Pluggable Policies for C *

Mark Hills Feng Chen
Grigore Rosu
University of Illinois at Urbana-Champaign
{mhills,fengchen,grosu }@cs.uiuc.edu

January 23, 2008

Abstract

Many programs make implicit assumptions about data. Common as-
sumptions include whether a variable has been initialized or can only
contain non-null references. Domain-specific examples are also common,
with many scientific programs manipulating values with implicit units of
measurement. However, in languages like C, there is no language facil-
ity for representing these assumptions, making violations of these implicit
program policies challenging to detect. In this paper, we present a frame-
work for pluggable policies for the C language. The core of the framework
is a shared rewrite-logic semantics of C designed for symbolic execution
of C programs, and an annotation engine allowing for annotations across
multiple policies to be added to C programs. Policies are created by
providing a policy specific language, usable in annotations, and policy
specific values and semantics. This provides a method to quickly develop
new policies, taking advantage of the existing framework components. To
illustrate the use of the framework, two case studies in policy development
are presented: a basic null pointer analysis, and a more comprehensive
analysis to verify unit of measurement safety.

1 Introduction

Many programs make implicit assumptions about data. Common examples
across many languages include assumptions about whether variables have been
initialized or can only contain non-null references. Domain-specific examples
are also common; a compelling example is units of measurement, used in many
scientific computing applications, where different variables and values are as-
sumed to have specific units at specific times/along specific execution paths.
These implicit assumptions give rise to implicit domain policies, such as re-
quiring assignments to non-null pointers to also be non-null, or requiring two
operands in an addition operation to have compatible units of measurement.

*Supported by NSF CCF-0448501 and NSF CNS-0509321.

In languages like C, there is no language facility for representing these as-
sumptions, making violations of these implicit program policies challenging to
detect. For instance, in the following code example, assuming that x and y
both have associated units of measurement, it may not be obvious whether the
returned value is unit correct (it is, regardless of the intended units of x and y).

double f(double x, double y) { return x * y; }
double g(double x, double y) { return x / y; }
double h(void) {

double x = 2.5, y = 3.5;

return x + g(£(x,y),y);
}

Although this can be visually verified, one can imagine much larger pro-
grams, with many more calculations, where this would not be possible. Because
of problems such as this, a number of techniques have been developed to check
implicit program assumptions (see Section 6). These include techniques making
use of type system extensions, such as type qualifiers[12], often including a form
of type inference; techniques based on modifying language constructs and/or
language semantics; and techniques based on programmer-added annotations.
While some techniques have attempted to be generic, most have not, but have
instead focused on specific domain areas, like pointer policies or unit safety.

In this paper, we present a framework for pluggable policies for the C lan-
guage which allows these implicit policies to be made explicit and checked. The
core of the framework is a shared annotation engine and parser, allowing an-
notations in multiple policies to be inserted by developers as comments in C
programs, and a shared rewrite-logic semantics of C, focused on symbolic ex-
ecution, designed as a number of reusable modules that allow for new policies
to be quickly developed and plugged in (for instance, the case study in Sec-
tion 4 was developed in under two days). Background on term rewriting and
rewriting logic is presented briefly in Section 2, while the framework, which uses
rewriting logic and term rewriting techniques, is described in depth in Section
3. To illustrate the use of the framework, two pluggable policies are presented
as case studies: a simple pointer analysis, in Section 4, and a comprehensive
units of measurement safety policy, in Section 5. These policies should provide
a starting point for the development of other custom policies. Related work,
with a focus on C program analysis and unit safety, is discussed in Section 6,
with conclusions and potential future work presented in Section 7.

2 Term Rewriting and Rewriting Logic

This section provides a brief introduction to term rewriting, rewriting logic, and
rewriting logic semantics. Term rewriting is a standard computational model
supported by many systems; rewriting logic [26, 25] organizes term rewriting
modulo equations as a complete logic and serves as a foundation for program-
ming language semantics and analysis [27, 28].

2.1 Term Rewriting

Term rewriting is a method of computation that works by progressively changing
(rewriting) a term. This rewriting process is defined by a number of rules —
potentially containing variables — which are each of the form: [— r. A rule can
apply to the entire term being rewritten or to a subterm of the term. First, a
match within the current term is found. This is done by finding a substitution,
0, from variables to terms such that the left-hand side of the rule, [, matches part
or all of the current term when the variables in [are replaced according to the
substitution. The matched subterm is then replaced by the result of applying
the substitution to the right-hand side of the rule, r. Thus, the part of the
current term matching (1) is replaced by (7). The rewriting process continues
as long as it is possible to find a subterm, rule, and substitution such that (1)
matches the subterm. When no matching subterms are found, the rewriting
process terminates, with the final term being the result of the computation.
Rewriting, like other methods of computation, can continue forever.

There exist a large number of term rewriting engines, including ASF [33],
Elan [5], Maude [9, 10], OBJ [15], Stratego [34], and others. Rewriting is also a
fundamental part of existing languages and theorem provers. Term rewriting is
inherently parallel, since non-overlapping parts of a term can be rewritten at the
same time, and thus fits well with current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic which pro-
vides support for concurrency. In equational logic, a number of sorts (types)
and equations are defined. The equations specify which terms are considered
to be equal. All equal terms can then be seen as members of the same equiva-
lence class of terms, a concept similar to that from the A calculus with equiva-
lence classes based on «a and [equivalence. Rewriting logic also provides rules,
which represent concurrency; we use only the equational subset of rewriting
logic here, so we focus just on equations, and use the terms “equation” and
“rule” interchangeably, instead of in their more technical sense. Rewriting logic
is connected to term rewriting in that all the equations, of the form [= r, can
be transformed into term rewriting rules by orienting them properly (necessary
because equations can be used for deduction in either direction), transforming
them into | — r. This provides a means of taking a definition in rewriting
logic and a term and ”executing” it. While the definition can be the standard
evaluation semantics of a language, it can also be an abstract semantics using
domain-specific values, such as types or units. In this paper, “evaluation” or
“execution” refers to symbolically evaluating a program, with expressions and
statements manipulating abstract values and program states.

eq exp(E + E’) = exp(E,E’) -> + .
eq k(lookup(X) -> K) env(Env [X,L,V]) =
k(val(lvp(L,V)) -> K) env(Env [X,L,V])

Figure 1: Sample C Semantic Rules, in Maude

2.3 Rewriting Logic Semantics

The semantics of C is defined using Maude [9, 10], a high-performance language
and engine for rewriting logic. The current program is represented as a “soup”
(multiset) of nested terms representing the current computation, environment
(mapping names to locations in memory or directly to values), analysis results,
bookkeeping information, and analysis-specific information. The most impor-
tant piece of information is the Computation, named k, which is a first-order
representation of the current computation, made up of a list of instructions
separated by ->. The Computation can be seen as a stack, with the current
instruction at the left and the remainder of the computation to the right. This
methodology is described in more detail in papers about the rewriting logic
semantics project [27, 28].

Figure 1 shows examples of Maude equations included in the C semantics
presented in Section 3. The first shows an example of an equation used to
take apart an expression; when E + E’ is encountered, both E and E’ need
to be evaluated first, with the operation (here +) put on the computation to
“remember” which operation was being performed. This can be seen as being
similar to a stack machine, where the operation and expressions are placed on
the stack, with the intention being that the operation can continue once the
expressions are reduced to values. The second represents a memory lookup
operation. Here, if identifier X is being looked up, and the environment set
contains a set item with the name, some location L, and some value V, a location
value pair lvp containing the location and the value, 1vp(L,V), is returned in
place of the lookup operation, while the environment remains unchanged.

3 A Framework for Pluggable Policies in C

In this section we present a framework for pluggable policies in C. This frame-
work can be viewed both from the perspective of a C programmer and a pol-
icy creator. To the C programmer, this framework is exposed through policy-
specific annotations made in the source code in comments, requiring no change
to the underlying language. These annotations are used to indicate function
preconditions and postconditions, as well as assertions and assumptions inside
function bodies. An annotation processor and parser are then used to process
the annotated source files and generate a formal program representation, which
is checked in a policy determined by the programmer, with output either indi-
cating that the program has passed the checker or listing a series of warnings

//@ pre(UNITS): unit(w) = 1lb
//@ post(UNITS): unit(@result) = kg
double 1b2kg(double w) {
double rv = 10 * w / 22;
/%@ assume (UNITS): unit(rv) = kg */
return rv;

}

Figure 2: C Code, with Annotations

and errors by program line.

From the perspective of the policy creator, the framework consists of the
pieces mentioned above, but also includes a general-purpose semantics of C in
Maude and a number of policy-specific extensions. Each policy can make use of
its own custom notation, can provide its own custom rules to determine correct-
ness, and can issue its own custom error messages. Each policy can also leverage
existing parts of the framework, allowing most of the core framework code to be
reused and providing a powerful environment for adding and extending policies.

3.1 Code Annotations

Each policy provides a policy-specific language for specifying program require-
ments and assumptions. This language is used by the programmer when writing
annotation comments, which are standard C comments but which start either
with /*@ (for block comments) or //@ (for line comments). Preconditions and
postconditions are allowed before the start of a function, with zero or more
conditions allowed for each policy (i.e., it is legal both to include multiple pre-
conditions for the same policy and to include preconditions for different poli-
cies, both on the same function). Annotations inside function bodies are for
assertions and assumptions, again allowing for multiple of each across multiple
policies. Some policies, such as that presented in Section 4, need few anno-
tations (individual programs may have none), but still provide an annotation
language for cases where the programmer wants to assume or assert that cer-
tain domain facts hold. An annotation example is shown in Figure 2. This
figure shows a function, 1b2kg, for converting double values from pounds to
kilograms; the policy is that presented in Section 5. The precondition states
that the input parameter, w, has a unit of 1b, while the result of the function,
indicated as @result, is guaranteed to be kg by the postcondition. According
to the rules for manipulating units, the variable rv will be assigned the unit 1b,
since this is the unit assigned to w, and since constants effectively have no unit;
the assumption in the function body indicates that rv, from the point of the
assumption forward, should instead be treated as having unit kg. This assump-
tion is how a programmer represents the conversion to a new unit, making sure
the postcondition holds.

To allow multiple policies to be used in a single program, each annotation

specifies the domain being checked by including the name of the policy; for
instance, in Figure 2 the policy tag on the annotations is UNITS. Each policy
knows which tags are associated with it, and will only check annotations which
include the proper policy tag(s). While it is possible to leave out the policy tag
and specify a default tag instead, this is only appropriate in cases where only
one policy will ever be used.

3.2 Parsing C

Once the source code has been annotated, it needs to be parsed to allow the
annotations to be read in and verification tasks (chunks of code to be verified)
to be generated. Parsing takes place in two phases. In the first, a simple
transformation is applied to move annotations from comments into language
syntax, producing a program in a version of C, used internally by the framework,
that has been extended with assertions, assumptions, and function preconditions
and postconditions. This stage occurs before preprocessing, and is written to
ensure that line numbers are not modified so errors can be accurately reported
during policy checking.

The second phase takes this modified version of the source, preprocesses it
using a standard C preprocessor (such as gcc -E), then parses the preprocessed
source using a modified version of the CIL parser for C [29], generating an in-
ternal, AST-like representation of the code. This internal representation has
also been extended to be aware of assertions, assumptions, preconditions, and
postconditions, but does not know about the policy languages used in the an-
notations, allowing the parser to remain policy generic (but also meaning that
syntactic errors in the annotation formulae are not caught during parsing).

Once in this form, the various analysis passes written for CIL are available
for use on the source code. These have been augmented with several additional
passes which prepare the code for policy verification. To ensure that verifica-
tion tasks do not grow too large, instead of generating one task for the entire
program, one is generated for each function. To do this, a custom pass modifies
the function bodies, with each call site in a function body replaced by assertions
and assumptions based on the preconditions and postconditions specified for the
called function — assertions to guarantee preconditions hold at the time of the
call, assumptions to specify what information can now be assumed after the call.
Formal parameters used in the preconditions and postconditions are replaced
by the actual parameters used at the time of the call. A simplifier, based on
the provided CIL simplifier, ensures that expressions are in three-address form,
allowing simpler expressions (generally variable names) to be used as actuals
during this replacement. Along with this precondition and postcondition inlin-
ing process, the preconditions of a function are made available as assumptions
at the start of the function body, while postconditions are checked by adding
assertions before each return instruction.

Once this process has been completed, and each function can be viewed as an
independent verification task, a modified CIL printer class is used to generate
each verification task, producing code similar to standard C source code but

10

11

12

void example(void) {
double x = 3.5; //@ assume(UNITS): unit(x) = 1lb
double y = 1b2kg(x); //@ assert(UNITS): unit(y) = kg
}

Figure 3: C Code, with Function Call

double x;

double y;

double tmp;

{
x = 3.5;
#Fassume (UNITS,unit (x) 1b);
#Fassert (UNITS,unit(x) = 1b);
#Fassume (UNITS,unit (tmp) = kg);
y = tmp;
#Fassert (UNITS,unit(y) = kg);
return;

Figure 4: Generated C Code for Verification

with some modifications to ease subsequent Maude parsing. This produced
code includes line number information, used by the policy checkers to produce
useful error messages, and includes the capability to also pass in additional
information, such as declared types, global variables, and analysis information
more easily performed on the source code (such as alias information computed
on the entire program, which would not be available when looking at just a
single function body).

An example of this process of verification task generation is illustrated in
Figures 3 and 4. Figure 3 shows a simple function in C that declares two
variables, x and y, of type double. x is assumed to have unit 1lb, while y is
asserted to have unit kg after the call to 1b2kg, the code for which was shown
above in Figure 2. Figure 4 then shows the code generated by the modified
CIL parser (with line directives removed to reduce clutter) to be processed by
the policy checker in Maude. One obvious difference is that the call to function
1b2kg is gone, replaced with an assertion (based on the precondition) that
the parameter passed to it, x, has unit 1b, and an assumption (based on the
postcondition) that the return value, assigned to tmp, has unit kg. Another
difference is that a new variable, tmp, has been introduced as part of the three-
address transform. Finally, the original assume and assert annotations present
in function example have been transformed, in place, into assume and assert
directives, written respectively as #Fassume and #Fassert. Also, note that
the function header is gone; any function parameters will instead be listed as

op _+_ : Exp Exp -> Exp .
op if__else_ : Exp Stmt Stmt -> Stmt
op return_; : Exp -> Stmt .

Figure 5: C Abstract Syntax

declarations before the function locals.

3.3 The Policy Framework

The policy framework is made up of the annotation and parsing components,
described above, and an executable rewriting-logic semantics of C written using
the Maude system. This semantics is made up of a number of modules, including
multiple modules for abstract syntax, the semantic configuration (i.e., state),
symbolic execution semantics, and policy semantics. Here we concentrate on the
shared components of the framework; case studies illustrating pluggable policies
are discussed in Sections 4 and 5.

Abstract Syntax An abstract syntax of C is defined as part of the policy
framework to allow rules to be written over a syntax as close to native C syntax
as possible. Syntactic categories, such as expressions and statements, are defined
as rewriting logic sorts, with operations defined for each syntactic construct.
These operations look very similar to BNF definitions, and are intended to have
a familiar look and feel.

Figure 5 shows several examples of the C abstract syntax defined in the
policy framework. The first operation defines the + operator as taking two ex-
pressions, one in each underscore, and yielding an expression; the second and
third similarly define the if and return statements. These can be mentally
converted to BNF by inserting the sorts in place of the underscores and mov-
ing the sort after the arrow to the front: op if__else_ : Exp Stmt Stmt ->
Stmt then becomes Stmt ::= if Exp Stmt else Stmt.

Core Semantics While some of the semantics need to be tailored for specific
policies, a complete set of core modules is provided as a basis for these policy
extensions. Part of this definition is a generic configuration, or state, used by
the core rules. The configuration is used to keep track of information needed
by or produced during policy checking; Figure 6 shows a graphic representa-
tion of the configuration, with the type of information shown in the box and
named lines showing the name used to access the information in the state. The
core configuration includes several pieces of information, including: the com-
putation, k; the current environment, env; a set of all environments, envs, the
need for which is explained below; out, containing output messages generated
during policy checking; nextLoc, holding the next (symbolic) memory location;

PR g — nextloc_ — —curln___
= __env— envs out ~

‘ Env] ‘ EnvSet } (OulputSel J { Nat I L Nat }

Figure 6: Framework State Infrastructure

[Computation

and currLn, the current line number from the original source program. As
checking progresses, rules will change the information in one or more of these
configuration items.

The core semantic rules then fall into several categories:

e generic rules designed to manage the configuration or provide often-needed
functionality, such as rules to issue warning messages;

e rules for expressions, which in core act just to start expression evaluation
but do not reassemble values, the process for which is generally policy
specific;

e rules for statements, which manage the environment and handle any envi-
ronment splitting required to model different control-flow paths (like for
conditionals);

e general rules used across multiple policy languages, such as the definition
of policy expressions and some constructs used in many different policy
languages (including standard logical operations, like conjunction or dis-
junction).

The most complex are the rules for statements. Most statements take and
produce a single environment. Some can instead generate sets of environments,
such as a conditional, where different environments can be generated when the
condition is true and the then branch is entered, or when the condition is false
and either the else branch is entered or, in cases where no else is present, the
if body is not executed. Since conditionals can be nested, each branch can
actually generate multiple environments. Other constructs that can generate
environment sets include loops, switch statements, and gotos. Fortunately, CIL
transforms the ternary expression into a conditional, allowing us to assume that
expressions can never split environments.

To handle statements properly, two core operations are defined. The first,
designated as just stmt, takes a statement and sets it up to execute in each
environment in the current set of environments. This execution uses the second
operation, stmt!, which stmt will invoke once for each environment in the en-
vironment set, merging back in the potentially altered environment(s) when the
statement evaluation finishes. Policy-specific hooks are provided to properly
merge in information after each statement evaluation, since different policies

may extend the core state in different ways, leading to different merging strate-
gies. Also, to handle situations where statements need non-default processing,
two additional operations, isDirective and isSpecial, are defined, with stmt
only evaluating its statement when it is not marked as special or a directive.
The intended meaning is that directives cannot modify the environment, such
as with #line directives which just change the current line, while special state-
ments may need additional setup beyond that provided by default.

Although the infrastructure discussed thus far provides support for state-
ments that execute once, additional support is needed for statements inside
loops (and for gotos, not discussed here). Since loop statements can repeat,
it is possible for them to continually change the environment, generating new
additions to the environment set with each iteration. To handle this, a counter
is used for each loop. If, at the end of an iteration, the generated environment
set contains no new environments, loop processing stops. If new environments
are generated, the loop is processed again, with the counter incremented. If the
counter threshold is reached without the environment set stabilizing, a warning
message is issued, and processing continues for the rest of the function body.
This allows for common cases to be handled, such as when the domain val-
ues stabilize in one or two iterations, while preventing non-termination of the
analysis.

Sets of environments are not the only alternative for handling cases where
different values are produced along different control-flow paths. One could also
associate a set of values with each object/location, or use values such as T
and L to represent undefined and overdefined/error values. The advantage
of environment sets is that they allow for increased precision, reducing false
positives. For instance, in the following code, having sets of values or T and L
would indicate an error where there is none.

int x,y,z; //@assume(UNITS): unit(x) = unit(y) = m
if (b) {

x =y = 3; //@assume (UNITS): unit(x) = unit(y) = f
}
zZ=x+7y;

Using sets of values, the addition of x and y would raise an error, since both
x and y could have unit m or f, and the addition would be invalid when x has
one and y has the other. Using T and L, both x and y would be assigned L,
since they would each possibly be assigned two incompatible units; summing
them would again yield 1. However, the addition is actually unit-safe, since x
and y will have the same unit when summed, with both either having m or £.

The cost of using environment sets is a potential degradation in performance,
especially in domains (like units) where there is a large, or potentially infinite,
set of values. Here, some pathological programs can cause exponential increases
in the size of the environment set. In many domains abstract values rarely split
in this way, especially repeatedly, so this is not often a problem in practice. One
potential solution is to set a high-water mark for the size of the environment

10

L l
Annotated C Annotation . Cl': e IE-Y
- Verification - Maude . seand

Results

Source | Processor/ ol
Parser Tasks

\,__/___\ +

Core

Framework
Semantics

Pluggable
Policies

Figure 7: Framework Execution Model

set, discarding excess environments and issuing warnings when this mark is
surpassed, which would allow policy checking to continue while alerting the
user to a potential problem. Policies also can define their own notion of values,
allowing an individual policy to opt for representations such as sets of values
and avoid generating multiple environments.

Policy Checking The general policy checking process is shown in Figure 7.
First, an annotated source file is processed by the annotation processor and
parser; this process generates multiple verification tasks, one for each function
in the source file. These verification tasks, along with the core semantics and
the policies, are then handed to Maude; the core semantics and the policies are
all definitions in rewriting logic, while the verification tasks are terms which
are symbolically executed using term rewriting techniques. When this process
terminates, any results output during policy checking are displayed to the user.
These results are leveled, and can be filtered appropriately, allowing a policy
to define a severity for each issued warning. For instance, a policy for units
may define an attempt to add two values with incompatible units as an error
with severity 1, but could define environment splits caused by conditionals as
an informational message with severity 3, reflecting that splits may not cause
errors but may (or may not) indicate a misunderstanding by the programmer.

4 Case Study: A Simple Pointer Policy

One common problem in many C programs is the accidental dereferencing of null
pointers. This is part of a class of memory management problems caused by the
explicit memory management model of C, with other common examples being
leaking allocated memory, freeing the same chunk of memory multiple times, and
accessing deallocated (and potentially reallocated) memory through dangling
pointers. As an example of writing a simple policy using the policy framework,
this section presents a policy for checking that null pointers are not dereferenced,
including a policy language for specifying the “nullness” of pointers passed as
function parameters and returned as function results. This policy is kept simple

11

Value Vo= undefined | defined VT
Value Type VT = zero | other | ptr L
Location L:= null | notnull N

Figure 8: Not Null Policy: Policy Domain

for the purpose of this paper, and can be seen as a debugging policy, not a
verification, since we don’t attempt to catch all potential errors. An extended
policy, intended to check for a wider class of errors (like dereferencing dangling
pointers) and handle more complex memory usage scenarios (like pointers to
offsets within structures) is available for download[4].

The first step to devising a new policy is to determine the policy’s domain —
the types of values that we will be using in the policy. Here, taking a lead from
another paper on detecting C memory access violations [11], we divide values
into two general categories: defined values, and undefined values. Within
defined values, we keep track of zero (useful for null assignments and tests)
and other for non-pointer values, and ptr for pointer values. The ptr value
holds a location; for live pointers, other than standard symbolic locations this
can also be null, representing cases where the pointer may possibly be assigned
to NULL. Dead (deallocated) pointers are not included in the version of the
policy presented here. The domain for this policy is shown in Figure 8, with
N representing natural numbers (used as keys for symbolic locations in the
environment).

Once these values are defined, the next step is to define the behavior of C
programs over these abstract values. Most of this occurs at the level of expres-
sions, since the expressions will manipulate the domain values directly. The
most interesting expressions are those used for pointer dereference; while most
expressions just move values around in a policy- appropriate manner, derefer-
encing can actually trigger an error. The rules for handling dereferencing are
shown in Figure 9!

The first rule is a generic rule used by all policies, and simply states that, to
determine the value of * E, first evaluate E, which will evaluate to an abstract
value. Once it does, *addr is a reminder to check this value in light of its
use in a dereferencing expression. The second rule represents the case where
E evaluates to a null pointer: lvp is used to represent a “location value pair”,
which can be seen as the location where the object is kept in memory (L) and
the value of the object in that location (defined(pointer(null))). This case
represents an error, since it means the program will try to dereference a null

IThis actually does not include all dereferencing rules, just the core rules used for not null
checking, since other rules also ensure the pointer is defined — i.e., has had NULL or an address
assigned to it at some point.

12

eq exp(x E) = exp(E) -> *addr .

eq k(val(lvp(L,defined(pointer(null)))) -> *addr -> K)
= k(issueWarning(1l,"Attempt to dereference a null pointer")
-> val(lvp(noloc,undefined)) -> K)

eq k(val(lvp(L,defined(pointer(L’)))) -> *addr -> K)
= k(1lookup(L’) -> K)

Figure 9: Not Null Policy: Pointer Dereferencing

int *p = NULL;
if (p) {

. *p = 5; ... /* Should not cause a warning */
+

p = 10; / Should cause a warning */

Figure 10: Not Null Policy: Avoiding False Positives

pointer. issueWarning issues an error message, which will be tagged with the
line number in the source program. Since this is an expression, to continue the
analysis (and try to find more errors) the expression should yield a value. Here,
lvp(noloc,undefined) is inserted as the value of the expression. Finally, the
third rule represents the case where E evaluates to a non-null pointer that points
to location L’. Using this location, the dereference looks up the value pointed
to by the pointer using the location lookup operation, 11ookup.

Although most of the interesting logic involves expressions, to allow a more
precise analysis it is useful to modify some of the statement semantics. Specifi-
cally, it is possible to eliminate some false positives by adding special logic for
loops and conditionals in those situations where the programmer has already
inserted null checks. An example code fragment is shown in Figure 10. Here,
the assignment of 5 to *p should not cause a warning to be issued, since the
user explicitly checks that p is not null, while the assignment of 10 to *p should
still cause a warning.

To allow for this scenario, the conditional logic is overridden, with specific
checks for different expression “patterns” common in null checking — the use of
just the pointer, like in if (p), or the use of a comparison against NULL, like
if(p != NULL) or if (NULL != p). In both patterns, the conditional body will
only be entered when the pointer is not null, so it is possible to assume this
at the start of the body. Similar logic works for loops and if statements with
else branches. Note that we should not try to do the opposite, and assume a
known not null pointer is null after a check like if (!p), since this could lead to
a false positive.

13

10

11

12

13

PolicyFxp PE ::= null F | notNull E | PE and PE |
PE or PE | PE implies PE | not PE

Figure 11: Not Null Policy Language

#include <stdlib.h>
//@ pre(NOTNULL) : notNull(q)
int f(int *q) {

int x,*p;

p = (int*)malloc(sizeof (int));
*p = 10;

if (p) { *p = 20; }

X = *p;

free(p);

P=4q

X = *p;

return Xx;

line 6: Attempt to dereference a null pointer
line 8: Attempt to dereference a null pointer

Figure 12: Not Null Sample Run

Once the C semantics has been properly adapted for the not null policy and
a not null domain has been defined, the final step is to define the policy language
used in the annotations. The policy language used here is shown in Figure 11.
It includes standard logical connectives (conjunction, disjunction, implication,
negation) and some policy-specific keywords: null and notNull. Along with
the definition of the language, rules for processing the language must be defined
as well. For instance, to process null p, p must be evaluated, with the resulting
symbolic value then examined to see if it represents a null pointer.

Once this has been completed, it is possible to enable the policy and check
actual programs. This is done by running the program through the parser,
instructing it to just emit the proper assertions and assumptions for annotations
in the NOTNULL policy. A simple example is shown in Figure 12. Pointer p is
allocated storage on line 5 using malloc and then dereferenced on line 6. Since
malloc may return null, this results in an error message. The dereferencing on
line 7 does not, since it is guarded, but line 8 again causes an error, since the
dereference is no longer guarded by an if. On line 10, q is assigned to p; since

14

q has been assumed notNull in the precondition, the dereference of p on line
11 is valid and does not result in an error.

5 Case Study: Units of Measurement

A common example of a domain-specific policy, often occurring in scientific and
engineering applications, is the use of units of measurement. Values or variables
are assigned specific units; unit rules are then used to determine what units
should be derived from various language-level operations. For instance, when
multiplying two values with units U; and U, (say m and s?), the resulting unit
is the product of the two units, U3Us (m s?). In many languages, including
C, this information on units is implicit: instead of having a program-level rep-
resentation, variables are assumed by the programmer to have specific units,
which may (or may not) be recorded in source comments. Unfortunately, since
the information is implicit, it cannot be used to ensure that unit manipulations
are safe, leaving open the possibility that serious domain-specific errors will go
undetected.

The possibility of serious errors is not just theoretical, as illustrated by two
well-known incidents. On June 19, 1985, the space shuttle Discovery attempted
to point a mirror at a spot 10,023 feet above sea level; unfortunately, the soft-
ware expected the input to be in nautical miles, causing it to interpret 10,023
feet as 10,023 nautical miles, or roughly 60,900, 905 feet above sea level. This
caused the space shuttle to flip over mid-flight to point the mirror at the “cor-
rect” location. Roughly 15 years later, on September 30, 1999, NASA’s Mars
Climate Orbiter crashed into the Mars atmosphere because of a software nav-
igation error, determined to be caused by the conflicting use of English and
metric units by two different development teams [30].

In this section, we present a more complex policy than the pointer policy
presented in Section 4. This policy, for units of measurement, allows unit an-
notations to be added to C programs, allowing the implicit information about
units present in the program to be made explicit. Using these annotations, the
pluggable policy includes logic to check the program to ensure that no unit vio-
lations occur, ensuring that a program which passes validation contains no unit
errors.

In a fashion similar to that in Section 4, the policy is presented by showing
the policy domain, policy-specific C semantics, and policy language processor.
Comparisons with other techniques for checking units of measurement are de-
ferred until Section 6.

5.1 Domain: Units of Measurement

In the International System of Units (SI), there are seven base dimensions,
including length, mass, and time [1]. Each base dimension includes a standard
base unit, such as meter for length or seconds for time. Other units can be
defined for each dimension in terms of the base unit — feet or centimeters for

15

op _"_ : Unit Rat -> Unit .

op __ : Unit Unit -> Unit [assoc comm]
eq U~ 0 = noUnit

eqU "~ 1=0.

eqUU=0U" 2.

eqU (U~ N) =U ~ (N + 1)

eq (U-"N) (U~"M) =U "~ (N + M
eq UU) “N=(@"N U "N
eq (U"N) “M=U" (N * M

Figure 13: Units of Measurement

length, for instance. Units can also be combined to form derived units, such as
area (meters squared, or meter meter) and velocity (meters per second).

Technically, the algebraic structure of units forms an Abelian group extended
with rational powers. This is modeled in the units policy as the equational
theory in Figure 13. Given named units (such as meter, kilogram, etc), new
units can be formed by raising the given unit to a rational power (the first op)
or by taking the product of the two units (the second op), the first being a
shorthand for the repeated application of the second. The product of two units
is associative and commutative, represented with the assoc and comm attributes.
A number of equational rules are used to determine when two units are equal
— for instance, given a unit U and that same unit to the rational power IV, the
product U U is equal to UNTL. For instance, m m? = m?>.

The definition in Figure 13 is also augmented with several special-purpose
units not shown in the figure: cons, for constants; any, for a value that can
be used with any unit; noUnit, for a value with no associated unit; and fail,
representing a unit failure (like when values with different units are summed).
The result of combining fail and any other unit is fail. Finally, to represent
cases where the unit is unknown but generally not safe to use in combination
with other units, it is possible to generate fresh units, each of which is unique.
Given this definition, the values used in the units policy will be elements of
the algebraic model, fresh units, and the special-purpose units, along with some
auxiliary values to model pointers, structures, and arrays. The policy does not
model actual values, such as numeric values assigned to integer variables.

5.2 Unit-Specific Semantics

The unit-specific semantics reflect two goals of the unit policy design: min-
imizing the number of required annotations, and providing a clean, intuitive
semantics for units. These goals are supported through such features as the
use of fresh units, to guarantee a safe unit for unannotated variables, and the
association of units with values, not variables, allowing units to flow into new

16

variables on assignment. The latter is important for programs where variables
can change units during execution, a common case in computations that use
temporaries, but a case disallowed by many typed approaches, which require
the type of a variable to be fixed.

Expressions Given the domain defined above, the semantics defined as part
of the units of measurement policy must appropriately combine units, checking
for potential errors. The general rules used by the policy verifier are:

e values used in addition and subtraction operations must have the same,
or compatible, units;

e values used in multiplication, division, and mod operations may have dif-
ferent units, with the result having the product of the units (in the case
of division and mod, the product of the inverse of the units);

e a value assigned a unit can be bitwise shifted left or right, with these
operations treated identically to multiplication and division, but cannot
be otherwise used in bitwise operations;

e units are associated with values, not variables, meaning assignment will
change the unit of the variable (or dereferenced pointer, structure field,
ete);

e most other expressions will either not change the unit (post-increment,
cast, etc) or will generate a value with noUnit (logical or bitwise and,
including with assignment).

Compatible units are generally special units which can be used with different
more concrete units. For instance, in addition, if one unit is cons, for constants,
the resulting unit will be the unit of the other operand. This allows constants
to be used in any computation without a requirement to assign them a specific
unit.

An example of the expression rules is shown in Figure 14. In the first, for
multiplication, the resulting unit is just the product of the units of the two
operands. In the second, for addition, the units need to be merged, using the
unit compatibility rules (with the addition that two identical units are always
compatible and a merge with fail always yields fail). If the units are not
compatible, the fail unit will be assigned as the resulting unit, which will be
detected by checkForFail, with an error message including the name of the
operation (given in quotes) being generated. The third rule is for the greater
than operation; this is similar to addition, in that incompatible units cannot be
compared, with the additional step that the propagating unit is discarded (with
the discard item) and a new unit, noUnit, returned. This follows the intuition
that truth values (the result of greater than) do not have units. Finally, the
last rule shows an assignment; here, the unit currently held in the object, U,
is discarded, with U’ then assigned to location L, the location in memory of
the object being assigned into. assignKeep performs this assignment and also

17

eq k(val(U,U’) -> * -> K)
= k(val(u(U U’)) -> K)

eq k(val(U,U’) -> + -> K)
= k(val(u(mergeUnits(U,U’))) ->
checkForFail("addition") -> K)

eq k(val(U,U’) -> > -> K)

= k(val(u(mergeUnits(U,U’))) ->
checkForFail("greater than") -> discard ->
val(u(noUnit)) -> K)

eq k(val(lu(L,U),U’) -> = -> K)
= k(val(U’) -> assignKeep(L) -> K)

Figure 14: Units Expression Rules, in Maude

keeps the resulting unit in the computation, allowing it to propagate for cases
likex =y = =z

Statements and Declarations Most of the statement-processing rules from
the framework semantics are reused directly. This includes the rules for han-
dling features such as conditionals, loops, switch statements, and gotos, which
can cause environment splitting. The rules for declarations are unit-specific,
though, so they need to be extended as part of the unit policy. When CIL
simplifies the C source, it moves all declarations to the top of the function,
including those nested in blocks, using renaming to enforce proper scoping. It
also moves initializations so they occur after declarations — i.e., declarations
like int x = 5; are transformed into int x; x = 5;. When the declaration
occurs, a default fresh unit is assigned to each declarator of scalar (non-pointer)
type, or each field for structure types; pointers are assigned a location which,
when dereferenced, holds a fresh unit. This use of fresh units allows undefined
variables to be combined in safe ways (such as in products), but prevents dan-
gerous combinations (such as sums). On assignment, the fresh unit value will
be overwritten by the value of the right-hand side expression.

5.3 Unit Policy Language

The unit policy language is shown in Figure 15. The logical portion of the
language, represented by UnitExp, is similar to that described for the pointer
policy language in Section 4, with the same logical connectives. In addition, a
unit operation over expressions, unit, is defined; this operation represents the
current unit of expression E. Since units are a rather complex value domain,
it would be impossible to have an operator associated with each possible unit
value (like null and notNull from the prior policy), so the policy language

18

Unit U : unit(E) |uwnit(E)A Q| BU |U = U |UU
UnitEzp UE:= U |UEandUE |UE or UE |
UE implies UE | not UE

Figure 15: Units Policy Language

also defines an equals operator, =. In preconditions and assumptions, this is
treated like assignment — assuming a variable has a certain unit is treated like an
assignment of that unit value to the variable. In postconditions and assertions,
this is treated like an equality check, where the current unit of expression F
in unit (E) is compared to the unit on the other side of the equality. In many
situations it is useful to include a rational exponent on a unit expression, so this
is allowed as well. One example of where this is useful is for stating formulas
like unit (x) A2 = unit(y) unit(z), which is a more concise and easier to read
way of stating unit(x) = (unit(y) unit(z))A1/2. Base units, BU, are also
included as units, allowing the use of defined units and unit combinations such
as m for meter or m sA2 for meter second squared. Finally, a new unit can be
formed from existing units, such as was seen in the exponent example, with
unit(y) unit(z) representing the product of the units of y and z.

5.4 Unit Verification

Unit verification takes place using the verification process described in Section 3.
Here two other issues are addressed: correctness of the analysis and performance.

Correctness The semantic rules in the units policy have been chosen to be
conservative and, in some cases, fairly restrictive, to ensure that any unit safety
violations are discovered. For instance, the policy semantics does not allow
unit changes through pointers without an explicit assumption. The policy also
assumes a type-safe subset of C, since violations of type safety can easily inval-
idate the analysis results. Outside of this, the policy encoding is a fairly direct
encoding into rewriting logic, with the encoding of the units of measurement
group shown in Figure 13 and with one policy-specific rule added for each C
expression. An example of this was seen in Figure 14, with rules for multipli-
cation, addition, greater than, and assignment expressions. It is possible, with
the given encoding and restrictions, to state the following:

Theorem 1. Given a program P written in a type-safe subset of C, any unit
safety violations in P are reported; if no violations are reported, program P is
unit-safe.

This merits several comments. First, as mentioned above, this does not nec-
essarily hold for code which is not type-safe, since it would be possible to alter

19

Total Time Average Per Function | Average Per Statement
Test LOC | Stmts x100 x4000 x100 x4000 x100 x4000
straight 25 68 6.19 226.65 0.06 0.06 0.0009 0.0008
ann 27 80 7.6 287.66 0.08 0.07 0.0010 0.0009
nosplit 69 152 13.13 511.24 0.13 0.13 0.0009 0.0009
split 69 264 49.62 | 1475.44 0.50 0.37 0.0019 0.0014

Single 3.40 GHz Pentium 4, 2 GB RAM, OpenSuSE 10.2, kernel 2.6.18.8-0.7-default, Maude
2.3. Times in seconds. All times averaged over three runs of each test. LOC (lines of code)

and Stmts (statements) are per function, with 100 or 4000 identical functions in a source file.

Figure 16: Unit Safety Verification Times

values in ways that would invalidate the analysis, such as with pointer arith-
metic or unions. Second, this blindly assumes programmers’ assumptions. Of
course, if programmers do add false or unintended assumptions, the verification
can determine that a program with unit safety violations is actually unit cor-
rect. Third, while this theorem states that all violations are discovered, it does
not state that false positives do not occur; it is still possible for programs to
report violations that could not actually occur at runtime. This is partially a
limitation of the conservative assumptions made because of issues like aliasing,
and partially due to the symbolic nature of the execution — branches which are
dead will still be taken, for instance, and can still lead to violations. Finally,
correctness theorems do depend on the policy, but actually depend little on
the core; since values are defined at the policy-level, the framework leaves rules
for combining values and determining the results of expressions to the policies
themselves.

Performance While correctness is critical, it is also important that the unit
policy is able to check program correctness in a reasonable amount of time.
Figure 16 shows performance figures for the unit safety policy. Here, each
test performs a series of numerical calculations: straight includes straight-
line code; ann includes the same code as straight with a number of added
annotations processed using the policy language; nosplit includes a number of
nested conditionals that change units on variables uniformly, leaving just one
environment; and split includes nested conditionals that change variable units
non-uniformly in different branches, yielding eight environments. LOC gives the
lines of code count, derived using the CCCC tool [23], for each function, with
the same function repeated 100 or 4000 times. Stmts instead gives the number
of statements in the function after the code is transformed into three-address
form; this is a better indicator of the volume of work, since each statement must
be individually checked.

Several performance figures stand out. First, performance scales almost
linearly. Second, performance scales well on a per-statement basis. This can be
seen with straight, ann and nosplit, for instance, where all three take roughly
the same per-statement time during verification. Third, splitting environments
increases the per-statement execution time, but not prohibitively. With eight

20

environments, the time per statement to process split is roughly double that
to process nosplit, which has just one environment, versus taking eight times
longer, a potential worst case with eight times as many environments. Fourth,
processing annotations, even using a custom annotation language, seems to add
little overhead; annotations are treated as statements during processing, but do
not increase the per-statement processing time average.

For statements within a single function, performance also scales well. With
a single instance of the function from straight, processing time is 0.59 seconds,
or 0.0087 seconds per statement. Duplicating the calculations in this function to
extend it from 25 LOC to 3025 LOC, with 9068 statements instead of 68, overall
processing time is 28.35 seconds, with only 0.0031 seconds per statements. This
indicates an economy of scale, with startup costs amortized over an increasing
number of statements, and indicates that unit policy checking can be performed
on even large functions in a realistic amount of time.

6 Related Work

Numerous approaches have been proposed for static analysis, including pointer
analysis, in the context of C and other languages [32, 16, 8, 35]. We argue
that, as illustrated in this paper, many of these approaches can be captured
as pluggable policies in our framework, provided that proper symbolic rules
are specified. The simple null pointer checker shown in this paper is inspired
by work on the LCLint tool[11], but does not (yet) include the same level of
functionality?. We leave more advanced pointer analyses as part of our future
work.

Units of Measurement Related work on unit safety tends to fall into one
of three categories: library-based solutions, where libraries which manipulate
units are added to a language; annotation-based solutions, where user-provided
annotations assist in unit checking; and language, including type system, ex-
tensions, where new language syntax or typing rules are added to support unit
checking in a type-checking context.

Library-based solutions have been proposed for several languages, including
Ada [17, 24], Eiffel [20], and C++ [7]. One significant library for unit safety
was developed by the Mission Data Systems team as NASA’s JPL. This library,
written in C++, included several hundred classes representing typical units, like
MeterSecond, with appropriately typed methods for arithmetic operations. An
obvious disadvantage of this approach is that, to include new units, new classes
must be added, and existing classes must be extended with new methods to
properly type arithmetic expressions with the new unit.

Systems based on annotations include the system that served as an inspira-
tion for this work, C-UNITS [31]. The C-UNITS system also provides for unit
annotations on function headers and in function bodies, like the unit safety

2Some additional functionality, to deal with undefined pointers and deallocated memory,
is already present in an extended version of the checker presented here.

21

policy presented here. However, C-UNITS is not scalable; units are determined
by symbolically executing the entire program, instead of the per-function ap-
proach taken here, making analysis of large code bases expensive and, in some
cases, impossible. Also, C-UNITS is a unit specific solution, while the framework
presented here supports units as one of many possible policies.

Solutions based around language and type-system extensions work by in-
troducing units into the type system and potentially into the language syntax,
allowing expressions to be checked for unit correctness by a compiler or inter-
preter using extended type-checking algorithms. MetaGen [3], an extension of
the MixGen [2] extension of Java, provides languages features which allow the
specification of dimension and unit information for object-oriented programs.
Other approaches making use of language and type system extensions have tar-
geted ML [22, 21], Pascal [13, 18], and Ada [14]. These solutions differ from that
presented here in that the framework and units policy make no changes to the
underlying language or type system, with all checking driven by the annotations.

A newer tool, Osprey [19], also uses a typed approach to checking unit
safety, allowing type annotations in C programs (such as $meter int) which can
then be checked using a combination of several tools, including the annotation
processor, a constraint solver, a union/find engine, and a Gaussian elimination
engine (the latter two used to reduce the number of different constraints and
properly handle the Osprey representation of unit types). The approach taken
by Osprey is quite different from the approach taken in the unit policy presented
here. First, the use of unit annotations in types requires a change to the C
language, something that we have avoided. Second, Osprey annotations do not
provide a language as rich as that provided by our policy. For instance, in the
unit policy, it is possible to declare that the unit of a function result is related to
that of the input parameter. An example is with a square root function, where
the unit of the result squared is the unit of the input parameter:

//@ post(UNITS): unit(@result) 2 = unit(x)
double sqrt(double x) { ... }

It is not possible to express such constraints in Osprey without manually editing
files generated during the checking process. Third, Osprey, and other type-based
approaches, do not allow changing the units of a variable during a computation,
something which can occur often when temporaries are reused in calculations.
Fourth, Osprey checks at the level of dimensions, not units, treating units such
as feet or pounds as meters or kilograms with conversion factors. We believe
this masks some potential errors, such as when a user thinks a function uses feet
while it actually uses meters. Even if conversions are inserted (which Osprey
does not seem to do), this still masks a misunderstanding about the called
function. Finally, we believe the error reporting capabilities of the framework,
and with it the unit policy, provide more accurate feedback to the programmer,
something that can be especially important in large code bases.

22

7 Future Work and Conclusions

In this paper we presented a framework for building pluggable policies for
domain-specific verification and analysis of C programs. We have illustrated
this framework by showing two such policies. The first, a not null checker,
provides an annotation language and analysis to check programs for improper
pointer dereferences. The second, a unit of measurement checker, provides a
richer annotation language than the first, allowing unit properties of C pro-
grams to be declared and verified. A large amount of related work exists, both
in terms of these specific analyses and program verification in general; we believe
comparisons of this work with ours show that we can perform similar analysis
with a more modular framework, allowing multiple, quite different analyses to
be written using the same tools and run over the same programs.

In the future, we would like to look at other potential policies that would
fit well within this system. Of special interest is analysis of coordinate systems,
another problem domain taken from scientific computing. We would also like to
analyze the connections between this technique and that of pluggable types [6],
since we believe it would be possible to represent pluggable types as annotations
in our current system with a fairly straight-forward translation. Finally, we
would like to improve the existing analysis capabilities, extending the framework
to handle some common scenarios outside of a type-safe core of C, improving
alias information, and increasing performance.

References

[1] The NIST Reference on Constants, Units, and Uncertainty. http://
physics.nist.gov/cuu/Units/.

[2] E. Allen, J. Bannet, and R. Cartwright. A First-Class Approach to Gener-
icity. In OOPSLA’03, pages 96-114, New York, NY, USA, 2003. ACM
Press.

[3] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and J. Guy L. Steele.
Object-Oriented Units of Measurement. In OOPSLA’04, pages 384-403,
New York, NY, USA, 2004. ACM Press.

[4] Anonymous. Citation omitted to maintain anonymity. Please contact the
PC chair for the URL of the download site.

[5] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An overview of ELAN. ENTCS, 15, 1998.

[6] G. Bracha. Pluggable type systems. Revival of Dynamic Languages work-
shop at OOPSLA 2004, October 2004.

[7] W. E. Brown. Applied Template Metaprogramming in SIUNITS: the Li-
brary of Unit-Based Computation, 2001.

23

8]

A. C. Chou. Static analysis for bug finding in systems software. PhD thesis,
2003.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285:187-243, 2002.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
C. Talcott. The Maude 2.0 System. In Proceedings of RTA 03, volume 2706
of LNCS, pages 76-87. Springer, 2003.

D. Evans. Static detection of dynamic memory errors. In PLDI, pages
44-53, 1996.

J. S. Foster, M. Fahndrich, and A. Aiken. A theory of type qualifiers. In
PLDI, pages 192-203, 1999.

N. H. Gehani. Units of Measure as a Data Attribute. Computer Languages,
2(3):93-111, 1977.

N. H. Gehani. Ada’s Derived Types and Units of Measure. Software Prac-
tice and Experience, 15(6):555-569, 1985.

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In Software Engineering with OBJ: algebraic specification
in action. Kluwer, 2000.

D. L. Heine and M. S. Lam. A practical flow-sensitive and context-sensitive
¢ and c++ memory leak detector. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and tmple-
mentation, pages 168-181. ACM, 2003.

P. N. Hilfinger. An Ada Package for Dimensional Analysis. ACM Transac-
tions on Programming Languages and Systems, 10(2):189-203, 1988.

R. T. House. A Proposal for an Extended Form of Type Checking of
Expressions. The Computer Journal, 26(4):366-374, 1983.

L. Jiang and Z. Su. Osprey: a practical type system for validating dimen-
sional unit correctness of ¢ programs. In L. J. Osterweil, H. D. Rombach,
and M. L. Soffa, editors, ICSE, pages 262-271. ACM, 2006.

M. Keller. EiffelUnits, 2002. http://se.inf.ethz.ch/projects/markus\
_keller/EiffelUnits.html.

A. J. Kennedy. Relational parametricity and units of measure. In Proceed-
ings of the 24th Annual ACM Symposium on Principles of Programming
Languages. Association of Computing Machinery, Inc, January 1997. Paris,
France.

24

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

A. J. Kennedy. Programming Languages and Dimensions. PhD thesis, St.
Catherine’s College, University of Cambridge, November 1995.

T. Littlefair. C and c+4 code counter. http://sourceforge.net/
projects/cccc.

G. W. Macpherson. A reusable ada package for scientific dimensional in-
tegrity. ACM Ada Letters, XVI(3):56-69, 1996.

N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliogra-
phy. Theoretical Computer Science, 285:121-154, 2002.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

J. Meseguer and G. Rosu. Rewriting Logic Semantics: From Language
Specifications to Formal Analysis Tools . In Proceedings of IJCAR’04,
volume 3097 of LNAI pages 1-44. Springer, 2004.

J. Meseguer and G. Rogu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213-237, 2007.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate
language and tools for analysis and transformation of ¢ programs. In R. N.
Horspool, editor, C'C, volume 2304 of Lecture Notes in Computer Science,
pages 213—-228. Springer, 2002.

M. C. Orbiter. http://mars. jpl.nasa.gov/msp98/orbiter.

G. Rosu and F. Chen. Certifying measurement unit safety policy. In
Proceedings, International Conference on Automated Software Engineering
(ASE’03), pages 304 — 309. IEEE press, 2003.

A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded
programs. In PPoPP ’01: Proceedings of the eighth ACM SIGPLAN sym-
posium on Principles and practices of parallel programming, pages 12-23.

ACM, 2001.

M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling
language definitions: the ASF+SDF compiler. ACM TOPLAS, 24(4):334—
368, 2002.

E. Visser. Program Transf. with Stratego/XT: Rules, Strategies, Tools, and
Systems. In Domain-Specific Program Generation, pages 216-238, 2003.

Y. Xie and A. Aiken. Context- and path-sensitive memory leak detection.
SIGSOFT Softw. Eng. Notes, 30(5):115-125, 2005.

25

