Aquatic Fate of Herbicides

Fluridone

Florpyrauxifen-benzyl (FPB)

K_H (Henry’s Law)

K_{d} (Sediment Sorption)

K_{BAF} (Bioaccumulation factor)

Φ (Photochemical Degradation)

Biodegradation
Photolysis

Quantum Yield (Φ) = sensitivity to photons
$k_{obs} = $ observed rate of degradation

Lake water and Ultrapure water incubated with herbicide, irradiated at 311 nm

Direct Control $k_{obs} >$ Lake k_{obs}
Only undergoes direct photodegradation

$\Phi_{FPB} >> \Phi_{Fluridone}$

FPB

$\Phi = 0.02$

Fluridone

$\Phi = 0.004$
Fluridone Sediment Sorption

\[K_d = f_{oc} \times K_{oc} \]

- \(f_{oc} \): fraction of organic content in sediment
- \(K_{oc} \): compound specific only
- \(K_d \): sediment & compound specific

\[y = 145.14x - 81.466 \]
\[R^2 = 0.9975 \]

FPB \(K_{oc} = 21,777 - 44,278 \rightarrow \text{much more sorptive than fluridone}^{1} \)

\[K_d = 145 \text{ L/kg} \]
\[K_{oc} = 366 \text{ L/kg} \]

\(^1\text{Review of Florpyrauxifen-benzyl for Application to Massachusetts Lakes and Ponds. MDAR/MassDEP, 2019.}\)
Acknowledgements:
Dr. Trina McMahon1,2
Dr. Christy Remucal2,3
Amber White, PhD Candidate3
Wisconsin DNR
Midwest Aquatic Plant Management Society
Anna Grant Birge Memorial Award

Contact Info:
vanfrost@wisc.edu
linkedin.com/in/sydney-van-frost-376b38152

1: University of Wisconsin-Madison, Civil and Environmental Engineering
2: University of Wisconsin-Madison, Department of Bacteriology
3: University of Wisconsin-Madison, Environmental Chemistry and Technology