Maximal Causal Models for Multithreaded Systems

Traian Florin Șerbănuță, Feng Chen and Grigore Roșu

University of Illinois at Urbana-Champaign

Abstract

Extracting causal models from observed executions has proved to be an effective approach to analyze concurrent programs. Most existing causal models are based on happens-before partial orders and/or Mazurkiewicz traces. Unfortunately, these models are inherently limited in the context of multithreaded systems, since multithreaded executions are mainly determined by consistency among shared memory accesses rather than by partial orders or event independence. This paper defines a novel theoretical foundation for multithreaded executions and a novel causal model, based on memory consistency constraints. The proposed model is sound and maximal: (1) all traces consistent with the causal model are feasible executions of the multithreaded program under analysis; and (2) assuming only the observed execution and no knowledge about the source code of the program, the proposed model captures more feasible executions than any other sound causal model. An algorithm to systematically generate all the feasible executions comprised by maximal causal models is also proposed, which can be used for testing or model checking of multithreaded system executions. Finally, a specialized submodel of the maximal one is presented, which gives an efficient and effective solution to on-the-fly datarace detection. This datarace-focused model, still captures more feasible executions than the existing happens-before-based approaches.

1 Introduction

Causal models of concurrent program executions allow to identify causally equivalent executions without re-running the underlying program and have been widely used in program analysis, e.g., to detect concurrency errors or to reduce the complexity of verification. Many causal models for multithreaded systems have been proposed, most of them inspired from related work on distributed systems [17] or on trace theories [20]. These models are usually defined by means of a causal partial order on the observed events; however, multithreaded systems executions are mainly determined by consistency among shared memory accesses rather than by partial orders or independence among events, limiting the effectiveness of existing causal models.

Contributions. Our first contribution is a novel causal model for multithreaded systems, based on an axiomatization of sequentially consistent memory. The proposed model is sound and maximal (or complete), thus putting an end to the quest for universally "better" causal models\(^1\). Several case studies are investigated: (1) the usual happens-before causality is subsumed by our models; (2) our models can be applied directly on executable definitions of programming languages—we show that the semantics of a multithreaded language satisfies the axioms; (3) our maximal causal models also subsume (and thus leverage) rather complex causalities encountered in the literature, such as sliced causality\(^2\). The proposed causal model is practical.

\(^1\)The problem of devising algorithmically "better" representations of causal models for particular properties of interest such as for dataraces or atomicity, will probably always be open.

\(^2\)Sliced causality [4] filters irrelevant events using static (control, data, and aliasing) information about the monitored program.
Motivating Example. Figure 1(a) shows a two-threaded trace, $e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9 e_{10} e_{11}$. An event is a tuple of attributes: the id of the thread, the type of event, the subject (memory location or lock), and possibly a value (if event type is write or read): e_1 is an acquire of lock l by thread 1; e_2, also by thread 1, is a write of x with value 1. A general and rigorous definition of events is given in Section 2. Figure 1(b) shows a program that could generate the trace in Figure 1(a). This is obviously not the only program that can generate that; e.g., an alternative way to generate e_9 and e_{10} is to replace the conditional in Thread 2 by $y := x + 1$. This trace exhibits a data race on y in any program whose execution might have produced it: two writes of y, namely e_4 and e_{10}, can occur next to each other in another execution of the program: if Thread 1 stops between e_3 and e_4, Thread 2 may continue to run until e_{10} is observed, since the read in e_9 will still get the value 1 (this time written by e_2), and then Thread 1 may awake to generate e_4.

However, no existing (sound) causal model can detect this race. Happens-before based models [3, 22, 28] enforce a dependency between the release of lock l and the subsequent acquire of l and thus conclude that e_8 always happens after e_7. Locksets approaches [27], may detect this bug but they are unsound (produce false alarms). More recent hybrid lockset-happens-before models [24], or relaxed happens-before models [30], allow one to permute synchronized blocks in different threads, e.g., $e_5 e_6 e_7$ and $e_8 e_9 e_{10} e_{11}$, but enforce at least the read-after-write dependency (a read should always follow the latest write event of the same variable). Hence, in Figure 1, these models claim that e_9 always happens after e_6, leading to a total order among events.

Our approach is based on sequential consistency of traces, formally defined in Section 2. Intuitively, a multithreaded trace is sequentially consistent if it satisfies the following: (1) every read of a variable has the same value as the latest write of the variable (but does not necessarily depend upon the latest write event!); and (2) no two threads hold the same lock at the same time in the trace. Given a multithreaded execution trace, any sequentially consistent interleaving of the trace’s events is a feasible trace, i.e., one that can be generated by some execution of any program generating the given trace. This way, one can correctly infer other feasible executions of a multithreaded program from an observed execution trace without running the program again.

For example, $\tau = e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9 e_{10} e_{11}$ is a sequentially consistent interleaving of the trace in Figure 1 (a), so τ is a feasible trace of the observed program; moreover, τ exhibits the race between e_4 and e_{10}. On the other hand, the consistency requirements prevent a trace obtained by replacing e_2 by $e'_2 = (1, \text{write}, x, 0)$ from being permuted in any order which would exhibit e_4 next to e_{10} (since the read of x at e_9 might guard

<table>
<thead>
<tr>
<th>Thread 1</th>
<th>Thread 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_1: (1, \text{acquire}, l)$</td>
<td>acquire(l);</td>
</tr>
<tr>
<td>$e_2: (1, \text{write}, x, 1)$</td>
<td>$x := 1$;</td>
</tr>
<tr>
<td>$e_3: (1, \text{release}, l)$</td>
<td>release(l);</td>
</tr>
<tr>
<td>$e_4: (1, \text{write}, y, 1)$</td>
<td>$y := 1$;</td>
</tr>
<tr>
<td>$e_5: (1, \text{acquire}, l)$</td>
<td>acquire(l);</td>
</tr>
<tr>
<td>$e_6: (1, \text{write}, x, 1)$</td>
<td>$x := 1$;</td>
</tr>
<tr>
<td>$e_7: (1, \text{release}, l)$</td>
<td>release(l);</td>
</tr>
<tr>
<td>$e_8: (2, \text{acquire}, l)$</td>
<td>acquire(l);</td>
</tr>
<tr>
<td>$e_9: (2, \text{read}, x, 1)$</td>
<td>if ($x > 0$) then $y := 2$;</td>
</tr>
<tr>
<td>$e_{10}: (2, \text{write}, y, 2)$</td>
<td>release(l);</td>
</tr>
<tr>
<td>$e_{11}: (2, \text{release}, l)$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Example trace and a program generating it.
the write of x at e_{10}, like in Figure 1(b)); therefore, no false alarm is reported. In fact, our model checking algorithm (Section 3) run on the trace in Figure 1(a) can infer 6 other feasible proper traces (none is a prefix of another), as opposed to none if using a happens-before model.

Since the model we associate to a trace comprises all traces which can be inferred from that trace using the memory model axioms, we can rightfully claim it is the maximal model. Interestingly, maximal-causal-model equivalent executions may not lead to the same state when they terminate, as enforced by happens-before models: it may be the case that one execution ends with y holding value 2 (e.g., the trace in Figure 1(a)), while an equivalent one, with y holding 1 (e.g., trace $e_1 e_2 e_3 e_5 e_6 e_7 e_{10} e_4 e_{11} e_5 e_6 e_7$). Our maximal model also comprises feasible traces with different events than in the observed one, e.g., trace $(2, \text{acquire}, l) (2, \text{read}, x, 0)$. This trace is maximal w.r.t the original trace, in the sense that it cannot be continued, because: (1) the value read for x is different than the one in the original execution, which is perfectly fine as long as we know the last value held by x, but, after this event, the second thread cannot soundly be continued as in the original execution; and (2) the lock l being acquired by the second thread, the first thread is also prevented from advancing, since its first operation would require acquiring l. The reason for which one cannot continue a thread once a read having a different value than in the original execution is inferred is because the value read could be used in evaluating the condition of a control statement (as it indeed happens in Figure 1), in which case, a different value read can lead to a different path chosen to continue that thread.

Comparison with Past Work. There has been a considerable amount of research on models and techniques to abstract executions for the purpose of inferring causally equivalent executions satisfying/violating particular but important properties, such as dataraces or atomicity/serializability [2, 3, 6, 9, 13, 14, 16, 24, 26–30, 32]. All sound approaches are based on some causal model, usually defined by means of a happens-before causal partial order among the events observed during an execution. Our approach is closest in spirit to [22], which proposes an axiomatization of a happens-before causal order between memory accesses and semaphore operations, and uses that to detect anomalies which could have occurred under equivalent (by the axioms) permutations of the observed execution. An important aim of their work, and ours, is soundness, that is, lack of false alarms. As discussed above, we choose to directly axiomatize the memory model and show that our causal model is more general than the happens-before (and any other) causality.

Our theory of multithreaded traces serves as an alternative to Mazurkiewicz traces [7, 20] in the context of multithreaded systems, where a blind instance of it would not capture the intended notion of causal equivalence of traces. Indeed, Mazurkiewicz traces build upon a basic binary relation of independence on events: two traces are causally equivalent iff they differ by permuting consecutive independent events. Obvious dependent events in the context of multithreaded systems are, for example, two accesses to the same shared variable when at least one of the accesses is a write, or two acquire / release events of the same lock. While instantiating the Mazurkiewicz trace theory with the above dependence relation leads to a sound notion of causal equivalence (yielding precisely the equivalence classes of the happens-before causal model), that causal equivalence might be too strong, that is, would lead to equivalence classes that are smaller than could/should be. Indeed, as shown in the sequel, one can safely allow atomic permutations of non-contiguous cross-thread blocks of events starting with a write of a shared variable and containing precisely all the reads of the written location, and in some cases also permutations of lock-protected blocks (assuming no write/read atomic block is causally broken). The notion of two-event-independence underlying the theory of Mazurkiewicz traces is too coarse-grained to capture the maximal causal equivalence class in the context of multithreaded systems.

The approaches presented above infer equivalent executions by just analyzing the trace, without knowledge about the program generating it. Another interesting and productive line of research attempts to use information about the actual program code to either statically detect potential bad behaviors [11, 21], or to use information about the program and about the property to be checked to further relax the models of an execution [4, 10, 23]. Purely static analysis approaches have to overcome unavoidable undecidability aspects, and typically give up soundness to increase coverage. Dynamic techniques may use static knowledge to enhance their analysis capabilities, so, having underlying models as relaxed as possible is also crucial for them. Our paper is complementary to these approaches: our goal is to establish a rigorous foundation on
which dynamic code-based techniques can be developed. Section 2.4 details how one could make use of static information to increase the coverage.

Paper Structure. Section 2 defines the maximal causal model for sequentially consistent multithreaded systems and illustrates its generality through several case studies. Section 3 presents a constructive characterization of the maximal model and a model-checking algorithm. Section 4 presents an on-the-fly data-race detection algorithm based on property-specialized submodels of the maximal model. Section 5 presents evaluation results, and Section 6 concludes.

2 A Theory of Multithreaded Traces

We here propose a theory of multithreaded traces, called *MT-traces* for short, which will be used as a framework to formulate and prove the results in this paper. Figure 2 highlights the two major concepts underlying our theory, namely *consistent traces* and *feasible executions*. Consistent traces are those which can be produced by *sequentially consistent* [18] multithreaded systems in general. A consistent trace disallows "wrong" behaviors, such as reading a value different from the one which was written, or proceeding when a lock cannot be acquired. Our second notion, that of feasible executions, refers to *sets* of execution traces and aims at capturing *all* the behaviors that a given multithreaded system or program can manifest. No matter what task a multithreaded system or program accomplishes, its possible traces must obey some basic properties. First, feasible traces are *generate-able*, meaning that any prefix of any feasible trace is also...
feasible; this is captured by our first axiom of feasible traces, *prefix closeness*. Second, we here assume that thread interleaving is the only source of non-determinism in producing traces; this is captured by our second axiom of feasible traces, *thread determinism*. This axiomatic approach gives us an elegant and general definition for the *maximal set* of feasible executions which can be inferred from, or are causally equivalent to, an observed one.

Execution Environment. We assume a machine that can execute arbitrarily many threads in parallel. Threads are distinct and can be identified at any time during the execution. The execution environment has shared memory, which can be accessed by the threads to share data and synchronize.

Threads. A thread is a *sequence* of operations. Although in general there could be potential nondeterminism internal to a thread, in this paper we assume that the only source of non-determinism for a thread is its execution environment. That is, if the interaction between a thread and the environment is the same across executions, the thread will execute the same operations. Moreover, there is no direct communication between threads; all interaction between threads happens through the shared environment. Hence, a thread can run independently of the other threads. To simplify the presentation, we assume no dynamic creation of threads.

Semaphores. Synchronization is facilitated by the use of semaphores [8]. Semaphores can be viewed as managers of a number of resources, allowing threads to acquire or release a resource or provide a new resource. Semaphores can only be controlled by means of two indivisible operations: the “P-operation” (here called *acquire*), and the “V-operation” (here called *release*). *Release* increases the number of available resources by one, while *acquire* decreases it by one, blocking if no resource is available and waiting for one to be released. This is not to be confused with re-entrant synchronized monitors, where a counter is maintained to keep track of how many times a mutex was acquired by the same thread. We choose semaphores over other synchronizations constructs since (1) they subsume most of the others (see e.g., [31]); and (2) they are most difficult to handle, due to the varying number of resources. The results in this paper easily adapt to other synchronization constructs.

Initial State. For simplicity, we assume that shared variables are initially set to 0 and semaphore counters to 1.

Events. Thread accesses to shared variables and semaphores are recorded as *events*. We consider events to be abstract entities from an infinite “collection” *Events*, and describe them as tuples of *attribute=value* pairs. The only attributes considered here are: *thread*—the unique id of the thread generating the event, *type*—the type of the event (*write*, *read*, *acquire*, or *release*), *target*—the memory location accessed by the event, and *state*—the value read/written by the current event (defined only for the *write/read* types of events). For example, \(e_1 : (thread = t_1, \ type = write, \ target = x, \ state = 1) \) describes event \(e_1 \) as a write of location \(x \) with value 1, produced by thread \(t_1 \). For any event \(e \) and attribute \(attr \), we will use \(attr(e) \) to denote the projection of \(e \) to the attribute \(attr \). We only list the attribute values in an event when there is no source of confusion; for example, the above event can be written as \((t_1, \ write, x, 1) \). Event identity is not reduced to identity of attributes: two events with identical attribute values may be distinct. We purposely considered only variable write/read and semaphore acquire/release events, as these are sufficient both to show the subtleties of the addressed problem and to capture the essence of our general solution.

2.1 Sequential Consistency

For simplicity, in this paper we assume sequential consistency [18]: the result of any execution is the same as if the operations of threads were executed in some sequential order, and the operations of each individual thread appear in this sequence in the order specified by its code.

3We have initially proved the subsequent results for synchronized monitors, but then we generalized them for semaphores.
Traces. Sequential consistency allows the observer of an execution to see a total order on all its events. Formally, a trace \(\tau = e_1 e_2 \cdots e_n \) is a finite ordered sequence of distinct events. Let \(\mathcal{E}_e = \{e_1, e_2, \ldots, e_n\} \) be the events of \(\tau \) and let \(\prec \) be the total order induced by \(\tau \) on \(\mathcal{E}_e \). Obviously, not all traces can be obtained as executions (e.g., a one-threaded trace writing 1 to \(x \) and then reading 0 from \(x \) is inconsistent). We give below two important consistency axioms which capture the essence of sequential consistency.

Write-Read Consistency: when reading a memory location, the value read is the value written by the most recent write operation on that location. Given a location \(x \), an event type \(t \), and a trace \(\tau \), let \(\text{latest}^t_\tau (x) \) denote the most recent event of type \(t \) for \(x \) in \(\tau \), if such event exists. Formally, \(\text{latest}^t_\tau (x) \) is an event \(e \) such that \(\tau = e \tau' \), \(\text{target}(e) = x \), \(\text{type}(e) = t \), and for all events \(e' \in \mathcal{E}_x \), \(\text{target}(e') \neq x \) or \(\text{type}(e') \neq t \). Since variables are all initialized with 0, we let \(\text{state} (\text{latest}^t_\tau (x)) = 0 \), by convention, if \(\text{latest}^t_\tau (x) \) is undefined. A trace \(\tau \) satisfies the write-read consistency requirement if for any prefix \(\tau' e' \) of \(\tau \) with \(\text{type}(e') = \text{read} \), it must be that \(\text{state}(e') = \text{state}(\text{latest}^\text{write}_\tau (\text{target}(e'))) \).

Semaphore Consistency [15]: the number of resources available for any semaphore location \(s \) and any prefix \(\tau \) of a trace is non negative. We write that number as \(\text{available}_\tau (s) \), and formally define it as \(\text{available}_\tau (s) = 1 + |\{ e \in \mathcal{E}_e | \text{type}(e) = \text{release} \land \text{target}(e) = s \}| - |\{ e \in \mathcal{E}_e | \text{type}(e) = \text{acquire} \land \text{target}(e) = s \}| \). A trace \(\tau \) satisfies the semaphore consistency requirement if for any prefix trace \(\tau' \) of \(\tau \) and any semaphore \(s \), \(\text{available}_{\tau'} (s) \geq 0 \).

Definition 1 A trace satisfying the write-read and semaphore consistency axioms is (sequentially) consistent.

2.2 Feasibility

Each particular multithreaded system or programming environment has its own notion of feasible execution, given by its specific intended semantics. We prefer to axiomatize the set of feasible executions by their crucial properties, to make our results general and applicable to the various special cases. Let us consider a hypothetical multithreaded system \(S \) and an initial state of the memory. All we need from \(S \) is the fact that it can produce a certain (potentially infinite) set of (finite) traces. We deliberately avoid giving a definition of a multithreaded system; this approach pays off in Section 2.4, where an abstract, otherwise nonexistent system is associated to a concrete multithreaded system. \(S \) can be executed in various ways, depending on the scheduling policy of the machine, so many different possible traces can be observed during its executions. A possibly incomplete (i.e., non-terminated, i.e., a prefix of a potentially infinite) trace observed during the execution of \(S \) is called a feasible trace of \(S \). Let \(\text{feasible}(S) \) denote all feasible traces of \(S \). Assuming sequential consistency and that threads operations are deterministic and execute independently of other threads (except for synchronization), \(\text{feasible}(S) \) must satisfy the following:

Prefix Closeness: events are indivisible and generated in execution order; therefore, \(\text{feasible}(S) \) is prefix closed. That is, if \(\tau_1 \tau_2 \in \text{feasible}(S) \), then \(\tau_1 \in \text{feasible}(S) \).

Thread Determinism. an event is completely determined (except for its state when it is a read event) by the previous events in the same thread, and can be generated at any consistent moment after them. Let us formalize this. The projection of trace \(\tau \) to thread \(n \), written \(\pi_n(\tau) \), is the subsequence of events in \(\tau \) whose thread is \(n \). Using this definition, thread determinism says that if \(\tau e, \tau' \in \text{feasible}(S) \) and \(\pi_{\text{thread}(e)}(\tau) = \pi_{\text{thread}(e)}(\tau') \) then: if \(\tau e \) consistent then \(\tau' e \in \text{feasible}(S) \); and if \(\text{type}(e) = \text{read} \) then there exists \(e' \) having the same attributes as \(e \), except \(\text{state}(e') = \text{state}(\text{latest}^\text{write}_\tau (\text{target}(e'))) \), such that \(\tau' e' \in \text{feasible}(S) \).

Definition 2 If \(\text{feasible}(S) \) is a prefix closed set of consistent traces satisfying the thread determinism, then \(S \) is called a (sequentially) consistent multithreaded system.
Feasibility Closure. A major goal of many of the trace-based analyses discussed in Section 1 is to infer and analyze as many traces as possible using as reference the recorded trace. When one does not know, or does not want to use, the source code of the multithreaded program being executed, one can only infer potential traces of the system resembling the observed trace, in particular no alteration of the state can be inferred if it was not already present in the observed trace; however, one could possibly be allowed to read a different value of the state, in a thread as long as that thread is not further continued. As we previously mentioned, the reason one cannot allow a thread to be advanced as in the original execution once it reads a different value is that, without additional knowledge about the program being executed, no assumption can be made on what statements are affected by that value being changed. On the other hand, a major advantage of this independence from the program is that the inferred traces correspond to real executions of any program which can produce the original trace. Let us now define the maximal set of executions which can be inferred from an observed execution as all traces obtainable from \(\tau\) using the feasibility axioms.

Definition 3 The feasibility closure of a feasible trace \(\tau\), written \(\text{feasible}(\tau)\), is the smallest set of feasible traces containing \(\tau\) which is prefix-closed and satisfies the thread determinism. A trace in \(\text{feasible}(\tau)\) is called \(\tau\)-feasible.

To emphasize that our model, based on an axiomatization of feasibility, infers more equivalent executions from an observed trace than any other sound similar technique (without assuming language-specific knowledge about the system), let us analyze the example in Figure 3, which recounts Peterson’s solution to the mutual exclusion problem between two threads [25], and presents a trace observed for a possible run, in which first thread completes before the second starts. Existing sound techniques, e.g., [22, 30], would only infer feasible traces which are permutations of the observed trace. The feasibility closure does not assume that all inferable traces are permutations of the original trace, but rather uses the axiomatization of the system to gain maximal coverage. Therefore, it should not come as a surprise that the feasibility closure contains all traces inferable through the above mentioned techniques (since all of them, being sound, comply to the axiomatization of the system), and even more. For example, the feasibility closure associated with the observed trace in Figure 3 also contains the trace \(\tau' = e_1e_2e_3e_7e_8e_9e_4'\), where \(e_4'\) is \((1, \text{read}, \text{turn}, 2)\), and \(e_9'\) is \((2, \text{read}, q_1, 0)\), which is not a prefix of any permutation of the observed trace. Being solely based on the observed trace, our axiomatization cannot be used to infer additional events for a thread, once this thread departs from the observed trace. Therefore, there is no other trace in the feasibility closure having \(\tau'\) as a
prefix, since the final events for both threads of \(\tau' \) (\(e'_1 \) and \(e'_2 \)) did not occur in the original trace. However, if one knows more about the (data and control) dependencies induced by the program being executed, one could continue this trace and infer that \(e_{10} \) can be generated, since it only depends on \(e_8 \). Moreover, if a constraint solver is employed, it could easily infer that the condition in which \(e_3 \) and \(e'_1 \) are involved is still false, as in the original execution, thus Thread 1 can be continued to generate events \(e_5 \) and \(e_6 \). At the extreme, if one fully simulates the execution of the code starting from the state obtained upon generating \(\tau' \), even more possible ways to continue this trace can be discovered (actually, an unbounded number of possible continuations can be obtained). We here prefer to keep the analysis at a more abstract (and fully decidable) level, to find out how much the coverage of a trace analysis technique can be increased without relying on the semantics of a particular language.

This is a good time to formally compare our feasibility closure of a trace \(\tau \) with the set of traces equivalent with \(\tau \) in the standard happens-before causal model. The happens-before trace equivalence class can be elegantly captured as the Mazurkiewicz trace associated to the dependence given by the happens-before relation. Let \(\pi_x(\tau) \) be the projection of \(\tau \) to \(x \), keeping only those events whose target is \(x \). The happens-before dependence is a pair \((\mathcal{E}_\tau, T \cup D)\), where \(T = \bigcup \{ (e_1, e_2) \mid \pi_i(\tau) = \tau_1 e_1 e_2 \tau_2 \} \) is the intra-thread sequential dependence and \(D = \bigcup \{ (e_1, e_2) \mid \pi_x(\tau) = \tau_1 e_1 e_2 \tau_2 \text{ such that } e_1 \text{ or } e_2 \text{ is a write of } x \} \) is the sequential memory dependence. Given this happens-before dependence, the Mazurkiewicz trace associated with \(\tau \) is defined as the least set \([\tau]\) of traces containing \(\tau \) and being closed under permutation of consecutive independent events [20]: if \(\tau_1 e_1 e_2 \tau_2 \in [\tau] \) and \((e_1, e_2) \notin T \cup D \), then \(\tau_1 e_2 e_1 \tau_2 \in [\tau] \).

The following result, in combination with, e.g., the example based on Peterson’s algorithm (Figure 3, or our motivating example (analyzing the trace in Figure 1) — which show that the happens-before causality cannot capture certain causally equivalent traces that our MT-trace theory can —, implies that our MT-trace theory is strictly more general than the theory of Mazurkiewicz traces associated to the happens-before causal order (in multithreaded systems):

Proposition 1 If \(\tau_1 e_1 e_2 \tau_2 \) is \(\tau \)-feasible, \(thread(e_1) \neq thread(e_2) \), and either \(target(e_1) \neq target(e_2) \) or \(write \notin \{type(e_1), type(e_2)\} \), then \(\tau_1 e_2 e_1 \tau_2 \) is also \(\tau \)-feasible. That is, for any \(\tau' \in \text{feasible}(\tau) \), \([\tau'] \subseteq \text{feasible}(\tau) \).

Proof. Let \(\tau_1 e_1 e_2 \tau_2 \) be a \(\tau \)-feasible trace such that \((e_1, e_2) \notin T \cup D \). We will show that \(\tau_1 e_1 e_2 \tau_2 \) is also \(\tau \)-feasible. First, all prefixes of \(\tau_1 e_1 e_2 \tau_2 \), including \(\tau_1, \tau_1 e_1, \tau_1 e_1 e_2, \tau_1 e_1 e_2 \tau_2 \) (for any prefix \(\tau'_2 e'_2 \) of \(\tau_2 \)), are \(\tau \)-feasible, since \(\text{feasible}(\tau) \) is prefix closed. Now, we can iteratively use closeness under thread determinism (1) for \(\tau_1 e_1 e_2 \) and \(\tau_1 \), to derive that \(\tau_1 e_2 \) is \(\tau \)-feasible; (2) for \(\tau_1 e_1 \) and \(\tau_1 e_2 \) to derive that \(\tau_1 e_2 e_1 \) is also \(\tau \)-feasible; (3) by finitary induction for each prefix \(\tau'_2 e'_2 \) of \(\tau_2 \), for \(\tau_1 e_1 e_2 \tau'_2 e'_2 \) and \(\tau_1 e_2 e_1 \tau'_2 e'_2 \) to derive that \(\tau_1 e_2 e_1 \tau'_2 e'_2 \) is also \(\tau \)-feasible. To finalize our proof we only need to notice that for any trace \(\tau \), sets \(T \) and \(D \) are maintained invariant by all traces in \([\tau]\), and, in that case, \((e_1, e_2) \notin T \cup D \) implies the additional hypotheses required for the first part.

This result not only shows that the happens-before equivalence class of the observed trace is included in its feasibility closure, but also that the feasibility closure is closed under the equivalence relation generated by happens-before. In other words, for multithreaded systems, MT-trace theory subsumes the happens-before causality. We next discuss two more complex instances of the MT-trace theory.

2.3 Case Study 1: A Language Definition

We here show an instance of the MT-trace theory above, extracting adequate causal models from the formal semantics of a virtual machine executing multithreaded programs. We therefore present the syntax of a multithreaded language and its operational semantics, including event generation. For this case study, a multithreaded system is a multithreaded program being executed using the defined semantics. We prove that any such system is sequentially consistent.

Syntax. Table 1 shows the syntax of CIMP, a minimal concurrent imperative language. Its imperative part consists of arithmetic expressions with integers and variables, comparison, and statements such as assignment, conditional, or loop. Multiple statements can be executed concurrently using the \(\parallel \) construct. acquire and release have the standard semaphore semantics. Semaphore and variable identifiers are disjoint.
Var ::= variable identifiers
Lock ::= semaphore identifiers
AExp ::= integer numbers | Var | AExp + AExp | ...
BExp ::= true | false | AExp ≤ AExp | ...
Stmt ::= skip | Stmt; Stmt | Var ::= AExp
 | if BExp then Stmt [else Stmt] | while BExp do Stmt
 | acquire(Lock) | release(Lock) | ...
Pgm ::= Stmt | Stmt ∥ Pgm

Syntax

Semantics

Table 1: Language CIMP: Syntax and Trace Semantics.
Dynamic Semantics. Table 1 presents the semantics of nondeterministic thread interleaving, memory access, and synchronization. The semantics of other constructs is the standard one, not altering the state, nor generating new events, but propagating them. One could add other constructs as well, including state-modifying ones, as long as one follows the shown rules (in altering the state and appending events to the trace). The following types of configuration are used: \(Pgm = \langle \text{Syn}, \text{State}, \rangle \) and \((\text{Syn}, \text{State}, \text{Int}) \), with Syn ranging over \(AExp, BExp, Stmt, \) and \(Pgm \). The final parameter of the second type is the index of the thread currently being executed. \(X, L, A, B, St, P, \sigma, \) and \(e \), are meta-variables ranging over \(\text{Var, Lock, AExp, BExp, Stmt, Pgm, State, and Event} \), respectively. Names (variables and semaphores) are shared among all threads. We let \(\sigma \) denote the initial state, assigning 0 to variable names and 1 to semaphore names.

The dynamic semantics is based on interleaving: at any moment, exactly one thread is advanced one step (rules 0–2). Threads are indexed from left to right in their original parallel construct list, starting with 1. \(\text{tid} \) identifies the thread currently executed. Synchronization is achieved through rules (5) and (6). Rule (5) says a thread can acquire one semaphore resource if the counter associated to the semaphore in the store is positive, in which case it decreases the number of locks available for that variable. Rule (6) increases the number of available locks for a semaphore.

Trace Semantics. Events are emitted for reads/writes of variables and acquire/release of locks (rules 3–6). Metavariable \(\chi \) stands for either an event, or the empty word \(\epsilon \) (internal transition). Other transitions simply propagate events using the \(\chi \) variable, or are internal transitions, as the dissolution of \(\text{skip} \) in the semantics of sequential composition:

\[
\frac{\langle \text{St}_1, \sigma \rangle \xrightarrow{\epsilon} \langle \text{St}_1', \sigma' \rangle}{\langle \text{St}_1; \text{St}_2, \sigma \rangle \xrightarrow{\epsilon} \langle \text{St}_1'; \text{St}_2, \sigma' \rangle}
\]

\[
\frac{\langle \text{St}, \sigma \rangle \xrightarrow{\epsilon} \langle \text{St}, \sigma \rangle}{\langle \text{skip}; \text{St}, \sigma \rangle \xrightarrow{\epsilon} \langle \text{St}, \sigma \rangle}
\]

Relation \(\xrightarrow{*} \) is the reflexive and transitive closure of relation \(\xrightarrow{} \). If \((p, \sigma) \xrightarrow{*} (p', \sigma') \) can be derived using the rules, we say that \((p, \sigma) \) evolves to \((p', \sigma') \) emitting trace \(\tau \), and write it as \(\text{CIMP} \vdash (p, \sigma) \xrightarrow{*} (p', \sigma') \). If \(\text{CIMP} \vdash (p, \sigma) \xrightarrow{*} (p', \sigma') \), we say that \(p \) yields \(\tau \) and write it as \(p \rightarrow \tau \). Let \(\text{Traces}(p) \) be the set of all traces yielded by \(p \).

Adequacy. The definition above satisfies the consistency and the feasibility axioms. First, the semantics guarantees that the state is uniquely determined by the trace:

Proposition 2 If \(\text{CIMP} \vdash (p, \sigma) \xrightarrow{*} (p', \sigma') \) then:
1. \(\sigma(x) = \text{state}_x\text{latest}(x) \), for any variable \(x \); and
2. \(\sigma(s) = \text{available}_s, \), for any semaphore name \(s \).

Proof. By induction on the length of the derivation, noticing that both (1) and (2) hold for the initial state, and that all state-affecting transitions are recorded in the trace. \(\square \)

Let \(\sigma_\tau \) denote the unique state corresponding to \(\tau \). Since the state attribute of a read event generated by \(\text{CIMP} \) is the current value for that event—rule (3), write-read consistency is ensured. Moreover, since acquire events can only be generated if the current counter for that semaphore is positive—rule (5), the semaphore invariant is also maintained.

Corollary 1 All \(\text{CIMP} \) traces are sequentially consistent.

It is clear that if \(p \rightarrow \tau e \), then also \(p \rightarrow \tau \), so \(\text{Traces}(p) \) is prefix closed. Semantic rules can only deterministically advance a thread once it is selected by rules (0–2). However, due to internal transition rules, there could be multiple programs \(p' \) obtained by a derivation of \(p \) producing a trace \(\tau \). A maximally executed program for a trace \(\tau \in \text{Traces}(p) \), is a program \(p' \) such that \(\text{CIMP} \vdash (p, \sigma) \xrightarrow{*} (p', \sigma_\tau) \) and any possible step forward will produce a new event; that is, if \(\text{CIMP} \vdash (p', \sigma_\tau) \xrightarrow{e} (p'', \sigma_\tau\chi) \), then \(\chi = e \) for some
event e. Because all rules not accessing the state are just syntax transformations, and because all rules accessing the state are recorded in the trace, the trace uniquely determines the maximal program obtained upon producing it. Our next several results constitute a formal argument for that.

Given a positive integer n, let $\pi_n(p)$ be the projection of p to thread n, the syntactic counterpart of the trace-to-thread projection $\pi_n(\tau)$, defined as the nth statement in p’s “$||$” list. First, it is trivial to see that a step of derivation precisely advances one thread.

Lemma 1 If $(p_1, \sigma_1) \xrightarrow{\tau} (p_2, \sigma_2)$, then there exists a thread id n such that $\pi_n(p_2) \neq \pi_n(p_1)$ iff $i = n$.

Moreover, a thread’s ability to advance one silent step is deterministic and independent of the other threads.

Lemma 2 Let p_1, p_1' be programs and n be a thread id such that $(p_1, \sigma_1) \rightarrow (p_1', \sigma_1')$ and $\pi_n(p_1') \neq \pi_n(p_1)$. Moreover, a thread’s ability to advance one silent step is deterministic and independent of the other threads.

Proposition 3 If $(p_1, \sigma_1) \xrightarrow{i \in \{1, 2\}} (p_1', \sigma_1')$, for $i = \{1, 2\}$, thread $e_1 = \text{thread}(e_2) = n$, and $\pi_n(p_1) = \pi_n(p_2)$, and $\pi_n(\tau_1) = \pi_n(\tau_2)$. Moreover, $\pi_n(p_1) = \pi_n(p_2)$. Moreover, if $e_1 = e_2$, then also $\pi_n(p_1') = \pi_n(p_2')$.

Proof. We prove by the induction by permutation on the length of $\pi_n(\tau_i)$.

First suppose $\pi_n(\tau_i) = \epsilon$. Let $(p_i^0, \sigma_i^0, \chi_i^0), j = \{0, m_i\}$ be such $(p_i^0, \sigma_i^0) = (p_i, \sigma_i), (p_i^{m_i-1}, \sigma_i^{m_i-1}) = (p_i', \sigma_i')$, $(p_i^{m_i}, \sigma_i^{m_i}) = (p_i'', \sigma_i'')$, and $(p_i', \sigma_i') \xrightarrow{\chi_i^j} (p_i^{j+1}, \sigma_i^{j+1})$, $0 \leq j < m_i$. Moreover, for $i = \{1, 2\}$, let (j_i^k) be the (maximal) subsequence of ${0, \ldots, m_i}$ for which $\pi_n(p_i^{j_i^k}) = \pi_n(p_i^{j_i^k+1})$. Since $\pi_n(\tau_i) = \epsilon$, it must be that all transitions $(p_i^k, \sigma_i^k) \xrightarrow{\chi_i^k} (p_i^{j_i^k+1}, \sigma_i^{j_i^k+1})$ advancing thread n, for $j_i^k + 1 < m_i$ are silent, i.e., $\chi_i^k = \epsilon$. Using now that $\pi_n(p_i^0) = \pi_n(p_1) = \pi_n(p_2) = \pi_n(p_i^{j_i^k})$, from Lemma 2, it follows that the transitions must be the same, whence $\pi_n(p_1') = \pi_n(p_2')$. Now, if additionally $e_1 = e_2$, it is easy to verify that $\pi_n(p_1') = \pi_n(p_2')$, by analyzing the derivation rules.

Suppose now that $\pi_n(\tau_i) = \tau e$, and consider the decompositions $\tau_i = \tau_i e \tau_i''$. Let $(p_i^{(iii)}, \sigma_i^{(iii)})$ and $(p_i^{(iv)}, \sigma_i^{(iv)})$ be such

\[(p_i, \sigma_i) \xrightarrow{\tau_i^*} (p_i^{(iii)}, \sigma_i^{(iii)}) \xrightarrow{e} (p_i^{(iv)}, \sigma_i^{(iv)}) \xrightarrow{\tau_i''} (p_i', \sigma_i') \xrightarrow{e} (p_i'', \sigma_i''). \]

Applying the induction hypothesis for $(p_i, \sigma_i) \xrightarrow{\tau_i^*} (p_i^{(iii)}, \sigma_i^{(iii)}) \xrightarrow{e} (p_i^{(iv)}, \sigma_i^{(iv)})$, we obtain that $\pi_n(p_i^{(iii)}) = \pi_n(p_i^{(iv)})$, and, more important, that $\pi_n(p_i^{(iv)}) = \pi_n(p_i^{(iv)})$. We therefore can apply the induction base step for $(p_i^{(iv)}, \sigma_i^{(iv)}) \xrightarrow{\tau_i^*} (p_i', \sigma_i') \xrightarrow{e} (p_i'', \sigma_i'')$, and obtain that, $\pi_n(p_i') = \pi_n(p_2')$, and, if $e_1 = e_2$, then also $\pi_n(p_i') = \pi_n(p_2')$. □

The above implies that if the values read by a thread are the same across executions, then that thread will evolve similarly. This allows us to prove the thread determinism:

Proposition 4 If $\tau e, \tau' e \in \text{Traces}(p)$, $n = \text{thread}(e)$, and $\pi_n(\tau) = \pi_n(\tau')$ then: (1) if $\tau e' \in \text{Traces}(p)$ then either $e = e'$ or $\text{thread}(e') \neq n$; (2) if τe is consistent then $\tau e' \in \text{Traces}(p)$; (3) if $\text{type}(e) = \text{read}$ then there exists e' with $\text{type}(e') = \text{read}$, $\text{thread}(e') = n$, and $\tau e' \in \text{Traces}(p)$.

Proof. Let p_1, p_2 be programs such $(p, \sigma_e) \xrightarrow{\tau_e} (p_1, \sigma_\tau) \xrightarrow{\tau_e} (p_2, \sigma_\tau)$.

1. Suppose $\tau e \in \text{Traces}(p)$ such that $\text{thread}(e) = \text{thread}(e) = n$. Let p_1', p_2' be programs such that $(p, \sigma_e) \xrightarrow{\tau_e} (p_1', \sigma_\tau) \xrightarrow{\tau_e} (p_2', \sigma_\tau)$. Then, from Proposition 3, it follows that $\pi_n(p_1) = \pi_n(p_1')$. It can then be easily verified that $e = e'$.

2. Suppose τe consistent, and let $(p, \sigma_e) \xrightarrow{\tau_e} (p_1', \sigma_\tau)$. If $\pi_n(\tau) = \epsilon$, then all transitions altering thread n are silent, and (by Lemma 2) we can find $\pi_n(p_1')$ through the projections to thread n of program occurring
in the derivation of \((p, \sigma_\pi) \xrightarrow{\tau} (p_1, \sigma_\pi)\). Also, by Lemma 2, the remaining silent steps can iteratively be repeated on \(p_1\) to obtain \((p'_1, \sigma_\pi) \xrightarrow{\tau} (p''_1, \sigma_\pi)\), with \(\pi_n(p_1) = \pi_n(p''_1)\). Now, \(\tau\) being consistent implies that either \(\text{type}(e) \notin \{\text{acquire}, \text{read}\}\), or \(\text{type}(e) = \text{acquire}\) and \(\text{available}_{\tau_e}(\text{target}(e)) > 0\), or \(\text{type}(e) = \text{read}\) and \(\text{state}(e) = \text{state}_{\text{latest}}(\text{write}(\text{target}(e)))\). We can easily see from the rules that we can also derive \((p''_1, \sigma_{\tau_e}) \xrightarrow{e} (p'_2, \sigma_{\tau_e})\): obvious for the first case, and using Proposition 2 for the others. When \(\pi_n(\tau) \neq \epsilon\), we take the programs obtained after emitting the last event in \(\pi_n(\tau)\) instead of \(p\) and use Proposition 3 to recreate the setting for the argument above.

3. It follows using a similar argument as for 2. □

Since, CIMP traces are consistent, and the sets of program executions also satisfy prefix closeness, we conclude that:

Theorem 1 Any CIMP program, regarded as a multithreaded system whose feasible executions are given by CIMP’s operational semantics, is sequentially consistent.

2.4 Case Study 2: Sliced Causality

We here discuss another instance of the MT-trace theory, in which only a subset of events (those related to a property of interest) is recorded. This way, the generality of our theory allows not only to recast prior work on sliced causal models into the same uniform theory of MT-traces, but more importantly to apply the general results developed in the rest of the paper to a much more complex causal setting.

Recording all the memory access events can have two major drawbacks: (1) prohibitive runtime overhead, and (2) low analysis coverage. As (1) is clear, we only discuss (2).

Consider a simple and common safety property for a shared resource, that any access should be authenticated. Figure 4 shows a buggy program. Thread 1 authenticates and Thread 2 uses the authenticated resource. They communicate via the `flag`. Synchronization is unnecessary, since only the main thread modifies `flag`. However, the developer makes a (rather common [12]) mistake, using `if` instead of `while` in the task thread. Suppose now that we observed a successful run of the program, as shown by the arrow. If all events are recorded in execution traces like in Section 2.3, then the feasibility closure of the observed trace will contain only the observed trace, because its events are totally ordered. Consequently, a low level observer of this execution has no chance to see the potential violation of the property.

Sliced causality [4, 5] is a causal partial order relation that increases the coverage of runtime analysis by dropping irrelevant events and dependencies, such as the write/read dependence caused by accesses to `flag`. The sliced causality is constructed by making use of dependence information obtained both statically and dynamically. Instead of considering all the events produced by the running system, it first slices the trace according to the desired property and then computes the causal partial order on the achieved slice; the slice contains all the property events, i.e., events referred by the property, as well as all the relevant events, i.e., events upon which the property events depend, directly or indirectly. This way, irrelevant causality on events is trimmed without breaking soundness, allowing more permutations of relevant events to be analyzed and resulting in better coverage. In our example, since `access()` is not controlled by if, sliced-causality techniques...
can predict the error from the successful execution. When the bug is fixed replacing if with while, \textit{access()}
is controlled by while (since it is a potentially non-terminating loop), so no violation is reported.

We recall some notions and results from \cite{4, 5} and then show that the sliced traces employed by sliced
causality also form an instance of our MT-trace theory, provided that the original, unsliced traces form one.
Event \(e' \) \textit{depends upon} event \(e \), written \(e \sqsubseteq e' \), iff a change of \(e \) may change or eliminate \(e' \); in other words, \(e \) \textit{should occur before} \(e' \) \textit{in any consistent permutation of events}. We distinguish: (1) \textit{control dependence}, \(e \sqsubseteq_{ctrl} e' \), when a change of the state of \(e \) may eliminate \(e' \); and (2) \textit{data-flow dependence}, written \(e \sqsubseteq_{\text{data}} e' \), when a change of the state of \(e \) may lead to a change in the state of \(e' \). Relation \(\sqsubseteq_{ctrl} \), unlike \(\sqsubseteq_{\text{data}} \), only relates events generated by the same thread.

An additional dependence, \textit{relevance dependence}, is also needed. In Figure 5, threads 1 and 2 are executed
as shown (a), yielding trace \(e_1 \text{=} e_2 \text{=} e_3 \text{=} e_5 \text{=} e_6 \) (b)—this trace is incomplete, being observed before the final write
of \(x \) in Thread 2. Suppose the property to check refers only to \(y \); the property events are then \(e_1, e_5 \), and \(e_6 \). Events \(e_2 \) and \(e_3 \) are clearly relevant, as \(e_2 \sqsubseteq_{\text{data}} e_3 \sqsubseteq_{ctrl} e_5 \). If only closures under \(\sqsubseteq_{ctrl} \) and \(\sqsubseteq_{\text{data}} \) were used to compute the relevant events, like in dynamic slicing \cite{1}, then \(e_4 \) would be irrelevant, so one may conclude that \(e_2 e_6 e_1 e_3 e_5 \) is a feasible permutation; there is, obviously, no execution that can produce that trace, so one reported a false alarm. Consequently, \(e_4 \) is also relevant and \(e_3 \sqsubseteq_{\text{relen}} e_4 \).

Sliced causality, written \(\sqsubseteq \), is the transitively closed union of \(\sqsubseteq_{ctrl}, \sqsubseteq_{\text{data}}, \sqsubseteq_{\text{relen}} \). Given a trace \(\tau \) and a
property \(\varphi \), let \(\mathcal{E}_\tau \upharpoonright \varphi \) be the subset of \(\mathcal{E}_\tau \) containing the \(\varphi \)-property events. Given a set (of property events)
\(P \subseteq \mathcal{E}_\tau \), let \(\text{sliced}_P (\tau) \) be the “subtrace” of \(\tau \) containing the events from \(P \) and all the events they \(\sqsubseteq \)-depend on; these events will be called \textit{relevant} for \(P \) in \(\tau \). It has been shown that any permutation of \(P \) consistent with \(\sqsubseteq \upharpoonright \text{sliced}_P (\tau) \times \text{sliced}_P (\tau) \) and the thread ordering corresponds to some execution of the multithreaded system \cite{4, 5}.

We will next briefly sketch how one could capture the sliced causality as an instance of our feasibility
framework, further extending the coverage obtainable by using it. \textit{Sliced traces} are obtained from the original
ones by using \(\sqsubseteq \) to obtain the events relevant to a set of (property) events, filtering out the non-relevant
ones. To be able to apply our feasibility model to the sliced traces of a system, we regard these sliced traces
as traces of a virtual multithreaded system.

Let \(S \) be the original multithreaded system whose traces are to be sliced according to some arbitrary
but fixed property \(\varphi \). Recall that the multithreaded system is hypothetical in Sections 2.1 and 2.2, in the
sense that all it matters is the sets of traces that \(S \) can produce; how traces are effectively produced, or
how \(S \) is implemented, or even whether \(S \) exists at all as an actual running system, is irrelevant (which is a
strong point of MT-trace theory, allowing it to be used here). The \(\varphi \text{-slice of a trace} \, \tau \), written \(\text{sliced}_\varphi (\tau) \), is \(\text{sliced}_\varphi \upharpoonright \varphi (\tau) \), the trace obtained from \(\tau \) by erasing all non-\(\varphi \)-relevant events.

Let \(\text{sliced}_\varphi (S) \) be the virtual multithreaded system “producing” the \(\varphi \)-sliced traces, that is,
\[
\text{feasible}(\text{sliced}_\varphi (S)) = \text{sliced}_\varphi (\text{feasible}(S)).
\]

For any trace \(\tau' \in \text{feasible}(\text{sliced}_\varphi (S)) \), let \(\text{feasible}' (\tau') \) be the set of permutations of \(\tau' \) consistent with
\(\sqsubseteq \upharpoonright \text{sliced}_\varphi (\mathcal{E}_\tau) \times \text{sliced}_\varphi (\mathcal{E}_\tau) \). The main result of \cite{4} can be restated here as:

\textbf{Theorem 2} \text{feasible}' (\text{sliced}_\varphi (\tau)) \subseteq \text{sliced}_\varphi (\text{feasible}(S)), \text{ for any trace } \tau \in \text{feasible}(S).
The solid line inclusions in the diagram below hold for any trace τ in feasible(S):

\[\text{sliced}_\varphi(\text{feasible}(\tau)) \subseteq \text{sliced}_\varphi(\text{feasible}(S)) \]

\[\text{feasible}(\text{sliced}_\varphi(\tau)) \subseteq \text{feasible}'(\text{sliced}_\varphi(\tau)) \]

Theorem 2 The solid line inclusions in the diagram below hold for any trace τ in feasible(S):

Proof. The topmost inclusion comes from the fact that both feasible(S) and feasible(τ) are closed under prefixes, thread determinism, and consistency, both contain τ, and feasible(τ) is the smallest set with those properties. The left and bottom inclusions are both consequences of the forthcoming Theorem 3, which constructively characterizes the feasibility closure. Intuitively, the left inclusion holds because, since sliced(·) removes elements from the input trace, there are less constraints when permuting the remaining events; also,

4One can obtain these traces by running Algorithm 1 on the sliced trace.
all events which could be permuted originally, can still be permuted in the sliced trace. The intuition for the bottom inclusion is that the axioms defining $\text{feasible}^c(\text{sliced}_e(\tau))$ imply those generating $\text{feasible}(\text{sliced}_e(\tau))$.

Since $\sqsubseteq_{\text{rlvn}}$ was defined with the notion of a partial order in mind, one should not expect that the dashed inclusion holds as-is. The example above yields feasible traces because there is no relevance dependence involved. However, our experiments show that unsoundness due to unconsidered relevance dependencies is rather rare: no false alarms were generated during our evaluation presented in Section 5. We conjecture that, given a proper notion of relevance, the dashed inclusion will also hold, enabling any trace analysis technique to be applied to the feasible (sliced) executions of $\text{sliced}_e(S)$ with the guarantee of soundness w.r.t. the original system S. In particular, any of the techniques developed for MT-traces, including the model-checking and race-detection techniques in Sections 3 and 4, could be used in combination with sliced causality to improve the coverage of the analysis by first dropping irrelevant events.

3 Model Checking the Feasibility Closure

Section 2 showed how the maximal causal model can be naturally defined by characterizing feasibility through closure properties rather than constructively. This section presents a constructive characterization of the feasibility closure, concretized in a model checking algorithm. Similarly to happens-before model checking algorithms, the complexity of our algorithm is dominated by the number of causally equivalent feasible traces being explored; however, its coverage is considerably greater, as shown by Table 2. We here don’t fix any particular type of properties to be checked; we simply assume a generic procedure φ to check whether a given trace satisfies the desired property (next section will present a specialized algorithm which can check a particular type of property, dataraces, without generating all the checked traces). When all events in an execution are recorded, this algorithm fully becomes an explicit state model checker, since, as discussed in Section 2.3, a feasible trace completely determines the state obtainable upon producing it, therefore φ could also be used check state assertions in addition to trace properties.

Interleavings. At a closer look at the axioms generating the feasibility closure, specifically the thread determinism, one can see that, to advance a thread t in an equivalent execution, one must guarantee that the projection of the trace to t is the same as in the original execution. Therefore, a good starting point in approximating the feasibility closure is characterizing traces whose projection on each thread is the same as in the observed execution (or a prefix of it). This is faithfully captured by the notion of *interleaving (prefix)*:

Definition 4 Trace τ' is an interleaving of τ if their projections to any of the threads are equal, that is, $\pi_n(\tau) = \pi_n(\tau')$ for any thread id n. τ' is an interleaving prefix of τ if there exists τ'' such that $\tau'\tau''$ is an interleaving of τ.

Using the fact that all prefixes of the original trace are in the feasibility closure, and the first part of the thread determinism axiom, one can prove by induction that

Proposition 5 Any sequentially consistent interleaving prefix of a feasible trace τ is τ-feasible.

Proof. Proof by induction on the length of the interleaving prefix. The base case is trivial. Let $\tau'e$ be a sequentially consistent interleaving prefix of τ, and assume that τ' is τ-feasible. Let $n = \text{thread}(e)$, and let τ_1, τ_2 be such that $\tau = \tau_1e\tau_2$. By prefix closeness, it follows that τ_1e is feasible. Moreover, since $\pi_n(\tau'e) = \pi_n(e)$ is a prefix of $\pi_n(\tau)$, it follows that $\pi_n(\tau') = \pi_n(\tau_1)$. By using that $\text{feasible}(\tau)$ is closed under thread determinism for τ_1e and τ', we obtain that $\tau'e$ is τ-feasible (since it is consistent).

Interleaving prefixes cover all possibilities of generating a τ-feasible trace using only the events in τ. However, the definition of interleaving (prefix) overlooks the final part (regarding read events) of the thread determinism axiom. To achieve a complete constructive characterization of feasibility closures, we have to go beyond prefixes of interleavings, more exactly, one read per thread beyond. This is because, as guaranteed by thread determinism, whenever all events before a read event have been generated in a thread, the read
event can also be generated, but its state might differ than the state it had in the observed trace. However, once a read event whose state is different than the one in the original trace is derived, the execution cannot be continued for that thread, because the read might have guarded (some of) the statements following it.

An extended interleaving prefix is a trace which on all threads behaves similarly to the observed trace up to the last read, which might have a different value:

Definition 5 Trace $\tau' = \tau_1\epsilon'$ is an **extended prefix** of $\tau = \tau_1\epsilon\tau_2$ if $\epsilon = \epsilon'$ or type(ϵ) = type(ϵ') = read and thread(ϵ) = thread(ϵ') and target(ϵ) = target(ϵ'). τ' is an **extended interleaving prefix** of τ if $\pi_1(\tau')$ is an extended prefix of $\pi_1(\tau)$ for any thread t.

The above definition allows for a sound and complete characterization of the τ-feasible traces:

Theorem 3 feasible(τ) is the set of consistent extended interleaving prefixes of τ.

Proof. Proving that any consistent extended interleaving prefix of τ is τ-feasible proceeds similarly to the proof of Proposition 5. For the reverse, one needs to show that the set of consistent extended interleaving prefixes of τ contains τ, is prefix closed, and closed under thread determinism. First two are obvious: τ is an interleaving prefix of itself, and any prefix of an extended interleaving prefix of τ is an extended interleaving prefix of τ by the definition. Now let $\tau_1\epsilon$ and $\tau_2\epsilon$ be consistent interleaving prefixes of τ such that thread(ϵ) = n, and $\pi_n(\tau_1) = \pi_n(\tau_2)$. Since $\pi_n(\tau_1\epsilon)$ is an extended prefix of $\pi_n(\tau)$, then (1) $\pi_n(\tau_1\epsilon)$ is a prefix of τ, or type(ϵ) = read, and there exists ϵ', such that thread(ϵ') = n, type(ϵ') = read, target(ϵ') = target(ϵ), and $\pi_n(\tau_1)\epsilon'$ is a prefix of $\pi_n(\tau)$.

Let ϵ'' be ϵ, if type(ϵ) \neq read, or a event such that type(ϵ'') = read, thread(ϵ'') = n, target(ϵ'') = target(ϵ), and state(ϵ'') = state(latest_write(target(ϵ))). Then (1) $\tau_2\epsilon''$ is an extended interleaving prefix. If type(ϵ) \neq read, and $\tau_2\epsilon$ is consistent, then it also is a consistent extended interleaving prefix. If type(ϵ) = read, then, since $\tau_2\epsilon''$ is consistent (by the choice of ϵ''), the property follows. \hfill \Box

Model Checking Algorithm. Algorithm 1 can be used to explore (and check properties against) the feasibility closure of a given trace. It takes as input a trace τ_0 and a procedure φ saying whether a property is satisfied by a (partial) trace (and state), and checks whether all traces in the feasibility closure of τ_0 (and their corresponding states) satisfy the property of φ. In the initialization phase (lines 1–4), the original trace is split into threads and each thread projection is loaded into a stack, with first events in the thread at top of the stack, and the store initialized with 0 for variables and 1 for semaphores. We additionally maintain a set of enabled threads, that is, threads for which all events generated had the same state as in the original execution, therefore they can still be advanced. The trace being created, τ, is also maintained as a stack, initially empty, but with first events at bottom of the stack. Variable t keeps track of the index of the thread which should be advanced next. The main loop (lines 5–29) is a backtracking loop, exiting only when the entire space has been explored. Inside the loop, first part (lines 6–9) checks whether next thread can be advanced. If a thread is found, the state is modified accordingly (lines 15–18), disabling further advances to the thread, if the state of the added event differs from the one in the observed trace (lines 11–13); note that in the latter case, the top event in the corresponding thread needs not be removed, since the thread is disabled. Then, τ is advanced and added to the result set, property φ is being checked (line 19), and the search for next advanceable thread is restarted (line 20). If no additional threads can be advanced from this state, the algorithm backtracks, undoing the effects on the state of previous advances (lines 21–29).

A simple amortized analysis of our model-checking algorithm shows that, without any additional knowledge about the property to check φ, it essentially performs a minimal amount of work: it generates and checks against φ each consistent extended interleaving prefix of τ_0, searching for each next event through the tops of at most k thread stacks. Supposing that φ is a simple safety property taking constant time and memory to evaluate in any given state σ, which is frequently the case in many situations, the time complexity of our algorithm is $O(|\text{feasible}(\tau_0)| \times k)$ and its memory complexity is $O(|\tau_0|)$: recall that feasible(τ_0) is closed under prefixes. On the other hand, if the property can specify arbitrarily complex history-based behaviors taking time $f(n, m)$ and memory $g(n, m)$ to check a trace of size n against a property of size m for some arbitrarily complex f and g functions, then the complexity of our algorithm can also be arbitrarily high:
Input: Feasible trace τ_0 of size n over k threads.
Maps: \(\text{thread : } \{1, \ldots, k\} \rightarrow \text{Stack}, \sigma : \text{Locations} \rightarrow \text{Int}\)

for $t = 1, \ldots, k$ do \(\text{thread}[t] \leftarrow \pi(t_0)\) // first event at top
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Algorithm 1: Model Checking the Feasibility Closure
The feasibility closure of a trace only requires that each read event reads the same value as in the original trace. While this generality increases the coverage and is necessary to capture the maximal causality, it also increases the need for search. We next replace this expensive consistency requirement with the more restrictive but easier to compute write-read event dependence:

Definition 8 \(e_2\) write-read depends on \(e_1\) in \(\tau = \tau_1e_1\tau_2e_2\tau_3\), written \(e_1 <_{\tau} e_2\), if \(\text{target}(e_1) = \text{target}(e_2)\), \(\text{type}(e_1) = \text{write}\), \(\text{type}(e_2) = \text{read}\), and for all \(e \in E_{\tau_2}\), either \(\text{target}(e) \neq \text{target}(e_1)\), or \(\text{type}(e) \neq \text{write}\).
$e_1 <_{wr} e_2$ iff the value read by e_2 is the value written by e_1.

Recall that an extended interleaving of τ may contain some read events with different states than their counterparts in τ. Given an extended interleaving τ' of τ, let the $\tau-$prefix of τ' be the largest prefix of τ' which is an interleaving prefix of τ (obtained by erasing the final read events having a different state than the one in τ).

Definition 9 A interleaving prefix τ' of τ preserves the write-read dependence of τ iff $<_{wr}^{\tau'} = <_{wr}^{\tau} \cap (E_{\tau'} \times E_{\tau'})$. An extended interleaving prefix of τ preserves the write-read dependence if its $\tau-$prefix preserves it.

We can now prove the sequential consistency property:

Proposition 6 An extended interleaving prefix of a feasible trace τ that satisfies the mutex discipline and preserves write-read dependence is τ-feasible.

Proof. Obviously, since mutex discipline implies semaphore consistency, and write-read dependence implies write-read consistency (since it requires a read seeing the same write it saw in the original execution). Therefore mutex discipline and preservation of the write-read dependence imply sequential consistency. □

The implicit maximal causal model obtained like in Section 2 but using the mutex discipline and write-read dependence axioms above is reminiscent to the one proposed in [30]. However, we prefer not to reduce locking to write/read events and we do not promote model-checking this race-driven model, as [30] proposes. For model-checking purposes we propose the maximal causal model like in Section 3, while for datarace detection we propose a specialized algorithm in the sequel. We next transform the above causal model into a causal partial order, similar to the hybrid approach in [24], but more general and sound. This causal order can be used to detect dataraces without generating feasible traces.

Thread Ordering. Sequentially consistent interleavings preserve the order in which operations of each thread are executed. The **thread ordering** $<_{t}^{\tau}$ of τ is given by $e <_{t}^{\tau} e'$ if $e <_{\tau} e'$ and thread(e) $=$ thread(e'). One could equivalently define an interleaving of a trace τ as being a trace τ' such that $E_{\tau'} = E_{\tau}$, and $<_{t}^{\tau'} = <_{t}^{\tau}$.

Lock Atomicity. Lock-set approaches, including hybrid ones [9, 24, 27], focus on the mutual exclusion imposed by locks but ignore the write-read dependence, and thus may yield false alarms. In Figure 7, the write(x) in thread 1 is protected by l, while the write(x) in thread 2 is not. There is no obvious dependence between the two writes and, indeed, any lockset algorithm (hybrid or not) reports a race here incorrectly (the two acquire/release blocks must be ordered, due to the depicted write-read dependence). A safe approach is to enforce a total order between operations regarding the same lock [28], but that is over-restrictive, as seen in the example in Figure 1. We propose a more general solution: closure under **lock atomicity**. Let $locks(e)$
be the set of locks protecting e. For any $s \in \text{locks}(e)$, let $\text{acquire}_s(e)$ and $\text{release}_s(e)$ be the acquire/release event protecting e.

Definition 10 A relation \prec is closed under **lock atomicity** iff for all events e_1, e_2 and lock s, $e_1 \prec e_2$ and $s \in \text{locks}(e_1) \cap \text{locks}(e_2)$ implies that $\text{release}_s(e_1) \prec \text{release}_s(e_2)$.

An equivalent formulation is: “if $\text{acquire}_s(e_1) \prec e_2$ and $s \in \text{locks}(e_2)$ then $\text{release}_s(e_1) \prec e_2$.”

Thread 1

$$\text{acquire}(l); \\
y := 0; \quad \text{w-r dependence} \\
\text{release}(l);$$

Thread 2

$$\text{acquire}(l); \\
\text{if} \ (y = 0) \ \text{then} \ x := 7; \quad \text{w-r atomicity} \\
\text{release}(l);$$

Figure 8: Motivating the Write-Read Atomicity

Write-Read Atomicity. A similar situation arises for the write-read dependence: the atomicity between writes and their corresponding reads must be preserved. Consider the execution in Figure 8. Even if we consider a relation closed under lock atomicity, we still have no dependence between the write(x) in thread 2 and the write(x) in thread 1. However, there is no race on the two events, as the write(x) in thread 2 is protected by the read(y) which would be invalidated by any attempt to bring the two writes on x together.

In traditional happens-before approaches, this is solved by enforcing an ordering between a write and its preceding reads in the observed trace. We relax this requirement: a write depends on a previous read only if it also depends on the write that read depends on. Given a read event e, let $\text{write}(e)$ be the event such that $\text{write}(e) <_\tau e$.

Definition 11 Partial order \prec is closed under write-read atomicity iff for all e_1, e_2, if $\text{type}(e_1) = \text{read}$, $\text{type}(e_2) = \text{write}$, $\text{target}(e_1) = \text{target}(e_2)$, and $\text{write}(e_1) \prec e_2$, then $e_1 \prec e_2$.

Datrace Causal Order. We can now define a causal order which can be used to soundly detect dataraces.

Definition 12 The **datrace causal order** of τ is the smallest partial order containing the thread ordering and the write-read dependence, which is closed under lock atomicity and write-read atomicity. Let \prec_{τ} denote this order.

The main result of this section guarantees that any two events which are not separated by a third event through the causal order and have disjoint lock sets can be brought together in an alternative feasible execution.

Theorem 4 (Causal Datarace) If $\tau = \tau_1 e_1 \tau_2 e_2 \tau_3$ is a feasible trace, thread(e_1) \neq thread(e_2), target(e_1) = target(e_2), $\{\text{write}\} \subseteq \{\text{type}(e_1), \text{type}(e_2)\}$, $\text{locks}(e_1) \cap \text{locks}(e_2) = \emptyset$, and there is no $e \in \mathcal{E}_\tau$ such that $e_1 \prec_{\tau} e \prec_{\tau} e_2$, then τ has a causal datarace on e_1 and e_2.

20
Online Causal Datarace Checking. Algorithm 2 computes the datarace-driven causal model on the fly, representing it by means of vector clocks (VCs) associated with events.

Definition 13 A vector clock (VC) \cite{19} is a mapping VC : \{1, \ldots, \#Threads\} \rightarrow Integer. VC_1 \geq VC_2 iff VC_1(t) \geq VC_2(t) for any thread t. If VC_1 \not\geq VC_2 and VC_2 \not\geq VC_1, they are incomparable. Two vector clocks can be merged: merge(VC_1, VC_2)[t] = \max(VC_1[t], VC_2[t]).

VCs encode partial orders: if e_1's VC is larger than e_2's in \tau, then e_1 \prec_{\tau} e_2. Algorithm 2 updates the causal model by computing the VC of the received event. eventVC stores the event VCs. threadVC keeps the thread VCs. A counter for every shared location, stored in writeCounts, differentiates writes to the location; every write can be uniquely identified as a pair (location, integer). For every write, two VCs are needed: writeVC associates the write with a VC and readVC keeps the VC for the latest read following the write. To enforce lock-atomicity, if a write or read is protected by a lock, we keep two VCs for the corresponding write-lock combination: writeLockVC keeps the VC for the release of the lock that protects a certain write and readLockVC gives the VC for the release of the lock that protects the latest read following a certain write.

locks keeps the locks currently held by a thread and lockedWrites and lockedReads track the writes/reads currently protected by a certain lock.

Algorithm 2 works as follows. Suppose an event is received for thread t. We first advance t's VC (line 2) to indicate that a new event is observed in this thread. This way, the intra-thread ordering is ensured. If the event is an acquire of lock l, we add l to the lock set of t (line 4). If the event is a release of l, we go through every write/read (only the latest read is considered for a write) currently protected by l to associate each of them with the VC and the current thread, which is also the VC of the release event (lines 6 to 9). Then the protected write/read set for l is cleared and l is removed from the thread (lines 10 and 11). If the event is a read of location x, we first locate the latest write of x by fetching the writer counter for x (line 13). The counter is used to get the VC for the particular write of x, which is used to update the current thread's VC (line 14, note that VC.merge(VC') is syntactic sugar for \(V = merge(V, VC') \)). The write-read dependency is thus guaranteed. We also need to go through every lock held by the current thread (lines 15 to 17) to ensure (1) if the corresponding write was protected by the same lock, VC is with the one for the release that protected the write (line 16); and (2) add the read into the protected read set for the lock (line 17). (1) is needed to enforce lock-atomicity. Then we associate the read event with the thread's VC (line 18) and use it to update readVC since it is the latest read for the corresponding write (line 19).

When the event is a write of x, we first increase the write counter (line 21). Then the current thread's VC clock is compared with other writes of x (lines 22 to 27). If the former is greater than some write, it means that the new write depends on the previous write. Therefore, the VC clock for the previous write's latest read is used to update the current thread's VC clock to enforce the write-read atomicity (line 24). The releases that protected the previous write and its latest read are also considered to ensure the lock atomicity (lines 25 to 27). The write is then added to the protected write set for every lock held by the current thread (line 28). Finally, we associate the write event with the thread's VC and record it in writeVC (line 29).

Proposition 7 After Algorithm 2 processes trace \tau, for any two events \(e_1, e_2 \in \mathcal{E}_\tau \) such that thread(e_1) \not= thread(e_2), target(e_1) = target(e_2), and \{write\} \subseteq \{type(e_1), type(e_2)\}, if \(eventVC(e_1) \) and \(eventVC(e_1) \) are incomparable and \(locks(e_1) \cap locks(e_2) = \emptyset \) then \(\tau \) has a causal datarace on \(e_1 \) and \(e_2 \).

5 Preliminary Evaluation

We implemented Algorithms 1 and 2 and evaluated them using several known datarace benchmarks. Programs were instrumented to log their executions\(^5\). Each program was executed only once. For every logged trace, we first evaluated the effectiveness of the maximal model, by comparing the number of feasible traces it contains versus the same number for the happens-before causal model. Then we used both the maximal model and the datarace causal model to detect dataraces. The results are presented in Table 2.

\(^5\)Since program instrumentation and trace logging are not important for this paper, we omit the details.
Input: A newly received event \(e \).

\(\text{eventVC: Event} \rightarrow \text{VC} \)

\(\text{threadVC: \{1, \ldots, \#Threads\} \rightarrow VC} \)

\(\text{writeVC, readVC: Location} \times \text{Integer} \rightarrow \text{VC} \)

\(\text{writeLockVC, readLockVC: Location} \times \text{Integer} \times \text{Location} \rightarrow \text{VC} \)

\(\text{locks: \{1, \ldots, \#Threads\} \rightarrow lock set} \)

\(\text{lockedWrites, lockedReads: Location} \rightarrow \text{(Location, Integer) set} \)

\(\text{writeCounts: Location} \rightarrow \text{Integer} \)

\(t \leftarrow \text{thread}(e), x \leftarrow \text{target}(e) \)

1. threadVC\[t]\[t] \leftarrow threadVC\[t]\[t] + 1

switch type(e) do

case acquire:

2. locks\[t].add(x)

3. forall \((x', i) \in \text{lockedWrites}\) do

4. writeLockVC\[x']\[i]\[x] \leftarrow \text{threadVC}\[t]\)

5. forall \((x', i) \in \text{lockedReads}\) do

6. readLockVC\[x']\[i]\[x].merge(\text{threadVC}\[t])

7. lockedWrites \leftarrow \emptyset, lockedReads \leftarrow \emptyset

8. locks\[t].remove(x)

case release

9. forall \((x', i) \in \text{lockedWrites}\) do

10. writeLockVC\[x']\[i]\[x] \leftarrow \text{threadVC}\[t]\)

11. forall \((x', i) \in \text{lockedReads}\) do

12. readLockVC\[x']\[i]\[x].merge(\text{threadVC}\[t])

13. lockedWrites \leftarrow \emptyset

14. lockedReads \leftarrow \emptyset

case read

15. c \leftarrow \text{writeCounts}\[x]

16. threadVC\[t].merge(\text{writeVC}[x]\[c])

17. forall \(l \in \text{locks}[t]\) do

18. lockedReads\[l].add(x, c)

19. eventVC\[e] \leftarrow \text{threadVC}[t]

20. readVC\[x]\[c].merge(\text{threadVC}[t])

case write

21. c \leftarrow \text{writeCounts}\[x] \leftarrow \text{writeCounts}\[x] + 1

22. forall \(i < c\) do

23. if threadVC\[t] \geq \text{writeVC}[x]\[i] then

24. threadVC\[t].merge(\text{readVC}[x]\[c])

25. forall \(l \in \text{locks}[t]\) do

26. lockedWrites\[l].add(x, c)

27. threadVC\[t].merge(\text{writeLockVC}[x]\[c]\[l])

28. threadVC\[t].merge(\text{readLockVC}[x]\[c]\[l])

29. writeVC\[x]\[c] \leftarrow \text{eventVC}\[e] \leftarrow \text{threadVC}[t]

Algorithm 2: Datarace Causal Order Computation
First four columns in the table show the benchmarks, along with their size (lines of code), number of threads (Th.) created, and number of shared variables (S.V.) detected. Banking [12] contains common concurrent bug patterns. StringBuffer and Vector are standard library classes of Java 1.4.2. hedc, tsp and sor are from [33]. hedc implements a meta-crawler for searching multiple Internet archives concurrently. tsp is a parallelized solution to the traveling salesman problem. sor is a scientific computation application synchronized by barriers instead of locks.

Fifth and sixth columns show the number of feasible traces causally equivalent to a given execution, using the happens-before (H.B.) causality and our maximal causality, respectively; the N/A means it did not finish in 1 hour. We can see that, for simple programs, like Bank and StringBuffer, both causal models produced similar results since there are few causal dependencies. When the programs are more complex, like Vector and hedc, the maximal model inferred many more feasible executions than the happens-before causality from the same observed execution trace, showing that our causality is not only maximal but indeed has the potential to detect more concurrency errors. However, the results also show that Algorithm 1 may run into a trace-explosion problem quicker than specialized techniques; even though this is good news wrt coverage of the analysis, in practice one may need to devise property-specific techniques to effectively analyze the maximal model, e.g., the datarace causal model.

Last column shows the number of races detected. Every logged execution trace was checked for dataraces using both the maximal model and the datarace causal model; the former reports a race when an (extended) interleaving (prefix) exhibiting the race was inferred. All known races in the benchmark programs were detected by both the maximal model, when applicable, and the datarace causal model, some of which undetectable using the sound happen-before causality [4], but detectable by unsound techniques [24]. Timewise, race detection using the datarace model was comparable with logging the trace; races in Table 2 were found in seconds.

6 Conclusion
We presented a novel theory of multithreaded traces, based on axioms of memory consistency. Even though we followed the sequentially consistent memory model, we believe that the ideas are general enough to transport to other memory models. A benefit of our approach is that a maximal causal model can be naturally associated to each trace, capturing and allowing to analyze all the feasible and causally equivalent traces without re-executing the system. Two analysis algorithms were presented, a heavy-weight model-checking one for arbitrary properties and a light-weight one for dataraces. Several case studies and experiments show that our approach is not only theoretically compelling, but also compares favorably in practice with existing techniques.

References

