, the fire fighter will often be in situations and locations where taking the unit off, but leaving the mask on his face, will allow him to do a variety of things. In this type of obstacle course, all we do is force the fire fighter into a situation where he must remove his harness assembly but keep his mask on in order to pass on to the next location. We also force him to become proficient in redonning the unit while his body is in a variety of positions.

To set up an obstacle course, an instructor might take some chalk and simply map a course on the floor of a fire station. Then draw in arrows as to the direction and simply write in the words OFF or ON where it is appropriate.

Start the drill with a timed donning of his unit. After this, he must walk or step over two empty breathing apparatus cases and take his unit off his back. Carrying his unit he must then walk over two more empty cases. Redonning the unit he then procedes under a table and there he must take off the unit again. This type of operation goes on as the fire fighter procedes over and under obstacles, across and up ladders, through tubes or tunnels, under and over apparatus, and into and out of scuttles.

As a variable, you can introduce one of several variables with the same basic course. You can have the same course followed while blind. Simply substitute rope for the chalk and use verbal commands to don and disrobe. You can have the fire fighter reverse the course at any given time. You can even set up some type of competition as to the times that different men traverse the course although this must be closely supervised.
The variables are only limited by the imagination, but they must be done with the thought of improving the skills of the fire fighter. Some should be done so that the fire fighter is placed under some stress. They should also make the fire fighter "think" his way out of a situation.

Variables

1. Reverse the course.
2. Run the course while blind.
3. Start students at the same time but on opposite ends of the course.
4. Start several students at each end.
5. Carry tools or hose line.
6. Add noise, smoke, and other confusion.
7. Simulate emergencies.
 a. Shut off main line
 b. Shut off tank valve
 c. Rescue or search
 d. Evacuate course in a very short time (2 min.)

Note: During emergencies involving the apparatus itself, the emergency procedures for an apparatus malfunction should be followed. If a fire fighter successfully does emergency procedures, allow him to continue on course.

These types of drills are physically demanding. As an observer watching the drill, it may seem amusing to watch the men crawling around. It is suggested that whoever makes up the course try the course out to see if it is too hard. Most will find out that you do not have to make the tasks exceedingly hard to accomplish your goal. Remember that the drill is to increase efficiency and also to increase the confidence in oneself and the breathing apparatus.

If consuming air is a problem, the drill can be run by simply taping the breathing tube onto the regulator with duct tape. This gives the student the same length of breathing hose to use and prevents the hose from dragging on the floor.

HYDRAULICS DRILL - HYDRANT CONNECTION

By: John Rutledge, Instructor

Many of us become concerned with getting enough water onto a fire and look towards larger or higher pressure pumps and all sorts of devices to help us discharge water. Basic hydraulics tell us that we can only discharge as much water as we receive.

Try this simple Hydraulics Drill and see if perhaps you could find a more efficient method of making your hydrant connections. You might just find that perhaps "low water pressure was not responsible for a large fire loss."
Equipment: 1. Six (6) 50 foot sections of 2½" hose.
2. One (1) section of hard or soft 4½" or larger intake hose.
3. One (1) Deluge Gun (Solid Stream Hand Nozzles can be used).
4. Pitot Tube or Gauge

There is a series of four (4) Trials that can be run. Appoint someone to be in charge of Layout #1, 2, 3, 4, and collecting data from each one. (See page 7a.)

In each layout we want to discharge as much water as we can. We are not concerned with the discharge side of the pump outside of measuring the total quantity of water the pump is discharging. (Discharge hose lays can be changed accordingly).

When connections are made, begin pumping and discharge as much water as possible until your compound gauge reads +5 psi. Now record the total GPM being discharged. Repeat for trials #2, #3, and #4.

You will find that the closer you get to your plug with larger hose, the more water you will get. Perhaps some who have not understood this will benefit from this Drill.

Variations: 1. Use different diameter hoses.
2. Use different lengths of hose.
3. On layout #2, try going straight into your pump using a reducer as opposed to front, side, or rear gated intakes.

DR. DUCK'S APPARATUS CLINIC

By: Howard Eskridge, Instructor

Are you ruining your apparatus engine by carbonizing the oil unnecessarily? Most departments change the oil in the crankcase on a regular basis and, hopefully extend the life of the motor in the apparatus. But how is the oil cooled so that it can do the job it's designed to do? The crankcase provides a large surface so the heat picked up by the oil in the motor can be dissipated to the atmosphere. But what if the crankcase is insulated? How? By a buildup of dirt, oil scum, and materials picked up on the runs.

Why not set up in your maintenance program a systematic cleaning of the motor, in particular, the crankcase pan? Not only will you be providing better cooling for the oil, but leaks from the crankcase pan can be detected, bolts tightened, and a possible large loss of oil be prevented.

WRITING BEHAVIORAL OBJECTIVES

By: Jim Straseske, Instructor

When the instructor starts to assemble the behavioral objectives for a class, there are many items to consider before writing the objectives. The instructor must carefully choose the behavior that should be achieved by the conclusion of the period of instruction. These behaviors, or as educators refer to these areas,
1. 200 ft. of 2½″

2. 50′ of 2½″

3. 2-50′ of 2¼″

4. 10′ of Hard suction

Total GPM_________
domains, should be selected in terms of student behavior. These domains are cognitive, affective, and psychomotor. The instructor should recognize the students' needs and then determine the appropriate domain for the objectives.

The cognitive domain deals with intellectual outcomes. These outcomes can best be described by knowledge, understanding, or thinking skills. A cognitive objective usually measures the student's ability to absorb material and then answer questions from recall or a thinking process.

The affective domain includes objectives that emphasize feelings and emotions. These objectives measure interest, attitudes, and appreciations. Affective objectives can be difficult to evaluate because they sometimes involve individual "gut reactions."

The psychomotor objectives involve motor skill abilities. The motor skills areas involve "hands-on" skill development. Psychomotor skills are used extensively at the recruit level of training.

Remember that for any domain the instructor chooses for a class, there are different levels of learning that can be accomplished. The different levels of each domain can be distinguished by the action verb selected to describe the student's learning outcome. These verbs should be selected to achieve the best results from the students.

Each domain requires verbs of different action to best accomplish the task. The cognitive domain relies on verbs that describe knowledge. The affective domain needs verbs that relay emotion and feelings. The psychomotor domain is defined in terms of students' actions for skill development.

In the next issue, specific verbs will be discussed and the assembling of these verbs in terms of student outcome.

N.F.P.A. HAZARDOUS MATERIALS SEMINAR

"Handling Hazardous Materials Transportation Emergencies" will be the subject of a series of three-day seminars to be conducted by the National Fire Protection Association in various regions of the country starting in May of this year.

The seminars have a dual purpose. First, they will present materials from a twenty-hour course of instruction developed under contract to the United States Department of Transportation. These materials provide basic information on hazardous materials in transit, present decision-making processes for command personnel who may be required to stabilize a hazardous materials incident, and furnish methodologies for developing a community-based plan of emergency action. In addition, the seminars will offer an overview of teaching techniques to assist officers in presenting course materials at the local level.

The comprehensive scope of the materials to be presented at the seminars is designed to give maximum assistance to diversified groups of attendees including the range of emergency forces and governmental agencies who may be involved in handling any local hazardous materials incidents.
The projected dates and locations are: Columbus, Ohio, May 22-24; Montgomery, Alabama, June 12-14; Seattle, Washington, June 19-21; Chicago, Illinois, September 6-8; Philadelphia, Pennsylvania, September 18-20; Springfield, Massachusetts, October 4-6; San Francisco, California, October 16-18; Phoenix, Arizona, October 23-25; Oklahoma City, Oklahoma, November 1-3; Houston, Texas, November 8-10.

For further information contact:

James V. McKiernan
Senior Fire Service Training Specialist
National Fire Protection Association
470 Atlantic Avenue
Boston, MA 02210

FEDERAL DEATH BENEFIT

The following information was received from the National Volunteer Fire Council.

The Law Enforcement Assistance Administration has recently ruled that rescue squad members are not covered under the $50,000.00 death benefit law. We sought clarification of this ruling to determine how this would affect volunteer firemen who perform rescue squad duty. A copy of the response is attached.

The key factor appears to be whether or not the primary function of the firemen is fire fighting. If it is and yet he responds to an emergency other than a fire, then he would be covered. However, if the fireman's primary function was emergency work other than fire fighting, he would not be covered unless he actually was engaged in fire fighting when killed.

While the ruling of LEAA could affect paid firemen who are assigned to rescue squads as their primary function, it is not likely that volunteer firemen would be affected by the ruling, since in most cases, volunteer firemen are admitted to membership as firemen, and while they qualify as EMTs and AEMTs to perform rescue and ambulance service, their primary function remains fire fighting.

NEW ADDRESS FOR FIRE SERVICE INSTITUTE

Beginning about June 1, 1978, the Fire Service Institute will be moving its offices to 301 S. Wright Street, Champaign, IL 61820. Phone numbers will remain the same.

This move will give the Institute more spacious quarters and a location nearer our administrative office.
January 9, 1978

Mr. Fred A. Williams
National Volunteer Fire Council
7 Grace Avenue
Great Neck, New York 11021

Dear Mr. Williams:

This is in response to your letter of December 26, 1977, asking whether volunteer firefighters are covered under the Public Safety Officers' Benefits Act of 1976 (PSOB) if they die while responding to emergency rescue and ambulance calls that do not directly involve fire suppression.

If the firefighter's primary function is to engage in fire suppression, he will be covered for any death sustained in the line of duty, regardless of whether he died in connection with a fire call. If the firefighter's primary function is actually something other than fire suppression, his death will only be covered by PSOB if it occurs while he was in the course of performing his firefighting duties. If, therefore, a volunteer's primary function is really to respond to emergency rescue calls, his death would be covered only if it occurred in the course of his firefighting duties. An officer's "primary function" will be gauged by LEAA on the basis of both his frequency of involvement in firefighting activities and an assessment of the actions he was authorized to perform under his job description or the department's legal authorization.

If any further clarification is necessary, please do not hesitate to contact Mr. David I. Tevelin of this office at (202) 376-3691.

Sincerely,

[Signature]

Thomas J. Madden
Assistant Administrator
General Counsel
News services recently reported a multi-death fire in a jail facility. Local news services frequently convey the message of a mattress fire in the city or county jail, which causes little property damage, but threatens the lives of the people held in the facility and those working in the facility.

Because of the nature of correctional facilities, whether they be a maximum security prison or a police department hold-over cell, problems are encountered by the occupants and the fire department.

Regardless of personal feelings about the occupants of the jails and prisons, the fire service must recognize that our job begins with life safety. With this in mind, we must become aware of the unique problems of jail fires and develop methods of preserving life when fires occur. Development of new techniques, modifications of current techniques, and training to provide a rapid and successful operation during a jail fire need to be undertaken by any department that provides fire protection to a correctional facility.

Many of the fires in jails are small fires, but the fatalities and injuries result from smoke and toxic gas inhalation.

The first concern of jail fires should be to prevent them. But, even the most rigorous fire prevention efforts can be thwarted by the individual intent on starting a fire. Fire departments should work closely with correctional agencies and, in a cooperative atmosphere, develop workable and practical fire prevention programs.

Realizing that fire prevention programs may be overridden by individual intent, the fire department must develop tactical operations that will minimize the threat to life.

Early detection and warning is imperative in a jail fire. The occupants are unable, in most cases, to flee a fire area and relocate in an area that provides safety. A delay in reporting the fire to the fire department may enable the fire, although small, to develop large volumes of toxic gases and smoke, making the area untenable.

First-aid fire fighting equipment should be available to correctional officers so that they might stop a fire in its incipient stage. If such equipment is provided, those responsible for using it should be completely familiar with its operation and its limitations.

Ventilation appears to be one of the major problems in jail fires. Considering many of the fires are limited in area to one cell, adequate ventilation of the products of combustion could provide an atmosphere that would minimize the hazards to life.
Building construction often determines the method of ventilation to be used, whether initiated by the employees of the facility, or by the fire department. How and where to ventilate can only be determined by knowledge before a fire occurs.

Many facilities lack standpipes, necessitating hand advancement of hose lines. The distance these lines have to be carried and advanced often is a deterrent to their prompt application to a fire area. In addition, all fire fighters entering a jail fire should wear self-contained breathing apparatus which adds to the load the fire fighter must carry.

Fire fighters should remember that a fog stream is capable of moving large volumes of air, and the application of the fire stream may initially be to move in fresh air, move out the smoke and gases, and then to extinguish the fire.

Correctional personnel must remember that the fire fighters can do their job only after reaching the area of need. Fire plans should include personnel designated to assist the fire department in reaching the fire area with minimal distance and time.

Fire plans should also include a method of rapid relocation of occupants (if possible) within the facility so as not to provide a security problem.

Recognizing that in some cases, a group or mass action, using a fire as a distractor, can present serious security problems, and threats to facility personnel and fire fighters, heavy fog streams can be placed into operation, forcing in clean air and often providing extinguishment at the same time. Occupants may be wet, but they will be alive.

With the problems that both the correctional facility and the fire department face, it is imperative that they work together, cooperate, and pre-plan the operations that will be required in a jail fire.

We must not become complacent and think that fires in security facilities only happen elsewhere. The situation is not IF it will happen, but HOW SOON it is going to happen.

QUESTIONNAIRE FOR CORRECTIONAL FACILITY EMPLOYEES

1. Do you have any type for formalized plan in the event of a fire in your facility?
2. Is life safety the primary objective of a fire plan in your facility?
3. What means do you have of alerting the fire department in the event of a fire in your facility?
4. Are smoke/fire investigations investigated by personnel within the facility before notification of the fire department?
5. Is someone designated to meet the fire department and assist them in reaching the fire area?
6. Are personnel trained in the use of first-aid fire fighting equipment?
7. Do you have the means of venting smoke and fire gases from the security areas without the assistance of the fire department?

8. Is the security area provided with standpipe connections for fire department use?

9. Do you have standpipe hoses for use during a fire that cannot be handled by extinguishers?

10. Are extinguishers (if they are provided) checked by each shift and during each shift?

11. Are means provided for a prompt and rapid relocation of occupants in the event of a fire?

12. Are personnel available to control occupants in the event they must be released from the security area?

13. What means are available to obtain immediate assistance from other police agencies to supplement your forces during a fire situation?

14. Are personnel familiar with the hazards of smoke and toxic gases that are generated during even a small fire?

15. Who is responsible for the safety and well-being of the occupants of a correctional facility?

54TH ANNUAL ILLINOIS FIRE COLLEGE
JUNE 8-11, 1978

DETACH FOR BULLETIN BOARD USE:

The 54th Annual Illinois Fire College will be held on the Urbana-Champaign campus of the University of Illinois from Thursday, June 8 through Sunday, June 11, 1978.

This portion of the Institute's BULLETIN is designed to serve as advanced information for your fire department and interested personnel. Final programs including instructors, speakers, classroom locations, and lodging information will be mailed about the first week of May.

As in the past, registration, general sessions, workshops, and many of the classes will be held in the Illini Union, 1301 W. Green, Urbana, Illinois. For further information, call or write:

Fire Service Institute
University of Illinois
1007 W. Nevada
Urbana, IL 61801
Phone: 217/333-3800
TENTATIVE PROGRAM

Wednesday, June 7, 1978
7:00 - 9:00 p.m.
Registration - West Foyer, Illini Union Building, Urbana, IL

Thursday, June 8, 1978
7:45 - 9:30 a.m.
Registration - West Foyer, Illini Union Building

9:30 - 11:45 a.m.
Presentation of colors and salute to the flag:
Invocation:
Greetings:
Introduction:

Keynote address: Jack Carter, Illinois State Fire Marshal

54th Annual Illinois Fire College - Briefing:
Gerald Monigold, Director, Fire Service Institute, University of Illinois

1:00 - 3:00 p.m. and 3:00 - 5:00 p.m.
Workshops (each workshop is repeated)

A. FIRE DEPARTMENT RATING AND GRADING SYSTEMS - Insurance Services Office of Illinois

B. ILLINOIS CERTIFICATION PROGRAMS - Division of Personnel Standards, Office of the State Fire Marshal

C. FIRE ALARM AND DETECTION SYSTEMS

D. LEGAL ASPECTS OF THE FIRE SERVICE
1. Death and disability benefits.
2. Legal liability of fire departments.
3. Emergency vehicle laws

E. COMMUNICATIONS
1. "911"
2. Radio communication problems
3. Alerting systems

F. GRAIN DUST EXPLOSIONS

G. TRAINING AIDS AND TECHNIQUES - Fire Service Institute, University of Illinois
1. Using and preparing training aids
2. Homemade training props

7:00 - 9:00 p.m.
"WHAT IS HAPPENING TO THE FIRE ENGINES OF AMERICA" - Jeff Schielke, Batavia, Illinois

"UNION OIL: Multi-tank Fire" - Larry Hess, Fire Chief, Union Oil Co., Lockport, Illinois
Invocation

D.O.T. PLACARDING: What They Look Like and What They Mean to the Fire Fighter

CLASSES - Classes are scheduled for either 6 or 12 hours of instruction. Each fire fighter must attend 12 hours of classes to be eligible for a Fire College Certificate. Six-hour classes are repeated on Saturday.

A. FIRE GROUND PUMPING OPERATIONS (6 hours repeated)
 1. Pump operating and relaying
 2. Pump Hookups
 3. Fire Stream Development
 4. Problems

B. HAZARDOUS MATERIALS (12 hours)
 1. Farm Chemicals
 2. Spills—hazards, handling and clean-up

C. FIRE INVESTIGATION (6 hours repeated)
 1. Cause and origin
 2. UFIRS - Standard Incident Reporting
 3. Arson Detection

D. VENTILATION PROCEDURES (6 hours repeated)
 1. Use of proper tools
 2. What, When, Where, Why, and How

E. GENERAL MAINTENANCE (6 hours repeated)
 1. Pumps
 2. Ground ladders and hose
 3. Tools

F. SMOKE DIVERS - Breathing Equipment (12 hours)
 1. Donning
 2. Working and searching
 3. Rescue - fire and underground

G. RESCUE - Vehicle and Aircraft (6 hours repeated)

H. DEFENSIVE AND EVASIVE DRIVING (6 hours repeated)

I. FIRE PREVENTION AND INSPECTION (12 hours)
 1. Institutional inspections
 2. Public education
 3. Inspection procedures
 4. Field trip

J. FIRE FIGHTING STRATEGY AND TACTICS (12 hours)
 1. Tactical decision-making process
 2. Prefire planning
 3. Tactical problems - simulator
K. SERVICE TESTING PUMPS (6 hours repeated)
 1. Why
 2. When
 3. How
 4. Practice

L. WOMENS' CLASS (1:00 - 4:00 p.m., Friday only)

Saturday, June 10, 1978
8:30 - 9:30 a.m.
FLOW METERS: Alternative or Adjunct--Able Fire Equipment Company

9:45 - 11:45 a.m.
VEHICLE FIRE FIGHTING - Slide presentation

1:00 - 5:00 p.m.

Sunday, June 11, 1978
9:30 - 11:30 a.m.
1. Caisson Rescues
2. Vehicle Rescue Operations
 a. Extrication
 b. First aid
 c. Engine company duties
3. Large vs. Small Diameter Hose
 a. When to use each
 b. Advantages/disadvantages
4. New Equipment
 a. Flow meters
 b. Hydro tool
5. Forward and Reverse Hose Lays - Comparisons
6. Rural Automobile Fire Fighting