
Non-compliant and Proud:
A Case Study of HTTP Compliance

Paul Adamczyk
padamczy@uiuc.edu

Munawar Hafiz
mhafiz@uiuc.edu

Ralph E. Johnson
johnson@cs.uiuc.edu

Department of Computer Science
University of Illinois, Urbana-Champaign

Urbana, IL 61801-2302

ABSTRACT
We studied the most popular websites in the US and around
the world and discovered that few of them implement the
HTTP standard completely. However, the servers are capa-
ble of implementing HTTP correctly; it is the configurations
that are non-compliant. It is not hard to configure servers
correctly, so these websites are non-compliant out of choice,
not necessity.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internet-
working—Standards; C.2.2 [Computer-Communication
Networks]: Network Protocols—Protocol architecture

General Terms
Measurement, Experimentation

Keywords
Compliance, Configuration, HTTP

1. INTRODUCTION
HTTP is the cornerstone of the World Wide Web. Under-

standing HTTP is important, because new Web technologies
are built on top of it. Such technologies use HTTP as the ba-
sis and extend it in many ways to create more complex and
powerful protocols. Without understanding HTTP, one runs
the risk of reinventing capabilities that are already present in
HTTP or completely misusing the protocol. Alternatively,
understanding HTTP just by reading the standard can lead
to problems, because not all of its features are widely used.
This paper examines the current status of HTTP compli-
ance.

HTTP defines eight methods for interacting with resources
on the Web. Most Web users are not aware of them at all.
Typical Web programmers know only of two HTTP meth-
ods: GET and POST. These methods have visual represen-
tations in Web browsers and they are the only two methods
supported by HTML forms. GET is invoked when a user
elects to go to a URI in the address bar, when a hyperlink
is selected, or in response to pressing a button in a form.
POST is invoked by pressing a button. Other HTTP meth-
ods do not have any representation in the browser.

.

This paper presents the study of the implementation and
configuration of HTTP methods on the Web. We make a
distinction between the implementation of these methods in
Web servers and their configuration by websites that use
these servers. We analyze the compliance results from both
perspectives.

Our results are based on the study of the 100 most popu-
lar websites in the world, the 100 most popular websites in
the USA (both according to Alexa [1]), and the websites of
the top 25 computer science departments in the USA (ac-
cording to US News [28]). While there is some overlap be-
tween the first two sets resulting in 176 unique websites, we
selected these three groups, because they represent differ-
ent flavors of popularity. The most popular websites in the
world provide social networking, search, and Web portals in
the most-used languages in the world. The US websites ad-
ditionally include many e-commerce sites. The websites of
computer science departments represent the most popular
research institutions.

This paper makes the following contributions to the un-
derstanding of the Web:

• It presents a quantitative analysis of the state of HTTP
compliance, 2007 A.D. This study focuses on a selec-
tion of HTTP methods, headers, and algorithms de-
fined in the HTTP standards.

• It places the results in historical context by discussing
trends that have occurred over time, both in the defini-
tions and the implementations of the standard. Thus
it provides the basis for understanding the capabilities
of HTTP for the designers of new protocols built on
top of it.

• It invites further studies and discussion about the state
of the Web by posing questions prompted by the re-
sults. More detailed studies, targeting specific aspects
of Web protocols can use these findings as a starting
point.

This paper begins with an overview of the related work
followed by the overview of our experiments. We present ex-
perimental results, compare them to previous studies, and
discuss them from the perspective of Web servers and prox-
ies. The results show that the Web servers implement all
HTTP methods according to the standard, but few websites
are configured according to the standard.



Protocol Release Supported Change

Version Date Methods from previous

Initial implementation Before 1991 GET —

GET, PUT, POST, HEAD,

DELETE, LINK, UNLINK,
Before HTTP/1.0 1991 CHECKIN ∗, CHECKOUT Added twelve

SEARCH, TEXTSEARCH, methods
SHOWMETHOD, SPACEJUMP

RFC 1945 May, 1996 GET, HEAD, POST, PUT, Removed six

(HTTP/1.0) DELETE, LINK, UNLINK methods

RFC 2068 Nov, 1998 GET, HEAD, POST, PUT, Removed LINK,
(HTTP/1.1) DELETE, OPTIONS, TRACE UNLINK; Added
(obsoletes RFC 1945) OPTIONS, TRACE

RFC 2616 June, 1999 GET, HEAD, POST, PUT, Added CONNECT
(HTTP/1.1) DELETE, OPTIONS, TRACE,
(obsoletes RFC 2068) CONNECT

Table 1: HTTP methods defined in subsequent incarnations of the protocol

2. THE HTTP STANDARD
Initial implementations of HTTP had only one method,

GET [4, 5]. Over time, many methods have been added and
removed. Table 1 summarizes the historical development.

After an initial explosion, the number of methods has
decreased. The methods have been fairly stable since the
standard has been officially published in RFC (Request For
Comments) 1945 [6]. The current definition, RFC 2616 [11],
consists of eight methods. For the purpose of this paper, we
divide these methods into three groups:

(1) Read-only methods (GET and HEAD) that do not mod-
ify the state of the server. These are the only methods
that all resources are required to implement.

(2) Write methods (POST, PUT, and DELETE) that mod-
ify the data on the server.

(3) Supporting methods (OPTIONS, TRACE, and CON-
NECT) that were added in version 1.1. These are infras-
tructure methods that provide access to resource options,
debugging support, and secure connections.

RFC 2616 does not define the semantics of the CONNECT
method. Unlike the other methods, CONNECT is imple-
mented by Web proxies. The client sends this method to the
proxy server to initiate the creation of an end-to-end Secure
Socket Layer (SSL) tunnel between the client and the end
server. RFC 2817 [17] complements the HTTP standard by
describing how to use the CONNECT method to create an
end-to-end SSL tunnel through a proxy from the requesting
client to the server.

HTTP requests have the following structure:

Method SP Request-URI SP HTTP-Version CRLF
Headers
CRLF
[ message-body ]

Method is the HTTP method (e.g., GET). SP stands for
space. Request-URI is the relative part of the website ad-
dress. It is set to “/” if the address is the home page.
HTTP-Version is HTTP/1.0 or 1.1. CRLF is carriage return
and line feed. Headers is a list of headers, which may be gen-
eral, request, or entity headers, e.g., Content-Length, Date.
∗Methods that were not included in the next protocol ver-
sion are shown in italics.

They are separated by CRLF. message-body (also called en-
tity) is optional and contains the payload (i.e., data).

The HTTP response consists of a status line, a set of
headers, and an optional message-body:

HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Headers
CRLF
[ message-body ]

Some elements are identical to the request. Status-Code

is a numerical value of the result and Reason-Phrase is a
corresponding textual description. For example, in the pop-
ular response “404 Not Found”, the status code is 400 and
reason phrase is “Not Found”. Following common terminol-
ogy, we refer to status codes in the 400 and 500 ranges as
error codes. Headers include general, response, and entity
headers.

3. RELATED WORK
Several experimental studies of HTTP have been con-

ducted in the past. These studies have provided motivation
for adding new features to the standard, e.g., caching [8],
persistent connections [23], or pipelining [22]. The frequency
of such studies decreased after HTTP/1.1 became official.
Instead, more focus has been given to studying the charac-
teristics of specific network elements, such as Web servers [3]
and Web proxies [9].

The assumptions underlying the HTTP/1.1 standard have
been discussed by Kristol [20] and by Mogul [21], but they
do not include any experimental evaluation.

We are aware of only one experimental work that is similar
to ours. PRO-COW [18] studied the compliance of Web
servers with HTTP/1.1 in 1999, soon after the standard was
published. This study focused on compliant implementation
of the mandatory and optional HTTP features, including
methods and headers. It analyzed the responses from 15
most popular websites in 1999. Our study included 10 of
these websites. A follow-up PRO-COW study from 2001 [19]
included 500 websites, selected based on 3 different services
reporting the most popular sites. While the websites of these
services still exist today, they no longer provide the lists of
popular websites, so we could not use them. We discuss
their results to verify our findings in Section 8. We build on



their results to provide an alternative, more complete view
of HTTP compliance of websites, Web servers, and other
Web systems.

4. EXPERIMENTAL SETUP
We implemented an HTTP client to build, send, and re-

ceive the HTTP methods using VisualWorks 7.1 (Smalltalk).
The experiments consisted of sending OPTIONS, TRACE,
GET, conditional GET, and HEAD methods to the home
pages of each of the tested websites. The methods that mod-
ify the state of the server (POST, PUT, DELETE) were not
tested, because it is not possible to set up the same test for
all the websites. See section 7.1 for more on this.

To test CONNECT, we used Fiddler [10], an HTTP de-
bugging proxy that logs all the HTTP method traffic be-
tween the sender’s computer and the Internet. All the re-
quests go through this proxy and it logs the requests and
responses. We browsed the Web pages of the tested web-
sites from Alexa and checked the CONNECT requests and
responses while communicating with a proxy that tunnels
the request to an HTTPS service.

Before discussing the detailed results, it is important to
address potential criticisms of our approach. If our requests
looked like intruders rather than typical client methods, Web
servers may have responded with errors or failed to respond
on purpose, e.g., as a protection from a Denial-of-Service
attack. We used Web-Sniffer [29], a website that displays
headers of various HTTP methods, and Fiddler to verify
our findings and collected the same results. We also con-
sidered sending the same requests from multiple locations,
but decided against it, following the findings of PRO-COW,
which concluded that the location of the requestor has little
effect on the responses.

Like most popular sites, the sites targeted by our study
need many servers to handle all requests. They use load
balancing and caching proxies, which means that subsequent
requests may go to different machines or may not even reach
the server. It would seem that our test results would be
difficult to reproduce, but this is not the case. We analyzed
all the results manually and collected them multiple times
to verify that they are consistent. All websites generated
the same response for each request.

One shortcoming of our approach is that we have tested
only publicly accessible websites. It is possible that gov-
ernment or corporate intranets are configured to follow the
standard more closely. Since intranets have tighter security
and reliability requirements, studying their compliance re-
sults might provide more insights. Unfortunately, we were
unable to obtain access to private intranets.

4.1 The Tested Websites
Our tests included 176 unique websites. We started with

the 100 most popular websites in the world, the 100 most
popular US websites, and the 25 top computer science de-
partments (we refer to them as World sites, US sites, and
CS sites in the remainder of the paper). But, due to du-
plication, we obtained fewer unique results. The top 100
US sites contains 32 of the same websites as the top world
sites. The overlapping sites are only included in the world
count. Both world sites and US sites include multiple copies
of popular websites, especially Google. The top 100 world
sites include 16 versions of Google that correspond to dif-
ferent, country-specific domains. All Google sites are set up

exactly the same way, because they return the same headers
in the same order in all tests; thus we count them only once.
The US sites also include 3 copies of Google site, which are
not counted. This means that the results for world sites
tests contain 85 results, US sites tests have 66 results, and
CS sites tests have 25 results.

Among the most popular sites, Yahoo and eBay also have
multiple copies corresponding to different countries. How-
ever, each of these sites is configured differently (i.e., each
site includes different headers in response to the same HTTP
method), so each copy is counted individually.

We selected our test websites based on popularity. This
might seem counter-intuitive. What is popular need not be
the best. However, on the Web, the popularity translates
to more stringent availability and reliability requirements
for the sites. Having more traffic means that most popular
websites are likely to use more copies of Web servers and
face more security threats, which makes them more likely to
be concerned with proper use of the HTTP standard. To
see how these forces relate to compliance results, we also
tested the websites of the highest ranked computer science
departments in the US. These websites represent a different
type of popularity and have different requirements, because
they see lower volume of traffic, fewer market pressures (i.e.,
no need to make money) and consequently fewer security
concerns. However, the admins of these websites are likely
to be qualified and be well versed with Web server setup.

4.2 The Classification of the Results
The results are classified according to the definitions from

the HTTP standard [11]. A method is unconditionally com-
pliant if it implements all “must” and “should” require-
ments. If it implements all “must” requirements, it is condi-
tionally compliant. Otherwise it is non-compliant. We also
use the term correctly to mean “according to the standard”.

Results can be classified in more detail based on the re-
sponse of a method. Implemented OK means that the site is
unconditionally compliant and returns all the expected data.
Not implemented means that the site returns a standard er-
ror code (405 Method Not Allowed along with the Allow
header, or 501 Not Implemented, or 404 Not Found, or 403
Forbidden which “should” include an explanation). This
category is also unconditionally compliant. Error Code in
Response means that the method is not supported/configured,
but the response error code was not one of the four listed
above. Runtime Error means that there was no reply. These
two types of responses are non-compliant. Some websites re-
sponded to our tests by requesting a redirection to HTTPS.
Since we were not testing HTTPS, we could not classify
these responses. Consequently, the counts for some meth-
ods do not add up to 176.

This paper presents a summary of the results. More de-
tailed results are available at http://st.cs.uiuc.edu/~pa

damczy/http_tests.html.

5. SUPPORTING METHODS
The supporting methods are analyzed first:

• OPTIONS is used to request the list of all the methods
that a Web server supports. These methods are listed in
the Allow header of the response.

• TRACE is used to monitor an HTTP message as it trav-
els through the Web. The destination server sends the re-



quest message back to the sender and all the HTTP/1.1-
compliant intermediate network elements (proxies, gate-
ways) include their names in the trace by adding the Via
header.

• CONNECT is used to change the connection with a Web
proxy to an SSL tunnel resulting in a secure connection.

Since the OPTIONS method returns the list of methods
allowed by a server, we discuss its results before the other
methods. Knowing which methods are allowed by a given
website makes it easier to determine whether a response with
an error code is compliant or not.

5.1 Configuration Compliance Results
OPTIONS method. A standard implementation of OP-

TIONS (applied to resource “/”) “should” return the list of
methods supported by the server in the Allow header. Figure
1 summarizes the compliance results of this method.

Figure 1: Compliance results for OPTIONS

54 websites implement this method correctly. The un-
conditionally compliant category includes 34 sites whose re-
sponse contains an Allow header listing HTTP methods that
are not allowed by the website. For example, some of these
responses indicate that the website allows TRACE or HEAD,
but attempts to invoke these methods result in error codes
“501 Not Implemented”, “405 Method Not Allowed” or “403
Forbidden”. The wording in the standard makes this case
compliant, but we believe that this is a mistake in the stan-
dard. The contents of the Allow header that are inconsistent
with other methods make OPTIONS results misleading.

48 websites that do not respond to OPTIONS correctly
treat it as if it were a GET, which, surprisingly, could be
considered conditionally compliant∗. As the result, none of
the CS sites are non-compliant.

An interesting example of non-compliance is sending re-
sponses with the status code “200 OK” but including an
empty entity named 404.html. 3 websites return this re-
sult. We suspect that this response is meant to circum-
vent the default behavior of some Web browsers that do not
display entities when the response contains an error code.
PRO-COW [19] study observed similar behavior.

∗RFC 2616, section 9.2 states: 200 response SHOULD in-
clude any header fields that indicate optional features imple-
mented by the server and applicable to that resource (e.g.,
Allow) The Allow header is not required in the response,
thus a response without it is still conditionally compliant.

OPTIONS/* method. The HTTP standard states that
OPTIONS applies only to the methods that are defined for
the specified Request-URI. To receive the list of methods
supported by the server as a whole, the Request-URI must
be set to “*”. But in our tests we found that the OPTIONS
method is interpreted in two different ways. OPTIONS sent
to the Request-URI corresponding to the home page can
return two results: (1) all possible methods defined by the
server, or (2) all methods defined only for the requested
page. This inconsistency means that this OPTIONS test is
not sufficient to measure the compliance of this method.

To perform an accurate analysis of the implementation of
OPTIONS, we ran a second set of tests with the Request-
URI set to “*”. We refer to this version of the method as
OPTIONS/* in the remainder of this paper. The results for
OPTIONS/*, are shown in Figure 2.

Figure 2: Compliance results for OPTIONS/*

The OPTIONS/* method has more compliant responses
than OPTIONS. In total, 130 websites return uncondition-
ally compliant responses. Only 4 responses from the World
sites treat OPTIONS/* like GET, but the number of mis-
leading Allow headers increases slightly. Since OPTIONS/*
should list all the methods valid for all URIs, its results
should be a superset of all the methods listed in the cor-
responding OPTIONS method. But some websites report
fewer methods in the Allow header of OPTIONS/* than in
response to OPTIONS. The number of error codes in re-
sponses increases as well; 4 websites return an empty entity
named 404.html. 69 websites return the same response for
both versions of OPTIONS.

Allowed HTTP methods. The Allow header (included
in OPTIONS or OPTIONS/* methods) would seem like a
good indicator of which methods are configured on a website.
Unfortunately, not all websites provide this information. Ta-
ble 2 shows the counts of HTTP methods reported by web-
sites. Depending on the server type, the allowed methods
are listed in Allow and/or Public header. For websites where
OPTIONS and OPTIONS/* return completely different re-
sults, the table reflects the contents of the response where
the Allow header lists more methods.

The results show a discrepancy between most popular
sites and CS department sites. Only about 2/3 of most
popular sites (both in US and worldwide) return the Allow
header in responses to OPTIONS or OPTIONS/* methods.
In contrast, all but 2 CS department sites provide this infor-
mation. All the responding websites list GET and HEAD as



GET HEAD POST PUT DE- OPT- TRA- CON- Other Web-

LETE IONS CE NECT DAV

World 65 65 42 4 3 65 61 0 3 1

US 42 42 34 18 17 41 39 3 17 7

CS 23 23 17 2 2 23 23 1 2 1

Total 130 130 93 24 22 129 123 4 22 9

Table 2: Allowed HTTP methods count, as reported in OPTIONS

supported methods. OPTIONS, and TRACE, and POST
are listed in most responses. Other HTTP methods are
listed sporadically, primarily by the US sites. Section 7
expands on this observation and explains the relevance of
WebDAV. Some of the sites also return methods (not shown
in the table), such as INDEX, RMDIR, which were never a
part of the standard.

TRACE method. A standard implementation of the
TRACE method “should” return the original message in the
response with the Content-Type header set to message/http.
It “should” also include a Via header listing the gateways
and proxies that processed this method, but this require-
ment does not affect the compliance results of the server –
our findings related to proxies, collected from Via and other
non-standard headers, are discussed in Section 9.2. The
summary of the results for TRACE is shown in Figure 3.

Figure 3: Compliance results for TRACE

Overall, 95 responses to TRACE are unconditionally com-
pliant. About half of the unconditionally compliant World
sites choose not to implement this method and indicate so
with the expected error codes. The conditionally compli-
ant responses fail to include the original message in the re-
sponse entity (23, 11, and 6 websites respectively). Non-
compliant responses return wrong error codes to report that
the method is not supported (13 websites in total), treat
TRACE like GET (7 websites), use the 404.html entity as
the error code (5 websites), or fail to respond (16 websites).

CONNECT method. The end servers implement Se-
cure HTTP (HTTPS). HTTPS uses SSL to transport the
HTTP methods. The entire communication between the
SSL connection endpoints is encrypted.

According to RFC 2817 [17], a client can create an SSL
connection in two ways. Direct SSL connection can be cre-
ated if the client communicates directly with the server. Al-
ternatively, a client can create an indirect connection by
communicating with a proxy and requesting the proxy to
create an SSL tunnel ending at the origin server. This tun-

nel setup request is initiated by the CONNECT method.
A client that is connected directly to the server can is-

sue an optional or mandatory upgrade request (asking the
server to switch to the SSL protocol) with a GET or OP-
TIONS method correspondingly. However, clients almost
never communicate directly with the server, but instead they
communicate with a proxy. Direct connections are not sup-
ported by any of the websites we tested.

The CONNECT request is sent to the proxy to request a
tunnel setup. The proxy communicates with the end server,
creates the tunnel, and once the tunnel is set, silently for-
wards the packets from the client to the end server.

We successfully sent the CONNECT method to a proxy
and created an SSL tunnel with 32 out of 85 World sites. We
did not see CONNECT in 53 other cases, because these end
servers do not implement HTTPS. For the 66 US sites, we
found that proxy servers are configured to use CONNECT
in 43 cases; the remaining 23 do not implement HTTPS. All
the CS sites implement HTTPS. The fact that CONNECT
is not supported in many World and US websites does not
mean that it is unnecessary and it does not mean that the
communication is not going through a proxy. This may be
because the origin servers only contain public material (e.g.,
CNN, Washington Post, IMDB), or they contain publicly
editable material (e.g., Wikipedia), or they use some other
encryption scheme to achieve confidentiality (e.g., Livejour-
nal clients send their data using POST, but the authenti-
cation data is encrypted; Yahoo China sends username in
plaintext, but password in encrypted format).

The Allow header of OPTIONS indicates that only 4 web-
sites claim to implement CONNECT (see Table 2). They
are Earthlink (Cable provider), Statcounter (Real-time web
statistics provider), Digitalpoint (Business solutions provi-
der), and the CS Department of the University of Penn-
sylvania (Academic website). Surprisingly, Statcounter and
Digitalpoint do not appear to implement CONNECT.

5.2 Discussion
Neither OPTIONS nor TRACE is configured sufficiently

well to perform the functionality defined in the HTTP stan-
dard. In practice, only CONNECT, defined outside of RFC
2616, is configured according to its specification.

Ideally, the clients could use OPTIONS to dynamically
discover what methods are supported by a resource and then
select the most appropriate method to invoke. However, the
fact that only few websites configure this method to return
unambiguous, compliant results indicates that dynamic dis-
covery is probably not such a great idea. The OPTIONS
method appears to be used mainly to “confuse the enemy”
(i.e., hackers) by providing misleading results in the Allow
header. It prevent hackers from learning the capabilities of
the system. Browsers never send the OPTIONS method to
the server. Only hackers use it. Hence it is natural to ob-
scure the information to achieve security through obscurity.



The TRACE method appears to be more useful, because
message tracing and debugging is very difficult in distributed
systems, such as the Web. TRACE is reminiscent of the pop-
ular traceroute command. Yet, our results show that few
websites handle this method correctly. We suspect that the
reason for low compliance of these two methods is security.

Many websites do not use CONNECT, because security
is not an important requirement for them. CONNECT is
used by 65% of the US sites, but by only 37% of the World
sites. This is because the top ranking websites in the world
represent different regions; and typically the social network-
ing and Web portal sites are highly ranked in all regions.
These sites have low security requirements and do not use
CONNECT. In contrast, many e-commerce sites are fea-
tured in the top US sites (along with the more popular so-
cial networking sites). Security is a key requirement for these
websites. So their providers configure the end servers and
the proxies correctly to execute the protocol steps. CON-
NECT is a lightweight mechanism that provides strong se-
curity guarantee. This is why the standard is universally
adopted for secure communication.

6. READ-ONLY METHODS
The read-only methods retrieve the data from the server:

• GET is used to retrieve the current representation of a
resource.

• HEAD is used to retrieve the headers (i.e., metadata)
of the corresponding GET method for a given Request-
URI, but without the entity.

6.1 Configuration Compliance Results
GET method. A standard implementation of the GET

method “must” contain an entity and two headers, Content-
Length and Date. Our results indicate that all websites are
fully compliant with this definition regardless of the Web
server or the protocol version they are using.

Since all Web servers implement the GET method cor-
rectly, we also tested one of the flavors of “conditional” GET
to see how well the basic caching is supported. A conditional
GET is a GET method that includes a header whose name
begins with “If”, e.g., If-None-Match. The conditional GET
returns an entity only if the specified condition is true.

Conditional GET. A standard implementation of con-
ditional GET “should” return an entity only if the resource
on the server has been modified since the time specified by
the condition. But all the websites generate the content of
their homepage dynamically – each subsequent response has
a different Date header and different Content-Length.

For this test we needed an entity that does not change as
often, so we sent conditional GETs to request the favicon
instead of the homepage. Favicon is a small icon logo of
a website; Firefox displays it to the left of the URL in the
address bar. We tested the websites that do not define a
favicon by requesting a small image from their homepage.
We excluded from our test 7 websites that store all their
graphics in a different domain.

To test the conditional GET, we selected the If-Unmodified-
Since header, because PRO-COW [18] also tested this con-
dition†. This header was added to the standard improve

†Initially we were also testing If-Modified-Since, but the re-
sults were almost identical for both conditions, so we dis-

Figure 4: Compliance results for GET with If-
Unmodified-Since header

caching. This method “must” return status code “412 Pre-
condition Failed” if the requested resource has not been
modified since the given date. We used a date 5 years ago to
make sure that all favicons were modified since. The results
are summarized in Figure 4.

The majority of websites in each category (49, 43, and 20
respectively) respond to this method correctly. There are
two types of non-compliant responses. 55 websites (33, 17,
and 5 for each category) include an entity that has been
modified after the date we requested. Two websites respond
with status code “304 Use Local Copy,” which the standard
defines as the expected response to a conditional GET with
a different header, If-Modified-Since. There are no condition-
ally compliant responses.

HEAD method. A standard implementation of HEAD
“must not” contain an entity and it “should” contain the
same headers as the corresponding GET method. The re-
sults are summarized in Figure 5.

Figure 5: Compliance results for HEAD

All 3 website categories return more conditionally compli-
ant responses (102 in total) than unconditionally compliant
ones (58 in total) for this method. Most unconditionally
compliant responses include exactly the same headers for
GET and HEAD (25, 12, and 9 respectively). Others re-

continued that test. All but two US sites had the same
compliance results for both tests. We did not run it for the
other websites.



turn the same headers, but with slightly different values (7
World sites and 4 US sites). For example, CNN and AOL
return a different value of Connection (“close” for HEAD
and “keep-alive” for GET), but all the other header values
are the same.

All the conditionally compliant responses have problems
with one header, Content-Length, which specifies the size of
the entity in the corresponding GET method. Recall that
all GET responses “must” include Content-Length. Half
or more of all the websites in each category (42, 32, and
16 respectively) do not include the Content-Length header‡.
Some other responses set this header to a completely differ-
ent value than the value in the corresponding GET method
(these 5 websites are counted under Wrong Content Length
in the figure). Yet other websites set it to 0 (3 World and 4
US responses).

Since HEAD is a required method, every website “must”
configure it. Otherwise, it is non-compliant and counted
under Error Code in Response.

6.2 Discussion
It is not surprising that all the tested websites configure

the GET method correctly, because GET is the essence of
the Web. Even more advanced versions of GET, such as
conditional GET, are configured correctly by the majority
of websites. This is because the conditional GET allows
Web clients to take advantage of caching.

In contrast, the HEAD method is seldom configured cor-
rectly. This result is surprising for three reasons. First,
HEAD is a required method. Every website is required to
support GET and HEAD. Second, HEAD seems to be easy
to implement by reusing the code for GET. In fact, Apache
uses the same code to handle both methods. The only place
in the code where their handling differs is the check whether
to include the entity in the response. But even Apache Web
servers sometimes (due to bugs) fail to generate uncondi-
tionally compliant responses to HEAD. The most amusing
problem with HEAD is Content-Length set to 0, which sug-
gests that the code for GET is reused for HEAD and the
size of the entity is calculated dynamically before it is sent.
Since HEAD has no entity, the server sets the value to 0.

Third, HEAD performs useful tasks. The metadata re-
trieved with HEAD is used (1) to determine the size of en-
tity before requesting a large resource, (2) to verify that a
resource still exists, and (3) to check when the resource has
been last modified. Over time, the first task has become less
significant, because improving network speeds have made
downloading data easier. The second task will always be
important. However the third task can be better accom-
plished with conditional GET. When the client uses HEAD
to check if a resource was modified and the resource was in-
deed changed, it must then send a GET to retrieve it. With
conditional GET, the resource is returned in one message
exchange, but only if it was changed.

It would seem that HEAD should be used often, yet the
test results show that it is not. Had it been used often,
the website admins would have to configure it correctly. We
suspect that this method is underutilized, because clients do
not know about it.

‡We shared all our test results with Apache developers.
They informed us that this is a known bug in Apache 2.x.
They did not provide any insights about the reasons for
other non-compliant results.

7. WRITE METHODS
The HTTP standard defines three methods for modifying

resources stored on the server:

• POST is used to update the state of an existing resource.

• PUT is used to create a new resource or to replace the
entire contents of an existing one.

• DELETE is used to delete a resource.

7.1 Configuration Compliance Results
Unfortunately, the write methods cannot be tested uni-

formly. It is not possible to set up the same test for all
websites, because each website has its own policy for up-
dating resources. To set up a comprehensive test, we would
need to find unique modifiable resources on each website. To
modify these resources, we would also need to gain access
rights (e.g., register with the website). In the end, all tests
would be unique rather than uniform.

PRO-COW collected compliance results for the POST
method by checking if Web servers report that POST is not
allowed using the standard-defined error codes. Such a test
is not convincing, because it tests the configuration of the
error reporting, rather than the configuration of the method
itself. The error reporting in the methods discussed in the
previous two sections shows that most websites do not con-
figure error codes correctly. This is another reason why we
did not test POST responses the way PRO-COW did.

Instead, we use our test data to determine the relative
popularity of write methods by analyzing the contents of the
Allow header. The Allow header, returned by the OPTIONS
(and OPTIONS/*) method, lists all methods supported by
a website. The results collected from this header indicate
that POST is configured by 71.5% of websites (See Table
2). Much fewer websites report that they support PUT or
DELETE (18.5% and 16.9% respectively). Moreover, some
websites do not include POST in the Allow header even if
they support it. For instance, Yahoo does not list any write
methods in the Allow header, but it must support at least
one write method (most likely POST); otherwise the users
could not send messages through Yahoo email.

7.2 Discussion
The POST method is configured by most websites, while

PUT and DELETE are not. One reason for this is that the
definition of write methods in the standard is too complex.

The difference between PUT and POST is a subtle one.
According to the standard, a client wishing to set up the
resource in its entirety would send it to the server via PUT.
Alternatively, a client wishing to provide the data to the
server and allowing the server to determine how to update
the resource would use POST. In practice, POST is used
almost always, because it places the responsibility for up-
dating the resource on the server. If the server determines
that the data submitted via POST should replace the cur-
rent data, it can do so anyway. A client wishing to update an
existing resource according to the semantics of PUT, needs
to first obtain the current data stored in the resource (via
GET), make the updates, and then send the updated repre-
sentation to the server via PUT.

∗∗The initial PRO-COW paper [18] does not include results
for OPTIONS/*. The second paper [19] presents all results
as ranges.



OPTIONS OPTIONS/*

PRO-COW World US CS PRO-COW World US CS

Unconditional 59.8 54.8 65.2 72.0 26.8-32.3∗∗ 69.0 73.8 96.0
Conditional 39.4 33.3 19.7 28.0 65.0-72.4 4.8 0.0 4.0
Non-compliant 0.8 11.9 15.1 0.0 0.8-2.7 26.2 26.2 0.0

TRACE HEAD

PRO-COW World US CS PRO-COW World US CS

Unconditional 97.3 50.6 53.0 68.0 72.9 38.1 26.2 36.0
Conditional 2.5 27.1 16.7 24.0 9.4 54.8 61.5 64.0
Non-compliant 0.2 22.3 30.3 8.0 17.7 7.1 12.3 0.0

GET Conditional GET

PRO-COW World US CS PRO-COW World US CS

Unconditional 83.5 100.0 100.0 100.0 41.7 59.0 70.5 80.0
Conditional 16.1 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Non-compliant 0.4 0.0 0.0 0.0 57.1 41.0 29.5 20.0

Table 3: Website compliance results comparison with PRO-COW (All values are in percentages)

Similarly, POST is used to delete resources. This is typi-
cally done by sending POST to a Request-URI that includes
the word “delete.” This is not a good interpretation of the
standard, because the URI is supposed to identify a resource.
Including “delete” in the URI means that the URI is used
to identify the delete method on the server.

The easiest way to avoid this complexity when configur-
ing a website is to use one method for all cases. In practice,
websites define all writes (including creation and deletion
of resources) with POST. Since POST has been in use for
a long time, it is usually configured relatively well. The
other write methods, PUT and DELETE, are not config-
ured/allowed in practice.

It might seem that it would be beneficial to remove PUT
and DELETE from the HTTP standard altogether, because
they are often unused and their tasks can be accomplished
with POST. However there exist HTTP extensions that use
these methods. WebDAV, a standard for distributed au-
thoring [13] is one of such extensions. It uses existing HTTP
methods (including PUT and DELETE) as well as several
new ones to define tasks for Web authoring: management
of resource versions, access to collections of resources, and
access control. WebDAV is relatively popular; 7 of the top
100 US sites support it. As a result, it is important to pre-
serve PUT and DELETE as part of HTTP, because they are
relevant in other contexts.

8. CHANGES IN COMPLIANCE
Our results show that the majority of the websites con-

figure only the GET method correctly. All other methods
are often configured incorrectly. To put these results in the
proper perspective, they should be compared with prior ex-
periments. PRO-COW project was a HTTP/1.1 compliance
study that tested 13 different features (algorithms, meth-
ods, and headers) defined in HTTP/1.1. Our experiments
tested the same methods as PRO-COW. Other PRO-COW
tests, such as the presence of mandatory headers in meth-
ods or persistence and pipelining features were outside of the
scope of our study, because they tested low-level details of
the protocol, while we are focusing solely on methods that
the protocol users can call. Table 3 compares the results

of the 6 tests common to our studies. Each method shows
the percentage of unconditionally compliant, conditionally
compliant and non-compliant configurations. They are cal-
culated from values described in the previous sections.

There are two PRO-COW papers. The first one describes
results for 15 sites in 1999 [18]. The second one tested 500
websites and produced similar results in 2001 [19]. Except
for OPTIONS/*, we use the results from the first paper,
because they show a single value for each test.

Table 3 shows two major trends:

(1) increased compliance of the GET method,

(2) unchanged or decreased compliance of other methods.

The results of GET, which were very good in PRO-COW,
are perfect in our tests. The results of the conditional GET
show an improvement in unconditional compliance, but also
show a lot of non-compliance. The increased compliance
of the conditional GET indicates that the implementation
and configuration of features that are useful to clients (e.g.,
caching) are more likely to improve over time.

On the other hand, TRACE and HEAD show significant
decrease in unconditional compliance, while TRACE shows
significant increase in non-compliance as well. OPTIONS
show some increase of unconditional compliance, but a larger
increase in non-compliance. This result indicates that these
methods are not used in practice. Since the clients do not
use them, the website administrators have no incentive to
configure them correctly (as indicated by mismatched head-
ers of GET and HEAD or responses without the original
request in TRACE). Some ambiguity in the standard def-
inition (as in the case of OPTIONS) is another cause of
bad implementations and configurations. Lastly, the results
of OPTIONS, and especially TRACE, illustrate a change
of culture prompted by the Web security concerns that oc-
curred after the PRO-COW study.

9. COMPLIANCE OF IMPLEMENTATION
While our test messages were sent to websites, the data

collected contains a lot of information about the Web servers
that generated the responses and Web proxies through which
our test methods were passing. This section discusses how



Web servers and Web intermediaries (proxies, caches, etc)
implement the HTTP standard, based on our results.

9.1 Web Servers
To determine the compliance of Web servers, we extracted

the names of Web servers from the responses. Typically the
Server header identifies the type and version of the Web
server. Only 10 websites that we tested do not include this
header or send meaningless values (e.g., “server”). Among
them are Yahoo and Amazon. Table 4 shows the counts of
various Web servers used by the tested websites.

Vendor Server Type World US CS

Apache/1.3 15 10 7
Apache Apache/2.x 14 8 12

Apache (Unspecified) 24 19 4

Total Apache 53 37 23

Microsoft IIS/5.0 5 6 1
IIS IIS/6.0 9 8 1

Total IIS 14 14 2

Netscape 1 4 0
Sun-ONE 1 3 0

Other AOL 2 1 0
lighttpd 3 0 0
Other 4 4 0

Total Other 11 12 0

Not Specified 7 3 0

Total 85 66 25

Table 4: Web servers used by tested websites

Apache is the most popular Web server in our tests. Most
non-US sites use Apache, as do almost all top CS depart-
ments. Microsoft’s IIS is more popular in the US, but less
known Web servers are also more often used in the US sites.

We mapped the correctly configured websites to specific
Web server versions to find which servers implement the
standard correctly. Most Web servers versions listed in Ta-
ble 4 have a corresponding, correctly-configured website.
Some examples are listed in Table 5.

Server type Website Description

Apache/1.3 www.apple.com Apple Inc.

Apache/2.0 www.cs.ucsd.edu University of California,
San Diego, CS Department

Apache/2.2 www.cs.utexas.edu University of Texas
CS Department

IIS/5.0 www.realtor.com Realtor real estate

SunONE/6.1 www.nytimes.com NY Times newspaper

Table 5: Example websites that pass all tests

In addition, some websites using IIS/6.0 and Netscape/6.0
come very close to passing all our tests. MySpace, a social
networking site using IIS/6.0, is unconditionally compliant
with all methods except OPTIONS. The Allow header of
OPTIONS lists the TRACE method, but when it is called,
it returns error code “501 Not Implemented”. Similarly,
Comcast (a digital cable site using Netscape/6.0) responds
to all methods, but it returns wrong status codes - 413 in-
stead of 501 for the unsupported TRACE and 304 instead
of 412 for GET If-Unmodified-Since. Had we tested more
websites that use these two servers, we would find perfect
configurations.

These results show that the type of Web server used does
not influence the compliance of a website. Since we were
able to find at least one example of a fully-compliant website

for almost every server type, these server types are fully-
compliant. Our test results show that well-implemented
servers were configured to be non-compliant on purpose.

The PRO-COW study does not consider the relationship
between Web server implementation and configuration. It
counts the number of compliant results per Web server type
thus implying that website configuration and Web server im-
plementations are closely related. This is not correct. There
may be many reasons why websites that use a certain version
of a Web server are misconfigured more often. This may be
the most popular server, so everyone wants to use it, and it
is easier to find non-compliant configurations. Or the server
may have many security flaws and people misconfigure it on
purpose. Or the server might be very hard to configure.

It is not possible to make any claims about server com-
pliance based on percentages of website results. However, it
is possible to determine which Web servers tested by PRO-
COW were implemented correctly. They show the percent-
age of servers that pass (and fail) all tests sorted by server
types. Some Apache/1.2, Apache/1.3 and IIS/4.0 servers
passed all tests, while none of Netscape/3.5 and 3.6 did.
This is comparable to our results. Most Web servers imple-
ment the HTTP standard correctly.

Web server security. It might seem that if a website
identifies the type and version, of the server it creates a se-
curity vulnerability, but this is not the case. Although there
are few major server vendors, they offer multiple versions
of the software and for each version there are multitudes of
possible configuration settings.

On the other hand, revealing too much internal details
can lead to problems. For example, Apache servers miscon-
figured for PHP have been reported to reveal the full path
of the php.exe script handler in response to an OPTIONS
method that inquired about index.php [7]. Another pos-
sible source of vulnerability we have observed is that the
Server header, in addition to the version of the server soft-
ware, includes information about other software running on
the system. For example, here are two headers included in
the response to GET from alibaba.com:

Server: Apache/2.0.55 (Unix) mod_AliCookie(for
apache2.x)/1.1 aliBeacon/1.0 mod_jk/1.2.15

X-powered-by: Servlet 2.4; JBoss-4.0.2
(build: CVSTag= JBoss_4_0_2 date=20050502
2023)/Tomcat-5.5

This appears to be the default behavior of some Web
servers (including Apache), but most websites wisely exclude
the extra information from the Server header.

9.2 Web Intermediaries
Our tests of OPTIONS, OPTIONS/* and TRACE pro-

duced responses with spoofed Server headers. This spoofing
is typically done by Web intermediaries that override the
Server header with their own name. SquidCache and Aka-
maiGHost were the two most popular Web intermediaries
in our tests, each of them overriding the Server header of
9 different websites. SquidCache is a caching proxy, while
AkamaiGHost is a content delivery system. Most spoofed
headers were in responses with error codes. For example, if
a method is not supported, the intermediary, not the server,
sends an error response. We know this because the Server
header is changed to the name of the intermediary and the
HTTP version is set to 1.0. That is not to say that all web-
sites are HTTP/1.1-compliant. Some of today’s most popu-



lar websites (Wikipedia, AOL, Mapquest) use HTTP/1.0.
In total, 13 websites return all responses as version 1.0.
Other non-standard ways of including the information about
the intermediary in the response is to add new headers (e.g.,
S, X-Server, X-cache) or use existing headers (e.g., From,
which is supposed to return an e-mail address).

This behavior is non-compliant. The HTTP standard
states that gateways and proxies “should” identify them-
selves in the Via header and “must not” modify the Server
header. Moreover, HTTP errata [16] clarifies that the Via
header “must” be used in all methods, but this rule is rarely
followed. We collected only 13 responses, from 5 different
websites, that include Via. Even responses from the websites
at the other end of the globe do not include Via although
they are likely to pass through several intermediaries. It is
possible that Via header is not used, because clients are not
interested in this information. For example, Web browsers
hide this information from the users. Proxies may be config-
ured not to report their identity in the Via header to over-
come the problem of finding open proxies on the Web.

Although some of the HTTP methods were defined only
in HTTP/1.1, all our results include the data obtained from
both HTTP/1.0 and HTTP/1.1 responses. This is because
many of the 1.0 responses are 1.1-compliant. The HTTP
version header is not end-to-end, which means that Web in-
termediaries that handle the response may change its value,
but they do not modify the contents of the response. Most
intermediaries we observed implement only HTTP/1.0. But
HTTP/1.0 is still in use by websites as well. Some of today’s
most popular websites (Wikipedia, AOL, Mapquest) use it.
In total, 13 websites return HTTP/1.0 in all responses.

The above results seem to imply that Web proxies still
do not implement the HTTP/1.1 standard correctly. But
the results of the CONNECT method show that proxies im-
plement secure connections (defined after HTTP/1.1) quite
well. Web proxies implementing CONNECT support SSL
2.0 [15], SSL 3.0 [12], and TLS 1.0 (a.k.a. SSL 3.1) [2]. We
used Internet Explorer 6.0 on Windows XP for the tests.
Internet Explorer sends a TLS 1.0 compatible ClientHello
handshake request to initiate the protocol. The server re-
turns an SSL 3.0 compatible response through the proxy and
the tunnel is set up according to SSL 3.0. This is possible,
because TLS 1.0 can be downgraded to SSL 3.0. The reason
behind non-adoption of TLS 1.0 may be backward compat-
ibility, because SSL 3.0 also supports SSL 2.0. We obtained
the same results with Firefox 1.5.

Proxy non-compliance with HTTP is not caused by a lag
in implementation, but rather it indicates that some HTTP
features are not important from the proxies’ perspective.

Web proxy security. Efficient HTTP tunneling with
CONNECT raises a couple of issues. The tunnels between
clients and servers are not necessarily created end-to-end. If
the end server is behind a firewall, then the HTTP tunnel
is created between the client and the gateway acting as the
access point of the firewall. The data is then available in
plaintext at the gateway.

Another issue with tunneling is that the proxies have no
way to monitor the data passing through the tunnel [25]
[27]. Almost any TCP-based protocol can be forwarded
through the proxy service.

Security vulnerabilities of TRACE have an indirect ef-
fect on proxies. Websites that enable TRACE can become
targets of ‘cross site tracing’ attack that could reveal user

information [26]. A script on the client machine can forward
a response to a TRACE method with Cookie headers to a
malicious server [14]. To prevent this, many servers return
the length of the TRACE request instead of the whole re-
quest to the client. We suspect that this vulnerability is the
reason why proxies do not include the Via header.

10. ANALYSIS OF THE RESULTS
By now, the key result of our experiments should be ob-

vious: HTTP methods do not behave according to the stan-
dard. The PRO-COW paper [18] concludes: “The results
of our experiment show that the situation on the Web must
first be improved at the origin server before we can worry
about end-to-end improvements.” Yet 6 years after the PRO-
COW experiments, our tests show that though the results
have not changed much, the Web is doing just fine. There
are several possible explanations of this phenomenon.

Perhaps website admins are incompetent. The websites
we tested generate the most traffic and probably face the
most security threats. For many of these websites (Google is
the best example), the Web presence is their entire business.
To ensure availability, they must be set up well. Therefore
this hypothesis is not true.

Perhaps it is difficult to set up Web servers, because they
come with bad defaults. While this hypothesis seems plausi-
ble, it is not true either. We installed two versions of Apache
to see what their default configurations are. In Apache 1.3
for RedHat, all the methods (even PUT and DELETE) are
configured correctly out of the box. The same is true for
Apache 2.0 for Windows XP. A website is operational in
minutes after the Web server software is downloaded. More
effort is required to disable correct configurations.

Perhaps bad website configuration is done on purpose.
As noted in the previous paragraph, the Web servers have
standard-compliant default settings, yet the compliance of
configurations varies. The non-standard setup of less pop-
ular methods could be a way to achieve security through
obfuscation. Security vulnerabilities mentioned in the pre-
vious section support this hypothesis.

Perhaps it is not important to be compliant with the entire
HTTP standard. Even the most popular sites seem to be
satisfied that the key features are working. If GET or POST
method were to suddenly stop working, they would need to
be fixed immediately. The other methods are not used often
enough to demand proper configuration.

Perhaps most Web traffic is handled by HTTP-agnostic
systems, such as content delivery systems. Such Web in-
termediaries do not operate at the HTTP layer, but use
different protocols in their communication with the servers.
When they produce HTTP responses on behalf of the servers,
such responses are seldom HTTP-compliant.

There are many other explanations for the low compli-
ance results, but the last three reasons - security concerns,
the limited use of most HTTP methods, and HTTP-agnostic
systems - shed some light on this problem. There is a dis-
connect between the theory (HTTP standard) and practice
(system compliance) in the Web systems. In theory, HTTP
is a simple protocol for the Web. It was designed so that
it can be extended with more specialized protocols. Web-
DAV is a good example of this. In practice, a small subset
of HTTP is used. Web systems built on top of the simpli-
fied HTTP are adding capabilities that already exist in the
full-fledged HTTP, but not in the commonly used subset.



11. CONCLUSION AND FUTURE WORK
Our study of different types of popular websites shows

that most of them are not compliant with HTTP. While
Web servers implement the standard very well, few of the
websites are configured correctly. This is a continuing trend,
yet it has not affected the growth of the Web.

Our results provide experimental evidence for the debates
about the future of the Web. More specific experiments are
needed to address them fully, but some debates, e.g., REST
vs. SOAP [24], lightweight vs. standards-based security for
Web services, can benefit from our results.

The relationship between theory and practice of build-
ing Web systems is very complex. Studying only one small
aspect of it is not likely to produce comprehensive results,
but it is an important step toward a better understanding
of the Web. We provide three hypotheses explaining the
HTTP non-compliance, but obtaining a clearer picture re-
quires more studies, including surveys of website admins and
server implementers. We hope to have raised enough inter-
esting questions for others to join in this conversation.

12. REFERENCES
[1] Alexa. http://www.alexa.com.

[2] Christopher Allen and Tim Dierks. The TLS protocol
— version 1.0. Internet proposed standard RFC 2246,
January 1999.

[3] Martin Arlitt and Carey Williamson. Understanding
Web server configuration issues. Software Practice and
Experience, 34(2):163–186, February 2004.

[4] Tim Berners-Lee. The original HTTP as defined in
1991. http://www.w3.org/Protocols/HTTP/
AsImplemented.html, 1991. W3C webpage.

[5] Tim Berners-Lee. Is there a paper which describes the
WWW protocol. http://lists.w3.org/Archives/
Public/www-talk/1992JanFeb/0000.html, Jan 9
1992. WWW-talk mailing list.

[6] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk
Nielsen. Hypertext Transfer Protocol — HTTP/1.0.
Internet informational RFC 1945, May 1996.

[7] Bugtraq ID 4057. Apache 2 for Windows OPTIONS
request path disclosure vulnerability.
http://www.securityfocus.com/bid/4057/info, Feb
2002.

[8] Fred Douglis, Anja Feldmann, Balachander
Krishnamurthy, and Jeffrey Mogul. Rate of change
and other metrics: A live study of the World Wide
Web. In Proceedings of the 1997 USENIX Symposium
on Internet Technologies and Systems (USITS-97),
Monterey, CA, 1997.

[9] Bradley M. Duska, David Marwood, and Michael J.
Freeley. The measured access characteristics of
World-Wide-Web client proxy caches. In Proceedings
of the 1997 USENIX Symposium on Internet
Technologies and Systems (USITS-97), Monterey, CA,
1997.

[10] Fiddler. http://www.fiddlertool.com/fiddler/.

[11] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik
Frystyk Nielsen, Larry Masinter, Paul J. Leach, and
Tim Berners-Lee. Hypertext Transfer Protocol —
HTTP/1.1. Internet proposed standard RFC 2616,
June 1999.

[12] Alan O. Freier, Philip Karlton, and Paul C. Kocher.
The SSL protocol — version 3.0. Internet Draft,
Transport Layer Security Working Group, November
1996.

[13] Yaron Y. Goland, E. James Whitehead, A. Faizi,
S. Carter, and D. Jensen. HTTP Extensions for
Distributed Authoring — WebDAV. Internet proposed
standard RFC 2518, February 1999.

[14] Jeremiah Grossman. Cross-Site Tracing (XST).
www.cgisecurity.com/whitehat-mirror/

WH-WhitePaper_XST_ebook.pdf, Jan 2003.

[15] Kipp E. B. Hickman and Taher ElGamal. The SSL
protocol. RFC draft, Netscape Communications
Corp., June 1995.

[16] HTTP/1.1 specification errata. http://skrb.org/
ietf/http_errata.html, Oct 2004.

[17] Rohit Khare and Scott D. Lawrence. Upgrading to
TLS within HTTP/1.1. Internet proposed standard
RFC 2817, May 2000.

[18] Balachander Krishnamurthy and Martin Arlitt.
PRO-COW: Protocol compliance on the Web.
Technical Report 990803-05-TM, HP Labs, 1999.

[19] Balachander Krishnamurthy and Martin Arlitt.
PRO-COW: Protocol compliance on the Web — A
longitudinal study. In Proceedings of the 3rd USENIX
Symposium on Internet Technologies and Systems
(USITS-01), San Francisco, CA, 2001.

[20] David M. Kristol. HTTP Cookies: Standards, privacy,
and politics. ACM Transactions on Internet
Technology (TOIT), 1(2):151–198, November 2001.

[21] Jeffrey C. Mogul. Clarifying the fundamentals of
HTTP. Software Practice and Experience,
34(2):103–134, February 2004.

[22] Henrik Frystyk Nielsen, James Gettys, Anselm
Baird-Smith, Eric Prud’hommeaux,
H&#229;kon Wium Lie, and Chris Lilley. Network
performance effects of HTTP/1.1, CSS1, and PNG. In
Proceedings of the ACM SIGCOMM ’97 conference on
Applications, technologies, architectures, and protocols
for computer communication, Cannes, France, 1997.

[23] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Improving HTTP latency. Computer Networks and
ISDN Systems, 28(1–2):25–35, December 1995.

[24] Paul Prescod. Roots of the REST/SOAP debate. In
EML 2002: Proceedings of the Extreme Markup
Languages 2002 conference, Montreal, Canada, 2002.

[25] US-CERT Vulnerability Note Vu150227. HTTP proxy
default configurations allow arbitrary TCP
connections. https://www.kb.cert.org/vuls/id/
150227, Feb 2002.

[26] US-CERT Vulnerability Note VU867593. Multiple
vendors’ Web servers enable HTTP TRACE method
by default. https://www.kb.cert.org/vuls/id/
867593, Jan 2003.

[27] US-CERT Vulnerability Note VU868219. Multiple
vendors’ HTTP contentvirus scanners do not check
data tunneled via HTTP CONNECT method.
http://www.kb.cert.org/vuls/id/868219, Feb 2002.

[28] US News and World Report.
http://http://www.usnews.com/usnews/home.htm.

[29] Web-sniffer v1.0.24. http://web-sniffer.net/.


