PARALLEL PROGRAMMING WITH HIERARCHICALLY TILED ARRAYS

BY

GANESH BIKHANDI

B.E., University of Madras, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois
To my family.
Acknowledgments

This project would not have been possible without the support of many people. Many thanks to my adviser, David A. Padua, who read my numerous revisions and helped make some sense of the confusion. Also thanks to my committee members, Vikram Adve, Laxmikant Kale, Micheal Heath, Maria Jesus Garzaran and Christoph von Praun who offered guidance and support.

Special thanks to Basilio. B. Fraguela, for his advice on several technical issues relating to the topic of this dissertation, Jia Guo, my research partner, David Kuck (Intel), upon whose guidance I entered the graduate school of UIUC, Gheorghe Almasi and Calin Cascaval, for their support in continuing this work at the IBM T. J. Watson research center.

I am deeply indebted to my father, mother, two brothers (Balaji & Barani), sister-in-law (Tamizharasi), aunt (Mallika) and to everyone else in my family, who helped me reach the pinnacle of education from an humble background in India. An extra thanks to my elder brother Balaji, the whizkid of our family, who introduced me to the computers and internet. Finally, thanks to my roommates (Kalyan Babu, Sahail) and neighbors (Sri Krishna Marathe), who endured their stay with me for five long years.
Abstract

Writing high performance programs is a non-trivial task and remains a challenge even to advanced programmers. This dissertation describes a new data type, Hierarchically Tiled Array (HTA), that simplifies this task. HTAs are tiled arrays whose elements can either be HTAs or arrays or scalars. The elements can be distributed among a cluster of computers or be collocated in a single processor. They can be accessed and operated like scalars of the conventional n-dimensional arrays. They can also be assigned to one another, or passed as arguments to a function. In essence, HTA is an attempt to adopt tiles as first class data types, and to allow their direct manipulation.

Augmenting existing programming languages with HTAs offers several benefits to high performance program developers. HTAs provide a global shared memory abstraction; this significantly reduces the time to develop parallel programs. The control flow of parallel HTA programs resemble sequential programs and hence are very easy to reason. HTAs naturally facilitate the development of recursive blocked algorithms aimed at exploiting deep memory hierarchies. The rich set of well defined operations and vector style expressions lead to code with high clarity and smaller size. Since HTAs are also conventional arrays, their fusion with a language will not add extra burden to programmers. Moreover, the performance benefits of tiling are preserved.

To prove these claims, two popular languages, C++ and MATLAB, have been extended with HTA. In addition, the NAS benchmark suite, a set of complex computation intensive parallel programs, have been re-written using HTAs. We compare the lines of code and execution times of HTA programs with that of FORTRAN versions. Our results show
that the codes written using HTAs are very readable and at the same efficient. We also show several sample code snippets to demonstrate the clarity of the HTA programs. All the experiments indicate that the explicit notion of tiles makes HTA a powerful language construct for writing a wide range of high performance programs.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Contributions of this thesis</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Thesis Organization</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2 Hierarchically Tiled Arrays and Operations</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Hierarchically Tiled Arrays</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Classification</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Symbols, Notations and Terminologies</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Construction of HTAs</td>
<td>13</td>
</tr>
<tr>
<td>2.2 HTA Operations</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Query Operations</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2 Element Access operations</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3 Point-wise operations</td>
<td>18</td>
</tr>
<tr>
<td>2.2.4 Collective Operations</td>
<td>25</td>
</tr>
<tr>
<td>2.2.5 Higher-order Operators</td>
<td>30</td>
</tr>
<tr>
<td>2.2.6 Composing of operations</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Parallel Semantics of HTA operations</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1 Distributed HTA construction</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2 Unary Operations</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3 Binary Operations</td>
<td>37</td>
</tr>
<tr>
<td>2.3.4 HTA access operation</td>
<td>39</td>
</tr>
<tr>
<td>2.3.5 Assignments</td>
<td>40</td>
</tr>
<tr>
<td>2.3.6 Map</td>
<td>41</td>
</tr>
<tr>
<td>2.3.7 Reduce</td>
<td>41</td>
</tr>
<tr>
<td>2.3.8 Collective operations</td>
<td>42</td>
</tr>
<tr>
<td>Chapter 3 Implementation</td>
<td>46</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Execution Model of HTA programs</td>
<td>47</td>
</tr>
<tr>
<td>3.3 Underlying Implementation</td>
<td>49</td>
</tr>
<tr>
<td>3.4 MATLAB Library</td>
<td>52</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of HTA operations.</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>MATLAB and C++ syntax for various HTA operations.</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>HTA operations and the corresponding MPI communication primitives used.</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Characteristics of Computation and Communication of the programs of NAS benchmark set.</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Correspondence between Array and HTA operations.</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Data types and various input sizes of the benchmark programs</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Configuration of the experimental environments.</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Tiling structure and processor distribution.</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>Execution times in seconds for some of the applications in the NAS benchmarks for F77+MPI versus MATLAB+HTA. The execution time for 1 processor corresponds to the serial application in F77 or MATLAB, without MPI or HTAs. The execution environment is the Tungsten cluster.</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Ratio of execution times (MATLAB+HTA vs F77+MPI). The execution environment is the tungsten cluster.</td>
<td>102</td>
</tr>
<tr>
<td>4.8</td>
<td>Execution times in seconds for programs in the NAS benchmarks for F77+MPI and CPP+HTA. The execution environment is the turing cluster.</td>
<td>105</td>
</tr>
<tr>
<td>4.9</td>
<td>Ratio of execution times (CPP+HTA vs F77+MPI). The execution environment is the turing cluster.</td>
<td>106</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of running times (seconds) of pure-HTA and map versions of MG (CLASS C) in turing cluster.</td>
<td>108</td>
</tr>
<tr>
<td>5.1</td>
<td>Characterization of parallel programming infrastructures.</td>
<td>136</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Homogeneous Hierarchically Tiled Array (a) Regular (b) Irregular</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>An Illegal HTA</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>A Two level HTA</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Heterogeneous HTAs with (a) different position of the partition for adjacent tiles (b) different levels of tiling</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Naming and Numbering conventions of the various levels of an HTA</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Illustration of (a) tuple, range, region and (b) dist</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>Bottom Construction of HTAs</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Top–down HTA construction (a MATLAB like pseudo-code)</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>HTA Accessing Operation</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>Logical Indexing of HTAs</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>The need for conformability a) Ambiguity in HTA operations b) Illegal HTA operations</td>
<td>20</td>
</tr>
<tr>
<td>2.12</td>
<td>An illustration of the HTA rules of operation</td>
<td>22</td>
</tr>
<tr>
<td>2.13</td>
<td>HTA Assignments</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>HTA transpose operation a) with tlevel = 0 on an HTA of height 1 b) with tlevel =1 on an HTA of height 2</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Swapping the tiles in 2 successive hierarchies using htranspose</td>
<td>28</td>
</tr>
<tr>
<td>2.16</td>
<td>(a) HTA Permutation (b) circshift using Permutation</td>
<td>28</td>
</tr>
<tr>
<td>2.17</td>
<td>Replication of Tiles of an HTA using repmat</td>
<td>29</td>
</tr>
<tr>
<td>2.18</td>
<td>HTA map operator</td>
<td>31</td>
</tr>
<tr>
<td>2.19</td>
<td>HTA reduce operator</td>
<td>32</td>
</tr>
<tr>
<td>2.20</td>
<td>HTA scan operator</td>
<td>35</td>
</tr>
<tr>
<td>2.21</td>
<td>HTA reduce operator combined with map</td>
<td>35</td>
</tr>
<tr>
<td>2.22</td>
<td>HTA scan operator combined with map</td>
<td>35</td>
</tr>
<tr>
<td>2.23</td>
<td>Communication in a parallel binary operation a) HTAs of same shape b) HTAs of different shape. The mapping of the operand HTAs is shown in the figures using processor number in each tile.</td>
<td>38</td>
</tr>
<tr>
<td>2.24</td>
<td>A chain of binary expression with HTAs of different processor mapping</td>
<td>39</td>
</tr>
<tr>
<td>2.25</td>
<td>Projection of an 2-D (left hand side) array along dimension = 1</td>
<td>41</td>
</tr>
<tr>
<td>2.26</td>
<td>Communication in a partial reduce operation along dim=1, without replication. The left hand side sub-figures describes the distribution of input HTA, the right hand side sub-figure describes the distribution of output HTA</td>
<td>42</td>
</tr>
</tbody>
</table>
2.27 Communication in a transpose operation a) square HTA b) non-square HTA. In both the figures, the left hand side sub-figures describe the distribution of input HTA, the right hand side sub-figures describe the distribution of the output HTA. In (b) the middle figure is the transposed distribution of the input HTA. 43

2.28 Communication in a repmat operation. In the figure, the left hand side sub-figure describes the distribution of input HTA, the right hand side sub-figure describes the distribution of output HTA. 44

3.1 Simple code example 48

3.2 (a) Example of code with concurrent execution. (b) Timeline for the processors executing the code in (a). 49

3.3 HTA implementation. 50

3.4 Hierarchy of the Back End classes 57

3.5 Relaxing sequential evaluation order to facilitate overlap of communication and computation. 58

3.6 Recursive matrix-matrix multiplication that exploits cache locality. 60

3.7 HTA version of SUMMA Algorithm 62

3.8 The communication steps in Cannon’s algorithm on 16 processors 63

3.9 Cannon’s algorithm using HTAs. 63

3.10 Jacobi computation using HTA 64

3.11 Graphical Illustration of Jacobi computation (a) Communication of boundary regions (b) Stencil computation 65

4.1 (a) Illustration of the EP algorithm. (b) Sequence splitting algorithm for generation random numbers in parallel 70

4.2 NAS EP benchmark using HTA (a) MATLAB-serial (b) MALAB-HTA 72

4.3 NAS EP Benchmark written using map construct and HTAs 73

4.4 Illustration of (a) interpolation and (b) projection. For simplicity, a 1D grid is shown here 74

4.5 Pictorial view of HTA projection 75

4.6 The main procedure of MG in MATLAB 75

4.7 MG resid (a) MATLAB-serial version (b) MATLAB+HTA version 76

4.8 MG psinv (a) MATLAB-serial version (b) MATLAB+HTA version 76

4.9 MG rprj3 (a) MATLAB-serial version (b) MATLAB+HTA version 77

4.10 MG interp (a) MATLAB-serial version (b) MATLAB+HTA version 78

4.11 MG comm3 a) MATLAB-serial b) MATLAB+HTA version 79

4.12 Assignment using HTAs (a) along the direction of west (b) along the direction of south 79

4.13 Graphical Illustration of the steps in the CG benchmark 80

4.14 CG Benchmark (a) MATLAB-serial implementation (b) MATLAB+HTA implementation 82

4.15 FT Benchmark (a) HTA-serial version (b) MATLAB-HTA version 83

4.16 Illustration of the FT benchmark program 85

4.17 IS Benchmark (a) C-serial version (b) CPP-HTA version 87

4.18 Illustration of the IS benchmark (HTA version) 88
4.19 (a) Flow of control in BT (b) Double cyclic mapping for optimal performance 92
4.20 x-sweep section of BT (a) MATLAB-serial version (b) MATLAB+HTA version 93
4.21 Hyperplane .. 95
4.22 Forward phase of a simple SSOR iteration a) Using MATLAB serial program
 b) Using MATLAB HTA program c) Illustration of the diagonal iteration over
 the tiles .. 96
4.23 Running time comparison of F77+MPI and CPP+HTA on Turing cluster :
 EP Benchmark (Class C) .. 106
4.24 Running time comparison of F77+MPI and CPP+HTA on Turing cluster:
 MG Benchmark (Class C) .. 107
4.25 Running time comparison of F77+MPI and CPP+HTA on Turing cluster:
 CG Benchmark (Class C) .. 109
4.26 Running time comparison of F77+MPI and CPP+HTA on Turing Cluster :
 FT Benchmark (Class C) .. 110
4.27 Running time comparison of C+MPI and CPP+HTA on Turing cluster: IS
 Benchmark (Class C) .. 112
4.28 Running time comparison of F77+MPI and CPP+HTA on Turing cluster:
 LU Benchmark (Class A) .. 113
4.29 Linecount of key sections of MATLAB+HTA, CPP+HTA and F77+ MPI
 programs ... 116

5.1 1-D Jacobi Relaxation a) Serial FORTRAN program b) MPI Program 120
5.2 Representing a relational data base system in APL2 using arrays of arrays. 123
5.3 HPF version of the 1-D Jacobi computation 125
5.4 ZPL version of the 1-D Jacobi computation 127
5.5 POOMA version of the 1-D Jacobi computation 130
5.6 Split-C version of a 1-D Jacobi-like computation 133
5.7 A declaration for a blocked/cyclic layout in both dimensions. Each block
 shows the number of the processor that owns it. Shown for n=8, m=9, r=4,
 c=3, where there are 12 processors. The Figure is reproduced from [23]. 134
1 FORTRAN+MPI implementation of the CG benchmark 145
2 Transpositions in FT benchmark in FORTRAN+MPI version : x_yz and xy_z
 transposition .. 146
3 Transpositions in FT benchmark in FORTRAN+MPI version (a) x_z trans-
 position (b) x_y transposition .. 147
4 FORTRAN+MPI implementation of the IS benchmark 148
Chapter 1

Introduction

1.1 Overview

Parallel computing has long been perceived as the solution to meet the demands of computational power and memory requirements. A typical strategy to improve performance is to combine several computers or processors which co-operate with each other in the execution of programs. This approach reduces the time to completion of tasks by increasing both computational power and main memory size. Traditionally, the need for writing parallel programs was mostly faced by scientists and engineers at academic and research institutions; a parallel computer is costly to be used for commodity applications, and only scientific computations demand huge memory and computational power, justifying the use of parallel computers.

Over the past few years, the domain of parallel processing is shifting to modern fields like data mining and web crawling. Additionally, it has become easy to convert a cluster of PCs into a powerful parallel computer easily using adequate software support. Large companies like Google execute several compute-intensive tasks in such clusters [24]. Furthermore, with the ubiquity of multi-core multiprocessors and the emergence of new architectures like cell processors [44], parallel programming is becoming commonplace. Soon, the mainstream computing industries will face the task of writing clean and efficient parallel programs either for their in-house tasks or for commercial softwares.

Parallel programming is a challenging task. Unlike a sequential program, a parallel program is executed by P processors; this imposes extra responsibility on a programmer to utilize them efficiently. Roughly, the programmer has to write extra code to perform
the following tasks: decomposition of the problem domain into P sub-domains, identifying P sub-tasks to operate on these domains, and synchronizing the sub-tasks. Though these appear to be conceptually simple, even experienced parallel programmers require tremendous efforts to accomplish them. Desire for writing portable codes, and codes tuned to exploit the memory hierarchy of a single computer, further adds burden to a programmer.

This dissertation introduces a new primitive data type which could be incorporated into conventional languages to facilitate parallel programming. This new data type facilitates the representation and manipulation of arrays that are organized as a hierarchy of tiles. These Hierarchically Tiled Arrays (HTAs) [12] [11] [5] are based on the ideas from the recursively blocked arrays arising in parallel linear algebra algorithms and sequential linear algebra algorithms with a high degree of locality. Our intention is to use HTAs to facilitate the expression of both parallelism and locality. However, the focus of this document is only parallel programming and not locality. (See [35] for a discussion on using HTAs for locality).

The main motivation behind the design of these Hierarchically Tiled Arrays or HTAs is that, for a wide range of problems, tiling has proved to be an effective mechanism for improving performance by enhancing locality [50] and parallelism [1, 21, 19, 43]. Our objective in this thesis is to make a first attempt in the identification of the set of operations on tiles needed to facilitate the development of parallel programs that are readable and efficient.

An HTA is an array partitioned into tiles. Each of the resulting tiles can in turn be tiled. Thus, HTAs are recursive data structures whose elements could either be HTAs or arrays or scalars. An HTA can be manipulated and operated as any conventional n-dimensional array of MATLAB [2] or FORTRAN 90 [15]. In addition, HTAs permit access to tiles and recursive tiles operations. An HTA allows access of an element or a collection of elements in any lower level of the hierarchy, and selection of a subset of tiles.

The top most level of an HTA typically is used to express data distribution, by mapping the tiles to different processors. HTAs provide a global address space view; remote and local elements can be accessed alike using uniform indexing, like in a global shared memory.
architecture. Parallelism stems from the application of vector style operations, that operates on the elements of a HTA. Any operation on a distributed HTA is implicitly parallel.

Communication operations in an HTA program are syntactically identifiable. For example, a binary operation on HTAs might involve communication if the two operand HTAs are distributed in different processors. Programmers can also explicitly initiate communication, for example, by assignments and transpositions. The programmer is required to specify only a sequence of operations some of which are implemented in parallel transparently by the underlying run time library.

HTA is a flexible and general data structure. The tiling structure of an HTA need not always be regular. That is, the size of each element of an HTA can vary. The tiling can also be heterogeneous. That is, an element can have more levels of tiling than its siblings. The irregular and heterogeneous HTAs can still be operated like normal HTAs.

The use of arrays as the basis for HTA is motivated by several reasons. Array is a natural way to represent matrices. Matrix computations are very common, not only in scientific applications, but also in other areas. For example, the problem of searching the web can be formulated as an eigenvalue problem [20], which can be solved using a series a matrix-vector multiplications. Matrix computations are very intensive and naturally benefit from parallelism. Arrays can be used to represent higher dimensional vectors or tensors, graphs, grids that arise in finite difference approximation and lists.

Since array is a collection of elements, an operation on an array is applied to each of its individual components. This expresses parallelism explicitly. An array based program can be parallelized, by assigning disjoint sections of arrays to each processors and operating on the local elements of a processor. For example, to add two matrices, the corresponding elements in each processor can be added locally. Moreover, arrays are ordered data types; an index function maps ordered tuples of integers to its elements. Using the index argument it is easy to determine if the access to an element is local or remote.

An alternative to array operations is the use of loops, but loops could contain complex
data dependences, that are not explicit to a programmer. A compiler cannot detect such dependences either, without a complex program analysis. To parallelize even a fully independent loop, the compiler has to use program analysis to deduce that the loop is indeed independent.

The use of data-parallel array operations to represent parallel computations on a distributed memory system is, of course, not new. It was the only mechanism to express parallelism in Illiac IV [8] and other SIMD systems and it has been used in a variety of languages including High Performance Fortran [1] and its variants [22]. Modern programming languages, like ZPL, also provide distributed arrays with high level array operations that are implicitly parallel. However, the notion of tiles in these programming languages is explicit only to the compiler and not to the programmer.

Our contribution lies in exposing the tiles to the programmer, and allow him to manipulate them explicitly using tile operations. It is appropriate to state that HTA is the first attempt towards a tile based programming language. Data structures like arrays of arrays (in ZPL) or cell arrays (in MATLAB), provide some capabilities of HTAs. However, these data structures either do not have any meaningful operations (e.g. in MATLAB) or have only partially defined operation set (e.g in ZPL). In contrast, this thesis defines an elaborate set of operations for HTAs and their implementation. These operations are used in the programs of the NAS parallel benchmark set. The central theme of this dissertation is to show that the explicit notion of tiles helps improve the readability of parallel programs at the same time preserving their efficiency.

1.2 Contributions of this thesis

The specific contributions of this dissertation can be summarized as follows:

- **Definition of the HTA data type and HTA Operations**: The HTA data type is introduced and formally defined in this document. Different kinds of tiling – regular, irregular, homogeneous and heterogeneous are described. The type of *data distribution*
and memory layout of the underlying data can be specified while constructing an HTA. Several operations that take into account the tiling and tiling hierarchy are introduced. These operations include assignment of HTAs, point wise operations, transpositions and higher order operations like scan and reduce. These operations are natural extensions of the primitive array operations. Both the scalar and the tile components of HTAs can be accessed. Several parameters and terminologies used in describing HTAs and HTA operations are also explained. The notion of conformability of two vectors of the FORTRAN-90 programming language is extended to HTAs. A framework for users to implement new operations is also presented.

- **Implementation for two languages**: The thesis shows how HTAs has been incorporated in two popular languages, C++ and MATLAB. These languages are widely different from each other; MATLAB is interpreted, dynamically typed programming language; C++ is a compiled, scalar based, statically typed language. A discussion on the implementation issues of HTA in these languages is presented. The operator overloading capability of these languages is used, whenever possible. Several compiler optimizations that can potentially benefit HTA programs have been identified. We have implemented scalable parallel algorithms for several HTA operations.

- **Evaluation of HTA programming model**: We use the parallel programs in the NAS benchmark suite [7] as our comparison standard. These programs are written in FORTRAN77 and MPI, using the SPMD programming model. HTA versions of these programs were developed by adapting them to use tiles. In developing these versions, we largely follow the same algorithm as that of the FORTRAN77 version. We evaluate the benefits of HTA programs by i) comparing the raw running time of the HTA programs in a cluster of up to 128 processors with that of FORTRAN77+MPI versions ii) comparing the source lines of code (SLOC) of the HTA programs with that of the FORTRAN77+MPI programs. We also show several code snippets of both the versions.
to analyze the expressivity of HTA programs compared against FORTRAN77+MPI programs.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 introduces the concept of Hierarchically Tiled Arrays. It also describes the semantics (both serial and parallel) of several HTA operations.

Chapter 3 describes the design of our library. The execution model is described. Several implementation details of both our MATLAB and C++ library are given. At the end of the chapter, few examples are presented.

Chapter 4 describes the NAS benchmark programs implemented using HTAs. The algorithm of each benchmark is described, along with several code snippets. Section 4.3 also describe the experimental evaluation of the benchmarks in several cluster environments.

Chapter 5 provides a description of the related research efforts. We discuss several parallel programming languages and models developed in the last two decades. We also present a brief overview of APL2, an array programming language.

Finally, we conclude in Chapter 6, where we also present several open research questions.
Chapter 2
Hierarchically Tiled Arrays and Operations

2.1 Hierarchically Tiled Arrays

In this chapter, we define hierarchically tiled arrays and its variants. We first present a classification of the different kinds of HTA. We also describe the various parameters of the HTA. These will be used repeatedly in the foregoing discussion. A description of all the HTA operations is provided with several illustrations. These operations are generalization of the array operations of FORTRAN 90 and MATLAB and have same semantics irrespective of whether the HTA is distributed or not.

The structure of the HTA determines the implementation of the operations and their effect on communication and parallel execution. The objective of this chapter is to provide a clear and consistent definition for all the HTA operations. In the absence of such a consistent definition, ambiguity might arise while applying certain operations. The semantics of HTA operations is important not only for the HTA programmer, but also for library writer and potential HTA compiler developers.

2.1.1 Classification

We define a tiled array as an array that is partitioned into sub-arrays in such a way that adjacent sub-arrays have the same size along the dimension of adjacency. Although the literature usually assumes that array tiles have the same shape (i.e., the same number of dimensions and size of each dimension), we do not require this in our definition because there are important cases where using tiles of different sizes is advantageous. Notice that our
Definition 1. Hierarchically Tiled Arrays (HTAs) are tiled arrays where each tile is either a scalar or an array of scalars or a hierarchically tiled array.

Definition 2. An (HTA) is regular if all the tiles at any given level have the same size. Otherwise, the HTA is said to be irregular.

Figure 2.1(a) shows an example of an HTA, in which all the tiles are of same size. Figure 2.1(b) shows an HTA which contains tiles of different size. The size along the dimension of adjacency is still the same for all the adjacent tiles. A "randomly" partitioned arrays such as that shown in Figure 2.2 do not fall under our definition of tiled arrays.
In general, an HTA can have more than one level of tiling. The size of the tiles at each level can be different. It should be noted that the definition of regularity is based on the size of tiles at a given level. Thus, a regular HTA might have different size of tiles at different levels. Moreover, a regular HTA requires that each level of an HTA be regular. If one of the levels of an HTA is not regular, then the HTA is irregular.

Definition 3. An HTA is **homogeneous** if the number of levels of tiling is the same for all the tiles, and the position of the partitions are the same for all the adjacent tiles, along the dimension of adjacency. If these cases are not met, then the HTA is said to be heterogeneous.

The example HTAs in Figure 2.1 are homogeneous. An example of heterogeneous HTA
is shown in Figure 2.4(a). The HTA is of height two. The dashed lines represent the first level of tiling, while the dotted lines represent the second level of tiling. There are three mismatches in the Figure. One is between outermost tile (0, 1), which is only partitioned along one direction, and tile (0, 0) which is partitioned along both the directions. The other two mismatches are between outermost tiles (0, 0) and (1,0) and between outermost tiles (1, 0), and (1, 1). Figure 2.4(b) shows another example of heterogeneous HTA, where the tiles (1, 0) and (1, 1) have one more level of tiling than the other tiles.

2.1.2 Symbols, Notations and Terminologies

Figure 2.5 represents the HTA in the form of a tree called HTA Tree. The root of the HTA tree represents the top level of the HTA, while the penultimate level of the tree represents the bottom level of tiling. We refer to them as leaf tiles. Scalars form the leaves of the HTA tree.

Definition 4. The height of an HTA is the length of the longest path from root to leaf tiles in its HTA tree.

For example, the height of the HTA in Figure 2.1(a) is one, while that in Figure 2.3 is two. For an heterogeneous HTA, the number of levels is the maximum height of the HTA tree. Thus, the height of the HTA in Figure 2.4(b) is also two. Henceforth, we denote an HTA h of height l as h^l.

As a convention, we start the numbering of levels from root to leaves, starting with zero.
Thus, the root of the HTA is at level zero, while the leaf tiles have the level equal to the height of the tree. To simplify our explanation, we include three variables SCALAR_LEVEL, LEAF_LEVEL and ROOT_LEVEL to indicate the level of the scalars, leaves and root respectively.

Definition 5. We call the components of an HTA an element. An element of an HTA h^l is an HTA h^{l-1} or an array of scalars or a scalar.

We also use the following four terminologies that are not related to HTA, but are used in the HTA construction and operations: tuple, range, region and dist.

A **tuple** is an n-dimensional index value from \mathbb{Z}^n. We represent a tuple as $i_0, i_1, ..., i_{n-1}$.

A **range** is a range of integers in the closed interval $[low, end]$, with optional step. A range is represented as $low:high[:\text{step}]$.

A **region** is an n-dimensional rectangular index space spanned by n ranges. A region of n dimensions is represented by a list of n comma separated ranges (e.g. $1:4:1,1:8:1$). The size of a region is given by an n-tuple $(d_0, d_1, ..., d_{n-1})$, where each d_i is the number of elements in the i^{th} range. A n-dimensional region of size $(d_0, d_1, ..., d_{n-1})$ has $d_0 \times d_1 \times \ldots \times d_{n-1}$ index points: $\{(i_0, i_1, ..., i_{n-1}), \forall i_0 = 0, ..., d_0 - 1, \forall i_1 = 0, ..., d_1 - 1, ..., \forall i_{n-1} = 0, ..., d_{n-1} - 1\}$. For simplicity, we refer to the set of index points as $i_0, i_1, ..., i_{n-1}$, with an implicit assumption of \forall for each of the index symbols. We refer to the set of index points of the region as the **index space**. For example, the region $1:4:2,1:4:2$, has the index space, $(1,1), (1,3), (3,1), (3,3)$.

The total number of elements in a region is known as its cardinality. For example, the cardinality of the region $1:4,1:4$ is 16. We call the size of the region and the dimension of the region collectively as its shape. Shape can be viewed as a logical structure with two values, the dimension and the size of the region. For example, the shape of $1:4:2,1:8:2$ is $\{2, [2,4]\}$.

dist of type dist-type, is a function that maps each index point of a region to different processors. **dist** is represented as an n-dimensional array. The value of the dist at position $(i_0, i_1, ..., i_{n-1})$ corresponds to the processor numbers to which the index position
Figure 2.6: Illustration of (a) tuple, range, region and (b) dist

\((i_0, i_1, \ldots, i_{n-1}) \) of the region is mapped. The values are calculated according to dist-type. Examples of dist-type are row-cyclic, column-cyclic and double-cyclic.

For simplicity, we use several syntactic short cuts. The open range (\(: \)), refers to the entire range of an array. Open range by itself does not have any value, but when used in a context of an array or HTA (e.g. \(a[:\] \)), they refer to the entire range spanned by the corresponding dimension of the array. That is, \(a[:\] \) is the syntactic short cut for \(a[lb_0 : ub_0 : 1] \). : can be used in multiple positions of the array access operations. For example, \(a[:\; :) \) refers to \(a[lb_0 : ub_0, lb_1 : ub_1] \), where \(lb_i \) and \(ub_i \) are lower and upper bound of dimension \(i \). For the discussions in this chapter, we also assume 0-origin indexing for all the elements in an array or an HTA.

Figure 2.6 illustrates these 4 objects graphically. In the Figure 2.6(a), the region is a space spanned by the ranges \((0:3, 0:2) \). Thus, the region is a 2-dimensional region of size \((4,3) \). Each point in the region is numbered in lexicographic order starting with the top-left corner and traversing in row major order. The region is distributed using row-cyclic distribution on 12 processors. The resulting distribution is shown in the Figure 2.6(b).
Definition 6. The rank of an HTA or an array is the number of dimensions of the region of the HTA or array. Rank of a scalar is one.

The rank of an element is lesser than or equal to the rank of its parent. If it is of lower rank, then dummy singleton dimensions (i.e. dimensions with size = 1) are added (hypothetically) to the make the rank equal. Similar assumption is made for the case when the parent is of lower rank than its elements.

2.1.3 Construction of HTAs

Bottom–up construction

A simple way to obtain homogeneous HTAs is to tile the matrix at the lowest level of the hierarchy first and then proceed recursively by tiling the resulting tiles. This bottom–up process, illustrated in Fig. 2.7, always generates homogeneous HTAs. For the bottom up approach we define the function \(hta \) that accepts as parameters an \(m \)-dimensional HTA or an unpartitioned array and \(m \) vectors, \(p_1, p_2, \ldots, p_m \), (one for each dimension of the HTA) and returns an HTA defined by partitioning dimension \(i \) of the array right after every \(p_i(k)^{th} \) element along the \(i^{th} \) dimension. For example, given a \((10, 12)\) matrix \(D \), the statements

\[
\begin{align*}
C &= hta(D, [1,3,5,7],[2,5,8]); \\
B &= hta(C, [2],[0,1,2]); \\
A &= hta(B, [0],[0]);
\end{align*}
\] (2.1)

will generate the three HTAs shown in Fig. 2.7.
h = topdown(2);

function h = topdown (level)
 if (level == LEAF_LEVEL)
 h = rand(4,4);
 else
 h = hta(2,2);
 for i = 1:2
 for j = 1:2
 h(i, j) = topdown (level-1);
 end
 end
 end

Figure 2.8: Top–down HTA construction (a MATLAB like pseudo-code)

Top–down construction

We can alternatively start from the top and successively refine each partition. This top down approach is more flexible than the bottom up approach in that it enables the generation of both homogeneous and heterogeneous HTAs. HTAs are created top down using recursion. First, an empty HTA is created. To create an empty HTA the following constructor is used:

\[\text{hta}(\text{size}_0, \text{size}_1, \ldots, \text{size}_{d-1}) \]

In the above constructor, the arguments represent the size along each dimension of the top level of the HTA. After the empty top level HTA is created, each of its tiles can be initialized to contain either an HTA or a matrix. Before presenting an example of top down creation of HTAs, we need to describe how to address the tiles in an HTA. The outermost tiles of an HTA can be addressed using subscripts enclosed within parenthesis. An additional set of subscript should be added for each level of the HTA that needs to be addressed. More details on selection operation will be provided later. For now, the reader should only be informed that ‘()’ selects a tile at a given index position. A MATLAB like psuedo-code of the top down creation of an HTA of Figure 2.3 is shown in the Figure 2.8.

Bottom up creation always generates an homogeneous HTA. It is useful to convert existing arrays to HTAs. A drawback of the bottom up approach is that it creates intermediate HTAs which are in most cases unnecessary. A compiler or a garbage collector could have these temporary HTAs deleted after their only use in the creation sequence or could avoid their
creation altogether by, for example, reversing the creation process into a top down form.

Top down creation is preferred for parallel programs, as it does not require the entire array to be allocated before the HTA is created; each processor can allocate only the tiles it owns. Moreover, top down creation allows both heterogeneous and homogeneous HTAs to be built in a similar fashion.

Special HTA constructors

Since homogeneous HTAs are the most widely used HTAs, an HTA constructor that constructs any level homogeneous HTA is also provided. This constructor accepts only the size of the tiles at each level of the hierarchy:

\[C = \text{hta} \left(\left(d_0, d_1, \ldots, d_{d-1} \right)^0, \ldots, \left(d_0, d_1, \ldots, d_{d-1} \right)^l \right) \]

Each of the argument in the above constructor is a tuple of size \(d \). Argument \(i \) specifies the size of the tiles at level \(i \).

2.2 HTA Operations

A fundamental idea in the design of array languages is that any operation defined on scalars can be extended to apply element-by-element to an array of scalars [37]. We extend this concept to HTAs, by extending the operations defined on arrays of scalars to arrays of tiles. The operations defined on arrays of scalars are extended to operate recursively on each of the element of an HTA. The result of the operations depends on the shape and the tiling hierarchy of the HTA and the level of the application of the operation. In the following sections, we define the set of operations defined for HTAs. Readers are advised that most of the operations are defined only for homogeneous HTAs. Extending the semantics of the operations to heterogeneous HTAs is left as a future work.
2.2.1 Query Operations

The simplest HTA operations are those returning the basic information about an HTA, namely its region, height and level. region returns the region that defines the HTA. region in turn has several query operations like rank (that returns the number of dimensions) and size (that returns the size of the region). For simplicity, we refer to the size or the rank of the region of the HTA as the size or the dimension of the HTA itself.

2.2.2 Element Access operations

Components of an HTA could be either an HTA, an array or a scalar. Accordingly, we have two modes of selection operation. One to choose a given tile or a set of tiles and another to chose a given scalar or a set of scalars. We will use '()' for the former and '[]' for the latter. Henceforth we will call the former a tile access operation and the latter a scalar access operation.

To select a single element, a tuple of integers is used. This tuple must be a vector of size equal to the rank of the HTA and has the index value for each dimension of the HTA tile to be selected. Figure 2.9 shows the application of '()' to an HTA with a tuple. The HTA in the figure has two levels of tiling; the dashed lines represent the first level and the dotted, the second level. The operation h(1,0) selects the tile at the position (1,0). The

Figure 2.9: HTA Accessing Operation
result is a HTA of height \(l - 1 \), where \(l \) is the height of the original HTA.

A region can also be used in the \((\)\) operation. Selection of a region from an HTA results in another HTA of same level, but shape of that of the region. In the example, \(h(0, 0:1) \) will select the entire first row tiles from \(h \). Thus, the result in the example is a HTA of height \(l \) and shape \(\{2, (1, 2)\} \).

The operation \([\]\) selects a given scalar or a region of scalars from the HTA like a normal array. The indices used in this selection are global. That is, the indices do not take into account the tiling hierarchy and the HTA is just treated as a normal array with the underlying scalars being its elements. In the given example, \(h[4,3] \) selects the scalar value from that position.

The scalar selection operation can be applied to any level of an HTA. For example, other ways to access the same scalar are \(h(1,0)[0,3] \) and \(h(1,0)(0,1)[0,1] \). Here, one or more '(' and '[]' are chained together. Such chaining of '(' is allowed to a maximum length equal to the height of the HTA. The last of such a chain can be a '[]' operator. Each '(' or '[]' operation is applied locally to each of the tiles selected by the preceding '(' operation. Since operator '(' can be chained we also call it hierarchical access operation to distinguish from operator [], which can not be chained. We call operator [] a flat operator. The process of applying [] to an HTA is known as flattening. Flattening converts an HTA in to a normal flat array without any tiling hierarchy.

The access operations can also take as its input a vector of subscripts \(v_0, v_1, ...v_{n-1} \), one each for each dimension of the HTA. The result is an HTA of size \((\text{length}(v_0), ...\text{length}(v_{n-1}))\). Each element in the HTA is selected using an index space in the Cartesian product set of \(v_0, v_1, ..v_{n-1} \). For example, if \(h \) is an HTA of size \((5, 4)\), the statement

\[
h([1, 3], [1, 2])
\]

selects the elements at the following positions (in the same order): \((1, 1), (1, 2), (3, 1), (3, 2)\). This the most general HTA access. The access operations that use region and tuple are specific instances of this operation.
A special case of access operation is where the input can be a matrix of boolean values. Such a matrix should be of same rank and size as that of the HTA h. The result of the selection operation using such a boolean matrix, is also an HTA of same shape, with the tiles corresponding to the \textit{false} positions of the boolean matrix being empty. Figure 2.10(a) shows an example of selecting a \textit{diagonal} of an hta h using a boolean matrix. Figure 2.10(b) shows an example of selecting a \textit{upper triangular section} from a HTA.

\subsection*{2.2.3 Point-wise operations}

This set of operations deals with those operations that affect each of the scalar values of the HTA. The outcome of these operations do not depend on the \textit{order} of application of the operations to the individual elements of the HTA. That is, the elements can be visited in any iteration order. However, the order should be the same for all the operand HTAs.
struct plus {
 double operator() (const double a,
 const double b) {
 return a+b;
 }
}

Primitive operations

All the HTA operations are described in terms of primitive scalar operations. Example of the primitive operations is any arithmetic operation. We use STL-like functor objects for describing the primitive operators as shown in the Figure 2.2.3. Here, `plus` is the scalar binary addition operation. For simplicity, we use symbols like `+`, `-`, `*`, `/` etc., for well known binary operations like addition, subtraction, multiplication, division, etc.,

Unary Operations

An unary operation on an HTA can be generalized as:

\[
r^l = \text{op}(h^l) \equiv r(i_0, i_1, ... i_{n-1})^{l-1} = \text{op}(h(i_0, i_1, ... i_{n-1})^{l-1})
\]

Examples of unary operations are unary minus, logical negation etc.

Binary Operations

HTAs can be operated using binary operations, like addition. Binary operations require their operands to be conformable. This is required to provide a consistent definition of operations without any ambiguity. If two operand HTAs have same height and the same shape at every level, then corresponding scalar elements can be operated. Ambiguity arises when shape and height are not identical. For example, Figure 2.11(a) shows a case of ambiguity in operating two HTAs. Here a HTA of height two is added to an HTA of height one. There are 2 possibilities - the HTA of height one can be replicated and operated with each of the tiles of the other HTA (case (i)) or each tile of the HTA of height one can be added individually to each of the tiles of the other HTA (case (ii)). Validity of operations is another reason for
Figure 2.11: The need for conformability a) Ambiguity in HTA operations b) Illegal HTA operations

enforcing conformability. In Figure 2.11(b), an HTA of size (1, 4) is added to an HTA of size (1, 2). The operation is invalid.

The conformability of HTAs is derived from the notion of conformability of arrays. An array is always conformable with a scalar. That is, the scalar can be operated with each of the scalars of the array. An array is also conformable with an array of identical shape. This implies that the rank (number of dimensions) of the array should match, and the size of each dimension should match. HTA conformability is a generalization of this, extended to multiple levels. For simplicity, a scalar is regarded as an array with one element and an array is regarded as an HTA with one tile. There are the following 3 cases for HTA conformability and binary operations.

- (I) HTAs of same height and same shape - Two HTAs of same height can be operated, as long as they have same shape at each level. In such a case, each of the tiles of the HTAs are operated and the conformability is applied recursively. Finally, the scalar
elements of the HTAs are operated.

\[r^l = h^l \odot v^l \equiv r(i_0, i_1..i_{n-1})^{l-1} = h(i_0, i_1..i_{n-1})^{l-1} \odot v(i_0, i_1..i_{n-1})^{l-1} \]

- (II) **HTAs of same height and different shape** - Two HTAs with the same height, but different shape, can be operated iff the region of one of the HTAs has cardinality one. In this case, the HTA with the region of cardinality one is operated with each of the tiles of the other HTA, recursively. Logically, the single element HTA is promoted to an HTA of same shape as that of the other HTA by (logical) replication. We refer to this as **argument expansion**.

\[
\begin{align*}
 r^l = h^l \odot u^l & \equiv \begin{cases}
 r(i_0, i_1..i_{n-1})^{l-1} = h(i_0, i_1..i_{n-1})^{l-1} \odot u(0)^{l-1}, & \text{if card}(u) = 1 \\
 r(i_0, i_1..i_{n-1})^{l-1} = h(i_0, i_1..i_{n-1})^{l-1} \odot u(i_0, i_1..i_{n-1})^{l-1}, & \text{otherwise}
 \end{cases}
\end{align*}
\]

- (III) **HTAs of different height** - Two HTAs of different height, \(h^l \) and \(v^m \), with \(l > m \), are conformable iff the HTA of lower-level is recursively conformable with each of the tiles of the HTA of higher level. That is, the HTA of level \(m \) is (logically) promoted to an HTA of the level \(l \), by wrapping the original HTA with dummy singleton levels of tiling. We refer to this as **boxing**. This is followed by the application of rule II. Boxing always precedes argument expansion.

\[
\begin{align*}
 r^l = h^l \odot u^m & \equiv \begin{cases}
 r(i_0, i_1..i_{n-1})^{l-1} = h(i_0, i_1..i_{n-1})^{l-1} \odot v^m, & \text{if } l > m \\
 r^l = h^l \odot v^l, & \text{otherwise}
 \end{cases}
\end{align*}
\]

(2.2)

Figure 2.12 illustrates the above cases graphically. Figure 2.12(b) shows the argument expansion, where an HTA with one element is logically promoted to the same shape as that of the LHS operand. Figure 2.12(c) shows boxing, where an HTA of height one is logically promoted to an HTA of height two by adding dummy tiling of size one along each dimension.
This is followed by the application of argument expansion and rule (II).

Algorithm 1 lists the algorithm for the conformability check during a binary operation. The algorithm implements the 3 cases of HTA binary operation discussed earlier. In the Algorithm, $d_0,..d_{n-1}$ represent the size of the each dimension of the region of the HTA. Here we assume all the HTAs have same region (i.e., same index space) also, apart from shape. This is not a necessary condition. For HTAs whose regions have different index spaces, we should iterate each HTA using the iterator of its region.

Algorithm 2 lists the sequence of steps performed by a binary operation, before it invokes the conformability check. The Algorithm 2 interchanges the argument to Algorithm 1 such that its argument h has height and number of elements larger than or equal to v. op.scalar is the final scalar routine that implements the op for scalar values.

The conformability check is applied before every point-wise operations and assignments. An operation between two non conformable HTAs is illegal. The programmer is responsible for creating conformable HTAs before operating them. Creation of the HTA that results after the binary operation is itself a binary operation and should be performed using the same algorithm as above.
Algorithm 1 binary_op (op, r, h, v)

1: h and v are left and right HTAs of a binary operation. r is the result HTA.
2: if height(h) = height(v) then
3: if region(h) = region(v) then
4: (case I)
5: for i_0 = 0 to d_0 - 1 do
6: for i_1 = 0 to d_1 - 1 do
7: :
8: for i_{n-1} = 0 to d_{n-1} - 1 do
9: op (r(i_0, i_1, ..., i_{n-1}), h(i_0, i_1, ..., i_{n-1}), v(i_0, i_1, ..., i_{n-1}))
10: end for
11: end for
12: end for
13: else
14: (case II)
15: for i_0 = 0 to d_0 - 1 do
16: for i_1 = 0 to d_1 - 1 do
17: :
18: for i_{n-1} = 0 to d_{n-1} - 1 do
19: op (r(i_0, i_1, ..., i_{n-1}), h(i_0, i_1, ..., i_{n-1}), v(i_{n-1}))
20: end for
21: end for
22: end if
23: else
24: (case III)
25: for i_0 = 0 to d_0 - 1 do
26: for i_1 = 0 to d_1 - 1 do
27: :
28: for i_{n-1} = 0 to d_{n-1} - 1 do
29: op (r(i_0, i_1, ..., i_{n-1}), h(i_0, i_1, ..., i_{n-1}), v)
30: end for
31: end for
32: end if
33: end if
Algorithm 2 \texttt{op} (r, h, v)

1: \textit{h} and \textit{v} are left and right operands of a binary expression. \textit{r} is the result (It is assumed to be pre-allocated).
2: \textbf{if} \textit{isFunctionScalar(h)} AND \textit{isFunctionScalar(v)} \textbf{then}
3: \hspace{1em} \textit{r} = \texttt{op	extunderscore scalar}(h, v)
4: \textbf{else if} \textit{height(v)} > \textit{height(h)} \textbf{then}
5: \hspace{1em} \texttt{binary	extunderscore op}(\texttt{op}, r, v, h);
6: \textbf{else if} \textit{size(h)} == 1 \textbf{then}
7: \hspace{1em} \texttt{binary	extunderscore op}(\texttt{op}, r, v, h)
8: \textbf{else}
9: \hspace{1em} (default case)
10: \hspace{1em} \texttt{binary	extunderscore op}(\texttt{op}, r, h, v)
11: \textbf{end if}

Assignments

In this section, we generalize the semantics of HTA assignment operations. Figure 2.13 shows various flavors of assignments. Figure 2.13(a) shows the case where all the values of an HTA are initialized to a constant value. An HTA \textit{v} can be assigned to another HTA \textit{h}, provided they are conformable with respect to each other. The conformability rule is the same as that of binary operations, discussed in section 2.2.3. Figure 2.13(b) shows this case of assignment, where the corresponding tiles of the hta \textit{v} are assigned to those of \textit{h}, recursively.

Figure 2.13(c) shows the case where a set of tiles of the right-hand side HTA is assigned to another set of the tiles on the left hand side. In Figure 2.13(d), a sub-region of scalars from one sub-region of tiles is assigned to another subregion of scalars in a different subregion of tiles.

We follow the FORTRAN90 convention of evaluating the right hand side fully, before assigning it to the left hand side HTA. That is, in an assignment statement of the form

\[h(2:10, :) = h(2:10, :) / h(3, 3) \]

the right hand side expression is fully evaluated and the result stored in a temporary. This is followed by the assignment to the left hand side.
2.2.4 Collective Operations

This class of operations includes all the operations that do not change the values of the scalar elements of the HTA, but their positions in the HTA. They also alter the positions of the elements in the other levels of the HTA. Thus, these operations change the structure of the HTA.
Transposition

The transposition of a matrix, most commonly written as A^T, is the matrix obtained by exchanging A’s row and column. Specifically, this is diagonal transposition. Other forms of transpositions are transpositions along the vertical and horizontal medians of the matrix. For simplicity, only diagonal transposition is discussed in this section.

The transposition operation is extended to HTAs and they work for HTAs with any number of dimensions. Like any other HTA operation, the meaning of transposition is dependent on the structure of the HTA. The HTA transposition operation for a two dimensional case is given by:

$$v^l = transpose(h^l) \equiv v(i_0, i_1)^{l-1} = \begin{cases} transpose(h(i_1, i_0)^{l-1}) & \text{if } l > \text{LEAF}_\text{LEVEL} \\ h(i_1, i_0) & \text{otherwise} \end{cases}$$

Figure 2.14: HTA transpose operation a) with tlevel = 0 on an HTA of height 1 b) with tlevel =1 on an HTA of height 2.
For an n-dimensional case, the transpose operation takes as it input x and y, the two dimensions to be transposed. Figure 2.14-(a) shows the transposition of all the levels of the input HTA. The result is the global transposition of the underlying scalars. The transposition starts at the top-level of the HTA, transposes all the tiles at this level and recursively transposes each of the tiles locally until the scalars are reached. Algorithm 3, lists the HTA transposition algorithm. In the algorithm, swap of an index \((i_0, i_1, ..., i_{n-1})\) along x and y results in a new index obtained by swapping the values of \(i_x\) and \(i_y\).

<table>
<thead>
<tr>
<th>Algorithm 3 transpose (r, h, x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: (h) and (v) are left and right operands of a binary expression. (r) is the result (It is assumed to be pre-allocated).</td>
</tr>
<tr>
<td>2: for (i_0 = 0) to (d_0 - 1) do</td>
</tr>
<tr>
<td>3: (\text{for } i_1 = 0) to (d_1 - 1) do</td>
</tr>
<tr>
<td>4: (\text{end for})</td>
</tr>
<tr>
<td>5: (\text{end for})</td>
</tr>
<tr>
<td>6: (r(\text{swap}((i_0, i_1, ..., i_{n-1}), x, y), x, y) = \text{transpose}(h(i_0, i_1, ..., i_{n-1}), x, y))</td>
</tr>
</tbody>
</table>

The HTA transposition operation also takes a \(t\) level as its input, whose default value is zero. For a non-zero \(t\) level value, the transposition will start from that level. For example, for an HTA of height two, with a \(t\) level of 1, the output of transpose is shown in the Figure 2.14-(b). In the example, the HTA is of height two. The top level of the HTA has a region of size \((1, 2)\). The second level has a region of size \((4, 3)\). The transposition operation transposes all the elements starting from the second level, thus leading to the output shown at the end of transposition.

As a special case, for a HTA of height 1 and \(t\) level = 1, we define an operation named dtranspose (an acronym for data transposition). Intuitively, dtranspose transposes the underlying scalars of the HTA, without modifying the structure of the top-level of the HTA and hence the name.

Earlier transposition operations are dimension transpositions. That is, the transposition
is specified using two dimensions that need to be swapped. It is also possible to specify two levels \((i, j)\) of the HTA hierarchy that need to be swapped – the \(j\)th element of \(i\)th element is swapped with the \(i\)th element of the \(j\)th element. This is known as \texttt{htranspose}. The most common usage of \texttt{htranspose} is to transpose the top two levels of the HTA hierarchy:

\[
v^j = \texttt{htranspose}(h^i) \equiv v(i_0)(j_0)^{l-2} = v(j_0)(i_0)^{l-2}
\]

Figure 2.15 graphically illustrates \texttt{htranspose}. \texttt{htranspose} requires the number of elements in the top level to match that of the succeeding level.

Permutation

A permutation operation produces a reordering of the set without either repetition or suppression of elements. For example, if \(k = (2, 3, 4, 5, 1)\) \(A = (e, a, r, t, h)\), then \(\texttt{permute}(A, k) = B = (h, e, a, r, t)\). \(k\) is known as \textit{permutation vector}. Permutation is more general than transposition; transposition exactly swaps two values, while permutation might rearrange the elements completely.

Array permutations can be realized by using the selection operation that takes the per-
mutation vector as its input. For example, the above permutation can be realized by:

\[B(k) = A; \text{ or } B = A(i), \text{ where } i = (5, 1, 2, 3, 4); \]

The permutation operation is extended to HTAs, where in the tiles can be permuted using the permutation vector and the selection operation. Figure 2.16-(a) shows an example of permuting the top level tiles of an HTA.

Each of the levels of the HTA can be permuted independent of the other by chaining several '(' and providing a permutation vector for each selection operation.

Permutation is a very general operation, and can be used to realize several other common operations. As stated earlier, transposition is a special case of permutation. Another example is circular shift, which shifts the elements of an HTA in a given direction by given offset. This is shown in Figure 2.16-(b). As a syntactic short cut, the circular shift is generalized as another operation. This operation, \texttt{circshift}, takes as its input the \textit{direction vector} (d), where \texttt{size(d) = rank(h)}. Each element \(d_i \) of the direction vector specifies the offset (+x or -x) of shift for the dimension \(i \).
Replication

Replication of elements of a matrix is useful in certain applications. The `repmat` function, inspired from MATLAB, accomplishes this. In MATLAB, the statement \(B = \text{repmat}(A, [m, n]) \), where \(A \) is an array with region of size \((d_0, d_1) \), creates a large matrix \(B \) consisting of an \(m \)-by-\(n \) tiling of copies of \(A \). The size of \(B \) is \((d_0 \times m, d_1 \times n) \). \(B = \text{repmat}(A, [m \ n \ p \ldots]) \), where \(A \) is an array with region of size \((d_0, d_1, \ldots, d_{n-1}) \), produces a multidimensional array \(B \) composed of copies of \(A \). The size of \(B \) is \((d_0 \times m, d_1 \times n, d_2 \times p, \ldots) \).

The `repmat` function is extended to HTAs, where in they replicate the tiles. Like other operations, `repmat` is also parameterized by recursion level, whose default value is `LEAF_LEVEL`. Figure 2.17(a) shows the replication of the top level tiles of a HTA of height one. In the Figure, the recursion level for `repmat` is zero (root). The result is an HTA that consists of \((2, 2)\) copies of the original \((2, 2)\) HTA. Thus, the result HTA is a \((4, 4)\) HTA.

2.2.5 Higher-order Operators

HTAs can be operated with the following higher-order operators: `map`, `reduce` and `scan`. Higher-order operators are parametrized with primitive operators and define the strategy and result format resulting from the application of primitive operators to the tiles or scalar values in an HTA. Using these higher-order operations it is possible to obtain new HTA operations like summation or sorting of an HTA.

Map

`map` applies a function \(f \) to each one of the elements of the input HTA at a given level. The syntax of `map` is shown in Figure 2.18, along with examples. In the figure, \(h = ((n, m), \ldots, (x, y)) \) indicates the region of each level of the HTA \(h \) from leaf to root. `map` takes as input an `op`, and a level `rlevel`. The `rlevel` specifies the level of the HTA at which `op` will be invoked. The default value of `rlevel` is `SCALAR_LEVEL`. Invocation of `map` on HTA \(h \), results in the map function being invoked on the top level of \(h \). If its elements
are tiles themselves, then the function is invoked recursively on each of their elements until $level = SCALAR _LEVEL$ or $level = rlevel$. The op is invoked over the elements of the HTA at that level. If the element is an array, a function that takes array as its input is invoked. If the element is an HTA, then a function that takes HTA at its input is invoked, if available. Otherwise, it is cast into an array (by flattening) and the function that takes an array as its input is invoked. If no such function exists, then an exception should be thrown.

The order of iteration in the map does not affect the result of the computation. The op can be any primitive function or a reduce or a scan (discussed in the following sections). Though not shown in the figure, map can also take one or more HTAs as its argument, along with op. The argument HTAs should have the same shape until $level = rlevel$ and should be of same height.

map forms the basis for several point-wise HTA operations. For example, scalar addition of two HTAs, $h1$ and $h2$ (with same region and same height), is implemented using map as follows: $r = map(plus, h1, h2);$
reduce (op, h[, dim, [rlevel]])

![Diagram of HTA reduce operator](image)

and the level of its application \((rlevel)\). In the examples shown in Figure 2.18, the output of the \(map\) operation is the same as the input as the \(op\) does not change the structure of its input data in both the cases and the \(rlevel\) is either \(SCALAR_LEVEL\) or \(LEAF_LEVEL\). In case (a), the \(op\) is the trigonometric \(sine\) function \((\sin)\), and \(level\) is \(SCALAR_LEVEL\). That is, the \(sin\) function is applied to each of the scalar values of the input HTA. In case (b), the \(op\) is the Fourier transform function and the \(rlevel\) is \(LEAF_LEVEL\). Fourier transform is a vector function. Application of Fourier transform on an array results in the Fourier transform of each of its vector along the dimension \(dim\). The dimension is specified as an argument to the \(ft\) function.

Reduce

An operation which is applied to all components of a vector to produce a scalar is called a \(reduction\). For example, \(reduce(+, x)\) is \(sum\) and \(reduce(\times, x)\) is \(product\) of a vector \(x\). The reduction operation can be generalized for \(n\)-dimensional arrays, resulting in an \((n-1)\)-dimensional arrays.
The reduction operation of arrays is extended to HTAs in the form of the reduce operation. Like map, reduce is also a recursive operation. The reduce will be applied to each level recursively until the scalars are reached. Reduction on scalars is an identity function that returns itself. After this, the reverse process of combining the values is performed. The combining function is the \(op \). The number of dimensions in the of elements in the result will be reduced by one for all the levels. If the dimension argument is not specified, the reduction occurs in all the dimension finally resulting in a scalar as the output. We call such a reduction full reduction as opposed to partial reduction along a given dimension. Moreover, the HTA reductions are parameterized by level of recursion. This controls the height to which the reduction has to proceed. In general, the reduction on an HTA of level \(l \) (with recursion level being \(SCALAR_LEVEL \)) and an operator \(op \) can be expressed as follows:

\[
v^l = \text{reduce}(op, h^l, 0) \equiv v(0, i_1, ..., i_{n-1})^{l-1} = \begin{cases}
\text{reduce}(op, h(0, i_1...i_{n-1})^{l-1}, 0)op ... & \\
\text{reduce}(op, h(d_0 - 1, ...i_{n-1})^{l-1}, 0) & (2.3)
\end{cases}
\]

In the above equation, it is assumed that the reduction is performed along the dimension 0. Reductions along other dimensions are analogous. The syntax of the HTA reduce operation is:

\[
\text{reduce}(op, h, [, dim [[,]rlevel]])
\]

where,

- \(op \): This is any associative operation from the set of primitive operations. Examples are scalar addition, array addition, HTA addition, etc.

- \(dim \): This is the dimension of reduction. All the levels of the HTA is reduced along the same dimension.

- \(rlevel \): This is the recursion level of the reduction. Default value is \(SCALAR_LEVEL \).
Figure 2.19 illustrates three kinds of reduction on an HTA of rank 2, level one and size $(2, 2)$. For simplicity, in all the cases we use plus (scalar addition) as the operator and the dimension of the reduction is set to one. In the first case, the reduction results in an HTA of size $(2, 1)$. The reduction is applied to each tile of the HTA, and then the results are added along the dimension one to produce the final result.

The second case is an example of stopping the reduction at a level other than the leaf. In this case, the recursion is stopped at level $= 0$ (ROOT_LEVEL). Only the top level tiles are added along dim, resulting in a HTA of size $(2, 1)$, whose tiles are of size $(2, 2)$. A variety of reductions can be obtained by controlling the above parameters.

Scan

scan computes the reductions of all the prefixes of a vector. For example, if the vector $v = (1, 2, 3, 4, 5)$, then $\text{scan}(+, v) = (1, 3, 6, 10, 15)$. A similar scan is defined for HTAs also. The syntax is very similar to that of reduce.

The syntax of the HTA scan operation is:

\[
\text{scan (op, h, [, dim [,rlevel]])}
\]

where,

- op: This is any primitive associative operation.

- dim: This is the dimension of scan.

- rlevel: This is the recursion level of the reduction. Default value is SCALAR_LEVEL.

Figure 2.20 lists several examples of the HTA scan operation. In the example, the HTA is of two levels and size $(1, 3)$. Each of its tile are a HTA of height one and size $(1, 2)$. The leaves are of size $(1, 2)$. For simplicity, we use the plus as our scan operation and one as the dimension of scan. In the first case, the scan is invoked with rlevel of 2. So, the operation proceeds till the scalar leaf elements. In the second case, the rlevel is 0 (root). Thus, all the top level tiles are added cumulatively.
2.2.6 Composing of operations

map can take any valid scalar, array or HTA operations as its input op. For instance, it is also possible to use reduce as an argument to map operators. This will apply the reduction on a per-tile basis. The level of the tile is chosen by the rlevel argument of the map. An example is shown in Figure 2.21. Like reduce, scan can also be passed as an argument to map. An
Table 2.1: Summary of HTA operations.

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Shape of output</th>
<th>Input Operator (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>point-wise</td>
<td>Unary</td>
<td>Shape is unchanged</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>Binary</td>
<td>depends on the inputs</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>Assignment</td>
<td>Shape is unchanged</td>
<td>nil</td>
</tr>
<tr>
<td>collective</td>
<td>transpose</td>
<td>Transposed shape of the input HTA</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>transpose</td>
<td>Shape is unchanged</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>Permutation</td>
<td>Permuted Shape of the input HTA</td>
<td>nil</td>
</tr>
<tr>
<td></td>
<td>Replication</td>
<td>depends on the dim</td>
<td>nil</td>
</tr>
<tr>
<td>higher-order</td>
<td>reduce</td>
<td>depends on the (dim) and (rlevel)</td>
<td>any associative operation</td>
</tr>
<tr>
<td></td>
<td>scan</td>
<td>depends on the (dim) and (rlevel)</td>
<td>any associative operation</td>
</tr>
<tr>
<td></td>
<td>map</td>
<td>depends on (op) and (level)</td>
<td>any scalar, array or HTA operation</td>
</tr>
</tbody>
</table>

example of this is shown in Figure 2.22. Transposition, permutation, replication, etc. can also be passed as \(op\) to \(map\). Without \(map\) all these operations start in the top-level of the HTA and proceed either till scalars or levels specified as their parameters. When combined with \(map\), the \(map\) operation implicitly controls the starting level of the application of these operations.

\(reduce\) and \(scan\) can take any associative operation as their \(op\). However, they are not restricted to be only arithmetic operations. Operations like concatenation and composition (i.e. \(a[b[c[i]]]\)) can also be passed as \(op\). Passing \(reduce\) as an \(op\) to \(reduce\) or \(scan\) is confusing and hence not allowed. The desired effect can be obtained by using two or more \(reduce\) operations or a \(reduce\) followed by a \(scan\) operation.

Table 2.1 summarizes the characteristics of all the HTA operations.

2.3 Parallel Semantics of HTA operations

In the previous section the serial semantics of HTA operations were discussed. In this section, the parallel semantics of each of the HTA operations are described.

2.3.1 Distributed HTA construction

The constructors in Section 2.1.3 create only sequential HTAs. To create a distributed HTA, either a type of distribution or a processor mapping should be passed as additional arguments to each of the constructor. If an HTA is distributed, its elements are mapped to processors
according to the type of distribution.

The type of distribution (dist-type) is by default row-cyclic. That is, the elements of the HTA are assigned one-to-one to the available processors in row-major order. If the number of processors is lesser than the number of elements, then the assignment of the remaining elements start from the processor 0 and proceed again in row major order. The other valid types of distribution are column-cyclic, block-cyclic and double-cyclic. The programmer can also specify the logical arrangement of processors along with the dist-type. We call this processor topology. It is a n-tuple (where n is the rank of the HTA) and each of its value specifies the number of processors along that dimension. An example of topology is [2, 2], which specifies that the processors are logically arranged in a (2, 2) mesh. If topology is not specified the processors are just assumed to be arranged linearly.

If the type of the distribution is not one of the above, then the programmer can create a processor mapping (dist – cf. Section 2.1.2) and supply as an argument to the HTA constructors. We call the processor that owns a given element of an HTA the home node. In this document, we restrict ourselves to HTAs whose top level (i.e., level = 0) only is distributed. Extending the constructor and the other HTA operations to HTA whose other levels are also distributed is left as a future extension.

2.3.2 Unary Operations

The semantics of unary operations are the same as that of serial execution. The computation occurs in the home nodes of elements of the input HTA. If the number of elements in an HTA is lesser than the number of processors, the processors that do not own the elements do not participate in the unary operation.

2.3.3 Binary Operations

For parallel execution, the rules of conformability for binary operations of Section 2.2.3 are augmented with the following additional rules of computation and communication:
Figure 2.23: Communication in a parallel binary operation a) HTAs of same shape b) HTAs of different shape. The mapping of the operand HTAs is shown in the figures using processor number in each tile.

• (I) *Two HTAs of same height and shape* - If the mapping of the right hand side HTA is different, then its elements are communicated so that they come to the home nodes of the corresponding elements of the left hand side HTA. (See Figure 2.23(a)). The computation of the binary operation occurs in the home nodes of the elements of the left hand side argument. The distribution of the output HTA is the same as that of the left hand side HTA of the binary operation.

• (II) *Two HTAs of same height, different shape* (with one of the HTAs having a region of cardinality one) - In this case, the unitary HTA is broadcast to the home nodes of the elements of the other HTA (See Figure 2.23(b)). The computation occurs on the
Figure 2.24: A chain of binary expression with HTAs of different processor mapping home nodes of the elements of the larger HTA. The distribution of the output HTA is same as that of the larger HTA.

- (III) Two HTAs of different height, \(h^l \) and \(v^m \), with \(l > m \). The semantics is the same as that of (II), with the HTA of lesser height being treated as the unitary HTA (i.e., one with region of cardinality one). The computation occurs on the home nodes of the elements of the higher level HTA. The distribution of the output HTA is same as that of the higher level HTA.

The above semantics of binary operations may lead to suboptimal communication. Consider a chain of binary expression \((A = B + C + D + E) \). If all A, B, C, D and E are of different mapping as shown in Figure 2.24, evaluation of each of the sub-expression and the final assignment leads to communication. A potential optimization is to evaluate the entire statement (including the assignment) as a whole operation. Evaluating it as a whole operation will provide the ability to analyze the expression tree and reduce the communication. For example, we can choose the node of operation to be always the LHS operand or the best choice that leads to optimal communication or perform tree height reduction.

2.3.4 HTA access operation

- Single element selection: Accessing a single element of an HTA \(h^l \) returns an HTA, \(r^{l-1} \). If the level \(l - 1 \) of \(h \) is also distributed, distribution of \(r \) remains the same. If it is not distributed, then \(r \) is an HTA which is stored only in the home node of the tile selected.
• Selecting a region of elements: Accessing a region of elements of an HTA h^l results in an HTA of same height (l). The distribution of the HTA is a sub-distribution of h, formed according to the region specified in the access operation.

• Chaining of access operations: Accessing an element or a region of scalars through chaining (i.e., for example, $h(r_0, r_1)[::]$) leads to data-parallel access of the elements, where in the the home nodes that belong to the region (r_0, r_1), select the elements.

• Flattening: Flattening (i.e $h[::]$), leads to all-to-all exchange of the values among the home nodes of the elements of h. The result array is replicated in all the processors.

2.3.5 Assignments

For parallel execution, there are two kinds of assignments $=$ and \leftarrow. The semantics of $=$ is same as that of the assignment operation described earlier in Section 2.2.3. In addition to that, during an HTA assignment, $A = B$, if A and B have different processor mapping, the elements from B are communicated to those of A. The home nodes of the elements of A wait until they receive the message from the home nodes of the elements of B.

Assignment $A \leftarrow B$ is split-phase assignment [23]. Two \leftarrow assignment statements S_1 and S_2 can be allowed to be executed concurrently as opposed to the strict sequential order of execution imposed by the other HTA operations, including $=$. During a \leftarrow assignment, the home nodes of the elements of A and B need not wait for assignment operation to complete. The statement $A \leftarrow B$ merely initiates the data transfer. An sync statement should be explicitly invoked at a later point to finish the operation. Several, non-aliasing (i.e., with no aliasing of memory of the participating HTAs) asynchronous assignment statements can be in-progress simultaneously until a sync statement is reached. All the statements that are in-progress (i.e., whose sync point is not reached) are said be in the same phase. If the assignment statements in a given phase have aliases, then the result is un-defined. Also,
other HTA operations can proceed concurrently with a ← assignment operation. The non-
alias requirement holds for this case too. Usage of ← will improve the efficiency of the
parallel programs by overlapping several communication operations or communication and
computation sections of the program.

2.3.6 Map

Like unary operation, map is applied only to the elements owned by a given processor. During
the invocation of map there is no communication. However, the function op supplied to the
map may require communication of elements between processors. For parallel execution, a
requirement for op is it should be free from side-effects like updating a global variable. The
presence of side effects might lead to parallel programs that generate inconsistent results.

2.3.7 Reduce

Before we proceed to define the semantics of reduce, we shall introduce the concept of
projection (φ) of an array. An projection of an array A of rank n along a dimension d is
given as follows:

\[
B = \phi(A, d) \equiv B_{j_0,j_1\ldots,j_{n-1}} = A_{i_0,i_1\ldots,i_{n}}, \text{ where } i_d = 0
\]

An example projection is given in Figure 2.25. Here a 2-dimensional array is projected

Figure 2.26: Communication in a partial reduce operation along dim=1, without replication. The left hand side sub-figures describes the distribution of input HTA, the right hand side sub-figure describes the distribution of output HTA along dimension one (i.e., along the columns). The result is the first column of the original array.

The semantics of parallel reduce depends on the parameters of reduce.

- Case (i) : For the reduce of the kind reduce (op) (i.e., full reduction along all the dimensions), the result is a scalar that is replicated in all the processors.

- Case (ii): For the reduce of the kind reduce (op, dim) (i.e., partial reduction along a dimension), the distribution of the resulting HTA is the projection of the distribution of the original HTA along the dimension dim (see Figure 2.26). The communication between processors depends on the algorithm used to implement reduction. For example, if a hyper-cube algorithm is used, then the processors (along the dimension of reduction) that differ in i^{th} bit of the binary representation of their identifier communicate during the i^{th} stage of reduction, for a total of $\log(d_{dim})$ stages.

2.3.8 Collective operations

For the HTA reshaping operations, the parallel semantics depends on the kind of operation. Here, we list the parallel semantics of some of the most frequently used HTA reshaping operations.

- transpose (Dimension transposition) : A transposition of an HTA h results in the exchange of elements among the processors. For a square HTA (i.e., HTA whose size
Figure 2.27: Communication in a transpose operation a) square HTA b) non-square HTA. In both the figures, the left hand side sub-figures describe the distribution of input HTA, the right hand side sub-figures describe the distribution of the output HTA. In (b) the middle figure is the transposed distribution of the input HTA.

is same along all the dimensions), the processor that owns the tile $h_{i,j}$ (assuming the HTA is of rank 2) exchanges its tile with the processor that owns the tile $h_{j,i}$ (See Figure 2.27(a)). For higher dimensional HTAs also, similar rules apply. Even if the HTA is not a square, but the dimensions to be transposed are of equal size than the same semantics hold true.

If the dimensions to be transposed are not of equal size, the distribution of the result HTA is computed using the type of the distribution of the original HTA. For example, if the original HTA has row-cyclic distribution of elements to processors in row major
Figure 2.28: Communication in a *repmat* operation. In the figure, the left hand side sub-figure describes the distribution of input HTA, the right hand side sub-figure describes the distribution of output HTA.

order of the elements, the same distribution is applied to the new HTA that results after the transposition. The exchange of elements is dictated by the transposed (along the same dimensions as the HTA transposition) original distribution and the new distribution. (See Figure 2.27(b)). This is the most general semantics of transposition and covers the earlier semantics of square HTAs also.

- **htranspose** (Level transposition) : The parallel semantics of *htranspose* is same as that of MPI_Allgather communication method. That is, each processor sends data to every other processor. The distribution of the input HTA remains the same after the operation.

- **permute** : The distribution of the input HTA is also permuted in the same way as the HTA. The distribution of the new HTA is computed using the same distribution function of the input HTA. The communication is dictated by the permuted distribution of the input HTA and the distribution of the new HTA.

- **repmat** : For a *repmat* operation, the distribution of the output HTA is computed using the same distribution function (*dist-type*) of the input HTA. The parallel semantics of the *repmat* operation is quite different from the rest of the operations discussed earlier in that the result HTA may be distributed among more number of processors than the original HTA. This is because, the new HTA typically has more elements.
than the original HTA. For instance, in the Figure 2.28, the input HTA is distributed only among three processors (0, 3, 6). The result HTA is distributed on 9 processors.
Chapter 3

Implementation

3.1 Introduction

In this chapter we describe the implementation details of the HTA library. Our first implementation of the HTA library was in MATLAB. MATLAB is a natural choice for HTAs for several reasons. MATLAB is an object oriented array programming language, with a rich set of array and vector operations and operator overloading capability. Thus, it is very easy to extend the operations to HTAs. The use of MATLAB lead to the introduction of new operations for HTAs. The MATLAB implementation provided the ground for understanding HTAs and evolving the HTA operations.

However, owing to various limitations, the execution times of MATLAB is usually significantly larger than that of FORTRAN77. This motivated the C++ implementation. C++ [26] is a popular object oriented programming language. Unlike MATLAB, C++ is a scalar based compiled programming language. Due to its object oriented nature and the presence of templates, C++ allows easy creation of data structures like HTA. Like MATLAB, C++ also has operator overloading capability.

The underlying execution model and the semantics of HTA operations remain the same in both the MATLAB and C++ implementations. Due to the syntactical differences in the MATLAB and C++ language, few operations are represented differently. The most important difference between MATLAB and C++ is that the latter uses 0-origin indexing, while the former using 1-origin indexing. Table 3.1 lists the MATLAB and C++ constructs for various HTA operations discussed in Chapter 2. At the end of the chapter we provide
Table 3.1: MATLAB and C++ syntax for various HTA operations.

<table>
<thead>
<tr>
<th>HTA Construct</th>
<th>MATLAB syntax</th>
<th>C++ syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>tuple</td>
<td>((i_0, i_1, \ldots, i_{n-1}))</td>
<td>(T(i_0, i_1, \ldots, i_{n-1}))</td>
</tr>
<tr>
<td>range</td>
<td>((low[: stride] : high))</td>
<td>(R([low, high[, stride]]))</td>
</tr>
<tr>
<td>region</td>
<td>((l_1[: s_1] : h_1, l_2[: s_2] : h_2))</td>
<td>((R(l_1, h_1[, s_1]), R(l_2, h_2[, s_2])))</td>
</tr>
<tr>
<td>()</td>
<td>({})</td>
<td>({})</td>
</tr>
<tr>
<td>=</td>
<td>({})</td>
<td>({})</td>
</tr>
<tr>
<td>←</td>
<td>N/A</td>
<td>async{...}sync</td>
</tr>
<tr>
<td>+, -, *, /</td>
<td>+, -, *, /</td>
<td>+, -, /</td>
</tr>
<tr>
<td>transpose(h)</td>
<td>permute(h, perm_vector)</td>
<td>h.transpose()</td>
</tr>
<tr>
<td>replicate(h)</td>
<td>repmat(h, rep_vector)</td>
<td>h.repmat(rep_vector)</td>
</tr>
<tr>
<td>map(h)</td>
<td>feval (@func, h,...)</td>
<td>h.map(op,..)</td>
</tr>
<tr>
<td>reduce(h)</td>
<td>reduce (@func, h,...)</td>
<td>h.reduce(op,..)</td>
</tr>
<tr>
<td>scan(h)</td>
<td>scan (@func, h,...)</td>
<td>h.scan(op,..)</td>
</tr>
</tbody>
</table>

several simple HTA programs, for which we will use the specific operators described in the Table 3.1, rather than the abstract operator discussed in the preceding chapter.

3.2 Execution Model of HTA programs

The programming model of HTA programs differs from the SPMD-style programming, where programmers have to specify the program execution path for each processor and have to explicitly synchronize the processors. Instead, HTA programs offer global view of data with single threaded execution. All the processors execute the same program. Global scalar variables, arrays and non-distributed HTAs are replicated in each processor, so that every copy keeps the same value. Distributed HTAs are also created in every processor, including those ones that do not own tiles of the HTA, which will only keep information about the structure of the HTA.

When a expression involving one or more HTAs is evaluated, each processor applies locally the operation of the expression on the tiles of the HTA it owns. In the case of binary operations, the processors check the location of the corresponding tiles that need to be operated. Those tiles of the right operand that are not located in the processor that owns the associated tile of the left operand, are sent to that processor. The processors that own the tiles of the left HTA perform the desired operation and store the resulting tiles.

Similar execution happens when the right hand side (RHS) of an assignment is not
mapped to the mesh of processors in the same way as the left hand side (LHS). Every tile of the RHS HTA of the assignment is sent to the processor that owns the corresponding tile of the LHS HTA to which it is assigned.

Figure 3.1 shows an example code snippet written in our MATLAB implementation. Here, we assume that \(a \) and \(b \) are 2 × 2 HTAs and distributed in row-cyclic fashion. For simplicity in foregoing discussion, we refer to the home node of a tile as \((i,j)\), where \((i,j) \in \{(1,1), (1,0), (2,1), (2,2)\}\). During the assignment statement, the matrix \(mtrx \) is assigned to \(a\{1,1\} \) in processor \((1,1)\). The other processors also execute this statement, but since it applies to a tile that they do not own, they do nothing and wait for the next method invocation.

The next statement involves an access operation. This statement returns a HTA of level 0 and size 1 × 1 (i.e., a single tile). This tile resides in only one processor, the owner of tile \((1,1)\). Selection is followed by assignment of the result to all the tiles of \(b \). This involves a broadcast of the left hand side to all the processors.

Explicit synchronization between processors is not necessary. For our run time library, we used two-sided communication model where in, the synchronization is always implicit because communication takes place from the producer to the consumer, so an eager consumer always has to wait for a delayed producer to send the data before it can proceed with the computation. As a result, computation and/or communication can be overlapped even between different statements. It is also possible to execute two statements concurrently, without affecting the sequential deterministic semantics.

Consider the example in Figure 3.2-(a), where \(a \) is a 2 × 2 HTA distributed using row-cyclic distribution. and \(mtrx1 \) and \(mtrx2 \) are two matrices. The MATLAB interpreter calls the overloaded assignment method of the HTA class in all the processors for
Figure 3.2: (a) Example of code with concurrent execution. (b) Timeline for the processors executing the code in (a).

statement (1). Only processors (1,1) and (2,1) are involved in this assignment, so they execute it, while processors (1,2) and (2,2) exit the assignment operation right after checking the ownership. The MATLAB interpreter will then invoke the HTA assignment method in processors (1,2) and (2,2) for the statement (2), and since they own the tiles involved in this second assignment, they will perform it. The MATLAB interpreter will invoke the assignment method in processors (1,1) and (2,1) later, since they were assigning \(\text{mtrx1} \) to their tiles. In this second statement, processors (1,1) and (2,1) do not own the involved tiles, so they will exit the method right after they check ownership. Figure 3.2 shows how the execution time of the statement (1) in processors (1,1) and (2,1) is overlapped with that of the statement (2) in processors (1,2) and (2,2). The letter \(\phi \) denotes the time used by a processor to check that an instruction does not affect the tiles it owns.

3.3 Underlying Implementation

Although the SPMD-programming style is usually more difficult for programmers, it is very efficient with respect to performance. For these reasons, the underlying run time HTA library follows the SPMD approach. As mentioned earlier each processor executes the same program and hence every statement is executed by the processors. The program is linked with the run time library in each node of a cluster. The run time library governs the execution for a given processor depending on the processor mapping of the HTAs involved in a given statement.
Figure 3.3: HTA implementation.

If the HTA method finds the processor it is running on does not have any data participating in the HTA method or operation, it exits.

Figure 3.3 shows an high level view of the underlying execution. Each node has an instance of MATLAB, the HTA library and the MATLAB+HTA program. They communicate among themselves when required. Communication is performed using the MPI library. The communication is performed transparently to the programmer without his intervention. Communication is performed by either MPI_Send/MPI_Recv or MPI_AlltoAll or MPI_Reduce and their variants. The library also uses non-blocking MPI_Isend and MPI_Irecv for point-to-point exchanges, when necessary. For some operations, collective communication routines of the MPI are used. For example, the transpose operation is implemented using MPI_AlltoAll routine. The reduce operations are implemented using
Table 3.2: HTA operations and the corresponding MPI communication primitives used.

<table>
<thead>
<tr>
<th>HTA Operation</th>
<th>MPI Communication Primitive Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary operation ((h + v))</td>
<td>MPI_Send/MPI_Recv</td>
</tr>
<tr>
<td>Assignment ((h = v))</td>
<td>MPI_Send/MPI_Recv</td>
</tr>
<tr>
<td>Asynchronous assignment ((h ← v))</td>
<td>MPI_Send/MPI_IRecv/MPI_wait</td>
</tr>
<tr>
<td>transpose & permute</td>
<td>MPI_Alltoall</td>
</tr>
<tr>
<td>transpose</td>
<td>MPI_Alltoall</td>
</tr>
<tr>
<td>htranspose</td>
<td>MPI_Alltoall</td>
</tr>
<tr>
<td>flattening ((h[:,;]))</td>
<td>MPI_Allgather</td>
</tr>
<tr>
<td>reduce</td>
<td>a variant of MPI_Reduce</td>
</tr>
<tr>
<td>scan</td>
<td>MPI_Send/MPI_Recv</td>
</tr>
</tbody>
</table>

MPI_Reduce function. Table 3.2 lists how the communication of each of the operation is performed in the library.

We believe this parallel programming paradigm that provides the programmer a global view of the program and an SPMD style back-end execution has many advantages. Current approaches either rely on the programmers to write efficient programs in a SPMD way [34, 19, 43] or rely on the compiler to generate SPMD codes [21, 1]. Our approach releases the burden of both the programmers and the compiler. It lets the programmers write programs very similar to the sequential ones, and relies on the library-based HTA methods to generate efficient SPMD codes automatically at runtime.

One disadvantage of our library-based implementation is that it has overheads that a compiler could easily remove. Suppose the following computation: \(a\{1:4, :\} = b\{1:4, :\} + c\{1:4, :\}\). The MATLAB interpreter will call the overloaded HTA method to access the tiles for both the HTAs \(b\) and \(c\), then the plus method, and finally the assignment method for HTA \(a\). Every call to the HTA assignment and HTA accessing methods must compute the range of tiles that are involved in the computation. A compiler would easily realize that the indices of the three HTAs are the same, compute it only once and use it to index the three HTAs.
3.4 MATLAB Library

3.4.1 The HTA class data type

The MATLAB implementation of HTA is based on cell arrays. Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell array of empty matrices can be created with the `cell` function. But, more often, cell arrays are created by enclosing a miscellaneous collection of things in curly braces, `{}`. The curly braces are also used with subscripts to access the contents of various cells. Cell arrays can be used to store sequences of matrices of different sizes.

The HTA class in MATLAB contains a cell array as its primary field. The other important fields of the class are size, dimensions and the arrangement of processors. MATLAB provides two access operators - `{}` and `()`. The former is to access cell arrays and the latter for normal arrays. We overloaded these two operators for the HTA class to use them for tile access and scalar access respectively. These two methods are also known as `subsref` methods. The assignment operator in MATLAB is known as `subsasgn`. This is also overloaded for the HTA class. Apart from them, all the primitive unary and binary operations are also overloaded.

The constructor of the class, `hta`, is used by the programmer to construct HTAs. Both top down and bottom–up constructors are implemented. For example, the HTA of the Figure 2.1(a) of Chapter 2 could be created using a source matrix `MX` and the bottom–up HTA constructor, as follows:

```
A = hta(MX, {1:2:10,1:3:12});
```

The HTAs built above are local. In order to request the distribution of the top-level tiles of the HTA on a mesh of processors, the last argument of the constructor must be a vector specifying processor mapping or `dist-type`. The default distribution is currently fixed to

52
be row-cyclic.

HTAs can also be built as structures whose tiles are empty using top–down constructor. In this case the top-down constructor is called just with the number of tiles desired in each dimension. The empty tiles can be filled in later by means of assignments. As an example, the following statement generates an empty 4×4 HTA whose tiles are distributed on a 2×2 processor mesh. The assignment statement that follows the construction, initializes the tiles of the HTA A to contain an array of ones of size 2×3.

$$A = \text{hta}(5, 4);$$

$$A{:,:} = \text{ones}(2,3);$$

3.4.2 Interfacing with MPI and Other implementation details

MATLAB provides a mechanism to call functions written in C to be invoked from the MATLAB environment. These functions are stand alone functions and are compiled with the MEX compiler provided by the MATLAB distribution. The variables from the MATLAB environment can be passed in to these functions, and can be modified within them. We use this facility to interface with the MPI library. All the communication operations are written in C and they in turn call the MPI library routines. Small methods used very frequently are also written in C for performance reasons.

Our framework requires that all the processors participating in the system have a copy of MATLAB and the HTA toolbox. This imposed a serious practical limitation. Running on large number of processors requires equally large number of MATLAB licenses.

We have written two versions of our HTA class. One of them checks the legality of every operation performed on an HTA and provides error messages when any problem is detected. For example, it checks that the indices used when dereferencing an HTA are inside the dimensions of the HTA, or it checks that two HTAs are conformable before applying a binary operation to them. This implementation is meant to help find problems in the
programs at the cost of extra overheads. The second version, with no checks, can be used when the programmer feels his/her code is reliable enough and seeks more performance.

Our implementation follows the copy-on-write behavior of MATLABTM. In MATLABTM, an assignment to a variable implies simply the creation of a pointer or reference to the assigned value. This way, several variables may be pointing to the same data. When an assignment through one of these variables tries to modify parts of this data, MATLABTM builds a private copy of the data for that variable and applies the requested changes. While this is a reasonable strategy, sometimes unneeded copies are made because MATLABTM only allows pass by value of variables to its functions.

Following an assignment, the RHS is not actually copied, but rather a reference is created from the LHS of the assignment to the old value. A copy is only made when the user attempts to modify the data referred to. Since our HTAs are implemented with the same variables that MATLABTM uses, an HTA can have multiple references to it. Private copies of distributed HTAs are made only when they have several handles/names in the program and some of them tries to modify the contents of the HTA.

3.4.3 Run time overheads

MATLAB is an interpreted and interactive programming language. This makes it easy to debug MATLAB programs. Another advantage is its operator overloading capability, using which we have overloaded several common operations that have very natural meaning. Moreover, MATLAB has garbage collection which eliminates the need for tedious allocation/de-allocation statements to be inserted by the programmers.

The fusion of HTAs with MATLAB lead to very clear parallel programs. However, MATLAB programs are slow and suffer from several run time overheads. Owing to its interpreted, nature only vectorized instructions deliver optimal performance. Loops that cannot be vectorized typically result in a significant slowdown. Examples of programs that exhibit this behavior are the LU and BT of the NAS benchmark suite. These programs have
global data dependencies arising from linear recurrences that cannot be easily vectorized.

Even if all the computations are vectorized, other MATLAB overheads restrict the programs’ performance. One source of error is the creation of temporary arrays while evaluating a chain of expressions. In addition, MATLAB used copy-on-write policy. Though, this copy is performed lazily on a write, they could potentially degrade the performance of MATLAB programs.

3.5 C++

3.5.1 Overview

C++ library is based on templates and object oriented features of C++. We refer to the C++ library as htalib. In htalib, the HTAs are implemented using various templated classes. The classes can be broadly classified into two categories - front-end and back-end.

The front end classes are those that are exposed to the programmer. They provide an uniform interface for all the kinds of HTAs (i.e., distributed, shared, serial, sparse etc) and delegate the HTA operations to the respective back-end classes. Apart from this, they also perform the automatic memory management of the HTAs using a simple reference counting based garbage collection scheme. Consequently, the instances of the HTAs cannot be allocated on heap section of the address space.

The back end classes implements all the HTA operations, including the communication. These classes in turn uses libraries like MPI for specific tasks.

3.5.2 Front End classes

The core classes of the front end fall into four categories:

Logical index space. Classes used to define index space and tiling of an HTA are Tuple<N>, an N-dimensional index value from \mathbb{Z}^n; Triplet, a 1-dimensional range with
optional stride (low:high[:step]); and Region<N>, an N-dimensional rectangular index space spanned by N triplets. Region also provides an iterator to iterate over each of the individual index points. Instances of Tuple<N>, Triplet and Region are values, i.e., once defined, their value cannot change.

HTA. Class HTA<T,N> defines an HTA with scalar elements of type T and N dimensions. The data type provides the interface for scalar access (operator[]), tile access (operator()), point-wise operations, transpose, permute, dpermute, map and reduce that are described in chapter 2. An HTA is part of a hierarchical structure of recursively composed HTAs.

Machine mapping. The machine mapping of an HTA specifies (i) where the HTA is allocated in a distributed system and (ii) the memory layout of the scalar data array underlying the HTA. The former aspect is captured by instances of class Distribution that specifies the home location of the scalar data for each of the tiles of an HTA. The latter aspect is represented by instances of class MemoryMapping that specify the layout (row-major across tiles, row-major per tile etc.), size and stride of the flat array data underlying the HTA.

The machine mapping is accessed internally by the htlilib, for example, to orchestrate implicit communication. The machine mapping is also available through the API of the library to facilitate direct access and communication of array data in case the programmer intends to bypass the access mechanisms provided by HTAs. In the current implementation, the complete information about the machine mapping is available in each node of a distributed system.

3.5.3 Back End classes

The complete class hierarchy of the back end classes is shown in the Figure 3.4. In the Figure 3.4, AbstractArray<T, N> is an abstract base class, while Array<T, N> is its subclass. Array<T, N> is also a reference counted class. That is, all its instances in the heap
are automatically deallocated using reference counting scheme. \texttt{Array<T, N>} provides the common implementation required for all flavors of HTA - serial, distributed, and sparse.

The class \texttt{HTAImpl<T, N>} implements the logic for serial HTAs, while their sub-classes \texttt{HTADistImpl<T, N>} and \texttt{HTASparseImpl<T, N>} implement the logic for distributed and sparse HTAs. The class \texttt{HTADistImpl<T, N>} overrides the methods in \texttt{Array<T, N>} and \texttt{HTAImpl<T, N>} that involve communication, and performs the required communication using the MPI library. In \texttt{HTASparseImpl<T, N>}, the leaf tiles are sparse HTAs. Accordingly, it overrides some of the methods, like matrix vector multiplication.

The execution principles remain the same as described in Section 3.2. The following is a summary:

Owner computes. At allocation time, the top-level tiling of an HTA determines the data distribution, i.e., each tile is assigned a home location where the master copy of the scalar data is allocated. The computation of an array expression is distributed among the owners of tiles that receive the result of the expression. Argument data is communicated when necessary.

SPMD computation and communication. The execution and communication mechanisms inside \texttt{htalib} follow the SPMD principle. The communication of tiles or part of tiles is based on two-sided message passing (MPI).
htalib::async();
B(1:n)[0] = B(0:n-1)[d];
B(0:n-1)[d+1] = B(1:n)[1];
htalib::sync();

Figure 3.5: Relaxing sequential evaluation order to facilitate overlap of communication and computation.

Apart from the data distribution aspect, a programmer is not concerned with this model (global view, cf. Section 3.2). The implementation of htalib is flexible to accommodate other communication platforms also. We also have an experimental UPC-based shared memory runtime system [10] as communication platform.

\subsection{Performance Optimizations}

Unlike MATLAB, the C++ library offers more freedom in performing certain optimizations. Following are some of the optimizations that we implemented in the C++ library.

\textbf{Dynamic optimizations.} htalib implements lazy evaluation to reduce or avoid the overhead due to temporary arrays. At an array assignment, the evaluation of the rhs is delayed until the target of the assignment is determined. If lhs and rhs have no data dependence, the assignment is directly evaluated into the lhs.

The second optimization is the reuse of HTAs that hold intermediate results of array expressions. htalib maintains internally a pool of HTAs that take the role of ‘registers’. During the evaluation of an array expression, ‘HTA registers’ with matching tiling are allocated and recycled in the pool.

\textbf{Relaxation of serial evaluation semantics.} htalib provides a mechanism to temporarily relax the serial evaluation ordering and overlap of communication with computation. The example in Figure 3.5 shows the boundary exchange in the C++ version of the Jacobi example of Figure 3.6.2(a). As there is no data dependence among the assignments, both statements can proceed concurrently. This is achieved through the runtime calls to async and sync. All the assignment statements between async and sync are interpreted by the library
to be ← and resort to split-phase semantics [23]. We earlier described this asynchronous assignment (←) in Chapter 2.

3.6 Examples

In this section we will illustrate several simple examples of HTA programs. These programs are well known numerical programs. Specifically, we will look at two algorithms - matrix matrix multiplication and stencil computation. We consider two parallel matrix matrix multiplication, namely, cannon and summa matrix multiplication. We also include an example of recursive matrix matrix multiplication.

3.6.1 Matrix Multiplication

This section describes HTA programs for multiplying two \((n, n)\) dense, square matrices \(A\) and \(B\) to yield the product matrix \(C = A \times B\). All the programs are based on the conventional serial matrix multiplication algorithm shown in the Algorithm 4. In the following algorithms we use the operation \(\times\) to mean scalar multiplication, while \(\times\) for matrix multiplication. Though, \(\times\) can be used for multiplying two scalars as well, we do not use it to avoid confusion when we want to perform a scalar multiplication over each scalar elements of two matrices.

Before proceeding to the parallel version of the matrix multiplication, we introduce the concept of block matrix operations. We can express the matrix multiplication algorithm in terms of block matrix operations as shown in Algorithm 5. A \((n, n)\) matrix \(A\) can be regarded as a \((q, q)\) array of blocks \(A_{i,j}(0 \leq i, j < q)\) such that each block is an \(((n/q), (n/q))\) sub-matrix. The scalar assignment, multiplication and addition operations in Algorithm 4 are replaced with matrix multiplication and matrix addition respectively. Both the scalar and the blocked versions of the matrix multiplication have the same run time complexity of \(O(n^3)\).
function C = matmul(A, B, C)
 if (level(A) == LEAF_LEVEL)
 C = C + A * B;
 else
 for i=1:size(A,1)
 for k=1:size(A,2)
 for j=1:size(B,2)
 C{i, j} = matmul(A{i,k}, B{k,j}, C{i,j});
 end
 end
 end
 end
end

Figure 3.6: Recursive matrix-matrix multiplication that exploits cache locality.

Recursive Blocked Matrix Matrix Multiplication using HTAs

Algorithm 4 MAT_MULT
1: A, B and C are matrices of scalar values.
2: for i = 0 to n − 1 do
3: for j = 0 to n − 1 do
4: C[i, j] := 0
5: for k = 0 to n − 1 do
7: end for
8: end for
9: end for

Algorithm 5 BLOCK_MAT_MULT
1: A, B, and C are matrices of blocks; each block is of size n/q × n/q
2: for i = 0 to q − 1 do
3: for j = 0 to q − 1 do
4: C[i, j] := 0
5: for k = 0 to q − 1 do
7: end for
8: end for
9: end for

Blocked versions of matrix multiplication are more efficient on processors with cache
due to the benefits from the locality of reference. Typically, such programs are written
using techniques known as as loop tiling or loop blocking [50]. Generally, a programmer
(or a compiler) tiles a loop nest of depth n by modifying the bounds of the original loops
and introducing n extra loops. These extra loops control the iteration over tiles, while the
modified original loops iterate over the scalar elements.
Using HTA, such tiled computation can be expressed naturally and easily. The tiled matrix-matrix multiplication `matmul` of Figure 3.6 is an example of a tiled computation. If A is not a scalar or a matrix, we have to recursively proceed down into the HTA hierarchy until we reach the leaf tile of the HTA.

SUMMA Algorithm

Algorithm 6 MATMUL_OUTER_PRODUCT

1: for $k = 0$ to $n - 1$ do
2: \[C := C + A[:, k] \times B[k, :] \]
3: end for

Algorithm 7 SUMMA_PARALLEL

1: for $k = 0$ to $n - 1$ do
2: \[t1 \leftarrow \text{broadcast } A[i, k] \text{ along row } i \]
3: \[t2 \leftarrow \text{broadcast } B[k, j] \text{ along column } j \]
4: \[C := C + t1 \times t2 \]
5: end for

Algorithm 8 SUMMA_BLOCK_PARALLEL

1: A, B, C are matrices of blocks; each block is of size $n/q \times n/q$
2: for $k = 0$ to $q - 1$ do
3: \[t1 \leftarrow \text{broadcast } A[i, k] \text{ along row } i \]
4: \[t2 \leftarrow \text{broadcast } B[k, j] \text{ along column } j \]
5: \[C := C + t1 \times t2 \]
6: end for

The parallel version of matrix multiplication are also based on the blocked matrix matrix multiplication.

In the following algorithms, we consider the following decomposition. Two (n, n) matrices A and B are partitioned in to p blocks $A_{i,j}$ and $B_{i,j}$ of size $((n/\sqrt{p}), (n/\sqrt{p}))$ each. These blocks are mapped onto a (\sqrt{p}, \sqrt{p}) logical mesh of processors. The processors are labeled from $P_{0,0}$ to $P_{\sqrt{p}-1, \sqrt{p}-1}$.

The first algorithm that we describe is the Scalable Universal Matrix Matrix Algorithm (SUMMA) [31]. SUMMA is based on the outer product version of matrix matrix multiplication, where in the matrix multiplication is realized as a series of rank one updates.
for k=1:m
 t1(:,:,)=repmat(a(:,:,k),1,m);
 t2(:,:,)=repmat(b(:,:,k),m,1);
 c(:,:,)=c(:,:,)+map(times, t1, t2, 1);
end

Figure 3.7: HTA version of SUMMA Algorithm

Algorithm 6). During the k^{th} iteration, the outer product (or the matrix product) of $A_{:,k}$ and $B_{k,:}$ is obtained and added to the resultant matrix C. This step of adding an outer product of two vectors to a matrix is also known as rank-1 update.

Parallelization of the rank-1 update leads to a parallel version of matrix-matrix multiplication. To parallelize the rank-1 update, in iteration k each processor in column k of A broadcasts its section of A to the other processors in the same row as itself. Similarly each processor in row k of B broadcasts its section of B to the other processors in the same column as itself. The result is a matrix distributed among the processors. This step is followed by scalar multiplication of the respective scalar elements (Algorithm 7). To obtain better efficiency, the matrix is decomposed into blocks of matrices as explained in the earlier paragraph. The same algorithm holds for matrices of sub-matrices with a minor change; the scalar multiplication ($\cdot \times$) in line (4) is replaced by individual matrix-matrix multiplication of each sub-block (Algorithm 8). In the Algorithm 8, A, B and C are matrices of blocks of size (q,q) and each block is of size $(n/q, n/q)$. In the line (4) of the algorithm, blocks of matrices A and B are multiplied using matrix-matrix multiplication. The result is added to the result array C using scalar addition (for matrix addition, there is no necessity to distinguish between scalar and block addition, as both of them yield the same result).

Figure 3.7 shows the MATLAB+HTA implementation of this algorithm. In the figure, A, B and C are HTAs. They are mapped on to a logical mesh of (\sqrt{p}, \sqrt{p}) processors. The broadcast of the rows and columns is achieved using the the `repmat` explained in Section 2.2.4. Operation “$A\{k, :\}$” selects the k^{th} row of tiles from A, while “$B\{:, k\}$” selects the k^{th} column of tiles from B. Finally, the tile-by-tile matrix multiplication is performed using `map` that takes the MATLAB matrix multiplication (`times` operator). The `map` is parameterized with `rlevel` value of 1, which implies that the matrix multiplication is applied
Cannon’s algorithm is another parallel matrix matrix multiplication algorithm. Cannon’s algorithm starts by initially skewing the blocks of A and B, such that each processor multiplies its local sub-matrices. Tiles in row \(i \) of A are circularly shifted \(i-1 \) times to the left. Similarly, tiles in column \(i \) of B are circularly shifted up \(i-1 \) times (Figure 3.8(a&b)). Figure 3.8(c) shows the initial alignment of A and B after this step. After a sub-matrix multiplication step, each block of A moves one step left and each block of B moves one step up (again circularly) as shown in Figure 3.8(c). A sequence of \(\sqrt{p} \) such sub-matrix multiplications and single-step shifts pairs up each \(A_{i,k} \) and \(B_{k,j} \) at \(P_{i,j} \). This completes the multiplication.

function \(\text{C} = \text{cannon(A,B,C)} \)
for \(i=2:m \)
\(\text{A}(:,:,i) = \text{circshift(A(:,:,i), \([-(-i+1), 0]\));} \)
\(\text{B}(:,:,i) = \text{circshift(B(:,:,i), \([-(-i+1), 0]\));} \)
end
for \(k=1:m-1 \)
\(\text{C} = \text{C + A * B;} \)
\(\text{A} = \text{circshift(A, \([0, -1]\));} \)
\(\text{B} = \text{circshift(B, \([-1, 0]\));} \)
end

Figure 3.8: The communication steps in Cannon’s algorithm on 16 processors

Figure 3.9: Cannon’s algorithm using HTAs.

over each of the tiles of the operand HTAs. The decision to use \texttt{map} is due to the lack of operators to distinguish between scalar multiplication, tile-by-tile matrix multiplication and matrix-multiplication of two HTAs. MATLAB only provides two operations in connection with multiplication - * and \texttt{.*}. We use the former for matrix-multiplication and the latter for scalar multiplication.

Cannon Algorithm

Cannon’s algorithm is another parallel matrix matrix multiplication algorithm. Cannon’s algorithm starts by initially skewing the blocks of A and B, such that each processor multiplies its local sub-matrices. Tiles in row \(i \) of A are circularly shifted \(i-1 \) times to the left. Similarly, tiles in column \(i \) of B are circularly shifted up \(i-1 \) times (Figure 3.8(a&b)). Figure 3.8(c) shows the initial alignment of A and B after this step. After a sub-matrix multiplication step, each block of A moves one step left and each block of B moves one step up (again circularly) as shown in Figure 3.8(c). A sequence of \(\sqrt{p} \) such sub-matrix multiplications and single-step shifts pairs up each \(A_{i,k} \) and \(B_{k,j} \) at \(P_{i,j} \). This completes the multiplication.
function jacobi (A, B)
 S = 0.125;
 while (~converged) {
 % boundary exchange
 B{2:n}(1) = B{1:n-1}(d+1);
 B{1:n-1}(d+2) = B{2:n}(2);
 % stencil computation
 A{:}(2:d+1) = S * (B{:}(1:d) + B{:}(3:d+2));
 }
}

Figure 3.10: Jacobi computation using HTA

of A and B.

The HTA version of this algorithm is shown in Figure 3.9. Here A and B are \((m, m)\) HTAs tiled along both dimensions and mapped onto a mesh of \((\sqrt{p}, \sqrt{p})\) processors. \texttt{circshift} (see Section 2.2.4) is used to perform the circular shift operation.

A more conventional implementation of Cannon’s algorithm will shift rows of matrix A and columns of the matrices B instead of shifting tiles, and the multiplication will be element by element, not a matrix-matrix multiplication of tiles as in our HTA implementation. The main advantages of the tiled approach is aggregation of data into a tile for communication and the increased locality resulting from a single matrix-matrix multiplication over the element by element multiplication.

3.6.2 Iterative Jacobi Solver

Jacobi method is a well known iterative scheme to solve a system of linear equations, \(Ax = b\), where \(A\) is a \((m, m)\) matrix, \(x\) and \(b\) are vectors of size \(m\). The Jacobi iterative method expresses the \((k + 1)\)th iterative values exclusively in terms of the \(k\)th iterative values. In general,

\[
x^{(k+1)}_i = \frac{1}{A_{ii}} \{ b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k)}_j - \sum_{i=j+1}^{m} a_{ij}x^{(k)}_j \}, \quad i = 1..m
\]

The equation 3.1 is repeated for several iteration until the values converge.

Jacobi method is used to solve the systems of linear equation arising from the finite difference approximations of Partial Differential Equations (PDEs). For a 1-D problem,
Each x_i represents the value of the mesh point i in the discretized grid.

The finite difference approximation of one-dimensional PDEs lead to simultaneous equations of the form,

$$-x_{j-1} + 2x_j - x_{j+1} = f_j$$

(3.2)

The above equation can be more compactly represented as $Ax = f$, where the coefficient matrix A is tri-diagonal. For systems of this kind, each x_i in the discretized grid is just a weighted average of its immediate neighbors (x_{i+1} and x_{i-1}). This is also known as stencil computation. This computation is fully-parallel, except for the communication of the boundary region from the neighboring tiles.

Figure 3.10 illustrates a Jacobi computation with HTAs. A and B are HTAs with one level of tiling; there are n tiles at the root of the tiling hierarchy (level 0), each tile holding $d+2$ variables (level 1). Each HTA represents a 1-dimensional grid. Variables at index 1 and $d+2$ in each tile are ghost cells. The boundary exchange first updates the ghost cells at index 1, then at index $d+2$. The boundary exchange is accomplished using the assignment statement explained in Section 2.2.3. The iteration across tiles is implicit in all assignments.

The computation itself is expressed using HTA selection and addition operation, shown
in the last line of the while loop in the Figure. The operation '{:}' selects all the tiles from the top level and applies the succeeding '()' operation to each of those tiles. Thus, the two HTA access operations on the right hand side select for each point, its left neighbor and right neighbor respectively. The result of each of those selection operation is an HTA, all of whose shapes are same at every level. The HTAs are added using an arithmetic operators, discussed in section 2.2.3. Since this addition is very regular in that all the operand HTAs are of same shape, the programmer can easily deduce the shape of the result HTA (A) and pre-allocate it. The example also illustrates that scalars and arrays can be combined as operator arguments; in Figure 3.10 S is a scalar. Figure 3.11(a)&(b) shows these steps graphically.
Chapter 4
Evaluation

4.1 Introduction

In this chapter we demonstrate the expressive power of HTAs by using it to write several non-trivial parallel programs. The programs are from the NAS benchmarks suite [7] developed by NASA. These are a set of programs that were designed to evaluate the performance of parallel supercomputers [7]. We have implemented the following seven of the eight programs in the NAS benchmarks using HTAs: EP, MG, CG, FT, IS, BT, and LU. Table 4.1 lists the characteristics of the computation and communication patterns in each of these programs.

Our implementation of the benchmark programs follows the same strategy as the public-domain MPI implementation of the NAS benchmarks [7]. For each benchmark we developed a serial version in MATLAB and extended it to use HTAs. Both MATLAB+HTA and C++-HTA versions are obtained from the MATLAB serial versions. Several transformations were applied in the serial code to obtain the tiled parallel versions of the programs. The list of transformations are given below:

- Vctorization: The first step in the rewriting of the NAS benchmarks programs is to replace all the loops in the scalar F77 programs with corresponding vector operations.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Description</th>
<th>Computation Pattern</th>
<th>Communication Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>Random number generation</td>
<td>Random number generation</td>
<td>Reduction</td>
</tr>
<tr>
<td>MG</td>
<td>Multi Grid V-cycle algorithm</td>
<td>3D Convolutions</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate Gradient algorithm</td>
<td>Sparse Matrix vector multiplication</td>
<td>Reduction</td>
</tr>
<tr>
<td>FT</td>
<td>3D Fourier transform</td>
<td>Fourier transform</td>
<td>Array Transposition</td>
</tr>
<tr>
<td>IS</td>
<td>Linear time sorting of integer keys</td>
<td>Bucket sort</td>
<td>Reduction, scan</td>
</tr>
<tr>
<td>BT</td>
<td>Navier Stokes Equation Solver</td>
<td>Tri diagonal Gaussian Elimination</td>
<td>Nearest neighbor</td>
</tr>
<tr>
<td>LU</td>
<td>Navier Stokes Equation Solver</td>
<td>Symmetric Successive Over Relaxation</td>
<td>Nearest neighbor</td>
</tr>
</tbody>
</table>
Loops with no dependences are easy to vectorize. Complex loops like those that implement reductions, matrix-vector multiplication etc. are replaced by array operations like array reduction and matrix multiplication.

- **Replacing vector with HTAs** : Once the program is vectorized, all the arrays in the programs are replaced by HTAs. The tiling structure of HTA is chosen according to the parallel algorithm of the benchmark program. The processor distribution and the physical memory layout is chosen according to the performance requirement of the respective HTA programs. More details on choosing the HTA structure, processor distribution and the physical memory layout are given in the Sections 4.2 and 4.3.

- **Adding shadow regions** : For programs with either local or global data dependencies (e.g. MG, LU, BT), shadow regions should be explicitly created and added by the programmer. This shadow region will be used later by the programmer for communicating overlapping boundary regions.

- **Replacing Array operations with HTA operations** : Array operations like transposition, replication etc., are replaced by equivalent HTA operations. Table 4.2 lists the correspondences between few common HTA and Array operations. More complex operations like matrix-matrix multiplication or matrix-vector multiplication are discussed in Section 4.2.

- **Replacing MPI_Send and MPI_Recv with Assignments** : The point-to-point MPI_Send and MPI_Recv calls of the F77+MPI programs are replaced by HTA assignments.

Table 4.2: Correspondence between Array and HTA operations.

<table>
<thead>
<tr>
<th>Vector operation</th>
<th>HTA operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>h[:, :, ...]</td>
<td>h(:, :, ...)[:, :, ...]</td>
</tr>
<tr>
<td>h[i], i is an index</td>
<td>h[i]</td>
</tr>
<tr>
<td>assignment</td>
<td>HTA assignment</td>
</tr>
<tr>
<td>point-wise</td>
<td>HTA point-wise</td>
</tr>
<tr>
<td>(e.g. +, -, .*, ./, unary)</td>
<td>(e.g. +, -, .*, ./, unary)</td>
</tr>
<tr>
<td>transposition</td>
<td>HTA transposition</td>
</tr>
<tr>
<td>reduction</td>
<td>HTA reduction</td>
</tr>
<tr>
<td>scan</td>
<td>HTA scan</td>
</tr>
</tbody>
</table>
At present, the communication of the boundary regions for programs like MG (which implements the stencil computation) is done by explicit assignment operation. As a future work, overlapped tiling mechanism is under study [35]. This will free the programmer from performing explicit assignments for boundary exchanges.

- Replacing MPIReduce with HTA reduce: MPI reductions are replaced by HTA reduction. MPI reductions are not array reductions. They do not assume any topology over which they perform the reduction. Based on the algorithm of the program, the type and dimension of the reductions are deduced.

The remainder of the chapter is organized as follows. Section 4.2 discusses the main characteristics of the HTA implementation for each benchmark. In Section 4.3 an empirical comparison of HTA and MPI programs is presented. We use the execution time of the parallel programs as the metric. In Section 4.4 we argue that tiling leads to programs with better readability. For this, we compare the source lines of code in the FORTRAN+MPI version with that of the MATLAB+HTA and CPP+HTA programs.

4.2 Description of the NAS benchmark programs

In this section, we present a description of the NAS programs written using HTAs. We present the core algorithm behind each NAS benchmark program and show several code snippets of the HTA programs. For simplicity and clarity, the codes from our MATLAB implementation are shown; C++ version is shown in certain special cases either to emphasize a concept or a new construct absent in the MATLAB version.

4.2.1 EP

EP is an embarrassingly parallel benchmark. It can be used to determine the peak parallel performance of a machine. EP generates Gaussian random numbers using the Algorithm 9. It generates N pairs of uniform pseudo random numbers in the interval (0, 1). These numbers
Figure 4.1: (a) Illustration of the EP algorithm. (b) Sequence splitting algorithm for generation random numbers in parallel

are then scaled to the interval $(-1, 1)$ using the transformation $(2a_i - 1, 2b_i - 1)$. From the resulting pairs (x_j, y_j), those that fall within the unit circle $x^2 + y^2 = 1$ are chosen and the following transformation is applied.

$$X_j = x_j \sqrt{(-2 \log t_j/t_j)}$$ \hspace{1cm} (4.1)

$$Y_j = y_j \sqrt{(-2 \log t_j/t_j)}$$ \hspace{1cm} (4.2)

where,

$$t_j = x_j^2 + y_j^2$$

From the resulting pairs of (X_i, Y_i) those that fall within successive square annuli are tabulated.

$$l \leq \max(|X|, |Y|) < l + 1, 0 < l < 9$$ \hspace{1cm} (4.3)
Algorithm 9 Algorithm of the EP Benchmark

for $k = 1$ to n do
 $x = \text{rand}()$
 $y = \text{rand}()$
 $x1 = 2 \times x - 1$
 $x2 = 2 \times y - 1$
 $t = x1^2 + x2^2$
 if $t < 1$ then
 $t1 = x1 \times \sqrt{(-2 \times \log(t)/t)}$
 $t2 = x2 \times \sqrt{(-2 \times \log(t)/t)}$
 ind = max($|t1|, |t2|$)
 q(ind) = q(ind) + 1
 end if
end for

The uniform random numbers are generated according to the following scheme.

$$x_k = a \times x_{k-1} \mod 2^{46}, \text{ where } a = 5^{15}, x_0 = 217828183 \quad (4.4)$$

An efficient parallel version will make each processor compute its first x_0' (which is x_k for some $k > 1$ in the original sequential random number sequence), using the a and x_0. This x_0' can be computed using binary exponentiation. With that x_0' each processor can independently generate the rest of the random number sequence using the equation 4.4. Thus, each processor will generate a chunk of consecutive elements. This scheme is also known as sequence splitting and is illustrated in Figure 4.1(b).

The sequential MATLAB code for EP is shown in Figure 4.2(a). The program generates the random number in batches of size $nk = 2^m m$. During each iteration, the seed for this iteration is computed (Line 6). This step is not shown in detail due to brevity. The statement that follows this step uses the vran1c function to generate a stream of random numbers from the given seed. Line 8 & 9 selects those numbers that are at the odd positions and even position respectively. Lines 10 & 11 apply the linear scaling. From the result, those that lie within the circle are chosen (Lines 12-17). The transformations described in the equations 4.1 and 4.3 are applied over this result in lines 18-20. The last two lines tabulate the
function ep

...

for k = 0:np-1

kk = k_offset + k;

%find the seed for this iteration

t1 = seed(kk, s, an);

[x, t1] = vranlc(2*nk, t1, a);

odd = x(1:2:end);

even = x(2:2:end);

x1 = 2 * odd - 1.0;

x2 = 2 * even - 1.0;

xt1 = x1 .^ 2;

xt2 = x2 .^ 2;

t = xt1 + xt2;

x1 = x1(t <= 1);

x2 = x2(t<= 1);

t2 = t(t <= 1);

t3 = sqrt((-2.0 .* (log(t2) ./ t2)));

t4 = x1 .* t3;

t5 = x2 .* t3;

qt = fix(max(abs(t4), abs(t5)));

q = q + accumarray(tt+1,1,[nq 1]);

deg

...

for k = 1:np

kk = k_offset + k;

%find the global seed for this iteration

t1 = map (@seed, kk, s, an);

[x, t1] = map (@vranlc, 2*nk, t1, a);

odd = x(:,1:2:2^(mk+1));

even = x(:,2:2:2^(mk+1));

x1 = 2 .* odd - 1.0;

x2 = 2 .* even - 1.0;

xt1 = x1 .^ 2;

xt2 = x2 .^ 2;

t = xt1 + xt2;

x1 = x1(:,t <= 1);

x2 = x2(:,t<= 1);

t2 = t(:,t <= 1);

t3 = sqrt((-2.0 .* (log(t2) ./ t2)));

t4 = x1 .* t3;

t5 = x2 .* t3;

qt = fix(max(abs(t4), abs(t5)));

q = q + accumarray(tt+1,1,[10 1]);

deg

end

end

(a)

function ep

...

for k = 1:np

kk = k_offset + k;

%find the global seed for this iteration

t1 = map (@seed, kk, s, an);

[x, t1] = map (@vranlc, 2*nk, t1, a);

odd = x(:,1:2:2^(mk+1));

even = x(:,2:2:2^(mk+1));

x1 = 2 .* odd - 1.0;

x2 = 2 .* even - 1.0;

xt1 = x1 .^ 2;

xt2 = x2 .^ 2;

t = xt1 + xt2;

x1 = x1(:,t <= 1);

x2 = x2(:,t<= 1);

t2 = t(:,t <= 1);

t3 = sqrt((-2.0 .* (log(t2) ./ t2)));

t4 = x1 .* t3;

t5 = x2 .* t3;

qt = fix(max(abs(t4), abs(t5)));

q = q + accumarray(tt+1,1,[10 1]);

deg

end

r = reduce(@sum, q, 2, false);

(b)

Figure 4.2: NAS EP benchmark using HTA (a) MATLAB-serial (b) MALAB-HTA

numbers that lie in successive square annuli according to the equation 4.3. accumarray

(IND, VAL, SZ) is a MATLAB function that creates an array of size SZ and fills the array

by accumulating the value VAL repeatedly at the subscripts specified by IND.

The HTA version of this code is shown in Figure 4.2(b). The version is different from the

serial version in the usage of HTA and HTA operations instead of array and array operations.

The vectors are converted into HTA of rank 1 with row-cyclic distribution. The vranlc is

replaced by a call to map, that in turn calls vranlc on each tile. Array selection operations

like x1(t<=1) are replaced by HTA selection operations like x1(:,t <= 1), where both

x1 and t are HTAs. Lastly, a reduce statement is used at the end to combine the results

over all the tiles, which is not required in sequential case.

A simpler and more efficient way to express these computations is to use map function for

the entire set of computation, as shown in Figure 4.3. Both the random number generation

and tabulation of the Gaussian deviates are written in a function that is applied to each tile

of an HTA using map. The result is an HTA, q that contains the local count of each tile.

The reduction of q using the reduce method call yields the global count.
function ep

% find my seed for this iteration k
% t1 = myseed;
% x1 = rand (2*nk, t1, a);
% x2 = rand (2*nk, t1, a);
% t = x1 + x2;
% x1 = x1(t <= 1);
% x2 = x2(t <= 1);
% t3 = sqrt((-2.*log(t). / t));
% t4 = x1.*t3;
% t5 = x2.*t3;
% sx = sx + sum(t4);
% sy = sy + sum(t5);
end

Figure 4.3: NAS EP Benchmark written using map construct and HTAs

The map version offers a potential performance benefit for C++ based HTA programs.

The code inside the procedure ep can be written in scalar form, thus eliminating several intermediate buffers.

4.2.2 MG

Algorithm 10 Multigrid V-cycle algorithm

\[r = v - Au \]
\[u = u + M^k r \]

where \(M^k \) is defined as follows:

\[z_k = M^k r_k : \]

if \(k > 1 \) then

\[r_{k-1} = P r_k \]
\[z_{k-1} = M^{k-1} r_{k-1} \]
\[z_k = Q z_{k-1} \]
\[r_k = r_k - A z_k \]
\[z_k = z_k + S r_k \]

else

\[z_1 = S r_1 \]

end if

MG uses finite difference scheme to solve the 3D Poisson’s equation, \(\nabla^2 u = v \), with pe-
Figure 4.4: Illustration of (a) interpolation and (b) projection. For simplicity, a 1D grid is shown here.

periodic boundary conditions. The system of equations resulting from the finite-difference method is solved using the multi-grid V-cycle algorithm. The algorithm is outlined in Algorithm 10. The major steps in the algorithm are the two inter-grid operations - projection and interpolation and two intra grid operations - inversion and residual computation. Projection projects the residual value from a grid to a coarser grid. Interpolation interpolates the error solution from a grid back to a finer grid. These two operations are illustrated in the Figure 4.4(a) & (b).

In the serial MATLAB implementation each grid is represented using a 3D array of type double. The intra and the inter grid operations are implemented using array operations and assignments. Due to periodic boundary conditions, the elements at the boundary need to be communicated. This is also done using array assignments. The V-cycle routine itself is implemented using recursion, which calls its constituent procedures.

In an HTA program, the various levels of grids are represented using a cell array whose components are HTAs, where each HTA h_k has $1/8$ as many elements as HTA h_{k+1}. Readers are advised that cell arrays use the same notation for accessing its elements (‘{}’) as the tile selection operation of HTA. The grid operations are implemented using the HTA selection
Figure 4.5: Pictorial view of HTA projection

```matlab
function [uout] = mg3p(r, u, k)
    if (k > 1)
        r(k-1) = rprj3(r(k), r(k-1));
        u(k-1) = mg3p(r, u, k-1);
        u(k) = interp(u(k-1), u(k));
        r(k) = resid(u(k), r(k));
        u(k) = psinv(r(k), u(k));
    else
        u(1) = psinv(r(1), u(1));
    end
end
```

Figure 4.6: The main procedure of MG in MATLAB

and addition operations. A pictorial view of the projection function in an HTA program is shown in Figure 4.5-(a)&(b) for a 2D grid. Each highlighted grid point in HTA r_4 in Figure 4.5-(a) is computed as the weighted average of the grid point itself and all its neighbors in HTA r_5, as shown in the zoomed HTA, where the shadow regions to allocate the data from the neighbors HTA are also shown.

Figures 4.7- 4.10 show the code for inversion, residual computation, projection and interpolation operations. In the figures, the corresponding functions are `psinv`, `resid`, `rprj3` and `interp` respectively. Each of the figure lists the code for the MATLAB-serial and the MATLAB+HTA versions. For clarity, some details are removed from the codes.

Figure 4.6 shows the top level V-cycle routine in MATLAB. For each grid at level k, the `rprj3` function is called until it reaches the grid at level 0. At this point the recursion ends
function r = resid(u, v)
I = 2:n1-1;
J = 2:n2-1;
K = 2:n3-1;
u1 = u(:,:,1:J-1,K) + u(:,:,1:J+1,K) + u(:,:,J,K-1) + u(:,:,J,K+1);
u2 = u(:,:,1:J-1,K-1) + u(:,:,1:J+1,K-1) + u(:,:,J-1,K+1) + u(:,:,J+1,K+1);
u(I, J, K) = a(1) * u(I, J, K) + a(3) * (u2(I,:, :) + u1(I-1,:, :) + u1(I+1,:, :)) + a(4) * (u2(I-1,:,:)+ u2(I+1,:,:));
r = v - u;
r = comm3(r);

function u = psinv(r, u)
I = 2:n1-1;
J = 2:n2-1;
K = 2:n3-1;
r1 = r(:,:,1:J-1,K) + r(:,:,1:J+1,K) + r(:,:,J,K-1) + r(:,:,J,K+1);
r2 = r(:,:,1:J-1,K-1) + r(:,:,1:J+1,K-1) + r(:,:,J-1,K+1) + r(:,:,J+1,K+1);
r(I, J, K) = c(1) * r(I, J, K) + c(2) * (r(I-1, J, K) + r(I+1,J, K) + r(I,:,:) + r(I-1,:,:)) + c(3) * (r2(I,:,:) + r(I-1,:,:));
u = u + r;
u = comm3(u);

Figure 4.7: MG resid (a) MATLAB-serial version (b) MATLAB+HTA version

function u = psinv(r, u)
I = 2:n1-1;
J = 2:n2-1;
K = 2:n3-1;
r(I, J, K) = c(1) * r(I, J, K) + c(2) * (r(I-1, J, K) + r(I+1,J, K) + r(I,:,:) + r(I-1,:,:)) + c(3) * (r2(I,:,:) + r(I-1,:,:));
u = u + r;
u = comm3(u);

Figure 4.8: MG psinv (a) MATLAB-serial version (b) MATLAB+HTA version

and the interpolation, resid and psinv functions are called on increasingly finer grids.

Both the serial and the HTA versions use the same variable names for the index bounds (n1, n2, and n3). However, their values for the HTA version is smaller than that of the serial version, as they operate on a restricted domain distributed on each processor. Additionally, both the number of processor and the problem size are powers of two and hence the problem size is perfectly divisible by the number of processors. The boundary conditions are also periodic. As a result, the size of all the tiles is the same (i.e., the HTA is homogeneous and regular). This lead to the usage of HTA element access operation and the data parallel arithmetic operations easily for the stencil computation.
function s = rprj3 (r, s)
RI = 2*2-1:2:2*m1j-1;
RJ = 2*2-1:2:2*(m2j-1)-1;
RK = 2*2-1:2:2*(m3j-1)-1;
x1 = r(RI-1,RJ-1,RK) + r(RI-1,RJ+1,RK) + r(RI-1, RJ, RK-1) + r(RI-1, RJ, RK+1);
y1 = r(RI-1,RJ-1,RK-1) + r(RI-1,RJ-1, RK+1) + r(RI-1,RJ+1,RK-1) + r(RI-1,RJ+1,RK+1);
RI = 2*2-d1:2:2*(m1j-1)-d1;
y2 = r(RI, RJ-1, RK-1) + r(RI, RJ-1, RK+1) + r(RI, RJ+1, RK-1) + r(RI, RJ+1, RK+1);
x2 = r(RI, RJ-1, RK) + r(RI, RJ+1, RK) + r(RI, RJ, RK-1) + r(RI, RJ, RK+1);
s(SI, SJ, SK) = 0.5D0 * r(RI,RJ,RK) + 0.25D0 * (r(RI-1,RJ, RK) + r(RI+1, RJ, RK)) + 0.125D0 * (x1(SI-1, :, :) + y2) + 0.0625D0 * (y1(SI-1, :, :) + y1(SI, :, :));
s = comm3(s);

function s = rprj3 (r, s)
RI = 2*2-1:2:2*m1j-1;
RJ = 2*2-1:2:2*(m2j-1)-1;
RK = 2*2-1:2:2*(m3j-1)-1;
x1 = r(:, :, :)(RI-1,RJ-1,RK) + r(:, :, :)(RI-1,RJ+1,RK) + r(:, :, :)(RI-1, RJ, RK-1) + r(:, :, :)(RI-1, RJ, RK+1);
y1 = r(:, :, :)(RI-1,RJ-1,RK-1) + r(:, :, :)(RI-1,RJ-1, RK+1) + r(:, :, :)(RI-1,RJ+1,RK-1) + r(:, :, :)(RI-1,RJ+1,RK+1);
RI = 2*2-d1:2:2*(m1j-1)-d1;
y2 = r(:, :, :)(RI, RJ-1, RK-1) + r(:, :, :)(RI, RJ-1, RK+1) + r(:, :, :)(RI, RJ+1, RK-1) + r(:, :, :)(RI, RJ+1, RK+1);
x2 = r(:, :, :)(RI, RJ-1, RK) + r(:, :, :)(RI, RJ+1, RK) + r(:, :, :)(RI, RJ, RK-1) + r(:, :, :)(RI, RJ, RK+1);
s(SI, SJ, SK) = 0.5D0 * r(:, :, :)(RI,RJ,RK) + 0.25D0 * (r(:, :, :)(RI-1,RJ, RK) + r(:, :, :)(RI+1, RJ, RK)) + 0.125D0 * (x1(:, :, :)(SI-1, :, :) + y2) + 0.0625D0 * (y1(:, :, :)(SI-1, :, :) + y1(:, :, :)(SI, :, :));
s = comm3(s);

Figure 4.9: MG rprj3 (a) MATLAB-serial version (b) MATLAB+HTA version

The communication of the boundary region is performed using HTA assignments as shown in the Figure 4.11. comm3 performs the assignment of the boundary regions in a given direction. For example, in Figure 4.12(a)&(b) the assignments are performed along the west and north directions.

The MPI version of MG requires the programmer to allocate the boundary regions himself and use MPI_Send and MPI_Recv to communicate the boundary regions. Moreover, since MG uses periodic boundary conditions, the communication for boundary processors has to be handled differently.

Further more, as the coarsening proceeds there will be a point when the number of
grid points become lesser than the number of processors. In those cases, only a subset of the processors participate in the computation. Also, the processors do not exchange data with immediate neighbors, but with the second or forth and so on. All these require the programmer to insert extra logic. With HTAs this is very easy to express this. For this corner case, we can create HTAs of different topology than those created for normal case. Inter-grid operation between such HTAs and the normal HTAs can be implemented by using element access operations, which will select only the tiles that need to participate in a computation step.

The processor distribution for the normal HTAs is row-cyclic. For the corner case HTAs, the processor distribution is chosen so that when operating with the normal HTAs, the operation involves no or minimal communication. For example, referring to Figure 4.5, the tiles 0 and 1 of the HTA \(r1 \) reside in the home nodes of the tiles 1 and 3 of the HTA \(r2 \). This is because, during \(rprj3 \) and \(interp \), these are the tiles that participate in the computation. All the HTAs are created apriori and the required processor distribution is
function u = comm3(u)
 u(1:n1,2:n2-1,2:n3-1) = u(2,2:n2-1,2:n3-1);
 u(1,2:n2-1,2:n3-1) = u(n1-1, 2:n2-1,2:n3-1);
 u(1:n1,2:n2,2:n3) = u(1:n1, 2, 2:n3-1);
 u(1:n1,1,2:n3-1) = u(1:n1,1:n2,1:2:n3-1);
 u(1:n1,1:n2,1) = u(1:n1,1:n2,1:n3-1);
end

function u = comm3(u)
 u{1:end, :, :}(n1,2:n2-1,2:n3-1) =
 u{[2:end,1], :,:}(2,2:n2-1,2:n3-1);
 u{[2:end,1], : ,:}(1,2:n2-1,2:n3-1) =
 u{1:end, : ,:}(n1-1, 2:n2-1,2:n3-1);
 u{:,:,1:end}(1:n1,1:n2,n3) =
 u{:,:,[2:end,1]}(1:n1,1:n2,2);
 u{:,:,[2:end,1]}(1:n1,1:n2, 1) =
 u{:,:,1:end}(1:n1,1:n2,n3-1);
end

Figure 4.11: MG comm3 a) MATLAB-serial b) MATLAB+HTA version

Figure 4.12: Assignment using HTAs (a) along the direction of west (b) along the direction of south

An interesting aspect of the HTA version is that asynchronous assignment was used for boundary exchange. This was accomplished by adding \texttt{async()}/\texttt{sync()} construct explained in Section 3.5.4. In contrast, to include this change in MPI is a non-trivial programming effort.

4.2.3 CG

CG uses inverse power method to find an estimate of the largest eigenvalue of a symmetric positive definite matrix. The algorithm of CG is outlined in Figure 11. The core of CG consists of a 2-D sparse matrix-vector multiplication, three saxpy operations (scalar $\alpha x + y$) and
The MATLAB-serial version is a straightforward implementation of the CG algorithm. MATLAB supports several operations like sparse matrix-vector product, dot product and computing the norm of a vector. Figure 4.14(a) shows the MATLAB-serial implementation of CG.

In the parallel version, the sparse matrix A is decomposed in a 2-dimensional checkerboard fashion. The row vector p is split along the rows and replicated, so that the resultant is of same shape as A. Now, each processor can do a local matrix multiplication of the corresponding sub parts of A and p. The local matrix multiplication is followed by reduction of the result along the rows, resulting in the product Ap.

Using HTAs, the sparse matrix A is represented as $M \times N$ HTA, whose leaf tiles are sparse matrices. The vector p is a $1 \times N$ row HTA and is replicated using `repmat` along
Algorithm 11 Conjugate Gradient Method

\[r = x \]
\[\rho = r^T r \]
\[p = r \]

for \(i = 1 \) to \(25 \) do

\[q = Ap \]
\[\alpha = \rho / (p^T q) \]
\[z = z + \alpha p \]
\[\rho_0 = \rho \]
\[r = r - \alpha q \]
\[\rho = r^T r \]
\[\beta = \rho / \rho_0 \]
\[\rho = r + \beta p \]
end for

compute residual norm explicitly: \(||r|| = ||x - Az||. \)

the columns, resulting in \(M \times N \) HTA. Each of tiles of the resulting HTA \(p \) is transposed, using the transpose coupled with map. Then, the operation map (*) (tile-by-tile matrix multiplication) is applied to \(A \) and \(p \). This is followed by reduction along the rows using the reduce method call. The entire process is shown in the Figure 4.13. A following statement requires the computation of \(p^T q \). In the case of HTA program, this is achieved by transposing the result \(q \), applying the tile-by-tile matrix multiplication operation, followed by reduction across rows. It may be recalled that the vector \(p \) is already stored as a row vector. The other operations like computing the norm and saxpy are implemented similarly using the HTA operations defined earlier in Chapter 2.

The implementation of this benchmark is greatly simplified by Sparse HTAs. Sparse HTAs are HTAs whose tiles are sparse matrices. They are constructed in a similar fashion as dense HTAs, with only the type of the HTA being different. All the normal HTA operations are defined for sparse HTAs also and are implemented by the library differently. Thus, the programmer is decoupled from all the low level details of a sparse matrix and is required to provide only the high level algorithm. The complete code for the HTA version of the conjugate gradient routine is listed in Figure 4.14(b).

In contrast, the MPI version of CG listed in Figure 1 (Appendix) is too low level and
function rnorm = conj_grad(x, c)
 z = 0;
 r = x;
 p = r;
 rho = r*r';
 for cgit = 1:cgitmax
 rho0 = rho;
 d = 0;
 q = (c*p')';
 d = d + p*q';
 alpha = rho0 ./ d;
 z = z + alpha .* p;
 r = r - alpha .* q;
 rho = r*r';
 beta = rho./rho0;
 p = r + beta*p;
 end
 r = (c*z')';
 f = x - r;
 sumx = f*f';
 rnorm = sqrt(sumx);
end

Figure 4.14: CG Benchmark (a) MATLAB-serial implementation (b) MATLAB+HTA implementation

difficult to comprehend. For simplicity, declaration of variables and parameters are ignored. Due to the local view nature of MPI and the presence of message passing library calls, the underlying algorithm is completely obscured by the code. Also, to gain performance optimized library calls like non-blocking send and recv (e.g., MPI_Isend) are used. This need extra synchronization step, the negligence of which will lead to race condition, a very common dreaded bug in parallel programs.

Moreover, the MPI version has extra code to handle the non-square partition of the matrix A. When the number of processors (n) is an odd power of two, the MPI version maps the domain in to a processor grid of size $m \times 2m$. The p^Tq step requires redistribution of a column spread across m processors in to a row spread across $2m$ processors. This requires extra logic to be programmed. For an HTA program, the HTA can be represented always as a square HTA and map 2 tiles per processor.

Given that a program like CG will be written only by scientists, the low level details unrelated to his algorithm will discourage him from writing a parallel program. On the
Figure 4.15: FT Benchmark (a) HTA-serial version (b) MATLAB+HTA version

contrary, the HTA version correlates very well with the algorithmic description of the problem. Thus, HTAs not only save the programmer efforts, but also enables a programmer to write complex parallel program. Apart from the programming convenience, it also provides a means to write programs with optimal performance. For example, operations like \(p^T q \) or \(Ap \) can be implemented using matrix multiplication defined over HTAs. But this will lead to unnecessary communication of the vectors among the processors during each step of the iteration. Instead, the programmer can replicate the vectors in the beginning of the program and perform a local tile-by-tile matrix multiplication, followed by reduction. Despite this optimization, the programs look very clean and readable.

4.2.4 FT

The discrete Fourier transform is an important class of computation, widely used in image processing and scientific applications. Fourier transform is the main computation in the FT benchmark. FT solves partial differential equations (PDE) using forward and inverse Fourier transform (FT). For more details on the problem, the readers are referred to [7]. Discrete Fourier Transform (DFT) of a vector \(x \) of size \(n \) (also known as \(n \)-point DFT) is given by:
\[y_i = \sum_{k=0}^{n-1} x_k \omega^{ki}, \ 0 \leq i < n \]

(4.5)

In the above equation, \(\omega \) is the primitive \(n \)-th root of unity; that is, \(\omega = e^{2\pi \sqrt{-1}/n} \).

Fourier transform of an \(m \)-dimensional array is computed as the Fourier transform of each of its vectors in all the dimensions. The \texttt{FT} benchmark performs the following sequence of computations. First, the Fourier transform of a 3D matrix is computed. This is followed by multiplication of the result by a set of exponentials and computing the inverse Fourier transform. The last step is repeated for several iterations. The inverse Fourier transform is very similar to forward Fourier transform. The core computation of the serial version of the \texttt{FT} benchmark is shown in the Figure 4.15(a). In the figure, \texttt{fft} is the standard MATLAB procedure that computes the Fourier transform of all the vectors of the input matrix in the given dimension.

All the steps in the \texttt{FT} benchmark, the computation of the forward and the inverse Fourier transforms and the multiplication with the exponentials, can be parallelized. The parallel Fourier transform of an \(m \)-dimensional array of size \((N_1 \times N_2 \cdots \times N_m)\), decomposes the array into tiles of size \((N_1 \times \frac{N_2}{d_2} \cdots \times \frac{N_m}{d_m})\), where \(d_i \geq 1\). FT along the first dimension (unpartitioned) is just a local FT operation. To compute the FT along dimension \(i\) where \(d_i > 1\), the \(i\)–th dimension is transposed with the first dimension and the local FT is applied along the first dimension. This algorithm is known as the \textit{Transpose} algorithm.

The multiplication with the exponentials can be trivially parallelized by multiplying only those sections of the array owned by a given processor.

In the HTA version, the array is decomposed in to an 3D-HTA, whose first dimension is of size one. Figure 4.15(b) shows an outline of our implementation of this algorithm for a 3-D array where only the third dimension of the HTA \(u\) is distributed, as shown in Figure 4.15(b). FT along the first and second dimension of an HTA is computed using the overloaded version of the standard MATLAB \texttt{fft} operator which applies the standard MATLAB \texttt{fft} to each of the tiles of the HTA along the dimension specified in the third parameter. The overloaded
fft version is internally implemented using map. To apply the fft along the third dimension, we need to make this dimension local to a processor. For that, we transpose the HTA using the HTA dtranspose operation. It may be recalled that this operation transposes the data, but the shape of the containing HTA remains constant. The inverse Fourier transform is also computed analogously. The multiplication with exponentials is performed using the point-wise HTA multiplication operation.

Figure 4.16 illustrates the process of computing the Fourier transform graphically. In the Figure, the three axes are represented by different types of lines - dashed line for X axis, solid line for Y axis and dotted line for Z axis. The dtranspose operator transposes the X and Z dimension and hence the data in the Z dimension is swapped with those in the X dimension. The arrows inside the cubes shows the direction of the Fourier transform.

FT is yet another example that shows how HTA programs correlate directly with the underlying algorithm. The main advantages of the HTA holds for FT also. Namely, the MPI version is very low level and difficult to comprehend. In FT, the MPI program is much more difficult due to the fact that the transposition operation need to be written differently for different kinds of distribution (1D vs 2D). In 1D distribution only one of the dimension is distributed, while in the case of 2D, two dimensions are distributed. In an HTA program, both the version can be written similarly with an extra dtranspose operation for the latter case. An MPI program requires at least 4 different versions of transposition as shown in Figure 3.
(Appendix): \texttt{transpose_xy_z, transpose_y_xz, transpose_x_y} and \texttt{transpose_x_z}. Also, the transposition should be implemented using an optimized MPI method like MPI_Alltoall; point-to-point sends will lead to an sub-optimal O(P) communication complexity, where P is the number of processors. In an HTA program, this decision is left to the run time library.

4.2.5 IS

Sorting is yet another class of computation that is widely used in practice. Given a sequence of n numbers $\{a_0, a_1, a_2, \ldots a_{n-1}\}$, the sorting problem is to find a permutation $\{a'_0, a'_1, a'_2, \ldots a'_{n-1}\}$ such that $a'_0 \leq a'_1 \leq a'_2 \ldots \leq a'_{n-1}$. Many algorithms incorporate a sort so that information may be accessed efficiently later.

IS benchmark performs ranking of random integers in a given range using bucket sort algorithm. The integers are divided into buckets, and are distributed across the processors. They are partially sorted in each processor locally based on the first r most significant bits. They are then divided into sub-buckets of almost equal sizes. The sub-buckets are exchanged among the processors, such that all the values in processor P_i is less than that of P_{i+1}. A final sorting is done in each processor locally to result in the complete sorting of the original data.

The above algorithm can be implemented in an HTA program using a two level HTA. The top level is used as a means to describe the processor space, while the next level is used for representing the bucket space. For IS we show the C-serial version and CPP-HTA version instead of FORTRAN and MATLAB versions (Figure 4.17(a)&(b)).

The keys are in the range $[0, B_{\text{max}})$, and are generated as follows. Let r_f be a uniformly distributed random number in the interval $[0,1]$ and let K_i be the i^{th} key. The value of K_i is determined as

$$k_i = \lfloor B_{\text{max}}(r_{4i+0} + r_{4i+1} + r_{4i+2} + r_{4i+3})/4 \rfloor \quad (4.6)$$
void rank() {
 for(i=0; i<NUM_BUCKETS; i++)
 bucket_size[i] = 0;
 bucket_ptrs[0] = 0;
 for(i=1; i< NUM_BUCKETS; i++)
 bucket_ptrs[i] = bucket_ptrs[i-1] +
 bucket_size[i-1];
 partialsort (key_array, key_buff2);
 key_buff_ptr2 = key_buff2;
 localSort (key_buff_ptr2);
}

void bucketSort (key_array, key_buff2) {
 for(i=0; i<NUM_KEYS; i++)
 { int key = key_array[i];
 int bucket = key >> shift;
 key_buff2[bucket_ptrs[bucket]] = key;
 }
}

Figure 4.17: IS Benchmark (a) C-serial version (b) CPP-HTA version

Each processor generates its set of keys independently. In the HTA version, the keys are stored in a 1D HTA, distributed among the processors. Thus, each processor computes only its own set of keys. The rand function described in Section 4.2.1 is used to generate the random number sequence. The HTA selection and arithmetic operations are used to implement the equation (4.6). These steps are ignored in the figure due to brevity.

After the keys are generated, they are partially sorted in each processor locally using the first \(r \) most significant bits of the keys. The partial sort is performed using the method partialsort applied to each tile using the map function. The method partialsort performs the same computation as that of the serial version, but on a smaller set of data.

The above step is followed by global exchange of data. This is accomplished in the last three statements of the Figure 4.17(b). First, the total number of keys in each processor with the same \(r \) most significant bits is computed. This step in-turn involves two phases. First, the total number of keys in each tile (i.e., processor) is computed using a map method invoked with the accumArray (cf Section 4.2.1) as its op. Then a global reduction is performed over
the HTA. For this, the reduce method with \(rlevel = \text{ROOT_LEVEL} \) is used.

Once the global histogram of the keys is computed, the next step is to partition the keys into sub-buckets such that each sub-bucket has almost equal number of keys. aggregate splits the keys in each tiles in to sub-tiles based on the global histogram computed earlier. aggregate is applied on per-tile basis to the HTA resulting from the local partialsort. After the split, the htranspose method call exchanges the sub-buckets among the processors. The entire process is illustrated in the Figure 4.18.

The MPI version of IS is shown in Figure 4 (Appendix). The main advantage of the HTA version is the clarity of the code due to the presence of high level operations. In contrast, the MPI code is completely obscured. Unlike other programs, IS presents a case for 2-level tiling. The HTA IS program can be naturally extended to a hybrid machine like a cluster of shared memory multiprocessors, using one more level of tiling. In this case the top level is used for exploiting parallelism from the clusters, the next level for parallelism from the shared memory processors, and the last level for exploiting the locality within a computer. Adapting the MPI code to such multiple levels of parallelism requires non-trivial efforts from a programmer.
4.2.6 BT

BT solves the Navier-Stoke’s equations of the form:

\[
\frac{\partial u}{\partial \tau} = \frac{\partial E(U)}{\partial \xi} + \frac{\partial F(U)}{\partial \eta} + \frac{\partial G(U)}{\partial \zeta} + \frac{\partial T(U, U_\xi)}{\partial \xi} + \frac{\partial V(U, U_\eta)}{\partial \eta} + \frac{\partial W(U, U_\zeta)}{\partial \zeta} + H(U, U_\xi, U_\eta, U_\zeta),
\]

\((\tau, \xi, \eta, \zeta) \in D_\tau \times D\) \hspace{1cm} (4.7)

After applying temporal differencing and using the taylor expansion we obtain the following simpler linear equation:

\[
\{I - \Delta \tau \left[\frac{\partial (A)^n}{\partial \xi} + \frac{\partial^2 (N)^n \partial (B)^n}{\partial \eta^2} + \frac{\partial^2 (Q)^n \partial (C)^n}{\partial \eta^2} + \frac{\partial^2 (S)^n}{\partial \zeta^2} \right] \} \Delta U^n = \Delta \tau \left[-\frac{\partial (E + T)^n}{\partial \xi} + \frac{\partial (F + V)^n}{\partial \eta} + \frac{\partial (G + W)^n}{\partial \zeta} \right] - \Delta \tau \xi [h_\xi \frac{\partial^4 U^n}{\partial \xi^4} + h_\eta \frac{\partial^4 U^n}{\partial \eta^4} + h_\zeta \frac{\partial^4 U^n}{\partial \zeta^4}] + \Delta \tau H^* \hspace{1cm} (4.8)
\]

The problem assumes Dirichlet boundary conditions, where in the boundary values are computed as a function. That is,

\(U(x, y, z) = f(x, y, z), \forall x, y, z \in \delta D, \hspace{1cm} (4.9)\)

where \(\delta\) is the boundary region

The initial value \(U^0\) is obtained by the trilinear projection of the boundary data. For more details on the individual terms of each of the equations, boundary conditions and the initial value please refer to [7]. For this discussion, it should only be noted that the equations
have the following general structure.

\[\text{LHS} = \text{RHS} \] (4.10)

The \text{RHS} is explicit and computing it is fully parallel. \text{LHS} is the implicit part, which can be determined only by solving the system of linear equations.

Both BT and LU try to solve the equation (4.8) using different methods. In this section we discuss the scheme used by BT.

BT uses approximate factorization to split the equation (4.8) into three separate linear equations in three directions, \(x \), \(y \) and \(z \). For convenience, we call them \text{x-equation}, \text{y-equation} and \text{z-equation} respectively. Each of the linear equations results in a \(n^2 \) independent tri-diagonal system of linear equations. For example, the \text{x-equation} results in a system of linear equations with the following tri-diagonal structure.

\[
[A_{i,j,k}][\Delta[U_1]_{i-1,j,k}] + [B_{i,j,k}][\Delta[U_1]_{i,j,k}] + [C_{i,j,k}][\Delta[U_1]_{i+1,j,k}] = [\text{RHS}]_{i,j,k} \] (4.11)

\begin{algorithm}
\textbf{Algorithm 12} Tri-diagonal Gaussian Elimination for systems of the form \(a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i \)
\begin{align*}
&b'_1 = b_1 \\
&d'_1 = d_1 \\
&\textbf{for} k = 2 \text{ to } n \textbf{ do} \\
&\quad m = \frac{a_k}{b'_{k-1}} \\
&\quad b'_k = b_k - mc_{k-1} \\
&\quad d'_k = d_k - md'_{k-1} \\
&\textbf{end for} \\
&\text{Backward substitution phase: } x_n = \frac{d'_n}{b'_n} \\
&\textbf{for} k = n - 1 \text{ to } 1 \textbf{ do} \\
&\quad x_k = \frac{d'_k - c_k x_{k+1}}{b'_k} \\
&\textbf{end for}
\end{align*}
\end{algorithm}

The solution of the linear equation (4.11) is equivalent to the solution of \(n^2 \) independent tri-diagonal systems of equations for each \(j \) and \(k \). The \text{y-equation} and \text{z-equation} have
similar formulations. Each of the tri-diagonal systems are solved using a special form of Gaussian elimination for tridiagonal matrices (Algorithm 12). This computes the n unknowns in $O(n)$ steps as opposed to the $O(n^3)$ steps of the original Gaussian elimination. In the Algorithm, $x_i, \forall i = 1..n$ is the set of unknowns. Ignoring the details of the algorithm, it can be seen that the statements inside both the loops have recurrences, thus leading to global data dependencies. Thus, the algorithm is sequential and offers no parallelism. However, solving each of the n^2 linear equations is completely independent and can be performed in parallel. Henceforth, solving the equations arising from x-equation, y-equation and z-equation will be called as x-sweep, y-sweep and z-sweep respectively. These sweeps consists of the forward elimination phases - x-eliminate, y-eliminate and z-eliminate - and back substitution phases - x-back substitute, y-back substitute and z-back substitute.

The computations can be summarized as follows:

i) The original linear equation is factored in to three separate linear equations (x-equation, y-equation and z-equation).

ii) Each of the 3 linear equations lead to multiple independent systems of linear equations, which is solved using the special form of Gaussian elimination (x-sweep, y-sweep and z-sweep).

iii) During each sweep there is global dependence along that dimension, but the other dimensions are completely independent. Thus, for example, all the elements of a given yz plane can be processed in parallel during xsweep. Similarly, all the elements of xz and xy planes can be processed in parallel during ysweep and zsweep respectively.

The above steps give rise to a simple parallelization strategy, where in the 3D domain is split in to equal sub-domains and assigned to different processors. All the processors that own a line i can participate in the ith stage of the recurrence. The flow of computation for a simpler 2D case is shown in Figure 4.19(a). In each case, regions of the same color can be operated at the same time. A one to one row-cyclic processor distribution will result in a sub-optimal program as only a subset of processors will work at a given time, while the rest
will idle during this time. A better scheme is to assign several tiles to a processor following a \textit{double-cyclic} arrangement of processors, as shown in Figure 4.19(b). Such a mapping ensures that during each sweep, all the processors are working in parallel.

Given this parallel formulation, it is very natural to adopt it to use tiles. The input domain is represented using a HTA of rank 3 with \textit{double-cyclic} distribution.

The \texttt{x_sweep} section of the MATLAB-serial version of BT are shown in Figure 4.20(a). In BT each of the elements of the grid U is a vector of size 5 and the elements of the coefficient matrix of the linear system of equations are matrices of size 5×5. Thus, the scalar multiplications and division in Algorithm 12 are replaced by matrix multiplication (\ast) and inversion (\backslash) respectively. \texttt{x_eliminate} and \texttt{x_backsubstitute} have the same meaning as explained in an earlier paragraph. \texttt{x_eliminate} takes as its input the matrices \texttt{lhs}, U and \texttt{rhs}. a, b, c and d are the matrices A, B and C and D shown in the equation (4.11). Due to brevity, the formation of these matrices is not shown in detail.

Figure 4.20(b) shows the MATLAB+HTA version. Here the matrices \texttt{lhs}, U and \texttt{rhs} are 3D HTAs. They are mapped according to the \textit{double-cyclic} distribution function discussed earlier. The outer \texttt{for} loop controls the iteration over tiles. During each iteration a line of tiles (i.e., all tiles with a given i index) are selected. The function \texttt{x_eliminate} is applied to each of the selected tiles. This function is the same as the one in the MATLAB-serial version, except that now this function operates on a sub-array. The communication statements in the last two lines of the outer loop copy the end regions to the next set of tiles (i.e., those tiles that will be selected in the next iteration of the i loop).
Figure 4.20: \textit{x-sweep} section of BT (a) MATLAB-serial version (b) MATLAB+HTA version

The main advantage of HTA for BT is the ability to define complex distribution like \textit{double-cyclic} very easily and select the row of tiles using the HTA selection operation. The flow of computation is evident in the code. At the same time, the programmer has explicit control over performance. For example, he can change the processor mapping scheme very easily according to his needs. Also, the notion of processors is absent in the program; instead, the programmer thinks in terms of tiles. This leads to very good global view program which is also processor independent.

In contrast, the MPI version controls the flow of computation using synchronization.
That is, all the processors at row \(i \) compute during iteration \(i \), while those at \(i + 1 \) wait to receive the overlapping region from them. This synchronization is done using MPI:Wait function call. The MPI version of the HTA requires the mapping and synchronization to be done by the programmer. The synchronization is very difficult to understand and only an experienced programmer will be able to implement it correctly. Even a slight negligence might lead to incomprehensible bugs. Moreover, it is tough to reason both the performance and the underlying algorithm of the program.

4.2.7 LU

Algorithm 13 Compute BLTS - Serial algorithm

\[
\begin{align*}
\text{for } i = 2 \text{ to } \eta_x \text{ do} \\
\quad \text{for } j = 2 \text{ to } \eta_y \text{ do} \\
\quad\quad \text{for } k = 2 \text{ to } \eta_z \text{ do} \\
\quad\quad\quad \Delta U_{i,j,k} = D^{-1}\{R_{i,j,k} - \omega(A_{i,j,k}\Delta U_{i,j,k-1} + B_{i,j,k}\Delta U_{i,j-1,k} + C_{i,j,k}\Delta U_{i-1,j,k})\} \\
\quad\quad \text{end for} \\
\quad \text{end for} \\
\text{end for}
\end{align*}
\]

LU solves the Navier-Stoke’s equation for 3-D rectangular grids. LU uses Symmetric Successive Over Relaxation (SSOR) algorithm to solve the problem, which at the end is resolved by forming the sub-block and super-block diagonal matrices and solving the lower and upper triangular systems. The former step is completely data parallel, while the latter has dependences where the grid point \((i, j, k) \) depends on points \((i - 1, j, k) \), \((i, j - 1, k) \) and \((i, j, k - 1) \) for lower triangular system and on points \((i+1, j, k) \), \((i, j+1, k) \) and \((i, j, k+1) \) for upper triangular systems. Algorithm 13 lists the pseudo-code for solving the lower triangular system.

The dependence can be eliminated if the iteration is performed in a different order than the lexicographical scheme. Specifically, the iteration should be performed along the diagonals (or the hyperplane for higher dimensions). All the points in a given hyperplane can be processed independently. This scheme has a parallelism of \(\Theta(n^2) \) for a input of size \(n^3 \). An
example hyperplane of a $n \times n \times n$ matrix is shown in the Figure 4.21(a). Figure 4.21(a) shows the hyperplane iteration over scalars, while Figure 4.21(b) shows the iteration over tiles. In the figure, all the elements (scalars or tiles) of the same color can be processed in parallel.

Algorithm 14 Compute BLTS - Hyperplane algorithm

| define sets $H_m = \{(i, j, k)|i + j + k = m\}$, $m = 6, 7, \ldots (\eta_x + \eta_y + \eta_z - 3)$ |
|---|
| **for** $m = 6$ to $(\eta_x + \eta_y + \eta_z - 3)$ **do** |
| **for all** $(i, j, k) \in H_m$ **do** |
| $\Delta U_{i,j,k} = D^{-1}[R_{i,j,k} - \omega(A_{i,j,k}\Delta U_{i,j,k-1} + B_{i,j,k}\Delta U_{i,j-1,k} + C_{i,j,k}\Delta U_{i-1,j,k})]$ |
| **end for** |
| **end for** |

Algorithm 14 shows the wavefront algorithm for parallelizing a section of the LU benchmarks, namely the solution of the block lower triangular system (blts). Using the hyperplane scheme, the processors compute local data before sending them to the processors containing the dependent data.

The hyperplane scheme can be implemented using HTA, where the iteration proceeds over tiles, as shown in Figure 4.22. The figure illustrates the hyper-plane scheme for a 2-dimensional case. To control the iteration, the logical indexing is used to determine the tiles that can operate in each iteration of the K loop. The expression $I+J==K$ composes a boolean array. Tiles with true value in the boolean array will be selected to do the 2D wavefront computation. The last two statements in Figure 4.22(b) copy the last row and column of the tiles of the K-th diagonal to the first row and column of the corresponding tiles.
Figure 4.22: Forward phase of a simple SSOR iteration a) Using MATLAB serial program b) Using MATLAB HTA program c) Illustration of the diagonal iteration over the tiles in the K+1-th diagonal. This is done to update the shadow of these tiles which guarantee that all the data needed for each computation is in the same tile.

A pictorial view of how the computation advances across tiles is shown in Figure 4.22(c), where the values of the I and J matrices are also shown. In the Figure, a is a $M \times N$ HTA, distributed on a $M \times 1$ processor mesh, so that each row of tiles is mapped to the same processor. In the LU program, data are partitioned into $M \times N \times K$ tiles, and distributed across $M \times N$ processors, so that the third dimension is local to each processor.

Implementation of this scheme using FORTRAN+MPI is extremely cumbersome. Unlike the other benchmarks, the processors do not execute in perfect synchronization. Rather, there is a producer consumer relationship between the processors, where one group acts as producer and another as consumers. This can be realized using careful synchronization of the processors, by appropriately placing the MPI_Send and MPI_Recv function calls. Misuse of this might lead to a deadlock. Moreover, it is very difficult to debug parallel programs.
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Type</th>
<th>CLASS = A</th>
<th>CLASS = B</th>
<th>CLASS = C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>double</td>
<td>2^{28}</td>
<td>2^{30}</td>
<td>2^{32}</td>
</tr>
<tr>
<td>MG</td>
<td>double</td>
<td>2563</td>
<td>2563</td>
<td>5123</td>
</tr>
<tr>
<td>CG</td>
<td>double</td>
<td>14000</td>
<td>75000</td>
<td>150000</td>
</tr>
<tr>
<td>FT</td>
<td>complex</td>
<td>2563 × 128</td>
<td>512 × 256 × 256</td>
<td>5124</td>
</tr>
<tr>
<td>IS</td>
<td>integer</td>
<td>2^{24}</td>
<td>2^{24}</td>
<td>2^{24}</td>
</tr>
<tr>
<td>BT</td>
<td>double</td>
<td>642</td>
<td>1024</td>
<td>1624</td>
</tr>
<tr>
<td>LU</td>
<td>double</td>
<td>64^3</td>
<td>102^4</td>
<td>162^4</td>
</tr>
</tbody>
</table>

where the processors execute in asynchronous fashion.

Our implementation of the NAS LU benchmark is similar to the code shown in the Figure 4.22(b) using logical indexing. The only difference is that Figure 4.22(b) shows a 2-D wavefront, while the NAS LU benchmark is a 3-D wavefront and, as a result, the execution advances through a hyper-plane instead of a diagonal line. Further more, the underlying computation is much more complex than that shown in Figure 4.22(b). Additionally, the code in Figure 4.22(b) corresponds to blts, while the code for buts is similar but the iteration proceeds in the opposite direction.

4.3 Experimental Results

We used the following two cluster environments for our experiments.

- **Turing cluster**: Located in the Digital Computer Laboratory of the University of Illinois at Urbana-Champaign, the Turing Cluster consists of 768 Apple Xserves, each with two 2 GHz G5 processors and 4 GB of RAM, for a total of 1536 processors. The primary network connecting the cluster machines is a high-bandwidth, low-latency Myrinet network from Myricom. In addition, all machines in the cluster are also connected by a 100 Mbs switched, full-duplex Ethernet using switches from Cisco Systems, and there is a 1 Gbs link between the front-end array and the primary Cisco switch. The operating system for the Turing Cluster is Mac OS X Server, currently version 10.3.
Table 4.4: Configuration of the experimental environments.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Turing cluster</th>
<th>Tungsten cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors</td>
<td>2 GHz G5</td>
<td>Intel Xeon 3.2 GHz</td>
</tr>
<tr>
<td>Operation System</td>
<td>Max OS X server</td>
<td>Linux</td>
</tr>
<tr>
<td>Memory/Node</td>
<td>4 GB</td>
<td>3 GB</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Myrinet/Gigabit Ethernet</td>
<td>Myrinet/Gigabit Ethernet</td>
</tr>
<tr>
<td>MPI Library</td>
<td>mpich-gm</td>
<td>Champion/Pro MPI</td>
</tr>
<tr>
<td>Compiler</td>
<td>GNU</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 4.5: Tiling structure and processor distribution.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Shape of the HTA</th>
<th>Processor Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP</td>
<td>${1, [p]}$</td>
<td>1-to-1 row-cyclic</td>
</tr>
<tr>
<td>MG</td>
<td>${3, [m \times n \times k]}, mnk = p$</td>
<td>1-to-1 row-cyclic</td>
</tr>
<tr>
<td>CG</td>
<td>${2, [m \times n]}, mn = p$</td>
<td>1-to-1 row-cyclic</td>
</tr>
<tr>
<td>FT</td>
<td>${3, [p \times 1 \times 1]}</td>
<td>1-to-1 row-cyclic</td>
</tr>
<tr>
<td>IS</td>
<td>${1, ([p], [p])}</td>
<td>1-to-1 row-cyclic</td>
</tr>
<tr>
<td>BT</td>
<td>${3, [m \times n \times k]}, mn = p$</td>
<td>k-to-1 double-cyclic</td>
</tr>
<tr>
<td>LU</td>
<td>${3, [m \times n \times k]}, mn = p$</td>
<td>k-to-1 row-cyclic</td>
</tr>
</tbody>
</table>

- **Tungsten** cluster: Tungsten cluster is a Linux cluster of 32-bit Intel Xeon (3.2 GHz) processors. The number of compute nodes is 1280. The cluster is located in the National Center for Super Computing Applications (NCSA), University of Illinois at Urbana-Champaign. The nodes are connected via myrinet and gigabit Ethernet. Each node has a RAM of 3 GB and a disk memory of 70 GB.

The NAS benchmark programs can be compiled for various input sizes. These input sizes are known as *classes*. The input sizes of each class of the benchmark programs are listed in 4.3.

Table 4.5 lists the *shape* and the processor distribution (cf Section 2.1.2) of the HTA programs. The F77+MPI also use identical processor distribution. In the table, $x - to - y$ represents the number of tiles (x) mapped to number of processors (y). p is the total number of processors and m, n, k are integers. Except BT, all the programs run only with number of processors which is a power of two. Except FT and IS, all the programs use one level of tiling. IS uses two-level tiling for reasons mentioned in Section 4.2.5. The MATLAB+HTA version of FT uses one level of tiling, while the CPP+HTA version uses two levels of tiling. This is used only for performance reasons. By using a two level tiling, the programmer can control the granularity of communication during the dtranspose operation.
Before proceeding to the analysis of our results, the readers are advised to take into consideration the following issues to appreciate the results that we have obtained so far.

- All the programs were written from scratch manually following the algorithms published in the NAS benchmark program report [7]. For MATLAB, we implemented both the serial and the parallel versions. The serial programs were required because the MATLAB programs were the first to be written in HTA. Without an understanding of the serial programs, it is very difficult to write the HTA programs. Moreover, we demonstrated that it is easy to convert existing sequential MATLAB programs to parallel HTA programs, through this step.

- Our goal in these experiments is not to outperform the F77+MPI programs. Rather, we like to show that with appropriate implementation and proper tuning, HTA programs can scale as well as F77+MPI programs. By aggressive manual tuning of both the library and the HTA source programs, it may be possible to even outperform the F77+MPI programs. In fact, we have observed such outstanding performance in certain cases. We also have identified several optimizations difficult to program in F77+MPI, but are easy for HTA programs. Yet, instead of restricting ourselves to tuning a single program and outperform the F77+MPI, we implemented an almost complete set of NAS benchmarks. The key reason for this decision is to analyze a diverse set of benchmarks and study the suitability of HTA as a programming model for a wide range of programs and on large number of processors.

- We require 128 licenses of MATLAB, if we need to conduct our experiments in 128 processors. In the Tungsten cluster, where we ran all our experiments, we were provided the licenses only for a short duration (1 month). This restricted our program tuning and performance behavior understanding efforts drastically.

- Each of the NAS program is different and unique in the computation and communication. The programs offer various challenges like load balancing, optimal communica-
tion, irregular problem domains, to name a few. The performance behavior of each of
the program is different.

- We do not have any sophisticated compiler to perform any source code optimization
 of the HTA programs. For C++, the compilers perform traditional scalar optimizations.
 But, for MATLAB, even a traditional optimizations like common sub expression
 elimination, are performed manually. Some of the manual optimizations we performed
 for the HTA programs are pre-allocation of temporary HTAs for the entire program,
 conversion of data parallel operations to `map` operations and removal of loop-invariant
 tile access operations (`h()`).

- F77+MPI programs have been tested, optimized and rewritten for over a decade. They
 were developed professionally at a scientific laboratory (NASA) by several scientists.

4.3.1 MATLAB Library

For the MATLAB library, we performed our experiments in the `Tungsten` cluster. The raw
running times of the programs up to 128 processors is given in Table 4.6.

The execution time for 1 processor corresponds to the serial execution of the pure F77
or MATLAB code without MPI or HTAs, depending of the base. Results in Table 4.6
correspond to the class C input for `EP` and `CG`, and class B for `MG`, `FT`, `LU` and `BT`. Table 4.7
shows the ratio of MATLAB+HTA and F77+MPI programs.

One of the key challenges we faced in writing the MATLAB+HTA programs is to write
optimal MATLAB programs. MATLAB programs should adhere to certain rules for optimal
efficiency. For example, vectorization of programs is an important requirement for efficiency.
The key reason for MATLAB being interpreted is that it uses array computations intensively.
Interpreting costs are amortized by using such array operations. The array operations are
executed efficiently by a compiled library code. Using non-vectorized scalar codes is counter
intuitive in MATLAB. So, all our MATLAB programs are aggressively vectorized. However,
Table 4.6: Execution times in seconds for some of the applications in the NAS benchmarks for F77+MPI versus MATLAB+HTA. The execution time for 1 processor corresponds to the serial application in F77 or MATLAB, without MPI or HTAs. The execution environment is the Tungsten cluster.

<table>
<thead>
<tr>
<th>Nprocs</th>
<th>EP (C)</th>
<th>FT (B)</th>
<th>CG (C)</th>
<th>MG (B)</th>
<th>LU (B)</th>
<th>Nprocs</th>
<th>BT (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F77+</td>
<td>Matlab+</td>
<td>F77+</td>
<td>Matlab+</td>
<td>F77+</td>
<td>Matlab+</td>
<td>F77+</td>
</tr>
<tr>
<td></td>
<td>MPI</td>
<td>HTA</td>
<td>MPI</td>
<td>HTA</td>
<td>MPI</td>
<td>HTA</td>
<td>MPI</td>
</tr>
<tr>
<td>1</td>
<td>901.6</td>
<td>3566.9</td>
<td>136.8</td>
<td>657.4</td>
<td>3606.9</td>
<td>3812.0</td>
<td>26.9</td>
</tr>
<tr>
<td>4</td>
<td>273.1</td>
<td>1091.1</td>
<td>274.0</td>
<td>657.4</td>
<td>3606.9</td>
<td>3812.0</td>
<td>26.9</td>
</tr>
<tr>
<td>8</td>
<td>136.3</td>
<td>224.8</td>
<td>65.5</td>
<td>159.3</td>
<td>123.4</td>
<td>823.6</td>
<td>9.6</td>
</tr>
<tr>
<td>16</td>
<td>68.6</td>
<td>224.8</td>
<td>37.2</td>
<td>87.2</td>
<td>89.5</td>
<td>375.2</td>
<td>4.8</td>
</tr>
<tr>
<td>32</td>
<td>34.7</td>
<td>112.0</td>
<td>20.7</td>
<td>42.9</td>
<td>48.4</td>
<td>250.3</td>
<td>3.3</td>
</tr>
<tr>
<td>64</td>
<td>17.1</td>
<td>56.7</td>
<td>10.4</td>
<td>24.0</td>
<td>44.5</td>
<td>148.0</td>
<td>1.6</td>
</tr>
<tr>
<td>128</td>
<td>8.5</td>
<td>29.1</td>
<td>5.9</td>
<td>15.6</td>
<td>30.8</td>
<td>123.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
not all the programs from the NAS benchmarks are vectorizable. As we shall see, this seriously hinders the performance of MATLAB+HTA programs.

The second challenge we faced is the performance characterization of MATLAB+HTA programs. The task is very difficult for the following two reasons:

- Characterizing the performance behavior of parallel programs is by itself a difficult task. The main reason is the lack of adequate software tools and techniques.

- Characterizing the performance behavior of parallel programs written in high level programming languages like MATLAB is another difficult task. MATLAB is a copyrighted software. They employ several copyrighted techniques (like Just-in-Time compilation, code acceleration etc.). However, these techniques are not applicable in all cases. For example, our experiments showed that the MATLAB JIT compiler does not speedup programs that use arrays of rank 4 or more. Due to this uncertainty, it is not easy to understand the performance behavior of MATLAB programs.

We used the MLINT profiling tool provided by the MATLAB, to understand and eliminate single processor performance bottle-necks, to some extent. We also instrumented all the programs with timers to collect the timings of key sections. Using the knowledge of the standard MATLAB behavior, the timing information we collected from the program instrumentation and a detailed understanding of the algorithms of the programs in the NAS benchmark set, we were able to approximately pin down the performance bottle-necks. Table 4.6 shows the running times of F77+MPI and CPP+HTA programs. The results are summarized as follows:

Table 4.7: Ratio of execution times ($\frac{\text{MATLAB+HTA}}{\text{F77+MPI}}$). The execution environment is the tungsten cluster.

<table>
<thead>
<tr>
<th>NPROCS</th>
<th>EP</th>
<th>FT</th>
<th>CG</th>
<th>MG</th>
<th>LU</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.95</td>
<td>4.81</td>
<td>1.06</td>
<td>30.78</td>
<td>15.61</td>
<td>111.98</td>
</tr>
<tr>
<td>4</td>
<td>3.25</td>
<td>2.51</td>
<td>4.84</td>
<td>16.11</td>
<td>9.60</td>
<td>109.93</td>
</tr>
<tr>
<td>8</td>
<td>3.28</td>
<td>2.43</td>
<td>6.67</td>
<td>15.76</td>
<td>10.31</td>
<td>95.25</td>
</tr>
<tr>
<td>16</td>
<td>3.28</td>
<td>2.34</td>
<td>4.19</td>
<td>18.12</td>
<td>13.33</td>
<td>85.69</td>
</tr>
<tr>
<td>32</td>
<td>3.23</td>
<td>2.07</td>
<td>5.17</td>
<td>16.64</td>
<td>8.91</td>
<td>78.88</td>
</tr>
<tr>
<td>64</td>
<td>3.32</td>
<td>2.31</td>
<td>3.33</td>
<td>31.50</td>
<td>5.46</td>
<td>51.54</td>
</tr>
<tr>
<td>128</td>
<td>3.42</td>
<td>2.64</td>
<td>3.99</td>
<td>27.50</td>
<td>Inf</td>
<td>89.14</td>
</tr>
</tbody>
</table>
EP

For the experiments, we use the map version of EP, shown in the Figure 4.3. The running time of the MATLAB+HTA programs are around 4 times slower than that of the F77+MPI programs. The main reason is that the for loop in Figure 4.3 runs for a total of 2^{16} iterations for CLASS C. Loops slow down the MATLAB programs by a significant factor. The other reason for slow down is the creation of intermediate temporary array variables (x1, x2, xt1, etc). However, the speedup of the MATLAB+HTA and F77+MPI programs are very similar.

MG

The performance of MG MATLAB+HTA programs is around 30 times higher than that of F77+MPI programs. A visual inspection of the Table 4.6 reveals that 128 processor execution of MATLAB+HTA programs is slower than single processor execution of the F77+MPI program. The main problem in MG is the excessive creation of the temporary arrays during stencil computations. The stencil computation in MG involves 27 neighbors. When this stencil computation is implemented as an array operation, 27 intermediate arrays are created. This causes several overheads: increased usage of main memory, capacity misses in the caches and management of these temporary arrays by the MATLAB run-time environment. Though, MATLAB provides an optimized function (imfilter) call to implement this stencil convolution, we did not use this in the experiments we have reported here. In other experiments, usage of imfilter improved the execution time of MATLAB+HTA programs by a factor of two. The reason for not using imfilter is to use HTAs for implementing all the primitive operations as much as possible.

FT

The MATLAB+HTA programs are on an average 3 times slower than that of F77+MPI programs. The reasons for this are the standard MATLAB overheads : presence of loops, interpretation overheads and creation of temporaries. Since, the major part of the FT pro-
gram is spent in the MATLAB `fft` routine (which in turn uses the FFTW [30] [29] library), the slowdown is not too high. The scaling is also similar to that of the F77+MPI programs.

CG

For CG, F77+MPI programs exhibit super-linear speedups. We suspect that the reason is the high activity of virtual memory swapping for small number of processors (1 and 4) in F77+MPI program. On the other hand, MATLAB+HTA programs always consume more memory and this swapping may be uniform for all the processor configurations. The other standard MATLAB overheads hold for the CG program also.

LU

The execution times of LU is around 10 times that of F77+MPI. The reason for this gap in LU is that it is not a vectorizable programs. It may be recalled from the description of LU that it has global data dependences, owing to first order linear recurrence. Though, we obtain parallelism using hyperplane iteration over the tiles, inside each tile we evaluate each of the elements in lexicographic order, leading to strict sequential execution. Non-vectorized programs do not deliver optimal performance in MATLAB.

BT

The execution times of BT is around 50 times slower than that of F77+MPI. Owing to large execution times of MATLAB+HTA programs, we ran the BT program only for a small number of iterations (5), instead of executing the program till completion. The reasons that hold for LU also hold for BT, namely the first order linear recurrence prohibits the vectorization of computations within a tile.
Table 4.8: Execution times in seconds for programs in the NAS benchmarks for F77+MPI and CPP+HTA. The execution environment is the turing cluster. Input size for LU is CLASS A. For all others, it is class C.

<table>
<thead>
<tr>
<th>Nprocs</th>
<th>EP (C) F77+MPI, CPP+HTA</th>
<th>FT (C) F77+MPI, CPP+HTA</th>
<th>CG (C) F77+MPI, CPP+HTA</th>
<th>MG (C) F77+MPI, CPP+HTA</th>
<th>IS (C) F77+MPI, CPP+HTA</th>
<th>LU (A) F77+MPI, CPP+HTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1329.13</td>
<td>1532.70</td>
<td>–</td>
<td>–</td>
<td>4632.67</td>
<td>6239.84</td>
</tr>
<tr>
<td>2</td>
<td>762.77</td>
<td>880.72</td>
<td>–</td>
<td>–</td>
<td>1190.73</td>
<td>1280.47</td>
</tr>
<tr>
<td>4</td>
<td>381.62</td>
<td>442.38</td>
<td>720.10</td>
<td>664.96</td>
<td>746.93</td>
<td>648.51</td>
</tr>
<tr>
<td>8</td>
<td>190.64</td>
<td>220.40</td>
<td>337.32</td>
<td>345.20</td>
<td>209.56</td>
<td>424.31</td>
</tr>
<tr>
<td>16</td>
<td>95.39</td>
<td>110.36</td>
<td>173.48</td>
<td>175.65</td>
<td>121.58</td>
<td>170.47</td>
</tr>
<tr>
<td>32</td>
<td>47.71</td>
<td>55.36</td>
<td>142.45</td>
<td>95.64</td>
<td>46.79</td>
<td>82.62</td>
</tr>
<tr>
<td>64</td>
<td>23.85</td>
<td>28.31</td>
<td>46.43</td>
<td>56.60</td>
<td>32.47</td>
<td>52.15</td>
</tr>
<tr>
<td>128</td>
<td>11.93</td>
<td>14.14</td>
<td>20.43</td>
<td>31.59</td>
<td>17.27</td>
<td>26.87</td>
</tr>
</tbody>
</table>
Table 4.9: Ratio of execution times ($\frac{CPP+HTA}{F77+MPI}$). The execution environment is the turing cluster. Input size for LU is CLASS A. For all others, it is class C.

<table>
<thead>
<tr>
<th>NPROCS</th>
<th>EP</th>
<th>FT</th>
<th>CG</th>
<th>MG</th>
<th>IS</th>
<th>LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.15</td>
<td>–</td>
<td>1.35</td>
<td>–</td>
<td>–</td>
<td>2.36</td>
</tr>
<tr>
<td>2</td>
<td>1.15</td>
<td>–</td>
<td>1.08</td>
<td>–</td>
<td>–</td>
<td>3.08</td>
</tr>
<tr>
<td>4</td>
<td>1.16</td>
<td>0.92</td>
<td>0.87</td>
<td>0.89</td>
<td>1.85</td>
<td>3.86</td>
</tr>
<tr>
<td>8</td>
<td>1.16</td>
<td>1.02</td>
<td>2.02</td>
<td>1.17</td>
<td>1.83</td>
<td>4.19</td>
</tr>
<tr>
<td>16</td>
<td>1.16</td>
<td>1.01</td>
<td>1.40</td>
<td>1.07</td>
<td>1.57</td>
<td>5.73</td>
</tr>
<tr>
<td>32</td>
<td>1.16</td>
<td>0.67</td>
<td>1.77</td>
<td>1.04</td>
<td>1.53</td>
<td>4.46</td>
</tr>
<tr>
<td>64</td>
<td>1.19</td>
<td>1.22</td>
<td>1.61</td>
<td>1.43</td>
<td>1.41</td>
<td>6.43</td>
</tr>
<tr>
<td>128</td>
<td>1.19</td>
<td>1.55</td>
<td>1.56</td>
<td>1.56</td>
<td>1.69</td>
<td>–</td>
</tr>
</tbody>
</table>

Figure 4.23: Running time comparison of F77+MPI and CPP+HTA on Turing cluster: EP Benchmark (Class C)

4.3.2 C++ Library

We executed the CPP+HTA programs in the Turing cluster. We used g77 and g++ compilers for compiling the FORTRAN and C++ programs respectively. For both the programs, we used the mpichgm library, an MPI implementation for Myrinet. The running times of the programs are shown in Table 4.8, while Table 4.9 shows the ratio of CPP+HTA and F77+MPI running times. Figures 4.23–4.28 show the plot of running times of the CPP+HTA programs and F77+MPI programs. For all the programs, except LU, we used CLASS C as the input size. For LU, we used CLASS A as the input size.
Figure 4.24: Running time comparison of F77+MPI and CPP+HTA on Turing cluster: MG Benchmark (Class C)

EP

The running time of EP program is plotted in Figure 4.23. EP is an embarrassingly parallel program and the scaling is almost linear for both F77+MPI and CPP+HTA programs. The bulk of the time in EP is spent only in computation. The only communication is the reduction operation. Moreover, we used the map version of EP for the experiments.

MG

The scaling of CPP+HTA MG (Figure 4.24) is very similar to that of F77+MPI. We implemented two versions of the MG benchmark. One of them is written with all HTA operations. That is, the inter-grid and intra-grid operations are implemented using HTA operations in a data parallel fashion, like the codes listed in Figure 4.7- 4.10. Henceforth, we will call this the pure-HTA version.

The pure-HTA version does not deliver optimal performance. The core computation in MG is the stencil operation, which is a series of additions of neighboring elements. The size of the stencil in MG is 27. That is, the stencil computation involves addition of 27 neighbors. These addition operations are implemented as HTA operations. Since C++ performs pairwise evaluation of expressions involving HTAs in a chain of binary expressions, evaluation of
Table 4.10: Comparison of running times (seconds) of pure-HTA and map versions of MG (CLASS C) in turing cluster.

<table>
<thead>
<tr>
<th>Processors</th>
<th>map version</th>
<th>pure-HTA version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>83.00</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>45.11</td>
<td>884.94</td>
</tr>
<tr>
<td>16</td>
<td>24.12</td>
<td>410.72</td>
</tr>
<tr>
<td>32</td>
<td>12.90</td>
<td>215.85</td>
</tr>
<tr>
<td>64</td>
<td>7.65</td>
<td>110.66</td>
</tr>
<tr>
<td>128</td>
<td>5.39</td>
<td>67.11</td>
</tr>
</tbody>
</table>

each of the addition operation produces a temporary. The creation of temporary might cause capacity misses in cache and other levels of memory hierarchy. In such a pairwise evaluation, each evaluation is a function call (for e.g. operator +). Finally, the body of the function, which often contains a loop that iterates over all the elements of its inputs, is executed several times, thus leading to more loop instructions being executed.

We avoided the creation of temporaries during stencil operation using an optimized lconv (acronym for leaf convolution) routine that is invoked via map on the input HTAs. The lconv performs the stencil operation on an array. In the case of HTA programs, the lconv is invoked on each of the leaf tiles of the HTAs, using hmap operation. The map version of MG runs up to 20 times faster than the pure-HTA version (see Table 4.10). We used this version for our experiments in Figure 4.24. The process of converting the HTA operations in to a map operation automatically using a compiler, is a future work.

The problem of temporaries can also be avoided by using delayed expression evaluation technique. In this technique, the evaluation of a chain of expression is delayed until its use (i.e., an assignment operation). Inside the assignment operation, the expression is evaluated as a whole in to the left hand side argument. Thus, no temporaries are created and all the expressions are evaluated and assigned in a single loop. This technique can be implemented at run-time (using proxy objects) or compile-time (using expression templates [49]). We have implemented a simple run-time scheme only for binary expressions (in the context of CG). Extending this scheme to a chain of binary expressions or implementing the compile-time scheme using expression templates remains to be done.

108
The running time plot of CG is shown in Figure 4.25. As can be seen in the graph, the running times of CPP+HTA version is within a factor of 1.5 (on average) of that of F77+MPI version. The scaling pattern of both the versions are very similar.

The core computation in CG is a sparse matrix-vector multiplication. F77+MPI version uses compressed column storage layout for the sparse matrix, while the CPP+HTA programs use compressed row storage.

For the CPP+HTA version we use different programs depending on the parity of the logarithm of the number of processors. If the number of processors is an even power of two, then we use a square HTA (i.e., the number of elements along both the dimensions are the same). If the number of processor is an odd power of two, then there are two choices for HTA structure – rectangular and square. If square HTAs are used, two tiles need to be mapped to a given processor. Using such a distribution in the CG program listed in Section 4.2.3 does not deliver optimal performance. The CG algorithm requires replication of vectors and hence replication of computations, and this replication happens on a per-tile basis. If two tiles are mapped to a processor, a tile could be replicated twice on a same processor. This in turn results in certain computations (e.g. the p^Tq step), to be redundantly executed twice.
Moreover, during operations like reduce and transpose, which involve communication, twice the messages than the required will be exchanged between processors. For these reasons, we use a rectangular HTAs. This in turn requires some changes to the matrix-vector multiplication part of the CG program. The F77+MPI version uses a single program for both the cases with extra logic to handle the rectangular cases.

As a future work, a modified form of the HTA repmat operation is under-study. This operation will not duplicate an element in the same processor. Instead all the instances of that element in a given processor will point to a single unique instance. This will avoid the creation of two separate programs.

FT

The running times of the FT CPP+HTA version is within a factor of 1.5 of that of the F77+MPI version (Figure 4.26). Until 32 processors, the performance is very close to F77+MPI, with 4 and 8 processor execution beating the F77+MPI version slightly.

Unlike in MATLAB, we do not use any optimized Fourier transform library like FFTW, for the CPP+HTA version. Instead, we use the same Fourier transform routine that the F77+MPI programs use. The scaling of CPP+HTA programs is also very similar to that of
the F77+MPI programs up to 64 processors.

The F77+MPI version distributes the array along the third dimension. This is optimal for
F77+MPI programs, as FORTRAN assume column major storage layout for all its arrays.
During the transposition step, the first and the third dimension are exchanged and this
involves a copy of values. The Fourier transform is applied twice along the first dimension
and once along the second dimension. For better cache utilization, all the elements of a
vector stored in non-contiguous memory regions are copied to consecutive locations, before
performing the Fourier transform. This implies that whenever the transform is applied along
the second dimension, a copy operation is performed. Thus, totally two copies are required
for computing the Fourier transform along all the dimensions. Since C++ and the htalib
use row major storage layout for the arrays, we distribute the HTAs along the first dimension,
to ensure the same optimal two copy requirement.

Additionally, in the CPP+HTA version we use an HTA of height two, instead of HTA
of height one of our earlier MATLAB+HTA version. The transposition operation (refer
Section 4.2.4) involves an all-to-all exchange of data between processors, if the HTA is
distributed. By using a 2-level tiling, the programmer can control the size of the message
and the number of messages exchanged during this communication step.

F77+MPI uses blocked transposition and FFT computation. Since, the HTA program
is not written that way, for the experiments, we set the block size to be one for F77+MPI
program. To incorporate the block transposition and FFT computation, we need to add one
or more level of tiling. This is left as a future work.

IS

IS program of NAS benchmark set is written in C, unlike the other programs. The running
time of IS (Figure 4.27) CPP+HTA is within a factor of 1.414 of that of F77+MPI programs.
The scaling patterns for both the programs are very similar.
Figure 4.27: Running time comparison of C+MPI and CPP+HTA on Turing cluster: IS Benchmark (Class C)

LU

The single processor running time of LU-CPP+HTA version (Figure 4.28) is only a factor of 2 times higher than that of F77+MPI. In LU the main single processor overhead is the usage of operator[] (flat operator). LU uses map operation to implement all its core computation (blts, buts and rhs). Inside these functions, operator[] is used very frequently to iterate over the individual scalar functions. The main computation of operator[] (i.e., the index arithmetic) is not translated optimally by the C++ compiler we used. Certain optimizations like loop invariant index arithmetic operations removal, common sub-expressions elimination and strength reduction are not performed by the compiler. This leads to the slowdown by a factor of 2.34 for the single processor execution.

The main multi processor overhead is the excessive usage of operator(). In LU, the chained tile access operation (like, \(h(r_0^0, r_1^1)[r_0^1, r_1^1] \)), where each \(r_i^j \) is a range, is called very frequently to exchange the neighboring data (See Figure 4.22(b)). The cost of a single \(h(r_0^0, r_1^0)[r_0^1, r_1^1] \) operation is \(O(t) \), where \(t \) is the number of elements in the region \((r_0^0, r_1^0) \).

The HTA version of LU uses the hyperplane algorithm [9]. The outer time step loop iterates for a large number of times (e.g. 250 iterations for CLASS A). Inside each time step, there is an iteration over each of the hyperplanes of the HTA. The total number of
hyperplanes is $O(\sqrt{p})$, where p is the number of processors. For each hyperplane iteration, the chained access operation is invoked. There are two separate hyperplane iterations, one for \texttt{blts} and another for \texttt{buts}. During each hyperplane iteration the communication method to exchange the neighboring data is called. Thus, the total number chained access operation invocations is $2 \times 250 \times O(\sqrt{p}) = O(\sqrt{p})$. Further, the number of tiles is chosen to be $O(p\sqrt{p})$, for optimal performance. Putting all together, the total cost of the chain access operation is $O(p^2)$. Thus, the overhead increases by a quadratic factor of the number of processors.

We eliminated this overhead by memorizing the intermediate HTAs generated during the hyperplane iterations in an array of temporaries. These temporary HTAs are used inside the communication step. Since, the \texttt{htalib} provides a mechanism to generate different views of an HTA that share the same under-lying data, this optimization is possible. A compiler can pre-compute all the HTA that result after the chained access operations. For example, in $h(r_0^0, r_0^1)[r_0^1, r_1^1]$, if the ranges r_i^j are loop-invariant, the chained access operation can be computed outside of the loop resulting in a temporary HTA. The access operation itself will be replaced by these temporary HTAs. Yet another solution to the problem is the usage of overlapped tiling [35], which will eliminate the need to use the chained access operation
during communication.

4.3.3 Summary

The re-writing of the NAS benchmarks and the implementation of the HTA library in C++ provided adequate platform to understand the performance behavior of HTA programs. Our earlier MATLAB implementation was constrained by the larger execution times of MATLAB programs. Unless the execution times are very close to a compiled and optimized FORTRAN77 or C program, the speedups obtained are not legitimate. Thus, the results from the C++ library is more representative of the HTA program performance than the MATLAB library.

With the current maturity level of the C++ library, we observed a slowdown of up to a factor of 2.5 for the CPP+HTA programs (on a single processor execution) compared with F77+MPI programs. It can be seen from the Table 4.9 that the slowdown is not uniform for all the programs. For \text{LU}, the factor is over two, while \text{EP}, \text{MG FT}, \text{CG} and \text{IS} have a lesser factor (≈ 1.5).

We identified several overheads in each benchmark program. The most common overhead in all the programs is the creation of temporary HTAs. This is an inherent drawback of any data-parallel language. An aggressive compiler or a technique like delayed expression evaluation will solve this problem. At present, we avoided this problem, in most cases, by the usage of \texttt{map} operation or pre-allocation of temporaries. Yet, there are few more temporaries that are created inside the HTA operations at run-time. For example, in \text{FT}, the \texttt{dtranspose} operation creates two buffers while transposing the input HTA \(h \). In a F77 program, only one temporary is allocated once for the entire program and is re-used during each transposition step. The creation of temporaries lead to capacity misses and runtime overhead involved in managing them. Another common overhead is the inability of the compiler to generate the optimal code for operator [] (scalar selection). We discovered that the compiler does not perform loop-invariant removal and strength reduction. In \text{MG}, we avoided the usage of
operator[] by hand translating the operator[] to the index arithmetic computation. In LU, we did not do this and hence slowdown by a factor of 2.3.

The two-sided communication method of the htaLib has several undesirable effects on the performance of HTA programs. The HTA meta-data needs to be replicated in all the processors, so that in an HTA operation a processor knows its partner. As the number of processors increases the size of the HTA meta-data also increases proportionally. Thus, for large number of processors the memory consumption of HTA programs could increase drastically. This might limit the scalability of the HTA programs as the number of processors increases. To solve this, the library has to be re-engineered to use one-sided put and get operations. Additionally, the two-sided communication might lead to unnecessary synchronization between processors.

We aggressively profiled all the programs in all the processor configurations to identify and eliminate further performance bottlenecks. Currently, we use gprof [33], a call-graph profiler, that profiles the running instance of the HTA programs in each of the processor. As, the computation is mostly symmetric with respective to processors, the program behavior can be understood using a profile stored on one of the processors. Using the feedback obtained from the profiler, the library was tuned aggressively. Using a profiler that profiles the program on much smaller granularity, further overheads can be eliminated.

Moreover, as stated earlier, we perform several manual optimizations of the HTA source code, due to which the syntax of the HTA programs is convoluted. Compiler support to perform such source code optimizations is a future work. A compiler could also do further optimizations. For example, the library analyzes the regions of the HTAs dynamically to determine the senders and the receivers during communication. A compiler can statically analyze the ranges and generate a code with less overhead. Given that the HTA programs use vector style element access operations, with regular array access patterns, the task of the compiler will be easy. An algorithm similar to that listed in [3] can be used by the compiler.
Debugging parallel programs is yet another difficult task. Since HTA programs have global view of data and single threaded model, the debugging process is simpler than F77+MPI based SPMD programs. Additionally, in the htaLib, we provide a mechanism to facilitate debugging. In the debug mode, all the HTA operations have an implicit barrier at the end, so that it will be possible to precisely identify the location of the bugs. This is especially useful if the bug is in a communication operation.

4.4 SLOC measurement

One of the goals of our work is to facilitate parallel programming. Unfortunately, measuring productivity directly is not easy. Instead, we have measured the number of lines of code of the HTA and MPI programs and use this figure as an indirect measurement of productivity. Clearly, the number of lines of code is not the best metric of ease of programming, but in our
case, it provides a reasonable estimate of the relative complexity of the programs. The plot in Figure 4.29 shows the lines of code for HTA and MPI codes. Each bar shows the lines of code for the Computation, Communication and Data Decomposition sections of the codes, for MATLAB+HTA, CPP+HTA and F77+MPI programs. For now, we shall compare the MATLAB+HTA with F77+MPI plots.

Since MATLAB language does not have declarations, we ignored those lines from the SLOC counts for both MATLAB and FORTRAN/MPI codes as well. As Figure 4.29 shows, HTA programs require significantly fewer lines of code. MATLAB+HTA programs have less computation lines than the F77+MPI programs due to the use of vector operations, overloaded MATLAB functions (CG and FT) and recursion (MG). Vector operations were used in all the applications whenever possible. The difference in the number of lines of computation is not relevant to our discussion here since it is due to the characteristics of the MATLAB language, especially the availability of vector operations. However, the other two numbers are good indications of ease of programming and clearly show the advantages of HTAs.

The lines of code for communication are significantly lower in HTA programs. In the MATLAB+HTA programs, the communication is performed using assignment statements or high level operations like transpose. In MPI programs communication is an elaborate step. In addition to the send and receive instructions, packing and unpacking data and checking boundary conditions in the communication are also needed.

HTA programs also have significantly fewer data decomposition instructions. HTA are partitioned and distributed using the single MATLAB+HTA constructor, while F77+MPI programs need to compute a number of values including the limits of data owned by each processor, neighbors of a given processor, active set of processors in a given step of the program etc.

Finally, the CPP+HTA programs have similar lines of codes for communication and HTA creation, as that of the MATLAB+HTA programs. Some CPP+HTA programs have more
lines in the computation section. This is due to various reasons like usage of different style of coding, usage of templates etc. Given that HTAs facilitate the parallel programming, the lines of code in the computation section is not very important.
Chapter 5
Related Works

5.1 Introduction

Parallel programming is only one aspect of HTA. HTA is a flexible data structure that can be used for variety of purposes. As stated in our motivation, tiled computations benefit from the locality of reference in certain dense computations like matrix matrix multiplication. HTAs can be naturally used to express such computations. Certain computations are hierarchical by nature. A well known example is adaptive mesh refinement (AMR); A modified version of HTAs has been proposed to express such computations [13]. HTAs are useful to represent the computational domain of certain problems very naturally. For example, the NAS benchmarks LU, BT and SP use a 3D matrix, whose elements are in turn vectors. A two level HTA can be used to represent this easily. In this thesis, parallel programming is the central focus and hence HTAs were restricted to this domain.

HTA is the first attempt to adopt tiles as a programming language construct. Hierarchical data types like collections of collections exists in APL2 [16] [47] [14]. However, APL2 is not a conventional programming language and its use in practice, even for sequential programming, is almost non existent. Languages like MATLAB, FORTRAN90 and ZPL have aggregate data types that are not hierarchical. They also have operations that operate on these aggregates. These operations are extensions of primitive scalar operations. The HTA operations resemble the operations provided by these languages. For example, reduce, transpose and permute are inspired from APL. map is based on a similar construct in LISP. repmat is inspired from MATLAB. The notion of conformability of HTA operands is derived
real a(1000), b(1000)
integer i
...
do i = 2,99
 b(i) = a(i-1) + a(i+1)
enddo
(a)
...
call MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr)
call MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
np = 1000/nprocs + 2
real a(np), b(np)
...
if (rank < nprocs-1) then
 call MPI_SEND (a(np-1), 1, MPI_REAL, rank+1, 1, MPI_COMM_WORLD, ierr)
end
if (rank > 0) then
 call MPI_SEND (a(2), 1, MPI_REAL, rank-1, 2, MPI_COMM_WORLD, ierr)
endif
if (rank > 0) then
 call MPI_RECV (a(1), 1, MPI_REAL, rank-1, 1, MPI_COMM_WORLD, ierr)
endif
if (rank < nprocs-1) then
 call MPI_RECV (a(np), 1, MPI_REAL, rank+1, 2, MPI_COMM_WORLD, ierr)
endif
b(2:np-1) = a(1:np-2) + b(3:np)
...

Figure 5.1: 1-D Jacobi Relaxation a) Serial FORTRAN program b) MPI Program

from FORTRAN90. But unlike these operations, the HTA operations are recursive as they operate on an hierarchical data type.

This apart, the other related works to HTA are connected with parallel programming languages, in general. There have been significant research efforts in improving the state-of-the-art of the parallel programming. All these attempt to build a layer of abstraction on top of Message Passing Interface (MPI) [34], to provide a global view of data or single threaded execution model or both.

Figure 5.1 explains why global view of data is important for parallel programming. The code in the figure performs the jacobi iteration on a single dimensional array in parallel. This is the same as that explained in Section 3.6.2. Figure (a) shows the sequential code, while (b) shows the parallel version written in FORTRAN+MPI. Array access in a local view programming model are restricted to only the local sections owned by a given processor. To access a remote section, explicit communication is required to obtain the data. The storage
for the remote data should be allocated by the programmer. These make the correspondence
between the sequential program and parallel program less clear. Moreover, if the programmer
accidentally accesses the remote region without these special processing, the execution will
result in the termination of the program or unexpected results.

The same Figure also illustrates the disadvantages of multi-threaded execution model.
The first and second if statements are not executed by processors nprocs-1 and 0 respectively
and vice versa for the next two if statements. Stated otherwise, the execution path in each
processor is different. This has atleast four effects with respect to a programmer. First,
he has to write extra conditional statements to control the execution. An error in the
conditional might lead to non trivial bugs. Second, the underlying algorithm is completely
obscured due to different execution paths. Third, the frequency of bugs increases with every
addition of a new path in a program. Lastly, due to the absence of a clear mapping between
the program and its running process instance, debugging the processes at run time becomes
quite infeasible; a breakpoint in a program does not necessarily stop all the processes, for
instance.

The research efforts in parallel programming languages can be broadly classified as lan-
guage centric or library based. The language centric approach can be divided in to two cate-
gories - directive based programming languages and explicit parallel programming languages.
Directive based parallel programming languages use compiler directives to augment existing
sequential code written in a conventional programming language like FORTRAN90. The
compiler analyzes the directives and produces parallel version of the code. A Prominent
example of this class is High Performance Fortran (HPF). Directive based parallel program-
ming languages are always single threaded, as they are extensions of sequential programming
languages.

Explicit parallel programming languages are designed from scratch for parallel program-
ming. They support parallel data types and the operations in these languages are explicitly
parallel. Like directive based, they also rely on a compiler to generate the final parallel
version. However, the compiler analysis involved in such languages are simpler compared to the directive based languages. The aim of these languages is always to provide a global view of data. Additionally, they can also offer single threaded view (e.g. ZPL). Languages like CAF, UPC, Titanium and X10 do not offer single threaded view, but only global view of data.

Library based approaches, on the other hand, do not rely on compilers. They contain several routines that represent communication and data sharing on programs. Programmers can use this library routines in any conventional language that it supports, thus reducing some of their burden. MPI is the best known example of this class. However, MPI offers neither a global view of data nor single threaded execution model. Libraries like GAS, POET and POOMA try to fill this void.

There are few other research efforts that wish to provide a uniform programming language for writing both parallel programs as well as cache-conscious sequential programs. Split-C [23] and Sequoia [28] are two prominent examples in this class.

In this chapter we provide a brief description of the related works and critically analyze the differences with the HTA programming model. We choose a representative from each class of works mentioned above. APL2 for collection oriented operations, HPF for directive based languages, ZPL for explicit parallel programming languages, and POOMA for library based approach. We give a brief description of each language along with a set of operations and few examples. At the end, we provide an analysis of the comparison with all the research efforts.

5.2 APL

APL is an interactive array programming language originally designed for teaching computer concepts [37] [16]. APL offers a systematic and structured method for thinking about computational problems and implementing solutions. The original APL notation was described
Figure 5.2: Representing a relational data base system in APL2 using arrays of arrays.

by Iversion in 1962. The first commercial computer programming implementation of the language was implemented in 1968. APL2 is the IBM implementation of extended APL. Since it is a superset of APL, we use this for description.

APL2 consists of three fundamental components: arrays, functions and operators. Arrays are the data structures consisting of collections of numbers and text characters. Functions are programs that manipulate arrays; functions take arrays as arguments and produce new arrays as results. Operators are programs that manipulate functions; they take functions as operands and produce new functions as results.

Arrays are collections of data; its elements are either numbers or characters or both. Arrays can be a vector, matrix or any higher dimensional rectangular arrangements. The rank of a matrix determines the number of dimensions (or the axes) of an array. In APL2, arrays can in turn contain arrays. Such arrays can be used to represent any general structure, other than numerical matrices. For instance, [16] lists a representation of relational database system using arrays of arrays. A modified version of this example is reproduced in the figure 5.2. This example represents a database of number of students enrolled in each program in different US universities. The database system is represent using a nested array, whose first row and first column of elements are character arrays and the elements in the remaining entries are numbers.

APL2 functions take arrays as input and produces another array. Examples of such functions are scalar functions like multiply (\times), divide (\div), add (+), and subtract (−),
reshape, catenate, etc. A scalar can be operated with an array, in which case the scalar is paired up with each of the elements of the array. This concept is known as argument extension. It is also possible to convert a scalar into an array, by enclosing the array within a scalar; **enclose** (denoted by \subset) performs this.

APL2 operators take existing functions as arguments and produce new functions as results. The functions produced by operators are called derived functions. An example operator is reduction (denoted by $/$). It takes a function as operand and produces a related derived function. For example a reduction applied to the addition function produces the summation function: $+1 2 3 2 5 = 15$. In general, $F/A B C$ is equivalent to $\subset A F B F C$. Another operator is **each** (denoted by \cdot). It applies its function operand to each item of an array. For example, if $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$, then $AVG \cdot A = \begin{bmatrix} 1.5 \\ 2.5 \\ 3.5 \end{bmatrix}$, where AVG is an average function.

APL2 is one of the most powerful array processing notations in existence. The structure of the data determines how algorithms are applied. In this sense, HTA is similar. HTA is also a structured operand and the operations defined on HTAs operate on an HTA as a whole. However, HTA is the first practical implementation of such an array language for parallel programming. Further more, HTA operations are much more conventional and amenable to traditional programmers, while APL2 is only suitable for mathematicians.

5.3 HPF

High Performance Fortran (HPF) is an extension of Fortran90 [38] [1]. HPF’s approach is to support parallel computation through the use of programmer-inserted compiler directives. These directives allow users to give hints for array distribution, loop scheduling etc. Programmer augments the existing sequential Fortran90 code with these directives and the compiler parses them to generate an efficient parallel implementation of the program. HPF supports both global view of data and single threaded execution.
Figure 5.3 lists HPF version of the 1-D Jacobi computation. The first statement in the Figure declares two 1000-element vectors of floating point values. The following directive indicates that the array a be distributed in blocks of equal chunks among the processors. Though not shown here, it is also possible to defined an abstract arrangement of processors and map the chunks on to this arrangement. The next directive states that b and a be aligned such that identical indices are allocated on the same processor. The last statement is the actual computation, which resembles a typical statement in a serial FORTRAN90 program.

There are several other kinds of distribution like cyclic, block-cyclic and replicated. Also, there are several forms of ALIGN statement. *replicated* alignment aligns an array of lower rank (e.g. a column vector) to that of higher rank (e.g. matrix) and *collapsed* alignment performs the opposite.

HPF naturally provides data parallelism through its array syntax and data mapping features. It also provides constructs for dynamically redistributing and aligning arrays. Apart from these, it offers few features to explicitly express data parallelism and concurrent execution. **FORALL** is the foremost among those features.

FORALL construct is more general than DO loop and can express several array operations. The FORALL statement allows a data parallel assignment to a group of array elements to be expressed in terms of its constituent elemental assignments. For example, the array assignment of Figure 5.3 can be expressed as **FORALL** $(i=2:999)$ $b(i) = a(i-1) + a(i+1)$. The **FORALL** can also be used with multiple indices. In general, each index variable in the FORALL is a triplet, $(l:u[:s])$, where l, u and s are scalar integer expressions for the lower bound, upper bound and stride respectively and $[a]$ denotes an optional item.
FORALL is useful when the computations cannot be expressed easily using array notations. Using **FORALL** the main computation in matrix multiplication can be expressed as follows:

\[
\text{FORALL}(i=0:n-1, j=0:n-1) \ c(i,j) = \text{dot_product}(A(i,:), B(:,j))
\]

This cannot be expressed using point-wise data-parallel array statements. The alternative way to express those computations is to use DO loops and iterate over each element of the arrays. However, the presence of DO loops is a hindrance to parallelism detection by the compiler. Static analysis of DO loops are not accurate, and most often the compilers conservatively assume that a DO loop is not parallel. This reduces the chances of concurrent execution. In several scenarios, **FORALL** is a useful or indispensable construct [39].

The HPF compiler automatically recognizes the parallelism in the program. For example, in the above example the statement in the last line is completely data parallel. The compiler can partition that array according to the specified distribution scheme and also partition the computation by adjusting the bounds of the arrays. Moreover, the compiler inserts the communication routines to fetch the adjacent regions from the adjacent processors. The programmer is free from inserting low level communication routines and managing the storage for boundary regions. Thus the compiler essential converts the program in Figure 5.3 in to a SPMD program. HPF compilers can also detect complex parallelism like reductions.

The main drawback of the HPF approach is that there is no guarantee as to how these directives will be translated by the compiler. Each compiler can interpret this in its own way. Consequently, the performance of the generated code depends on the static analysis capability of each compiler. Furthermore, the sequential semantics of FORTRAN induces a programmer to write loops with dependencies. Usage of F90 array syntax and **FORALL** construct will result in more efficient programs, though this success may not be uniform in all cases. Also, the usage of array operations significantly affects the scalar performance.

Empirical studies of [40] showed that the performance of HPF programs in not portable across compilers. In these studies, the authors implemented the two different HPF versions of several NAS benchmarks – with DO loops and with **FORALL** constructs. The HPF pro-
Figure 5.4: ZPL version of the 1-D Jacobi computation

grams were compiled with three different compilers (APR, PGI and IBM). The performance of the resulting programs were compared with that of ZPL and MPI programs. They concluded that each HPF compiler is different in its behavior. For example, in the case of MG benchmark (Do loop version), the IBM compiler did not even parallelize any of the loops owing to very conservative assumptions on dependences or due to the presence of IF statements inside a loop. The PGI compiler parallelized the loops, but generated sub-optimal communications as it did not perform any vectorization of the communication. The PGI compiler did not parallelize the loops in one subroutine due to a conservative assumption that there was an alias between two formal arguments of the subroutine. The FORALL version also resulted in different behavior for each compiler. The IBM compiler now was able to parallelize the communication and the PGI was successful in vectorizing the communication. However, the underlying lesson is that each compiler warrants different changes to be done to the program to make it amenable to be parallelized by that compiler. Thus, there is no single HPF program that is portable across the compilers. The failure of HPF in practice lead to the development of new research efforts like ZPL.

5.4 ZPL

ZPL is a new programming language that is especially effective for scientific and engineering computations. It is intended to replace languages such as Fortran and C for technical computing. ZPL, like APL, is an array language, and expressions like $X + Y$ have been generalized to apply to whole arrays as well as scalars. ZPL is an implicit parallel programming language. That is, programmers neither specify how the computation is performed concurrently, nor they insert communication statements. The ZPL compiler is responsible
for producing parallel object code from the source program [48].

A fundamental concept in ZPL is *region*. A *region* is a set of indices that describes a convex region. For example, \(\text{region } R = [1..n, 1..n] \) specifies the standard indices of an \(n \times n \) array. i.e, a set of order pairs \((1,1), (1,2), \ldots, (n,n)\). An array of a given region can be declared as follows: \texttt{var A : [R] float;}

Regions allow operations to operate on entire arrays without explicit looping. This is accomplished by prefixing a statement with a region. For example, \([R] \texttt{A := 0.0}\) assigns 0 to all the elements of the array \(A\). Two *region* operators “of” and “@” deserve special mention here. The region specifier \([\texttt{d or R}]\) is an expression that defines a region adjacent to \(R\) in the \(d\) direction; \(d\) is a tuple of size equal to the number of dimensions of \(R\). The expression \(A@d\) executed in the context of region \(R\), results in an array of the same size and shape as \(R\) offset in the direction \(d\), and composed of elements of \(A\).

ZPL supports all the standard constructs of conventional programming languages. These constructs are extended for arrays. In addition, it also provides two operators - *reduce* (denoted by \(<<\)) and *scan* (denoted by \(||\))

These operations perform reductions and scans respectively. These have the same meaning as those described for HTAs and APL2. Another powerful concept in ZPL is flooding (denoted by \(>>\)). It fills a higher dimensional arrays with copies of a lower dimensional arrays. This function is similar to \texttt{repmat} of HTA.

ZPL also provides a permutation operation to rearrange the data. This operation is denoted by “\(##\)” and takes as its argument an array of indices. ZPL distinguishes two forms of permutations - scatter (denoted by \(>\)) and gather (denote by \(<\)). The former gathers the items of an \(rhs\) array in the given order and assigns it to the \(lhs\) array. The latter scatters the items of the \(rhs\) array in to the \(lhs\) array in the given order. For example, if \(W\) is a 6 element character array \(a \ b \ c \ d \ e \ f\) and \(I = 1 \ 3 \ 5 \ 2 \ 4 \ 6\), then \([1..6] \ V := <<[I] \ W\) produces \(a \ c \ e \ b \ d \ f\), while \([1..6] \ V := >##[I]W\) produces \(a \ d \ b \ e \ c \ f\).

ZPL’s operators have the property that their operands must be of the same rank, so that the selected values come from the same index set. Thus, the statement \([R] \ldots A + B\ldots\),
where A and B are of rank 2, refers to those elements of A and B with like indices from R. However, if C is a rank 3 array, the following statement is illegal: \([R][4, 1..n, 1..n]\) ...\(A + C\)... For further reading on ZPL the readers are referred to [48] [25] [27] and [21].

Figure 5.4 lists the ZPL implementation of the 1-D Jacobi problem described in Section 3.6.2. In the figure, A and B are distributed arrays of the shape defined by the region R. Inner is also a region that represents the inner region (excluding the boundary regions) of R. The @ operator shifts the two references to A by -1 and 1 respectively, thereby referring to the neighboring values.

ZPL is a machine independent programming language. It relies on a compiler to produce an optimal parallel version of the input program. The compiler also performs a variety of optimizations to reduce both the memory requirements and the execution time of a program. However, nothing contributes to high performance like a thoughtfully written program. ZPL’s enables a programmer to control the performance of a program using its WYSIWYG (What You See Is What You Get) performance model. The model allows to make a rough estimate of the performance based on the the program constructs used. For example, \([R] C := C + A\ast B\) requires approximately \(mn\) multiply instructions, \(mn\) add instructions and \(3mn\) loads and \(mn\) stores. If the operations are performed on a parallel computer and evenly divided among P processors, then the programmer can expect a P-way speedup. The following property ensures this behavior: Only element wise array operations are used and all operands refer to elements of the same region. All statements with this property will exhibit excellent performance. On the contrary, frequent usage of costly operations like “##” (Permutation) indicates that the program will not exhibit good performance. Several such guidelines are presented in [48]. This explicit performance model of ZPL enables a programmer to write optimal parallel programs easily. It may be recalled that the lack of such an explicit performance model was earlier cited as one of the reasons for the failure of HPF.

HTA also follows ZPL with respect to this explicit performance model. But, it elevates
Index I(1000); Filed a(I);

\[a(I) = a(I-1) + b(I-1) \]

Figure 5.5: POOMA version of the 1-D Jacobi computation

this concept to one level higher by providing more explicit constructs (like assignment statements that involve data exchange) and the concept of tiling. HTA enables a programmer to write more efficient programs (using tiling), at the same level of abstraction as ZPL. The tile sizes and the memory layout are chosen by the programmer; this further gives more performance control to a programmer. Since several common optimizations like message aggregation comes for free due to the usage of tiles, our hypothesis is that an hypothetical HTA compiler need to be less aggressive with respect to program optimization, compared to a ZPL compiler. An efficient run time library that implements the tile operations optimally will be sufficient to guarantee good performance.

ZPL suffers from a major practical drawback. That is, the cost of migrating existing software programs to ZPL will hinder its widespread usage. Moreover, the programmers should invest several man hours to learn the language. The absence of a accepted standard for the ZPL language will further increase the programmers woes.

5.5 POOMA

POOMA [45] (Parallel Object-Oriented Methods and Applications) is a templated class library written in C++ used successfully both in workstations and supercomputers to express scientific computations. POOMA provides the user with a global view of the data and a single-threaded view of the computation. But unlike HPF, it does not rely on a compiler to parallelize the input program. Instead POOMA follows a layered approach, offering several layers of abstraction. The parallelism is encapsulated in the lower layers of the POOMA library, while the higher layers provide high level data types and operations. Like HPF and ZPL, the parallelism stems from data parallel operations.
The arrays in POOMA are called as Fields. Fields are N-dimensional arrays of double, float or integers. Data parallel operations are permitted on the Fields, thus eliminating the need for explicit looping. Figure 5.5 shows the POOMA version of the 1D Jacobi relaxation scheme. In the figure, \(I \) is an object of type Index. It determines how the fields will be traversed. The field \(a \) is declared to be a 1 dimensional array of type double and size \(n \). The last line in the Figure 5.5 performs the core computation. This is a data parallel operation as can be seen in the Figure 5.5.

The definition of distributed arrays requires the specification of three additional concepts: (1) a partition that tells the library how to split the domain in pieces, (2) a guard layer that specifies ghost regions in the tiles of the array, and (3) a content mapper tag that allows to choose between replication of the all the pieces generated by the distribution in each processor or their distribution among the processors.

POOMA applies the same conformability rules as Fortran 90, so expressions like \(a += 2 \times b + 7 \) where \(a \) and \(b \) are conformable, promote scalars 2 and 7 as expected. Data-parallel expressions are supported by the standard operators (plus, minus, etc.) and a set of functions provided by the library (trigonometric functions, comparisons, square root, etc.).

Since POOMA is a library based scheme, it uses several run time techniques for expression evaluation and communication. For example, the addition statement of Figure 5.5 is evaluated as follows. First, a stack of expressions is created. The stack represents the complete expression tree. For example, the stack for the above example will resemble FLDFLDadd, where FLD means a variable of floating point type and add means an operation add. During the invocation of assignment operations, these expressions are evaluated together. POOMA calls this technique expression chaining. During the evaluation, the communication of off-node regions (i.e., the neighboring region) is performed by the underlying library. For a complete description of POOMA and its implementation, the readers are referred to [45].

HTA resembles POOMA in several aspects. Like, POOMA, HTA is a library based approach that offers global view of data as well as single threaded execution. Both POOMA
and HTA are targeted at conventional programmers (i.e., those who use standard languages like C or C++). Both have similar constructs for creating and manipulating arrays. The underlying library of HTA uses techniques like expression chaining used in POOMA. The performance overheads of HTA and POOMA are very similar. It is the concept of tiling that differentiates HTA from POOMA. POOMA is aimed at only improving the programmers productivity; HTA also offers the programmer explicit means to control performance, through explicit tiling and communication.

5.6 Split-C

Split-C is a parallel extension of the C programming language, with minimal addition to the language. Split-C provides a global address space; any processor may access any location in a global address space, but each processor owns a specific region of the global address space. Two kinds of pointers are provided - *global and *standard. Global pointers reference the entire address space, while the standard pointers reference only the portion owned by the accessing processor. The global pointers are declared by appending the keyword *global to the usual C pointer declaration. For example, the declaration, double *global (*values), declares an array of global pointers. Global pointers are constructed and destructed using the function *togonal* and *tocal*.

A global pointer may be dereferenced in the same manner as the normal pointers, although the cost is higher. Arithmetic of global pointers are also permitted. Assignment operations of the form *gblptr = expression or l-value = *gblptr results in a communication. There are several flavors of assignment operation - normal assignment (\(=\)), split-phase assignment (\(:=\)) and signaling store (\(:-\)). The split-phase assignment is similar to that of the HTA language (cf. Section 2.3.5). For details on (\(:-\)) and the semantics of other language constructs of Split-C, interested readers are referred to [23].

The key feature that unifies HTA and Splic-C is the goal of providing an programming
Figure 5.6: Split-C version of a 1-D Jacobi-like computation

void all_compute_E(int n,
double E[n]::,
double H[n]::)
{
 int i;
 for_my_id(i, n - 1)
 if (i != 0)
 E[i] = w1 * H[i - 1] + w2 * H[i] + w3 * H[i + 1];
 barrier();
}

The concept of *Spread Arrays* in Split-C is aimed at realizing this goal. Spread Arrays are arrays spread across all the processors. A spread array is declared by appending :: (spreader) to the immediate left of the dimension of the array to be spread. The spread dimensions are linearized in row major order and laid out in a wrapped fashion starting with processor zero. Figure 5.6 shows a Jacobi-like computation in Split-C using spread arrays. The arrays E and H (of rank 1) are spread along the first dimension. The element of the arrays are assigned to processor in a cyclic fashion. That is, processor p computes element p, then p + PROCS and so on, where PROCS is the total number of processors.

Spread arrays are very powerful data structures. Specifically, it is possible to add more dimension to an array to the right of the spreader (e.g., E[m]::[b]). This will assign elements to processors in blocks. Figure 5.7 shows a complex form of layout obtained using the spread array declaration. Logically, we may think of this as two dimensional matrix of size n by m. Physically, it has blocks of size b1 by b2. Further, the dimensions r and c act as an r by c processor grid. Thus, the layout becomes block-cyclic in both dimensions.

Thus, spread arrays provide the ability to create tiled arrays with several levels of tiling. The idea of viewing a level of tiling as another dimension is similar to that of the HTA. However, Split-C does not define any tile operations that provide the programmer a mechanism to explicitly operate on tiles. Though, it is possible for a programmer to write macros that iterate over arbitrary dimensions of a spread array in arbitrary orders, such a programming effort will be too low-level, cumbersome and not general. Moreover, the spread arrays do not express all kinds of HTAs (like heterogeneous or irregular HTAs).
Figure 5.7: A declaration for a blocked/cyclic layout in both dimensions. Each block shows the number of the processor that owns it. Shown for n=8, m=9, r=4, c=3, where there are 12 processors. The Figure is reproduced from [23].

5.7 Sequoia

Sequoia [28] is a programming language designed to facilitate the development of memory hierarchy aware parallel programs that remain portable across modern machines featuring different memory hierarchy configurations. The driving philosophy of Sequoia is that on modern systems featuring deep memory hierarchies and many parallel processing units, breaking large computations into smaller operations is essential to achieve good performance. The principal Sequoia construct that reflects this philosophy is a task.

A task is a side-effect free function with call-by-value-result parameter passing semantics. A task can create several sub tasks. Communication of data through the memory hierarchy is expressed by passing arguments to tasks. Calling tasks is the only means of describing data movement in Sequoia. Each of the tasks operate entirely within their own private address
space and have no mechanism to communicate with other tasks other than its subtask and parent task.

Algorithmic variants of the tasks is yet another feature of Sequoia. Multiple implementations of a task can be defined and a specific implementation can be chosen based on the context in which the task is called. Typically, the tasks are of two forms – *Inner* and *Leaf*. The Inner task are those that call sub-tasks and do not perform any computation. The leaf tasks serve as the base case of the recursion, with platform specific implementations of computation kernel embedded in to them.

Tasks are written in parameterized form to allow for specialization of multiple target machines. Specialization is the process of creating instances of a task that are customized to operate within, and are mapped to, specific levels of a target machine’s memory hierarchy. This is achieved by the usage of *tunable* parameters. Tunable parameters remain unbounded in Sequoia source code but are statically assigned values during task specialization. The algorithmic variants, task parameterization and specialization are the key to decoupling the expression of an algorithm from its mapping to an underlying machine.

Like Sequoia, HTA also emphasizes the recursive subdivision of the tiles in order to adapt the data storage and computation structure of the codes to the underlying machine. However, the principal construct of Sequoia is procedural, while our approach is data centric. Also, Sequoia tasks are not associated to particular processors; instead they can run in any node in which their working set fits. On the contrary, HTAs provide a clear model of data and task placement and communications.

5.8 Summary

Table 5.1 presents a summary of the main characteristics of several programming infrastructures discussed. The first column classifies the programming infrastructure according to the type of implementation. (1) libraries containing operations that represent commu-
Table 5.1: Characterization of parallel programming infrastructures.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Implementation</th>
<th>Address Space</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Language</td>
<td>Library</td>
<td>Global</td>
</tr>
<tr>
<td>CAF</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>GAS</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>HPF</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>HTA</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI/PVM</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>POET</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>POOMA</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPC</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZPL</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communication and data sharing on programs where the rest of the operations are represented in conventional, sequential constructs and (2) programming language constructs or directives designed to represent parallelism implicitly or explicitly. The second column classifies the infrastructures according to the address space seen by each component of the parallel program. Except for the message-passing library approach, where a thread of execution is only allowed to reference data located in the node where it is running (local view), all other programming models allow the threads to access data located in any node (global view). The third column distinguishes between those approaches where the operations of each individual thread must be specified separately (multiple-threaded or MT) and those which provide a single-threaded (ST) view of the computation.

As we have seen in Chapter 3, the HTA class can be integrated in a very natural way in different languages thanks to operator overloading and the polymorphic features of current OO languages. Thus, the resulting programs tend to be more readable than those based on conventional libraries. As mentioned earlier, the most important characteristic that distinguishes HTAs from all other approaches is the consideration of the tile and its possible hierarchical decomposition as first-class concepts. This makes the HTAs ideal to design and write programs that can be naturally expressed in terms of blocks (e.g., several matrix
multiplication algorithms -Cannon [18], Summa [31]-, solvers such as LU, etc.) or which can be solved recursively (e.g., FT). Such blocks can be used to achieve parallelism or data locality or both, possibly using several levels of tiling for different purposes. With HTAs it is easy to adjust the point where recursive computations end and the iterative solutions start by changing the number of levels of tiling.

As shown in Table 5.1, HTA and POOMA [45] are the only library-based approaches that provide a global view of the data and follow a single threaded programming approach. This combination helps programmers’ productivity in at least two ways. First, programmers can use familiar sequential programming languages, and reuse sequential modules, perhaps with small changes. Therefore, programmers can write parallel programs practically in the same way they write sequential programs. Second, the single-threaded semantics of HTAs eases the transition from sequential to parallel because programmers need not be concerned with the program’s behavior on a per processor basis, deadlocks, race conditions, etc., since parallelism and synchronization are implicit. The single-threaded property also improves readability. Furthermore, in the case of HTA, flattening enables incremental migration of sequential applications to parallel form. This was the approach we followed in our translation of the NAS benchmarks from sequential MATLAB to the HTA-based parallel version.

A good indication of the benefit of the single-threaded form is obtained by comparing the number of lines of code of the HTA with those of MPI programs. Although the number of lines of code is not the best metric to measure ease of programming, it can give a rough estimate of program complexity. The plot in Figure 4.29 shows the lines of code for HTA and MPI codes. A discussion on the SLOC measurements is already provided in Section 4.4.

A downside of the single-threaded approach is that asynchronous overlap is not easy to express explicitly. However, much of this overlap can be achieved automatically with the appropriate implementation (see Section 3.5.4).

A valuable property of a programming approach is the ability to convey to the programmers the cost of the execution of their code. This is particularly true in the case of parallel
environments, where communication costs can easily dominate the execution time. HTAs are faithful to this idea: the statements that require data communication are clearly identified in the code either because of the usage of different indexes in the tiles, or because of the invocation of functions that involve data communication (transposition, circular shift, etc.).

HTAs have also drawbacks. For example, just as the other global-view approaches [25], they only allow limited forms of task-parallelism. Moreover, HTAs are suitable only for array based programs. Though every program can be re-coded using array operations [37], converting a general scalar program to its array equivalent is a difficult task and not suited for naive programmers.

The most popular parallel programming approach for distributed-memory systems is the use of a message passing library such as MPI [34] or PVM [32]. In this approach, the programmer has a local view of the data structures and must write programs that execute in a SPMD fashion. The communication and computation statements can be interleaved in an unstructured manner, potentially leading to programs that are difficult to understand and maintain.

An improvement over this approach is the usage of libraries that, while requiring SPMD programming, provide the user with a global view of the data structures. This is the case of the Global Arrays library [42] or the POET framework [6]. However, the SPMD programming style and the requirement of explicit synchronization complicates programming.

Other libraries like POOMA [45] integrate their classes in a host OO language, and exploit operator overloading and polymorphism in order to provide a global view of the data and a single-threaded view of the computation, as our HTA library. However, POOMA differs in fundamental ways from our approach. For example, while POOMA’s arrays can be distributed in tiles, the library provides no easy means to explicitly refer to those tiles. Also, hierarchical decomposition is not natural to POOMA’s arrays, while it is a defining property of HTAs.

Several infrastructures are based on new languages with constructs to control concurrency.
and distribution. As we can see in Table 5.1, all the language-based approaches provide a
global view of the data, but they can be classified in two groups according to their view of
the control flow: The multiple-threaded languages, like Co-Array Fortran (CAF) [43], Tit-
nanium [51], UPC [19] or X10 [17]; and single threaded form like High Performance Fortran
HPF [36, 38] and ZPL [48]. All these approaches (except HPF) share a common draw-
back: they force programmers to rewrite their applications in parallel from scratch, an effort
that can be ameliorated by providing interfaces with codes and libraries written in other
languages.

The control model of many language-based infrastructures is explicitly parallel SPMD in
which programmers are responsible for managing data distribution and low-level synchro-
nization. An advantage of these languages is that they are much more suitable than the
single-threaded counterparts for expressing task parallelism.

Another common characteristic of these languages is that they provide a Partitioned
Global Address Space (PGAS), in which any thread of execution can create objects that can
be accessed by other threads. And each thread and piece of data is associated with exactly
one node of execution. They typically provide also constructs to distinguish between remote
and local accesses. This helps programmers reason about the cost of their codes.

In single-threaded languages, communication and synchronization are no longer the re-
sponsibility of the programmer, but of the compiler. Programs written in this model tend
to be shorter and easier to understand and maintain than those expressed in local view
languages, which increases programmers’ productivity. The downsides of these languages
are their limited ability to express irregular parallelism and the responsibility they put on
compiler technology, which may not be developed enough to generate efficient codes in some
situations.

Different strategies have been studied to provide parallel codes with a global view of the
algorithms to execute. For example, High Performance Fortran (HPF) [36, 38] annotates
sequential Fortran codes with directives that specify array distribution, loop scheduling, etc.
These directives are optional, and there is little information about how the compiler will translate them. The lack of a clear performance model makes it difficult for programmers to reason about an algorithm’s performance.[41].

Another approach is to design a language from scratch, which is the case of ZPL. This language is designed in order to minimize the effort of the compiler. Its syntax allows to identify the operations that generate communication and their qualitative cost in a similar way to our HTAs. However, they suffer from several drawbacks, chief among them being the cost of migrating the software to an entirely new language.
Chapter 6
Conclusions

6.1 Conclusions

High performance programs exploit the parallelism and the locality of reference inherent in a computation. Development of high performance programs that are clear, readable and at the same time efficient is very difficult. The major difficulty is due to the absence of language constructs that allow programmers to express parallelism and locality easily. This thesis introduced a data type - Hierarchically Tiled Arrays - that allows the programmer to explicitly control parallelism and locality.

The thesis identified several issues related to HTA. The issues pertain to implementing the HTA in a conventional language, design of HTA operations and writing programs using HTAs. The experiments reported by the thesis helped in identifying the performance bottlenecks in HTA programs. Using these experiments, we have accurately characterized the performance of HTA programs.

The key contributions of the thesis can be summarized as follows:

- Generalization of arrays - Hierarchically Tiled Arrays are generalizations of normal arrays. The elements of the HTAs can be scalars or HTAs themselves. We formalized several types of HTAs and several parameters associated with them.

- Generalization of array operations - We have extended several vector and array operations to HTAs. These operations are recursive and are straightforward extensions of the existing array and vector operations. We also provide several higher order operations. A formal description of several HTA operations were provided. The semantics
of the operations are designed to eliminate potential ambiguities in interpreting them. They also provide a consistent definition for both the programmers and potential HTA compilers.

- **Fusion with conventional languages** - We have implemented the HTA in two popular languages - C++ and MATLAB. This experiment revealed the issues in augmenting sequential languages with the HTA data type. Essentially, we attempted to introduce *tiles* as first class language constructs in conventional programming languages.

- **Evaluation of HTA programs** - We have written the programs from the NAS benchmark set using the HTA data type. We started with a base sequential version of the programs and applied simple transformations to obtain the parallel HTA programs. This experiment provided insight into two key aspects of HTA programs - the impact on programmer productivity and the impact on the program’s performance. We evaluated the latter by executing the HTA programs on a cluster of up to 128 processors.

6.2 Future Work

6.2.1 Implementation of new language constructs

The thesis has identified new language constructs that will help improve both the syntax of HTA programs and its performance. The two language constructs under study are overlapped tiling and replicated HTA. In the programs like *MG, LU*, which involve stencil computation, ghost regions are added to HTAs and programmer keeps them updated using HTA assignment operation. Using overlapped tiling this can be done automatically. The programmer only need to specify the depth of overlap among the tiles in each dimension, while constructing the HTA. The shadow regions are added and kept updated internally by the run time library.

Another useful language construct is replicated HTA. A replicated HTA of dimension
k is obtained by replicating a k-1 dimensional HTA along the dimension k. If the HTA is sequential, such a replication is only logical. That is, only the structure is replicated, but the data is shared among several tiles. If the HTA is distributed along the replicated dimension, then an element is mapped to multiple processors. Updates to such an element in one processor should be broadcast to other processors to which it is mapped. This kind of HTA is useful to improve the clarity and performance of CG HTA program.

6.2.2 Improving the syntax of HTA programs

Another immediate future work is to improve the syntax of HTA programs, especially for the CPP+HTA programs. This involves extending the grammar of the underlying language (C++ or MATLAB). Given that the language of HTA is very light, the extension will be very simple. For C++, a simple preprocessor can convert the HTA programs written in the augmented language to the standard C++ language.

A more ambitious approach is to translate the MATLAB+HTA programs to CPP+HTA programs using a high-level MATLAB compiler. In the past, few researchers have shown the effectiveness of translating MATLAB to FORTRA90 and just-in-time compilation of MATLAB [4] [46]. Since, MATLAB and HTA blend well without any syntax changes, using it as the base language for HTA is a simpler and effective approach. Additionally, MATLAB syntax is easier for a programmer than C++. A MATLAB+HTA to CPP+HTA translator will benefit both productivity of the programmer and performance of the programs.

6.2.3 Improving the performance of HTA programs

We have shown that HTA programs are as efficient as MPI programs. We also have identified several optimizations that are easily applicable to HTA programs, with minor changes to source codes. These optimizations will further improve the performance of HTA programs. For example, extending the split-phase semantics (cf Section 2.3.5) to other operations like transpositions and permutations is one such valuable optimization, which is easy to express
using HTA operations. Yet another optimization is to implement HTA-aware algorithms for reduction and scan operations. Such an algorithm will take into account the tiling structure of the HTA and schedule the communication and computation optimally.
subroutine conj_grad
 do j=1,naa/nprows+1
 q(j) = 0.0d0
 z(j) = 0.0d0
 r(j) = x(j)
 p(j) = r(j)
 w(j) = 0.0d0
 enddo
 sum = 0.0d0
 do j=1, lastcol-firstcol+1
 sum = sum + r(j)*r(j)
 enddo
 do i = 1, l2npcols
 call mpi_irecv(rho, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 request, ierr)
 call mpi_send(sum, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 ierr)
 call mpi_wait(request, status, ierr)
 sum = sum + rho
 enddo
 rho = sum
 do cgit = 1, cgimax
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo
 do i = l2npcols, 1, -1
 call mpi_irecv(q(reduce_recv_starts(i)),
 reduce_recv_lengths(i),
 dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 request, ierr)
 call mpi_send(w(reduce_send_starts(i)),
 reduce_send_lengths(i),
 dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 ierr)
 call mpi_wait(request, status, ierr)
 do j=send_start,send_start + reduce_recv_lengths(i) - 1
 w(j) = w(j) + q(j)
 enddo
 enddo
 enddo
 if(l2npcols .ne. 0)then
 call mpi_irecv(q(reduce_recv_starts(1)),
 reduce_recv_lengths(1),
 dp_type,
 reduce_exch_proc(1),
 1, mpi_comm_world,
 request, ierr)
 call mpi_send(w(reduce_send_starts(1)),
 reduce_send_lengths(1),
 dp_type,
 reduce_exch_proc(1),
 1, mpi_comm_world,
 ierr)
 call mpi_wait(request, status, ierr)
 w(j) = w(j) + q(j)
 call mpi_wait(request, status, ierr)
 endif
 else
 do j=1,exch_recv_length
 q(j) = w(j)
 enddo
 endif
 do j=1, max(lastrow-firstrow+1, lastcol-firstcol+1)
 w(j) = 0.0d0
 sum = 0.0d0
 do j=1, lastcol-firstcol+1
 sum = sum + p(j)*q(j)
 enddo
 do i = 1, 12npcols
 call mpi_irecv(d, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 request, ierr)
 call mpi_send(sum, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 ierr)
 call mpi_wait(request, status, ierr)
 sum = sum + d
 enddo
 d = sum
 alpha = rho / d
 rho0 = rho
 do j=1, lastcol-firstcol+1
 z(j) = z(j) + alpha*p(j)
 r(j) = r(j) - alpha*q(j)
 enddo
 do i = 1, 12npcols
 call mpi_irecv(rho, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 request, ierr)
 call mpi_send(sum, 1, dp_type,
 reduce_exch_proc(i),
 i, mpi_comm_world,
 ierr)
 call mpi_wait(request, status, ierr)
 sum = sum + rho
 enddo
 rho = sum
 beta = rho / rho0
 do j=1, lastcol-firstcol+1
 p(j) = r(j) + beta*p(j)
 enddo
 ! end of do cgit=1,cgimax
 ! end of routine conj_grad
enddo
enddo
}

Figure 1: FORTRAN+MPI implementation of the CG benchmark
Figure 2: Transpositions in FT benchmark in FORTRAN+MPI version: x_yz and xy_z transposition
subroutine transpose_x_z(l1, l2, xin, xout)
call transpose_x_z_local(dims(1,l1), xin, xout)
call transpose_x_z_global(dims(1,l1), xout, xin)
call transpose_x_z_finish(dims(1,l2), xin, xout)
return
end

subroutine transpose_x_z_local(d, xin, xout)
do j = 1, d(2)
do k = 1, d(3)
do i = 1, d(1)
xout(k, j, i) = xin(i, j, k)
end do
end do
end do
end

subroutine transpose_x_z_global(d, xin, xout)
call mpi_alltoall(xin, d(1)*d(2)*d(3)/np2, dc_type,
 xout, d(1)*d(2)*d(3)/np2, dc_type,
 commslice1, ierr)
do p = 0, np2-1
 ioff = p*d(1)/np2
do k = 1, d(3)
do j = 1, d(2)
do i = 1, d(1)/np2
 xout(i+ioff, j, k) = xin(i, j, k)
end do
end do
end do
return
end

subroutine transpose_x_y(l1, l2, xin, xout)
call transpose_x_y_local(dims(1,l1), xin, xout)
call transpose_x_y_global(dims(1,l1), xin, xout)
call transpose_x_y_finish(dims(1,l1), xin, xout)
return
end

subroutine transpose_x_y_local(d, xin, xout)
do k = 1, d(3)
do i = 1, d(1)
do j = 1, d(2)
xout(j, k, i) = xin(i, j, k)
end do
end do
end do
end

subroutine transpose_x_y_global(d, xin, xout)
call mpi_alltoall(xin, d(1)*d(2)*d(3)/np1, dc_type,
 xout, d(1)*d(2)*d(3)/np1, dc_type,
 commslice2, ierr)
do p = 0, np1-1
 ioff = p*d(1)/np1
do k = 1, d(3)
do j = 1, d(2)
do i = 1, d(1)/np1
 xout(i+ioff, j, k) = xin(i, k, j)
end do
end do
end do
return
end

Figure 3: Transpositions in FT benchmark in FORTRAN+MPI version
(a) xZ transposition (b) xY transposition

(c)
void rank() {

 for(i=0; i<NUM_BUCKETS+TEST_ARRAY_SIZE; i++)
 {
 bucket_size[i] = 0;
 bucket_size_totals[i] = 0;
 process_bucket_distrib_ptr1[i] = 0;
 process_bucket_distrib_ptr2[i] = 0;
 }

 for(i=0; i<TEST_ARRAY_SIZE; i++)
 if((test_index_array[i]/NUM_KEYS) == my_rank)
 bucket_size[NUM_BUCKETS+i] =
 key_array[test_index_array[i] % NUM_KEYS];

 for(i=0; i<NUM_KEYS; i++)
 bucket_size[key_array[i] >> shift]++;

 for(i=1; i< NUM_BUCKETS; i++)
 bucket_ptrs[i] = bucket_ptrs[i-1] + bucket_size[i-1];

 for(i=0; i<NUM_KEYS; i++)
 {
 key = key_array[i];
 key_buff1[bucket_ptrs[key >> shift]++] = key;
 }

 MPI_Allreduce(bucket_size,
 bucket_size_totals,
 NUM_BUCKETS+TEST_ARRAY_SIZE,
 MPI_INT,
 MPI_SUM,
 MPI_COMM_WORLD);

 bucket_sum_accumulator = 0;
 local_bucket_sum_accumulator = 0;
 send_displ[0] = 0;
 process_bucket_distrib_ptr1[0] = 0;

 for(i=0, j=0; i<NUM_BUCKETS; i++)
 {
 bucket_sum_accumulator += bucket_size_totals[i];
 local_bucket_sum_accumulator += bucket_size[i];
 if(bucket_sum_accumulator >= (j+1)*NUM_KEYS)
 {
 send_count[j] = local_bucket_sum_accumulator;
 if(j != 0)
 {
 send_displ[j] = send_displ[j-1] + send_count[j-1];
 process_bucket_distrib_ptr1[j] =
 process_bucket_distrib_ptr2[j-1]+1;
 }
 process_bucket_distrib_ptr2[j++] = i;
 local_bucket_sum_accumulator = 0;
 }
 }

 MPI_Alltoall(send_count, 1, MPI_INT, recv_count,
 1, MPI_INT, MPI_COMM_WORLD);

 recv_displ[0] = 0;
 for(i=1; i<comm_size; i++)
 recv_displ[i] = recv_displ[i-1] + recv_count[i-1];

 MPI_Alltoallv(key_buff1, send_count, send_displ,
 MPI_INT, key_buff2, recv_count,
 recv_displ, MPI_INT, MPI_COMM_WORLD);

}

Figure 4: FORTRAN+MPI implementation of the IS benchmark
References

Author’s Biography

Ganesh Bikshandi finished his PhD in computer science at the University of Illinois, Urbana-Champaign. Earlier, he obtained his bachelor’s degree in computer science and engineering from the University of Madras, India. He has worked for Intel and IBM research (T. J. Watson) as summer intern. Upon graduation, he will be joining the IBM India research labs.