
18th ECOOP Doctoral Symposium
and PhD Student Workshop

Part of ECOOP’08

Paphos, Cyprus

July 8, 2008

Table of Contents

ECOOP Doctoral Symposium and PhD Students Workshop Organization v

Language Features, Patterns, and Models for Interactive Software 1
Brian Chin

Concern-Sensitive Heuristic Assessment of Aspect-Oriented Design 5
Eduardo Figueiredo, Alessandro Garcia

A Metadata-Based Components Model . 9
Eduardo Martins Guerra, Clovis Torres Fernandes

Formalising Dynamic Languages . 13
Alex Holkner, James Harland

A Metrics Based Approach to Evaluate Design of Software Components . . 17
Kuljit Kaur, Hardeep Singh

Methodology for Requirements Engineering in Model-Based Projects
for Reactive Automotive Software . 23

Niklas Melleg̊ard, Miroslaw Staron

An Exception Handling Framework . 29
Nikolas Nehmer, Andreas Reuter

First Class Relationships for Object-Oriented Languages 33
Stephen Nelson, David J Pearce, James Noble

Towards a Formal, Diagrammatic Framework for MDA 37
Adrian Rutle

Author Index . 41

iii

Symposium Organization

Program Chair

Mark Hills, University of Illinois at Urbana-Champaign

Program Committee

Marwan Abi-Antoun, Carnegie Mellon University
Eric Bodden, McGill University
Giovanni Falcone, Universität Mannheim
Mark Hills, University of Illinois at Urbana-Champaign
Haidar Jabbar, Anna University
Ciera Jaspan, Carnegie Mellon University
Romain Robbes, Università della Svizzera italiana
Ilie Savga, Technische Universität Dresden
Michel Soares, Technische Universiteit Delft

Academic Panel

Jonathan Aldrich, Carnegie Mellon University
Erik Ernst, University of Aarhus
Todd Millstein, University of California, Los Angeles
James Noble, Victoria University of Wellington
Jeremy Siek, University of Colorado at Boulder

Additional Reviewers

Donna Malayeri, Carnegie Mellon University
Martin Robillard, McGill University
Volker Stolz, United Nations University

Acknowledgements

We would like to thank AITO for its generous financial support of the students
presenting at this year’s Doctoral Symposium and PhD Students Workshop.
We would also like to thank the organizers of ECOOP 2008 for their logistical
support and for providing a web home for this year’s event.

v

Language Features, Patterns, and Models for
Interactive Software

Brian Chin

University of California, Los Angeles
naerbnic@cs.ucla.edu

Abstract. Interactive programs, those which continually consume input
and produce output, in contrast to the classic batch-processing method,
have become increasingly common. Yet most modern programming lan-
guages are derived from older ones, which were designed to program to-
wards a classic model. While well understood, programming interactive
software in these languages tends to force the programmer to manually
manage things which the language would otherwise handle automati-
cally. My dissertation research attempts to find new language features,
patterns, and programming models to aid the development of interactive
software.

1 Problem Description

A variety of application domains are interactive in nature: These programs con-
tinuously take in a stream of input, and produce a stream of output in return.
These programs do not necessarily have an obvious start and end condition. In
fact, they may intentionally not halt at all. I call these sorts of programs ex-
amples of interactive software. Common examples of these would be computer
games, programs with user interfaces, servers and web applications.

However common interactive programs are, they are generally coded in lan-
guages which are derived from the classic batch-processing model of computa-
tion. That model is exemplified by programs which take in one set of data at
program initialization and produce a set of output at program completion. At
the core of this model is procedural abstraction. Procedures also take a set of
input at the beginning (as arguments) and return output at the end (the return
values). Most current languages uses some form of procedure as the primitive
unit of abstraction within a program.

Procedures are an excellent way of hiding complexity from the programmer.
Local variables allow a programmer to use an arbitrary amount of non-persistent
data without having to allocate or deallocate resources for them. They are guar-
anteed not to change unpredictably even when nested procedures are called
(modulo taking addresses of variables, e.g. C). Local program state, in the form
of the current program counter within a procedure, is also maintained automat-
ically; a procedure can be called within any control structure, and the current
state of the execution is preserved.

2 Language Features, Patterns, and Models for Interactive Software

When implementing interactive software in procedural languages, the previ-
ous advantages are lost. Often such software is driven by a main loop, which
gathers data from the input sources (e.g. mice, keyboards, network, etc.) and
passes this data to the program to be processed. The fact that the main loop
exists implies that the main logic of the interactive program (contained in the
input handling code) must yield control back to the main loop each time new
input is desired. This alone removes many of the mentioned advantages of pro-
cedural abstraction. State stored in local variables is not preserved, and thus
must be manually stored. Nested logic, such as code which would be in a while
loop, would have to have its logic extracted from familiar control structures, and
manually implemented so that the logic can be re-entered “in the middle.” The
programs are more complicated than necessary, and more effort is required on
the part of the programmer.

The programming community has noticed this problem, and various mech-
anisms have been developed to manage the complexity of such systems. For
instance, the state design pattern [4] is a standard object-oriented pattern for
interactive software. It forms a type of state machine, where each state is imple-
mented using a class. It provides a common interface for all of the states, and
makes it easier to add new states in the future. A state machine object keeps
a reference to the current state, providing a place for future computation to
continue from. Despite these nice features, it does not change the fact that all
of the same issues mentioned previously must still be handled manually by the
programmer.

2 Goals

My core goal, first and foremost, is to make programming interactive software
easier. This can be done in a number of ways, including adding new features
to existing languages, finding new patterns in existing languages, and creating
entirely new languages. There are a several properties that would be desired in
any such approach:

1. Simplicity : A new approach should be simple and easy for a programmer to
use and read, and further minimize their workload.

2. Modularity : Normal procedural logic allows for complicated pieces of logic
to be separated into smaller pieces. A new approach should provide some
way of similarly dividing interactive logic into smaller pieces.

3. Extensibility : A new approach should provide a way to reuse old code to
implement new code.

4. Compatibility : A new approach, if interfacing with an existing language,
must not interfere with its model of computation. Thus there should exist a
mechanism for the extension to interact with the language as a whole.

5. Minimality : Any change to a language causes additional difficulty for a pro-
grammer, because they have to re-learn a portion of a language which they
already understand. Thus new approaches should minimize the necessary
changes to any underlying language.

Language Features, Patterns, and Models for Interactive Software 3

Clearly, not all of the above properties are achievable at the same time, but
any approach should try to provide as many of them as possible.

3 Approaches

I have investigated three different approaches to improving programming lan-
guages for interactive applications. The first is an extension to Java which adds
new language constructs to allow logic to be executed and paused separate from
the main program. The second describes an extension of the state design pattern
which in exchange for adding additional constraints provides several useful sorts
of extensibility. I have developed and published papers on these approaches. The
third and final approach is a new language which utilizes new observations I have
made on the nature of interactive software.

3.1 ResponderJ

The first approach is to modify existing languages (such as Java). As a brand
new language feature changes to Java are necessary, but I still need to ensure
the language feature is compatible with Java. My solution is an extension of
Java called ResponderJ [2], which adds a new language feature called respon-
ders. Responders allow for objects to maintain the state of a piece of interactive
logic, along with their normal behavior. Responder code is written in a natural
procedural style. When necessary, its execution can be temporarily paused and
resumed later, passing control back to the main program in the interim. The
resource management in between is managed by the language, introducing some
of the conveniences of procedural programs to interactive ones. I adapted this
model to the Java object model, thus making responder code compatible with
vanilla Java code.

3.2 The Extensible State Machine Pattern

The second approach is to find solutions in existing languages using only well-
understood language features to approach the same problem. This requires more
work on the part of the programmer than ResponderJ, but by creating a general
approach which assumes minimal changes to the language, I hope to reduce
the mental strain on the programmer. My solution here was a modification of
the state design pattern that added a number of types of extensibility without
adding any language features [1]. It does this by placing a few coding constraints
on state machines, which allows my extensibility mechanisms to be used reliably.
With the addition of delimited continuations, an existing language feature in the
functional literature [3], yet another form of extensibility was added, making the
language capable of supporting many of the features of ResponderJ.

3.3 Interaction State Diagrams

My final approach is a full change of model. If procedural languages are ideal for
classical programs, then similarly there may be a model of execution and abstrac-
tion which will provide many of the same advantages to interactive languages. I

4 Language Features, Patterns, and Models for Interactive Software

have been exploring this particular topic, with special focus on a mechanism for
interfacing interactive components together which I have named interaction state
diagrams. These provide a mechanism for complicated pieces of interactive logic
to communicate in a regular, predictable way, while also indirectly providing
a natural documentation for the communication. This interface is impressively
flexible, allowing for both synchronous and asynchronous communication with
minimal additional architecture needed to support it.

This interface method also hints at ideas for a new language model, which
I intend to explore. For example, unlike method calls, protocols defined by in-
teraction state diagrams are not inherently nested, thus would operate best in
a language where such nesting is unnecessary. I am considering a number of
techniques to implement such a language.

3.4 Evaluation

I have evaluated ResponderJ and my extension to the state design pattern by
implementing several pieces of example code using the respective approach, and
comparing the new code against the old method. I also altered a portion of the
XML parsing library JDOM [5] to use each of these approaches, demonstrating
their utility. As for the interaction state diagrams, I have shown a few real-world
examples where such diagrams can describe complicated interaction which would
be difficult to show using existing techniques. The diagrams themselves must
follow a small number of rules to avoid invalid behavior. I will want to ensure
these rules guarantee that such behavior is avoided.

The evaluation of this sort of project is difficult. Ease of use is based around
programmer preference which can vary wildly from person to person. I hope to
show the community that my ideas are themselves easy to understand, and thus
would be easy to implement and use for future projects. I can also perform user
studies in the future to evaluate exactly how much benefit programmers gain
from these approaches.

References

1. B. Chin and T. Millstein. An extensible state design pattern for interactive appli-
cations. In Proceedings of European Conference on Object-Oriented Programming,
July 2008.

2. B. Chin and T. D. Millstein. Responders: Language support for interactive appli-
cations. In D. Thomas, editor, ECOOP, volume 4067 of Lecture Notes in Computer
Science, pages 255–278. Springer, 2006.

3. M. Felleisen. The theory and practice of first-class prompts. In POPL, pages 180–
190, 1988.

4. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 1995.

5. JDOM home page. http://www.jdom.org.

 Concern-Sensitive Heuristic Assessment of
Aspect-Oriented Design

Eduardo Figueiredo and Alessandro Garcia (Supervisor)

Computing Department, Lancaster University,
InfoLab21, South Drive, United Kingdom

e.figueiredo@lancaster.ac.uk, garciaa@comp.lancs.ac.uk

Abstract. Recent empirical studies of aspect-oriented design have stressed that
the inaccurate modularisation of some concerns potentially leads to a plethora
of non-obvious modularity flaws. Nowadays, modularity assessment is mostly
supported by design heuristics rooted at conventional attributes such as module
coupling, module cohesion, and interface complexity. However, such traditional
module-driven assessments cannot be tailored to the driving design concerns,
thereby leading to recurring false positives and false negatives in design
evaluation processes. Our goal is to promote concerns as explicit abstraction in
the design assessment process. We propose an assessment technique composed
of (i) a concern-oriented measurement framework to support the instantiation
and comparison of concern metrics, (ii) a set of concern metrics instantiated and
formalised according to our measurement framework, and (iii) a representative
suite of concern-sensitive heuristic rules for detection of design flaws. To
evaluate our concern-oriented assessment technique, we are conducting a
number of empirical studies which encompass a plethora of crosscutting and
non-crosscutting concerns.

1 Problem Description

With the emergence of Aspect-Oriented Software Development (AOSD) [9], there
is an increasing awareness that some system concerns might be the key factors to the
deterioration of system modularity and the main cause of faults [2, 6]. A concern is
any consideration that can impact the implementation of a program [11]. AOSD aims
to enhance design modularisation through new composition mechanisms, such as
pointcut-advice and inter-type declarations [9]. Aspects are new units of modularity
for encapsulating crosscutting concerns, i.e. system properties that naturally affect
many system modules.

However, the achievement of modular aspectual designs is far from being trivial.
Recent studies have shown that inaccurate separation of certain concerns with aspects
leads to multiple concern-specific flaws [3, 8]. Even the “aspectisation” of
conventional crosscutting concerns, such as exception handling [1, 6], concurrency
control [8], and the Observer design pattern [8], might impose negative effects on the
system modularity, including (i) increase on the number of undesirable concern
couplings [3], and (ii) decrease on the cohesion of modules realising a certain concern

6 Concern-Sensitive Heuristic Assessment of Aspect-Oriented Design

[8, 12]. These concern modularity flaws make the change and removal of the target
concerns error prone [1, 6] and lead to the manifestation of ripple effects [3, 8].

The recognition that concern identification and analysis are important through
software design activities is not new. In fact, there is a growing body of relevant work
in the software engineering literature focusing either on concern representation and
identification techniques [2, 11, 12] or on concern analysis tools [5, 11]. However,
there is not much knowledge on the efficacy of concern-driven assessment
mechanisms for design modularity and error proneness. Even though some works
have started to define concern metrics [2, 4, 11, 12], there is a lack of design
heuristics to support concern-sensitive assessment.

Design heuristics are metrics-based rules that capture deviations from good design
principles [10]. Concern heuristics would lead to a shift in the assessment process:
instead of quantifying properties of a particular module, they would quantify
properties of one or multiple concerns with respect to the underlying modular
structure. To the best of our knowledge, there is no systematic study that investigates
whether this category of heuristic rules enhances the process of (i) evaluating design
modularity attributes, (ii) identifying error-prone realisations of design concerns, and
(iii) detecting design anomalies, such as bad smells [7]. A bad smell is any symptom
that indicates something may be wrong and it generally indicates that overall design
should be re-examined [7].

In fact, the area of concern-oriented evaluation is still in its infancy and it also
suffers from not subsuming to a unified terminology and formalisation of concern
measurement. Even the terminology used in existing definitions of concern metrics is
diverse and ambiguous by nature [4]. Hence, it is not straightforward the elaboration
of concern heuristics relying on those poorly defined metrics. For instance, it is not
clear in definitions of concern metrics the granularity of artefacts, ranging from
architecture [12] to implementation-specific artefacts [2, 4], and the target concern
modularity property (e.g., coupling, cohesion, or tangling). The terminology of
concern relies on the jargon of specific research groups, thereby hampering: (i) the
process of instantiating, comparing, and theoretically validating concern metrics, (ii)
their adoption in academic and industry settings, (iii) independent interpretation of the
measurement results, (iv) ways of composing concern metrics to systematically boost
heuristic rules, and (v) replication of empirical studies using concern metrics.

2 Goal Statement and Expected Contributions

Our main goals are (i) to promote concerns as explicit abstraction in the heuristic
design assessment, (ii) to provide formal definitions and automated support for
concern-based heuristic rules and their composing metrics, and (iii) to empirically
assess the efficacy of the concern-sensitive heuristics when compared with
conventional ones. In the context of the previously described problems, the expected
contributions of our PhD research are summarised as follows.

1. A survey and critical review of (i) existing measurement frameworks, (ii) existing
concern-oriented metrics, and (iii) metric-based heuristics rooted at conventional
modularity attributes, such as coupling and cohesion.

 Concern-Sensitive Heuristic Assessment of Aspect-Oriented Design 7

2. A concern-oriented measurement framework [4] to support the instantiation and
comparison of concern metrics.

3. A set of concern metrics formalized according to our measurement framework and
empirically evaluated whether they are useful to detect design flaws (and error-
prone code).

4. A representative suite of concern-sensitive heuristic rules for (i) assessing the
overall modularity of design-driven concerns and (ii) detection of specific design
flaws including well known bad smells [7].

5. A fully implemented and documented tool for concern-oriented design assessment
to support all elements of our heuristic assessment technique.

6. A complementary set of empirical studies to evaluate different usefulness and
usability facets of our concern-oriented heuristic technique for assessment of
design modularity and error proneness, including:
a. Evaluation of the measurement framework’s generality through the

instantiation of concern metrics and their application in empirical studies.
b. Systematic investigation on the accuracy of the concern-sensitive heuristics

in statistically relevant studies encompassing heterogeneous forms of
crosscutting and non-crosscutting concerns.

c. Quantitative and qualitative assessment of the positive and negative impact
of aspect-oriented composition mechanisms and crosscutting concerns on
evolving applications.

3 The Proposed Solution

Concern-oriented measurement framework. In order to address the formalisation
of concern metrics, our PhD research proposes a concern-oriented measurement
framework that supports the instantiation and comparison of concern metrics. The
proposed framework [4] subsumes a unified concern terminology and criteria in order
to lay down a rigorous framework to foster the definition of meaningful and well-
founded concern metrics. In the definition of the measurement framework, we
undertook an extensive survey of the state-of-the-art on concern measurement [4].

Concern-oriented metrics and heurists. In addition to a concern measurement
framework, we are revisiting existing metrics-based heuristic rules and proposing
innovative concern-sensitive design heuristics based on a suite of concern metrics.
The proposed design metrics and heuristics have the distinguishing characteristic of
exploiting concerns as explicit abstractions in the design assessment process. The goal
of concern metrics is the association of quantification with concern properties.
Besides, concern-sensitive heuristics targeted at enhancing the modularity assessment
process by detecting two overlapping categories of modularity flaws, namely
crosscutting concerns and classical bad smells [7]. Furthermore, we are investigating
concern-sensitive heuristics as mechanisms to support the detection of (i) faults
related to crosscutting concerns [1] and (ii) refactoring opportunities [13].

Automated support. To effectively employ our concern measurement approach, it
is imperative to provide automated support to reduce the burden on identifying and
representing design concerns as well as applying concern metrics and heuristic rules.

8 Concern-Sensitive Heuristic Assessment of Aspect-Oriented Design

An initial architecture model and a prototype tool [5] to support the proposed
assessment technique have already been defined. The final implementation of our tool
might provide the following functionality: (i) concern representation in a hierarchical
model (Concern Model), (ii) means to project concerns onto artefacts of detailed
design and implementation (Concern Manager), (iii) a reasonable set of concern
metrics instantiated by our framework (Metric Collector), and (iv) an extensible set of
concern-sensitive heuristics (Rule Analyser).

Empirical evaluation. To evaluate the generality of the proposed concern
measurement framework, in the first year of our research we demonstrated the
framework instantiation and extension of a number of concern metrics [4]. We also
discussed how the proposed measurement framework can help to point out limitations
on the used metrics, and assist the planning of new experimental replications. Now
(second year), this Doctoral research is focusing on a statistically relevant evaluation
on the accuracy of concern-sensitive heuristics in a number of empirical studies. We
have already selected eight representative applications [3, 6, 8] which encompass
heterogeneous forms of crosscutting and non-crosscutting concerns. For example, in
one application [3] we target at systematically verifying the suitability of aspect-
oriented composition mechanisms for designing stable and modular software product-
line designs. Software product lines [3] represent a common and important
technology to support the derivation of a wide range of applications. In the last year
of our research, we expected that the collected data might be relevant to draw
conclusions regarding the usefulness of concern-sensitive heuristic assessment to
detect design anomalies.

References

1. Cacho, N., Filho, F., Garcia, A., Figueiredo, E.: EJFlow: Taming Exceptional Control Flows in Aspect-
Oriented Programming. In: Int’l Conf. on Aspect-Oriented Soft. Development (AOSD). Brussels (2008).

2. Eaddy, M. et al.: Do Crosscutting Concerns Cause Defects? IEEE Trans. on Soft. Eng., 2008 (to appear).
3. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S., Ferrari, F.,

Khan, S., Filho, F., Dantas, F.: Evolving Software Product Lines with Aspects: An Empirical Study on
Design Stability. In: International Conference on Software Engineering (ICSE). Leipzig (2008).

4. Figueiredo, E., Sant’Anna, C., Garcia, A., Bartolomei, T., Cazzola, W., Marchetto, A.: On the
Maintainability of Aspect-Oriented Software: A Concern-Oriented Measurement Framework. In: 12th
European Conference on Software Maintenance and Reengineering (CSMR). Athens, Greece (2008).

5. Figueiredo, E., Garcia, A., Lucena, C.: AJATO: an AspectJ Assessment Tool. In: European Conference
on Object-Oriented Programming (ECOOP), demo section. Nantes, France (2006).

6. Filho, F., Cacho, N., Figueiredo, E., Maranhao, R., Garcia, A., Rubira, C.: Exceptions and Aspects: The
Devil is in the Details. In: Int’l Symposium on Foundations of Software Engineering (FSE), (2006).

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading, US, 1999.
8. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., et al. On the Impact of Aspectual

Decompositions on Design Stability: An Empirical Study. In: ECOOP Conference. Berlin (2007).
9. Kiczales, G. et al.: Aspect-Oriented Programming. In: ECOOP Conference, p. 220-242. Finland (1997).
10. Marinescu, R.: Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. In: International

Conference on Software Maintenance (ICSM), p. 350-359, Chicago (2004).
11. Robillard, M., Murphy, G.: Representing Concerns in Source Code. ACM TOSEM, 16, 1, (2007).
12. Sant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.: On the Modularity of Software Architectures: A

Concern-Driven Measurement Framework. In: European Conf. on Soft. Architecture (ECSA), (2007).
13. Silva, B., Figueiredo, E., Garcia, A., Nunes, D.: Refactoring of Crosscutting Concerns with Metaphor-

Based Heuristics. In: Int’l Workshop on Software Quality and Maintainability (SQM). Athens (2008).

A Metadata-Based Components Model

Eduardo Martins Guerra1 and Clovis Torres Fernandes1 (advisor)

1 Aeronautical Institute of Technology, Praça Marechal Eduardo Gomes, 50
Vila das Acácias - CEP 12.228-900 – São José dos Campos – SP, Brazil

guerraem@gmail.com, clovistf@uol.com.br

Abstract. Metadata-based component is a component or a framework that
processes its logic based on the metadata of the class whose instance it is
working with. Many frameworks use this approach to increase the flexibility
and the reuse in applications. But all those frameworks are created by the
experience of the developers, because there are not documented techniques or
best practices for the development of this kind of component. This work
proposes the development of a model for metadata-based components, to ease
the development of flexible software components and increase the application
reuse degree.

1 Problem Description

There are many ways for a component or a framework to be reusable and adaptable.
Specialization of the component classes and implementation of its interfaces, allows
the application to extend the behavior and to adapt it to its needs [1]. For instance, the
use of dependency injection, allows the client to insert the instances that composes the
component [2], changing the behavior based on the class and information of the
instance inserted. Combining these techniques, the developer combines composition
and inheritance to enable flexibility and reuse in the component. These techniques are
used in design patterns to document common solutions for some recurrent problems
in object-oriented applications [3].

The attribute-oriented programming is a program-level marking technique that
allow developers to mark programming elements (e.g. classes and methods) to
indicate application-specific or domain-specific semantics [4]. Metadata-based
components can be defined as components that use class metadata in runtime to
process its logic. The metadata can be stored not only using annotations, but also in
external files (usually as XML documents), databases or programmatically. The
metadata can also be configured implicitly using name conventions [5].

Metadata-based components and attribute-oriented programming had some
intersection but they are not the same thing. In metadata-based components the
metadata can be stored in other ways and in attribute-based programming the use of
the attributes can also be done to generate code or modify classes [6].

The following are examples of metadata-based frameworks and APIs: Hibernate
[7] and JPA [8] uses metadata to create an object-relational mapping and to manage
events in different phases of an instance persistence process; EJB [8] uses metadata to
configure how the container is going to control some non-functional features, like

10 A Metadata-Based Components Model

transaction strategy and access control policy; JUnit [9] identifies test and life cycle
methods of a test class by metadata.

The use of metadata allows the component to use different rules for objects of
different classes. This way, the component can replace behaviors usually
implemented manually in the application. This increases the application’s amount of
reuse and allows the component to be used in different situations. The use of metadata
can save a great amount of hand-written program code without losing the semantics of
the application [10].

All existent metadata-based components are created based only on the experience
of its developers, because there are not documented techniques or best practices for
dealing with metadata. This reduces the opportunities of using metadata in situations
that it is appropriate.

2 Goal Statement

The thesis statement of this proposal is: “Create a metadata-based components model,
to ease the development of flexible software components and increase the application
amount of reuse”. This model must be a reference for solving design problems about
how to deal with metadata in this kind of component. The model must be also the
basis for other studies about metadata-based components.

This work investigates the following key questions about the metadata-based
components: (1) What are the characteristics that metadata-based components had in
common?; (2) What kind of problems can be addressed using metadata-based
components?; (3) What are the design requirements that may appear in this kind of
components because of the use of metadata?; (4) How are the existent metadata-based
components designed? How do they deal with class metadata?; (5) How much amount
of reuse can an application get using a metadata-based component?; (6) How much
easier and faster is to develop an application using a metadata-based component?

3 Approach

To investigate about metadata-based components, seeking for an abstraction of its
characteristics and concepts, three different strategies are being followed, namely:
1. The existent metadata-based components will be analyzed, looking for what

problem is solved with metadata, how it is designed and how it is internally
structured. The abstraction of those solutions will lead the research for suitable
patterns for solve metadata problems.

2. There are two open source metadata-based frameworks, SwingBean [11] and
Esfinge [12], developed by the author of this proposal. They are currently used by
some large and medium scale applications in production. There is not metrics to
measure the result of their use in practice, but qualitatively can be affirmed that
there was an improvement in productivity and flexibility. Those frameworks will
be refactored to study the implementation of the patterns found and to analyze
how their use influence the application and framework flexibility.

 A Metadata-Based Components Model 11

3. Other minor case studies of metadata-based components are also going to be
developed. These case studies are intended to explore the concepts of metadata-
based components and to experiment the patterns found in different situations.

Using the knowledge obtained by these tree different strategies, some design
patterns for application in metadata-based components will be identified and
documented. These patterns are going to be presented as a pattern language that
addresses the most important aspects about dealing with metadata in components. The
structure of this pattern language will address patterns for metadata creation and
management, logic processing based on metadata and for metadata use applicability.
This pattern language is considered the main contribution of this work.

To formalize the identified structural characteristics of this kind of component, the
internal architecture will be documented using an Architecture Description Language.
The objective is to create a formal description of the internal components and their
relationship.

4 Validation

The work will be validated both quantitatively and qualitatively. The qualitative
validation will occur during the research, comparing the patterns and the model to
existent frameworks and using them in case studies. The case studies will validate if
the proposed patterns fulfils some flexibility requirements about metadata
manipulation. To validate that the application of the proposed model in a component
really improve the reuse degree of the software that uses it, an experiment will be
accordingly defined.

In this experiment, the same problem will be addressed using tree kind of
approaches: (a) without frameworks; (b) with a framework without the use of
metadata (traditional framework) and (c) with a metadata-based framework. The goal
of the experiment is to have different solutions with the same interface and behavior
developed in a controlled environment, which can be used to do a comparative study.
There will be at least tree teams, each one with a different problem. The experiment
will use groups of undergraduate students of the object orientation course. A larger-
scale experiment would be better, but that would not be really practical. The
following phases will be considered:
• Phase 1: The teams have to solve the problem without using frameworks. There

will be an interface that they must use in the implementation. Some automated
integration tests will be developed to ensure that the behavior is correct.

• Phase 2: The teams have to develop a traditional framework to help someone to
solve similar problems that they solve in Phase 1. The documentation for this
framework must be created.

• Phase 3: The teams have to exchange the problems and implement the same
problem of Phase 1 with the framework developed in Phase 2. The same tests
created in Phase 1 must execute successfully.

• Phase 4: The team that developed the framework in Phase 2 has to evolve it by
using the metadata-based approach. The metadata-based component model
developed must be used. The team must suitably document the framework.

12 A Metadata-Based Components Model

• Phase 5: A new team that did not already dealt with the problem have to
implement it using the metadata-based component created in Phase 4. The same
tests created in Phase 1 must execute successfully.

A comparative study will be made based on the solutions created by the students in
the experiment. Some metrics will be used to analyze quantitatively each approach.
Examples of metrics are amount of reuse [13] and dynamic coupling [14]. The
students will also answer some questionnaires for a qualitative analysis of the
experiment. It will address issues about the application and framework development,
like the difficulty to understand the API and to develop the solution.

The main goal of the quantitative study is to show that applications that use
metadata-based components created using the proposed model have a greater amount
of reuse compared to those created with classical frameworks techniques. The
qualitative study should also detect that the implementation with metadata-based
components is more productive and easier than using traditional frameworks.

References

1. Fayad, M. E., Schimidt, D. C. and Johnson, R. Building application frameworks: Object-
oriented foundations of framework design. John Wiley & Sons, 1999.

2. Fowler, M. Inversion of Control Containers and the Dependency Injection pattern. Available
on http://www.martinfowler.com/articles/injection.html, 2004.

3. Gamma, E. Helm, R. Johnson, R. Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.

4. Wada, H.; Suzuki, J. Modeling Turnpike Frontend System: a Model-Driven Development
Framework Leveraging UML Metamodeling and Attribute-Oriented Programming. In Proc.
of the 8th ACM/IEEE International Conference on Model Driven Engineering Languages
and Sytems (MoDELS/UML 2005), 2005.

5. DOV, A. B. Convention vs. Configuration. Available on
http://www.javalobby.org/java/forums/t65305.html, 2006.

6. Schwarz, D. Peeking Inside the Box: Attribute-Oriented Programming with Java 1.5, In
onjava.com, O’Reilly Media, Inc., Junho 2004.

7. Bauer, Christian and King, Gavin. Hibernate in Action. Manning Publications, 2004.
8. JSR 220. JSR 220: Enterprise JavaBeans 3.0. Available on

http://www.jcp.org/en/jsr/detail?id=220, 2006.
9. JUnit, Available on http://www.junit.org/, 2008.
10. Rouvoy, R. Pessemier, N. Pawlak, R. e Merle, P. Using attribute-oriented programming to

leverage fractal-based developments. In Proceedings of the 5th International ECOOP
Workshop on Fractal Component Model (Fractal’06), Nantes, France, Julho 2006.

11. SwingBean, Available on http://swingbean.sourceforge.net/, 2008.
12. Esfinge, Available on http://esfinge.sourceforge.net/, 2008.
13. W. Frakes and C. Terry, Software Reuse: Metrics and Models, ACM Computing Surveys,

vol. 28, 1996. http://citeseer.ist.psu.edu/frakes96software.html
14. Arisholm, E.; Briand, L.C.; Foyen, A. Dynamic coupling measurement for object-oriented

software, IEEE Transactions on Software Engineering, Volume 30, Issue 8, Pages 491 –
506, Aug. 2004.

Formalising Dynamic Languages

Alex Holkner and James Harland

RMIT University
Melbourne, Australia

{alexander.holkner,james.harland}@rmit.edu.au

Abstract. Relatively new dynamic languages such as Python, Ruby and
ECMAScript have become popular for rapid prototyping and general-
purpose development. These languages share many similarities but are
developed independently of each other, and little is known about the ex-
tent to which their object models are compatible. We already know that
the object models differ greatly from those used in traditional languages
such as C++ and Java. They also differ enough from the formal the-
ory of object-oriented languages that makes formal analysis of programs
written in these languages next to impossible. We propose extending the
existing object-oriented formalisms to cope with the dynamic features
used in these languages, as well as delimiting the extent to which these
features are not compatible with current analysis techniques.

1 Problem

Functional languages such as Scheme and Haskell are underpinned by formal
theoretical frameworks that describe their operation [1–3]. Formalisations of lan-
guages are useful for analysing the complexity and equivalence of programs in
those languages; making judgements about the security, safety, and correctness
of programs; comparing the relative expressiveness or power of languages; mak-
ing guarantees about the correctness of various program transformations; and
so on.

While some progress has been made towards formalizing Java [4, 5], to date
most theoretical work on object-oriented languages has proceeded without en-
coding any particular language, instead focussing on formal type theories of an
abstracted “ideal” object-based language.

This has resulted in two related areas of research remaining unexplored.
Firstly, existing formalizations are unsuitable for use as a base calculus for de-
veloping a virtual machine for executing object-oriented programs, due to their
use of constructs not seen in existing languages. Secondly, some features of mod-
ern dynamic object-oriented languages, such as changing the class of an object,
or replacing a method on a class, cannot be encoded in the existing formalisations
(without significantly complicating the encoding of a simple object).

For example, Python [6] appears to be a suitable language to be modelled by
the ς-calculus [7]. Objects are simple “dictionary” mappings of names (labels)
to attributes (methods). Classes are merely another type of object, encoded in

14 Alex Holkner and James Harland

class P(object):

m = 0

Create an object ’p’, an instance of ’P’

p = P()

Prints ’0’

print p.m

Mutate the ’P’ class

P.m = 1

Prints ’1’

print p.m

Fig. 1: Python code demonstrating global update

the ς-calculus as a collection of “pre-methods”. However, the ς-calculus fails
to capture the side effect of mutating a class after objects have already been
instantiated from it.

Figure 1 lists a simple program written in Python that demonstrates this.
Accessing p.m after mutating p’s class P returns the mutated attribute value.

It is clear from the observed behaviour (and the language specification) that
the p object delegates to the P class for the m attribute. The attribute is not
simply copied onto the p object when it is created, as in the class encoding
suggested by Abadi and Cardelli [7].

Python is not a unique language in this respect: several modern dynamic
programming languages including Ruby [8] and ECMAScript (JavaScript) [9],
and older languages such as Smalltalk [10] and Self [11], exhibit this “global
update” behaviour.

2 Goal

We will develop one or more formal object calculi that describe the behaviour
of modern dynamic object-oriented languages such as Python. We expect to
achieve several outcomes:

Formal description and comparison of the dynamic languages. It is gen-
erally understood that the object models of Python, Ruby, Smalltalk and
other languages are quite similar. No literature exists that comprehensively
documents and compares the object models, irrespective of the other lan-
guage features.

Reduction of the dynamic object model into existing object formalisms.
We would like to find out to what extent the dynamic languages can be en-
coded simply into the object formalisms such as the ς-calculus. We already

Formalising Dynamic Languages 15

know that some features, such as global update, must be dropped; but some
core amount of the languages’ object models should be representable.

Extension of an object formalism to support dynamic object features.
We would like to discover new formalisms that describe as many features of
the dynamic languages as possible, without requiring complex or indirect
encodings, yet while still remaining susceptible to analysis.

An overriding theme in this research is that the current generation of dynamic
languages have an “ad-hoc” object model that is next to impossible to reason
about, short of executing the code. Besides the global update problem described
earlier, these languages allow objects to completely override the default message
dispatch mechanism. This can introduce arbitrary side-effects into a program
that appears on the surface to evaluate something as simple as an attribute
lookup.

Our goal, then, is to find these areas of difficulty where the languages be-
come “too dynamic” for analysis, and also to extend existing object formalisms
to describe as much as possible about the languages without reducing their ex-
pressiveness.

3 Approach

The development of a formal system that caters to dynamic languages requires an
incremental approach. We intend to extend Abadi and Cardelli’s typed object
calculus [7] with features for implicit and explicit delegation, mode switching
and overridable delegation. We have already developed a functional delegating
object calculus that handles the global update problem, and proven the subject
reduction theorem for a first-order type system in the calculus.

After prototyping these features in a functional setting, we will formalise
them for imperative use, which is necessary if we are to realistically model the
current generation languages.

Our other goals, describing the dynamic language object model and reducing
it into existing formalisations, can be achieved in concert with this development.
We expect that the findings in one calculus will reveal subtle points of difference
in others.

We will convince ourselves and others of the correctness of each formalism
we develop by continuing to prove standard theorems such as subject reduction
and type soundness.

References

1. Sperber, M., Kelsey, R., Clinger, W., Rees, J., Findler, R., Matthews, J.: Revised6

Report on the Algorithmic Language Scheme. Technical report
2. Sussman, G.J., Steele, G.L.: Scheme: A Interpreter for Extended Lambda Calculus.

Higher-Order and Symbolic Computation 11(4) (1998) 405–439
3. Jones, S.P.: The Haskell 98 Report. Technical report (1999)

16 Alex Holkner and James Harland

4. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and Systems
23(3) (2001) 396–450

5. Alves-Foss, J., Lam, F.S.: Dynamic Denotational Semantics of Java. Formal Syntax
and Semantics of Java (1999) 201–240

6. Van Rossum, G., Drake, F.L.: Python Language Reference Manual. Network
Theory (2003)

7. Abadi, M., Cardelli, L.: A theory of objects. Springer (1996)
8. Thomas, D., Hunt, A.: Programming Ruby. Addison-Wesley Reading, MA (2001)
9. Specification, E.L.: Standard ECMA-262. ECMA Standardizing Information and

Communication Systems 3
10. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1983)
11. Agesen, O., Bak, L., Chambers, C., Chang, B.W., Hlzle, U., Maloney, J., Smith,

R.B., Ungar, D., Wolczko, M.: The Self 4.1 Programmer’s Reference Manual

A Metrics Based Approach to Evaluate Design of
Software Components

Kuljit Kaur, Hardeep Singh,
 Department of Computer Science and Engineering,

Guru Nanak Dev University,
Amritsar, India-143005

kuljitchahal@yahoo.com,hardeep_gndu@rediffmail.com

Abstract. Component based software development approach makes use of
already existing software components to build new applications. Software
components may be available in-house or acquired from the global market.
One of the most critical activities in this reuse based process is the selection of
appropriate components. Component evaluation is the core of the component
selection process. Component quality models have been proposed to decide
upon a criterion against which candidate components can be evaluated and then
compared. But none is complete enough to carry out the evaluation. It is
advocated that component users need not bother about the internal details of the
components. But we believe that complexity of the internal structure of the
component can help estimating the effort related to evolution of the component.
In our ongoing research, we are focusing on quality of internal design of a
software component and its relationship to the external quality attributes of the
component.

Keywords: Software Components, Component Based Software Development,
Component design, Component quality,

1 Introduction

Component Based Software Development (CBSD) paradigm is based on reuse of
already existing components to produce new applications. In a Component Based
system, many different types of components are integrated such as in-house
developed components or third party components. Third party components exist in
two forms – commercial off the shelf (COTS) or Open Source. New components may
need to be developed for the application in hand and then added to the component
library for future use. It is believed that such an approach can reduce the development
effort and time, and increase the productivity and quality of the software. On the
other hand maintenance of component based systems is still a major challenge. Such
systems comprise of components from many different sources. Development and up
gradation of these components is not in the control of the (system) development team.
In the short run, we may be able to reduce the development effort and hence the cost,
but in the long run may end up in increasing the maintenance cost.

18 A Metrics Based Approach to Evaluate Design of Software Components

This approach is different from the traditional way of software development. In
this approach, the development process has two sides: Development of software
components for reuse and development of software with reusable components as the
building blocks.

The main steps in development for reuse process are:
1. Perform domain analysis
2. Identify the components to be developed
3. Develop the components
4. Evaluate the components so that they can be added to the

library
5. Package the components and add to the library.

The main steps in development with reuse [10] are as follows:
1. Retrieve components from library (in house or third party)

according to some need of the application under
development,

2. Evaluate the quality and appropriateness of the components.
3. Adapt a component, if it cannot be reused as-is.
4. Assemble the application
5. Test the integrated assembly

We observe in the above discussion that component evaluation takes place at two
stages: when components are added to the library of reusable components and when
they are selected for use in an application. In the latter case, context of use is also
important for evaluation.

Evaluation of software components requires answers to the following questions:
1. What to evaluate? – To begin with, we have to determine the set of

characteristics/attributes/properties of software components that we want to
assess. In order to quantify these characteristics, each of them has to be
decomposed into sub characteristics, which can be measured directly. For
example maintainability expands to extensibility, modifiability.

2. How to evaluate? – For every sub characteristic identified, determine the
set of metrics that we can use to measure it.

We need to define a component quality model that categorizes the properties of
interest of the components, and provides a set of metrics that can quantify these
properties. A review of the research literature reveals that several component quality
models have been proposed [2], [8], [22], [24]. But they are very general in nature.
None of them gives a detailed view of the quality attributes and related metrics.

2 Problem Description

Software component design has two perspectives- external or interface design that is
visible to the component user (component assembler), and internal design that is
initially visible to the component developer only and later to the component
maintainer too. It is a known fact that effort of software maintenance depends largely
upon the internal structure of the software. If internal design of a software product is

 A Metrics Based Approach to Evaluate Design of Software Components 19

not good, more cost (in terms of effort and time) will be involved in updating the
product to meet changed requirements.

In a component based software system, evolution of individual component
becomes difficult because of lack of access to internal details of a component e.g.
design, source code etc. Component user has to depend upon component developer to
carry out the changes. This is the reason that vendor/developer support is very
important in successful implementation and usage of a software component.
Component user relies on the vendor or other users of the same component, for
information regarding its functionality/quality features. Unfortunately, this
information is not readily available.

There is huge gap in the information provided by the component suppliers and
information required by the component users [7]. Both the parties have not yet agreed
upon a common framework for evaluation of software components.

Several component quality models have been proposed in order to lay down the
criteria to evaluate software components. But all except [24] do not address this issue
of internal design. Internal design cannot be simply ignored, since some internal
attributes of a component may provide an indirect measurement of its external
characteristics.

Metrics to evaluate internal design of the software components exist in the
research literature [13], [14], [16], [21]. Most of them deal with coupling, cohesion,
and complexity features only. We intend to prepare a framework of metrics to
measure internal design of a software component from several other perspectives such
as abstraction, Information hiding, polymorphism. The focus of this study is the
components designed using object oriented design methodology.

3 Related Work

Metrics based evaluation of components and component based systems has been a
topic of research in the recent past. Metrics for component based systems are
presented in [3], [4], [17], [20], and [23]. Component oriented metrics can be studied
across two dimensions – internal metrics and external metrics. Internal metrics
measure the internal structure of the components and require access to the internals of
the software component such as design or source code. Such information is not
available to component users. External metrics are based on whatsoever information
is available regarding the components such as interface, component documentation
etc.

Interface based metrics are discussed in [9], [15]. Bertoa et al has presented
metrics to evaluate usability of software components in [6]. These metrics are based
on information made available by the component vendors. Another metric set in this
category is presented in [25] to evaluate reusability of software components.

Internal metrics require access to the design or source code. Some of the metrics in
this category are related to coupling and cohesion only [16], [21]. Complexity of the
components can be measured using metrics available in [13], [14].

20 A Metrics Based Approach to Evaluate Design of Software Components

4 Significance of the Study

Quality is customer satisfaction, and the customer of a software component is interested in external
product attributes like functionality, reliability, verifiability, usability, integrity, reusability,
maintainability, portability, and interoperability. Therefore, quantifying quality attributes requires
external measures of a product. But the development team, responsible for the development of the
software component , has access to and can control over the internal measures such as the software
development process followed, the resources used(including human expertise) etc. Internal product
attributes include size of the software component, abstractions used, information hiding, modularity
(even distribution of responsibilities to classes), level of reuse, intra – component coupling, level of
cohesion etc. The development team may paint rosy picture of the otherwise low quality component.

Take an example of a component, which is developed –
• With no sub classing
• High levels of coupling

Now this can be interpreted as -
• The size of the component has increased, if it is measured in Lines

of Code (LOC), because of less use of sub classing. This will lead
to high price tag of the component, if size is taken as a factor for
price determination.

• At the time of maintenance, the change effort will increase because
of (unnecessary) coupling, so cost of maintenance will also
increase.

 Metrics can be used to check as to up to which level a particular object oriented software
component follows the principals of a good object oriented design. Good design leads to the ease of
maintenance of the software. Poor quality comes from poor design, where internal structures and
methods are exposed, resulting in complicated inter-dependencies that grow worse over time. The bad
design choices may be made because of time to market pressure. A lot of work has been reported in the
research literature that maps the internal measures of the object oriented designs to the external
attributes of the software products [5], [12].

5 Aim of the Study

Object oriented methodology presents various features, which help to meet the challenges of building
complex and maintainable applications. Such features as inheritance, encapsulation, and abstraction can
facilitate the developer to develop easily understandable and modifiable solutions for complex
problems. Our goal in this research is to identify metrics that can quantify the usage of basic elements of
object oriented design methodology in the internal design of software components.

Several metrics to evaluate object oriented design has already been proposed by various researchers
[1, 11]. Many of them are empirically as well as theoretically validated too. Cross validation studies of
these metrics also exist. Our aim is not to add new metrics to this already existing volume of metrics.
We intend to choose from this collection of metrics, a set of metrics which measure the usage of
necessary elements of an object oriented design.

 A Metrics Based Approach to Evaluate Design of Software Components 21

6 Research Methodology

Research will be carried out in following stages:
1. Identify the basic elements of an object oriented design.
2. Prepare a list of metrics, to measure different aspects of object

oriented design.
3. Select a set of independent metrics from this list.
4. Validate this set of metrics in the context of software components.

7 Results Achieved so far

We have studied the basic elements of the component based software development
approach [18]. In this paper, several points of difference of the traditional software
development from the modern component based software development are identified.
Software development processes with new sets of activities for this paradigm are
discussed.

We applied CK-Metric suite [11] and Abreu’s MOOD [1] Metric suite to a model
software component. It was found that the internal design of the software component
lacks quality [19]. Designers of the component have not made use of the features of
the object oriented methodology. In future any change or extension of the component
will require more effort.

References:

1) Abreu, F.B., Goulão, M. and Esteves, R.: Towards the design quality evaluation of
object oriented Software Systems, Proceedings of the 5th International Conference on
Software Quality, Austin, Texas, (1995).

2) Abreu, F.B., Goulão, M.,: Towards a Component Quality Model, Work in Progress
Session of the 28th IEEE Euromicro Conference, Dortmund, Germany, (2002).

3) Ali, S.S. & Ghafoor, A., and Paul, R.A.: Software Engineering Metrics for COTS-
Based Systems, IEEE Computer, (2001).

4) Ali, S.S. & Ghafoor, A., and Paul, R.A.: Metrics Based Framework for Decision
Making in COTS-Based Software Systems, Proceedings of the 7th International
Symposium on High Assurance Systems Engineering (HASE’02),(2002).

5) Basili, V. R., Briand, L.C., and Melo, W.L.: A validation of object-oriented design
metrics as quality indicators, IEEE Transactions on Software Engineering 22(10),
(1996).

6) Bertoa, M.F. & Troya, J.M., and Valleceillo, A.: Measuring the usability of Software
Components, The Journal of Systems and Software, (2006).

7) Bertoa, M.F. & Troya, J.M., and Valleceillo, A.: A survey on the Quality Information
Provided by Software component Vendors, Proceedings International Workshop on
Quantitative Approaches in Object Oriented Software Engineering (QAOOSE’2002),
(2002).

8) Bertoa, M., Vallecillo, A.: Quality Attributes for COTS Components, In the
Proceedings of the 6th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE), Spain, (2002).

22 A Metrics Based Approach to Evaluate Design of Software Components

9) Boxall, M., Araban, S.: Interface metrics for Reusability Analysis of Components,
Australian Software Engineering conference (ASWEC’2004), Melbourne, Australia,
(2004).

10) Butler, G., Li, L., and Tjandra, I.A.: Reusable Object-Oriented Design, available at
http://citeseer.ist.psu.edu/butler95reusable.html accessed on 11.03.2008.

11) Chidamber, S.R. and Kemerer, C.F.: A Metrics Suite for Object Oriented Design, IEEE
transactions on Software Engineering, vol. 20, no 6, (1994).

12) Chidamber, S.R., Darcy, D.P., and Kemerer, C.F.: Managerial Use of Metrics for
Object Oriented Software: An Exploratory Analysis, IEEE Transactions on Software
Engineering, vol. 24(8), (1998).

13) Cho, E.S., Kim, M.S., and Kim, S.D.: Component Metrics to measure Component
Quality, the 8th Asia Pacific Software Engineering Conference (APSEC), Macau,
(2001).

14) Dumke, R., Schmietendorf, A.: Possibilities of the Description and evaluation of
Software components, Metrics News 5(1), (2000).

15) Gill, N. S., Grover, P.S.: Few Important considerations for Deriving Interface
Complexity Metric for Component Based System, Software Engineering Notes, 29(2),
(2004).

16) Gui, G., Scott, P.D.: Coupling and cohesion measure for evaluation of component
reusability, International conference on Software Engineering, Proc of the 2006
International workshop on Mining Software Repositories, Shangai, China, (2006).

17) Hoek, A. v. d., Dincel, E. and Medvidovic, N.: Using Service Utilization Metrics to
Assess and Improve Product Line Architectures, Proceedings 9th International Software
Metrics Symposium (Metrics'03), Sydney, Australia, IEEE Computer Society Press.
(2003)

18) Kaur, K., Kaur, P., Bedi, J., Singh, H.: Towards a systematic and suitable approach for
component based software development, proceedings XXI International Conference on
computer, Information and Systems Science and Engineering, Enformatika Computer
society, Vienna, Austria, June, (2007).

19) Kaur, K., Singh, H.: Metrics to evaluate Object Oriented software Components,
Computer Society of India (CSI) Communications, Special Issue on Object Oriented
Technologies, volume no. 31, issue 11, February, (2008).

20) Narasimhan, V. L. and Hendradjaya, B.: Theoretical Considerations for Software
Component Metrics, Transaction on Engineering, Computing and Technology, v10,
(2005).

21) Pilskalns, O. and Williams, D.: Defining Maintainable components in the Design Phase,
Proceedings 21st international Conference on Software maintenance, ICSM’05, (2005).

22) Simão, R.P.S., Belchior, A.: Quality Characteristics for Software Components:
Hierarchy and Quality Guides, Component-Based Software Quality: Methods and
Techniques, Lecture Notes in Computer Science (LNCS) Springer-Verlag, Vol. 2693,
(2003).

23) Seker, R.: Assessment of Coupling and Cohesion for Component-Based Software by
Using Shannon Languages, South African Institute of Computer Scientists and
Information Technologists, Stellenbosch, Western Cape, South Africa. (2004)

24) Meyer, B.: The Grand Challenge of Trusted Components, in Proceedings of the 25th
International conference on Software engineering (ICSE’03), Portland, Oregon, (2003).

25) Washizaki, H., Yamamoto, H., and Fukazawa, Y.: A Metrics suite for Measuring
Reusability of Software Components, Metrics’03, (2003).

Methodology for Requirements Engineering in
Model-Based Projects for Reactive Automotive

Software

Niklas Melleg̊ard and Miroslaw Staron

Department of Applied IT
IT-University of Gothenburg

{niklas.mellegard,miroslaw.staron}@ituniv.se

http://www.ituniv.se

Abstract. With increasing demands on vehicle safety together with
the steep growth in software-controlled functions in contemporary vehi-
cles, the demand for a software-focused development model becomes ever
more apparent. There are a number of automotive-domain-specific obsta-
cles that prevent development methods from keeping up with the current
trends in more traditional software intensive areas. This paper outlines an
empirical research project that focuses on introducing relevant concepts
from MDSD to the automotive software development process applied at
Volvo Car Corporation in order to raise the level of abstraction during
software development. The anticipated outcome of this project is a new
method for working with model-based software projects with particular
focus on non-functional safety requirements.

Key words: Automotive; Model Driven Engineering; Requirements En-
gineering

1 Introduction

Future vehicles are predicted to contain increasing amounts of software that will
provide unique functions and features built using parts common to several man-
ufacturers. Vehicle safety systems are no exception, and since the reliability of
software components has different characteristics than the reliability of hardware
(both electronic and mechanical) components, new challenges arise.

Vehicle safety measures have been an ongoing research area since the 1950’s
with the introduction of seat belts as a standard feature. Such passive, or sec-
ondary, safety features [1] aim at minimizing the damage once an accident is
considered unavoidable. The introduction of software-controlled functionality in
vehicles opens up possibilities for primary safety [1] functions that, in more or
less autonomous ways, assist the driver in preventing accidents from happening.

The ASIS (Algorithms and Software for Improved Safety) project at Volvo
Car Corporation (VCC) intends to introduce systems for sophisticated primary
safety, such as it is described in [2], by combining many different sources of

24 Methodology for Model-Based Projects for Automotive Software

information to create a higher fidelity perception of the current situation in order
to provide accident detection and prevention subsystems with higher detailed
data for more reliable decision-making.

An active safety system will to a large extent be controlled by software [3–6],
which in turn will put high demands on the development models used. These
demands include qualities such as:

– Allowing for modelling of functionality at a high abstraction level with a
clear and preferably automatic mapping to code such as ones introduced in
Model Driven Software Development (MDSD) [7]

– Allowing for continuous forward and backward traceability throughout the
process, from requirements all the way to testing and back

This paper is structured as follows: the next section will outline some of the
challenges apparent in the current development process and also briefly suggest
expected benefits, should the research find alternative ways of handling those
challenges. The paper will then present the approach we intend to take and also
some expected results.

2 Problem Description - Challenges and Research Focus

It has been estimated that about 10% new functionality is introduced in each new
car model. 80% of the new functionality is realized through software, still only
10% of the software is reused between car models [5]. There are many reasons
behind the low degree of code reuse, e.g. suppliers of car parts (like ABS) develop
most of the code themselves and usually keep the intellectual property (IP), the
final code is often heavily optimized for the hardware used, changes in electrical
architecture may make the code obsolete.

The overall goal and main focus for research is how to increase the reuse of
software and enable using software as the main factor adding functionality to
new cars as opposed to today where software is to a large extent developed and
delivered bundled with the hardware. We intend to apply concepts from MDSD
[7] to raise the abstraction level and introduce automated model transformations
refining the code for various platforms. In our research up to the point, we have
identified the following issues which we intend to address:

– Development and integration of heterogeneous subsystems: The di-
versity of types of software in cars is growing, the usual types are: infotain-
ment, hard real-time and safety relevant systems [4]. To make these systems
operate and interoperate seamlessly and safely, a joint information model
and common non-functional safety requirements are needed.

– Shared data model: One obstacle in raising the abstraction level and also
separating different types of subsystems is there is no central, shared and
stable data model, although data is produced by many different subsystems
and also used by different parts of the vehicle. The lack of common data
model and central data storage has the effect that it may require major

Methodology for Model-Based Projects for Automotive Software 25

architecture changes even for minor changes in functionality. The ongoing
AUTOSAR [8] initiative intends to address this problem.

– Suppliers and tier X components: Software is to a large extent written
by suppliers and often delivered as black-box components together with the
complete mechanical/electric parts. The proprietary software sealed in parts
makes it hard to specify common and reusable non-functional requirements
(as these are usually proprietary to the supplier too). In consequence, this
adds yet another factor making reuse harder.

– Price-per-unit cost model: The standard cost model used in the automo-
tive industry in general, and VCC is no exception, has the manufacturing
price-per-unit as a central measurement [5]. The effect of having a huge
number of units produced, which dwarfs the cost of engineering efforts in
comparison [4], is that any cost savings in material and manufacturing that
can be made, even at the expense of good software engineering practice will
likely be justified. There is a need to illustrate how additional spending on
vehicle computer resources can be justified, not only through lower future
software engineering costs, but also through increased possibilities for the de-
velopment of more sophisticated functionality with less engineering efforts.

– Conceptual gap between model and implementation: Often qualities
such as maintainability and reusability are outweighed by a combination
of extreme ones like reliability and performance/cost. This has the effect
that software is developed at a low level, close to the hardware, which in
turn makes the implementation susceptible to any future low level changes
and also makes reuse of components hard. This becomes apparent when
the model of a component needs to be changed or replaced during the life-
cycle of a vehicle model. There is a need to explore a framework that binds
high level object-oriented models tighter together with the mostly procedural
implementation.

– Challenging life cycle: A car model is typically in development for 7-8
years, in production for an additional 6 years and expected to get service
and support by the aftermarket for another 10-15 years [5]. During the life
cycle of a car model, much of the electronics in the car will be updated or
replaced. These are problems that are present throughout the life cycle of a
vehicle model:
– The hardware that is used in the development of the vehicle model may
not be the same as the one used in production.
– During the production of the car model, parts of the hardware may be dis-
continued for many reasons; e.g. new generations of the same parts emerge,
the supplier may go out of business etc.
– During the very long aftermarket period, hardware parts are very likely
to be discontinued or at least changed.
This calls for more effective software development methods providing pos-
sibilities for ”quick” porting of software into new platforms. The notion of
model transformations and model-independence (central in Model Driven
Architecture [9–11]) will be used to achieve such goals.

26 Methodology for Model-Based Projects for Automotive Software

The above points are planned to be addressed in the ASIS project as part of this
doctoral thesis.

3 Research Approach

As this project is conducted in cooperation with VCC, we will follow an empir-
ical software engineering approach. In particular we plan to conduct a series of
interviews in order to identify the source of underlying problems at the company,
develop solutions and experiment to validate our solutions. We intend to follow
the conceptual research process as presented in Fig. 1.

Fig. 1. Conceptual research process ([12, 13])

During this process we expect to incorporate several empirical research meth-
ods: case studies (including prototyping), experiments, and surveys. In the initial
phase, we will conduct a series of case studies to identify and prioritize improve-
ment issues in the development of software-intensive primary safety systems.
By combining the principles of MDSD and requirements engineering methods,
we intend to address the problems of low software reuse between car types.
By enabling traceability of non-functional requirements in models, we intend to
decrease the effort required for developing safety-critical car systems.

As a first step a study of the current requirements engineering procedures will
be conducted. The objective with this study is to map the requirements flow and
refinement from top to bottom in order to identify key activities to use as basis
for how MDSD concepts can be applied. As part of that study the requirements
refinement process within each development level will also be examined.

Methodology for Model-Based Projects for Automotive Software 27

4 Expected Results

The expected result of this project is new methodology for working with non-
functional safety requirements in future software development projects within
the automotive industry. The methodology is required to have characteristics
such as:

– Object-oriented: The object-orientated paradigm is arguably required for
modelling at a higher abstraction level, especially when reusability of pro-
prietary code is involved.

– Model driven: models and model transformations are intended to increase
portability of software among various hardware platforms.

– Safety focused: the safety requirements are intended to be in the centre of
development efforts.

Validation of the results will be done through empirical studies throughout
the work in the project. We plan to use experiments whenever possible, both in
academia and in industry.

5 Related Work

The ATESST (Advancing Traffic Efficiency and Safety through Software Tech-
nology) project [14–17] examined ways of coping with with the complexity of
modelling requirements using UML as a notational language.

The AUTOSAR (Automotive Open System Architecture) project [8, 18] aims
at standardizing the architecture and the way components communicate with
eachother using a service oriented architecture.

Other related studies on requirements management include [19].

6 Summary

The last 20 years has shown a trend of steep increase in the amount of soft-
ware that is used for realizing functions in a vehicle, a trend which is expected
to continue. To cope with not only increasingly complex functions, but also in-
tegration of multiple subcomponents to synthesize new functionality without
compromising the very strict non-functional requirements that govern features
in the automotive industry, improved formal software development models are
required.

The research outlined in this paper intends to explore areas where concepts
from state-of-the-art software development models will have an improving effect
on development in the automotive domain.

Acknowledgement

The ASIS project is partially sponsored by VINNOVA [20] under the IVSS [21]
programme. It is actively run and partially sponsored by VCC. We would like
to thank the involved managers at VCC for their support.

28 Methodology for Model-Based Projects for Automotive Software

References

1. EEVC WG19, Primary and Secondary Safety Interaction, EEVC, 2006
2. M. Murphy, Passenger car driver assistance systems, technologies and trends to

2015, Automotive World, 2007; http:\\www.automotiveworld.com
3. M. Broy et al., Engineering Automotive Software, Proceedings of the IEEE, vol. 95,

2007, pp. 356-373.
4. N. Navet et al., Trends in Automotive Communication Systems, Proceedings of the

IEEE, vol. 93, 2005, pp. 1204-1223
5. C. Salzmann and T. Stauner, Automotive software engineering: an emerging appli-

cation domain for software engineering, Languages for system specification: Selected
contributions on UML, systemC, system Verilog, mixed-signal systems, and prop-
erty specification from FDL’03, Kluwer Academic Publishers, 2004, pp. 333-347

6. A. Sangiovanni-Vincentelli and M. Di Natale, Embedded System Design for Auto-
motive Applications, Computer, vol. 40, 2007, pp. 42-51

7. T. Stahl and M. Völter, Modeldriven software development: technology, engineering,
management, Chichester, England ; Hoboken, NJ: John Wiley, 2006

8. AUTOSAR Webpage; http://www.autosar.org
9. J. Miller and J. Mukerji, MDA Guide, Object Management Group, 2003.
10. S.J. Mellor et al., ModelDriven Architecture, ObjectOriented Information Systems,

Z. Bellahsene, ed., Montpellier: SpringerVerlag, 2002, pp. 290-307
11. A. Gerber et al., Transformation: The Missing Link of MDA, Graph Transforma-

tion: First International Conference, ICGT 2002, A. Corradini et al., ed., Barcelona,
Spain: SpringerVerlag, 2002, pp. 90-105

12. Staron, M.: Improving Modeling with UML by Stereotype-based Language Cus-
tomization. Department of Systems and Software Engineering, Doctoral Blekinge
Institute of Technology, Ronneby, Sweden (2005)

13. Gorschek, T.: Software Process Assessment & Improvement in Industrial Require-
ments Engineering. Department of Systems and Software Engineering, Blekinge In-
stitute of Technology, Ronneby, Sweden (2004)

14. ATESST Webpage; http://www.atesst.org
15. P. Cuenot et al., Managing Complexity of Automotive Electronics Using the EAST-

ADL, Proceedings of the 12th IEEE International Conference on Engineering Com-
plex Computer Systems (ICECCS 2007), IEEE Computer Society, 2007, pp. 353-358;
http://portal.acm.org/citation.cfm?id=1270390.1271079

16. C. Sjöstedt et al., Mapping Simulink to UML in the Design of Embedded Sys-
tems: Investigating Scenarios and Structural and Behavioral Mapping, OMER 4
Post Workshop Proceedings, 2008.

17. F. Törner et al., Supporting an Automotive Safety Case Through Systematic
Model-based Development, Proceedings of the SAE World Congress, 2008

18. S. Furst, AUTOSAR for Safety Related Systems: Objectives, Approach and Status,
Automotive Electronics, 2006. The 2nd IEE Conference on, 2006, p. 3

19. Almefelt et al., Requirements management in practice: findings from an empirical
study in the automotive industry, Research in Engineering Design, vol. 17, Dec.
2006, pp. 113-134

20. VINNOVA Webpage; http://www.vinnova.se/
21. IVSS Intelligent Vehicle Safety Systems - Web Site; http://www.ivss.se/

An Exception Handling Framework

Nikolas Nehmer and Andreas Reuter (advisor)

University of Kaiserslautern, 67663 Kaiserslautern, Germany
nnehmer@informatik.uni-kl.de,

WWW home page:
http://lgis.informatik.uni-kl.de/cms/index.php?id=nnehmer

Abstract. Today’s exception handling mechanisms are insufficient for
meeting the dependability requirements of large and complex software
systems. In this paper a novel exception handling framework is intro-
duced. The framework includes a tool supporting developers in reasoning
about exception flow. Based on the exception flow analysis a novel fault
containment approach is proposed restricting the impact of uncaught
exceptions on the overall system.

1 Problem Description

Complex object-oriented software systems have to cope with an increasing num-
ber of exceptional conditions, raised by the environment or by faults persisting
in the software itself. Developing fault-free software is nearly impossible and
it’s unwise to assume that the environment in which software operates always
functions correctly [1]. Incorporating fault tolerance mechanisms into the sys-
tem architecture is essential to meet dependability-related system requirements.
Exception handling is one of the most important fault tolerance mechanisms for
detecting and recovering from errors, and for structuring fault tolerance activi-
ties in a system by separating normal and exceptional control flow structures.

In complex object-oriented systems often more than two-thirds of the appli-
cation code is devoted to detecting error conditions and to handling these erro-
neous situations [2]. Unfortunately, experience shows that especially exception
handling code carries a high risk of being erroneous. The reason is complex. It can
be partially attributed to human behavior and error-prone exception handling
mechanisms [1]. Furthermore tools supporting developers in reasoning about ex-
ception flow are missing. “Real world” examples such as the crash of the Ariane
5 [3] missile illustrate the possible impact of inappropriate exception handling
on the overall system dependability.

Although Java is closely related to the ideal exception handling model by
Garcia et al. [4] a closer look reveals many issues being the potential source of
problems. Uncaught exceptions are a main issue. Furthermore exception han-
dling effectiveness highly depends on the programming discipline, i.e. no com-
pulsory specification of all exceptions possibly propagated by a method, issues
related to type subsumption (e.g. implicit catches), long exception propagation
paths and sloppy handler design (e.g. empty handlers).

30 Nikolas Nehmer and Andreas Reuter (advisor)

This clearly illustrates the need for a systematic and defensive approach to
exception handling tackling two main aspects:

– Missing development tools supporting developers in reasoning about excep-
tions and exception flow

– Potentially catastrophic impact of uncaught exceptions

2 Goal Statement

The goal of this research is to tackle the two aspects stated above. Although in
programming languages such as Java compilers help in reasoning about exception
flow, this support is insufficient. Many problems related to type subsumption or
uncaught exceptions have to be detected and resolved by the developers man-
ually during the development process. Even in deployed software systems these
problems still persist undetected until they raise system failures. Especially in
todays large and complex systems, systems of systems, component architectures
or service oriented architectures reasoning about exception flow without proper
tool-support seems to be unmanageable. Tools supporting software developers in
this reasoning process by deriving exception propagation information from com-
ponent code are strongly required and help in designing robust software systems
by establishing sound exception handling mechanisms. Furthermore system run-
time mechanisms have to be made available to provide means for automatic fault
containment by building quarantine areas around “infected” data structures dur-
ing runtime. Exception propagation beyond certain system boundaries has to be
prohibited to contain the impact of uncaught exceptions. Components and data
structures affected by exceptions not handled appropriately have to be identified
and isolated during runtime. Access to the functionality provided by these data
structures has to be restricted dynamically to reduce error propagation.

Accordingly, an exception handling framework including two highly interde-
pendent and closely related approaches is proposed:

– Development of a graph-based static exception analysis tool for Java inte-
grated into the Eclipse development environment

– Development of a runtime system mechanism for Java containing the impact
of uncaught exceptions by prohibiting exception propagation and gracefully
degrading system functionality

3 Approach

Graph-based Exception Analysis – Supporting developers by analyzing compo-
nent code during compile-time to detect exception handling related problems is
the basic goal of the graph-based exception analysis approach. Static code anal-
ysis based on the abstract syntax tree (AST) of component code is applied. A
transparent representation of all exceptions possibly encountered within an arbi-
trary system scope is the outcome of such analysis. In object oriented program-
ming languages methods are a reasonable scope for exception handling analysis.

Exception Flow Analysis 31

Exceptions encountered within a scope comprise exceptions explicitly raised by
“throw”-statements, exceptions raised as the result of system operations, excep-
tions explicitly propagated from method calls and the set of uncaught exceptions
implicitly propagated from enclosed scopes. This approach is based on existing
exception flow analysis approaches [5–9].

To support static and dynamic reasoning about exception flow in the context
of object oriented software development, a general model of exception handling
structures is mandatory – the general exception model (GEM). The model cor-
relates exception handling structures in object-oriented languages that define
exceptions as objects to their occurrence in a program’s calling hierarchy. The
goal of the model is to provide a unified basis for discussing problems related to
the design, implementation, and maintenance of exception-handling structures,
and for the analysis that can help alleviate these problems. The model is focused
on the description of possible exception flows in a program. The general excep-
tion model is easily applicable to the Java programming language. The GEM is
adapted from work by Robillard/Murphy [7] and Schaefer/Bundy [8]. A GEM-
instance represents the information required to identify a program’s exception
flow. A data structure intuitively suitable to represent this information is a di-
rected labeled graph – the exception propagation graph (EPG). The graph can
be derived from a program’s abstract syntax tree. The EPG represents a pro-
gram’s calling hierarchy and correlates exception structures (i.e. possibly raised
exceptions and exception handlers) to their occurrence in the calling hierarchy.
To properly reflect exception flow in the graph structure the graph is annotated.
Nodes and edges are extended with exception path information (EPI) identifying
all possible exception propagation paths from lower level nodes to the root node
(system entry point).

Most integrated development environments such as Eclipse use abstract syn-
tax trees (AST) as internal object representations of program code. Naviga-
tion and editing program code, for example, are performed based on this AST-
representation. The proof of concept for the approach briefly described above
is based on Eclipse framework’s DOM representation (Eclipse’s AST) of Java
code. The prototypical exception analyzer is realized as an Eclipse plug-in and
is tightly integrated into the Eclipse platform providing precise exception flow
information for program code. The exception analyzer prototype is presently
being implemented.

Fault Containment and Graceful Degradation in the Presence of Uncaught Ex-
ceptions – Todays exception handling mechanisms exclusively located at the
application level are highly error-prone. A default exception handling mecha-
nism located at the runtime level protecting the application from the impact
of uncaught exceptions is missing. An exception handling framework (exception
guard) prohibiting exception propagation beyond well-defined system points and
gracefully degrading system parts affected by uncaught exceptions is proposed.
The framework is based on the EPG gained from the static code analysis.

Components are a reasonable scope for prohibiting exception propagation. A
vital feature of any sound exception handling mechanism is the differentiation

32 Nikolas Nehmer and Andreas Reuter (advisor)

between internal exceptions to be handled inside the scope and the external ex-
ceptions which are propagated outside the scope [10]. For every exception raised
during runtime, a system’s EPG can be used to determine if an appropriate
handler exists within the same scope without propagating the exception up the
call stack. Internal exceptions identified as uncaught exceptions are converted
into default external exceptions, declared in the component signature by de-
fault. Component parts affected by uncaught exceptions have to be gracefully
degraded. Access to these component parts are either restricted or prohibited.
“Erroneous” object instances are identified by combining static information rep-
resented by the EPG with runtime information. Exception raising system states
are analyzed by investigating call stack information and object states. This in-
formation can be used to identify potential error-raising conditions and prevent
future exception occurrences. A prototypical implementation of the exception
guard is subject of ongoing work. Systematic fault injection into sample appli-
cations will be used to evaluate the framework comparing application behavior
with and without support by the framework.

References

1. Romanovsky, A., Sandén, B.: Except for exception handling Ada Lett. XXI(3)
(2001) 19–25

2. Cristian, F.: Exception Handling and Tolerance of Software Faults. In: Software
Fault Tolerance. John Wiley & Sons (1995) 81–107

3. Jézéquel, J.M., Meyer, B.: Design by contract: The lessons of ariane. Computer
30(1) (1997) 129–130

4. Garcia, A.F., Rubira, C.M.F., Romanovsky, A., Xu, J.: A comparative study of
exception handling mechanisms for building dependable object-oriented software.
The Journal of Systems and Software 59(2) (2001) 197–222

5. Malayeri, D., Aldrich, J.: Practical exception specifications. In Dony, C., Knudsen,
J.L., Romanovsky, A.B., Tripathi, A., eds.: Advanced Topics in Exception Handling
Techniques. Volume 4119 of Lecture Notes in Computer Science., Springer (2006)
200–220

6. Sinha, S., Orso, A., Harrold, M.J.: Automated support for development, mainte-
nance, and testing in the presence of implicit control flow. In: ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2004) 336–345

7. Robillard, M.P., Murphy, G.C.: Static analysis to support the evolution of ex-
ception structure in object-oriented systems. ACM Trans. Softw. Eng. Methodol.
12(2) (2003) 191–221

8. Schaefer, C.F., Bundy, G.N.: Static analysis of exception handling in ada. Softw.
Pract. Exper. 23(10) (1993) 1157–1174

9. Chang, B.M., Jo, J.W., Yi, K., Choe, K.M.: Interprocedural exception analysis for
java. In: SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing,
New York, NY, USA, ACM (2001) 620–625

10. Romanovsky, A.B.: Exception handling in component-based system development.
In: COMPSAC ’01: Proceedings of the 25th International Computer Software and
Applications Conference on Invigorating Software Development, Washington, DC,
USA, IEEE Computer Society (2001) 580

First Class Relationships for OO Languages

Stephen Nelson, David J Pearce (Advisor), and James Noble (Advisor)

{stephen,djp,kjx}@mcs.vuw.ac.nz
Victoria University of Wellington, New Zealand

Abstract. Relationships have been an essential component of OO de-
sign since the 90s and, although several groups have attempted to rectify
this, mainstream OO languages still do not support first-class relation-
ships. This requires programmers to implement relationships in an ad-hoc
fashion which results in unnecessarily complex code. We have developed
a new model for relationships in OO which provides a better abstraction
than existing models provide. We believe that a language based on this
model could bring the benefits of relationships to mainstream languages.

1 Problem Description
Object-oriented practitioners are frequently faced with a dilemma when they de-
sign and implement object-oriented systems: modelling languages describe object
systems as a graphs of objects connected by relationships [2, 9], but most object-
oriented languages have no explicit support for relationships. This results in a
trade-off between high-level models which are de-coupled from their implementa-
tions and low-level models which are confusing to use as they contain irrelevant
detail.

There have been many proposals for adding relationship support to object-
oriented languages. Rumbaugh proposed a language with relationship support in
1987 and there has been a recent resurgence interest with proposals for language
extensions [1, 3, 10] and library support [6, 7].

The potential benefits of such support are clear: improved traceability be-
tween design and implementation, reduced boilerplate code, better program un-
derstanding by programmers, and the opportunity to introduce new high-level
language features such as queries, relationship (function) operations, and pro-
gram structure constraints.

In spite of the clear advantages of relationship support none of the solutions
proposed so far have achieved widespread use, and while this may be due to
limited time and exposure we believe that existing solutions fail to capture the
intent of object-oriented models and so fail to realise those advantages.

We intend to address the disconnect between object-oriented design and im-
plementation by rethinking the way object-oriented languages are structured.
Rather than adding relationships to existing language models [1, 3, 6, 7, 10] we
propose that existing language models should be re-factored to support relation-
ships as a primary metaphor.

2 Goal Statement
Our goal is to address the disconnect between object-oriented design and im-
plementation by rethinking the way object-oriented languages are structured.

34 Stephen Nelson, David J Pearce (Advisor), and James Noble (Advisor)

Class1 Class2 Obj1

Obj5 Obj6

Obj3Obj2

Obj4

Assoc2

Assoc1

Obj1

Obj5

Obj3

Obj4

Assoc1

Role1 Role2

Relation1

Classes

Associations

Relations Relationships

Links

Objects

Fig. 1. The three tiers in our relationship system. The bottom tier (object tier) de-
scribes the objects in the system. The middle (link tier) adds the links between objects,
and the top (relationship tier) describes properties of groups of objects and links, in-
cluding roles, relationship constraints, and collections.

This will allow us to realise the advantages long promised by relationships and
introduce new high-level language features such as relationship queries, rela-
tionship (function) traversal operations, and program structure constraints. We
have developed a new model for the object-oriented paradigm which focuses on
relationships rather than objects.

3 Relationship Model

Typical relationship systems introduce relationships or associations (class level)
which describe links, or groups of links in implementation (object level)[1, 3, 7,
6, 8, 10]. We believe that these systems do not adequately describe relationships
because they either fail to consider groups of links at the implementation level
or focus on groups of links (relationships) at the expense of the individual link
at the modelling level. This introduces confusion in the literature because it is
not clear whether a relationship is a link or a group of links, and whether the
term can be used at the modelling or the implementation level, or both.

We believe that by modelling objects, links, and relationships separately as
classes, associations and relations, the resulting system will be easier to under-
stand and consequently easier for programmers to use. To clarify the distinctions
between the model elements we introduce a three tiered system for describing
programs which is shown in Figure 1.

Object Tier The object tier consists of objects (modelled by classes), similar
to the objects defined in traditional object-oriented models. Objects may have
state and behaviour, but they may not communicate with other objects on this
tier unless there is a strong composition relationship between them. This ensures
that more complex relationships are moved up into the relationship tier.

Link Tier The next tier of our relationship system builds on the objects and
classes defined in the object tier by adding connections (links) between objects

First Class Relationships for OO Languages 35

described as associations between classes. An association between classes in this
system indicates that the classes are related in some way. For example, an as-
sociation between the classes Person and Course indicates that people may be
linked with courses.

Links are immutable tuples containing one instance (object) from every class
in their association, similar to Vaziri et al.’s relations [10]. Unlike Vaziri et al.’s
relations, our links may not have any state or behaviour associated with them.
This removes a lot of the complexity of associations in UML and other systems
which makes them easier to describe and understand. For example, there is no
distinction between sub-typing and subsetting of associations in this system:
an association between subtypes is naturally a subset of the related association
between super-types because all possible tuples in the subtype association are
also tuples in the super-type association. Instead of having complex associations,
we introduce an additional modelling element.

Relationship Tier Relationships, introduced at the third tier of our system,
are sets of links which have type and identity. For example, we can describe
the notion of people attending courses as a subset of people and a subset of
courses which are linked by some subset of the possible links between the set of
people and the set of courses. Relationships exist as runtime entities modelled
by ’relations’.

Unlike links and associations, which have the same type if they have the
same type parameters (participants), relationships have a type defined by their
relation in the same way as objects have a type defined by their class. For
example, there may be two relationships between People and Courses, one of
type ”Attends” and the other of type ”Teaches”. These can even contain the
same links but are not equivalent because they have incompatible type. There
may even be two instances of type ”Attends” which contain the same links and
are not equivalent: relationships have independent identity in the same way as
objects.

In addition to defining relationships between objects, relations may also de-
fine roles for the objects and associations which participant in them. Roles are
like dynamic mixins; they define state and behaviour for objects (or links) sepa-
rate from the object’s class which is added to the object at runtime. The role is
associated both with the class of objects (e.g. Person) and the relation of rela-
tionships (e.g. Attends) and adds functionality to the objects which participate
in the relationship at runtime. For example, a person who is attending courses
is a student. This does not subsume the identity of the person — the person
may exist in other relationships which are unrelated to their role as a student.
Rather, the role of a person as a student adds more functionality to the person:
in the context of the person as a student they may have a student id, enrolment
details, and functionality for calculating fees. These details are irrelevant outside
of the student context and they do not affect the identity of the person however,
so it does not make sense to include them in the standard definition of a stu-
dent. Roles may also be defined for links and relationships (if the relationship is
a participant in this relationship).

36 Stephen Nelson, David J Pearce (Advisor), and James Noble (Advisor)

The three levels of abstraction which we identify are typically collapsed into
a single level in the object-oriented paradigm. This causes interwoven, fragile
code which is confusing to create and to maintain. The dependence of some
object state and behaviour on relationships is seldom recognised because object-
oriented programming languages obscure relationship concerns by describing
their implementation rather than their intention. Even languages which do ad-
dress relationships as separate entities fail to separate the behaviour associated
with relationships from the classes [8, 3], or lose the association between the state
and behaviour, and the objects with which it is associated [5, 7]. We believe that
our relationship system simplifies the categorisation of behaviour as object, link,
or relationship (role) behaviour and provides a more natural way to describe the
related behaviour than Aspect-Oriented programming [4].

4 Validation

To validate our model we plan to use it to develop a language. We will present
a grammar for the language, provide typing rules and semantics, and we will
provide proofs of type safety, soundness and correctness. We will also provide
an implementation of the language. This will highlight any practical problems
with the language which are not apparent from the theoretical model. The im-
plementation will consist of a compiler and a library system which will allow
programs to be written in our language. Finally, we will conduct various case
studies; implementing different systems in our language and others so that we
can make comparisons between them.

References

1. Balzer, S., Gross, T. R., and Eugster, P. A relational model of object col-
laborations and its use in reasoning about relationships. In ECOOP (2007).

2. Beck, K., and Cunningham, W. A laboratory for teaching object oriented think-
ing. In OOPSLA (1989), ACM, pp. 1–6.

3. Bierman, G. M., and Wren, A. First-class relationships in an object-oriented
language. In ECOOP (2005), pp. 262–286.

4. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M., and Irwin, J. Aspect-oriented programming. In ECOOP. 1997.

5. Noble, J., and Grundy, J. Explicit relationships in object oriented development.
In TOOLS (1995), Prentice-Hall.

6. Østerbye, K. Design of a class library for association relationships. In LCSD
(2007).

7. Pearce, D. J., and Noble, J. Relationship aspects. In AOSD (2006), ACM
Press, pp. 75–86.

8. Rumbaugh, J. Relations as semantic constructs in an object-oriented language.
In OOPSLA (1987), ACM Press, pp. 466–481.

9. Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modelling Language
Reference Manual. Addison-Wesley, 1999.

10. Vaziri, M., Tip, F., Fink, S., and Dolby, J. Declaritive object identity using
relation types. In ECOOP (2007), pp. 54–78.

Towards a Formal Diagrammatic Framework for
MDA

Adrian Rutle

Bergen University College, p.b. 7030, 5020 Bergen, Norway aru@hib.no

Abstract. Since the beginning of computer science, raising the abstrac-
tion level of software systems has been a continuous goal. One of the
newest developments in this direction has lead to the usage of models
and modeling languages in software development processes since soft-
ware models are abstract representations of software systems which can
be used to describe different aspects of the software systems at a higher
abstraction level. Currently, in addition to documentation purposes mod-
els are increasingly used to generate and integrate parts of the software
systems that they describe. In model-driven engineering these processes
are referred to as model transformations and are executed by model
transformation tools. As a consequence of the usage of models as input
to model transformation tools, formal modeling languages and formal
transformation definition techniques are needed in order to automati-
cally translate between (and integrate) models. Therefore, a major focus
of our research is on the formalization of modeling and model transfor-
mation in the generic formalism, Diagrammatic Predicate Logic (DPL)
which is based on graph theory and category theory. This paper provides
an overview of the state-of-the-art of our ongoing research on analysis of
modeling and model transformations based on the DPL framework.

1 Introduction and Motivation

Models, model transformations and automatization of model transformations
are key issues in the emergent approach of software development process, which
is standardized by the Object Management Group (OMG) as Model Driven
Architecture (MDA) [4]. In the MDA approach, building an application starts
with a (set of) platform-independent models (PIM) in which the structure, logic
and behavior of the application are specified. The PIMs are then transformed
by transformation tools to a set of platform-specific models (PSM). These PSMs
are used as input to code-generation tools which automatically create software
systems based on the input models [3].

In MDA, model transformation is the generation of a target model from
a source model [3]. These transformations are executed in transformation pro-
cesses. Each transformation process is described by a transformation definition,
which in turn consists of a set of transformation rules. The transformation def-
inition is written in a transformation definition language. The transformation
rules define how (and which) constructs from the source model are transformed
to (which) constructs in the target model.

38

Several languages, approaches and tools for the definition of models and
model transformations have emerged in the last years due to their usage in
model-driven engineering. However, many of these modeling and transforma-
tion languages are either not sufficiently formalized or very complicated (text-
based) or both, which makes writing formal models difficult and error-prone
[2]. Moreover, since software models are graph-based, modeling languages which
use string-based logic (e.g. first order logic) may fail to express all properties of
software systems in an intuitive way without flattening the so-called conceptual
two-dimensionality of the domain that they specify. Examples of these domains
are entities and relationships, objects and links, states and transitions etc. Thus,
diagrammatic modeling seems to be a reasonable approach for modeling software
systems since it is graph-based – making the relation between the syntax and
semantics of models more compact –, and nonetheless, it is easier for domain
experts to understand [9].

However, diagrammatic modeling languages are considered more difficult to
formalize than text-based languages, therefore, diagrammatic languages often
use text-based languages to define constraints and system properties that are
difficult to express by their own syntax and semantics, e.g. the combination of
UML and OCL which is suggested by OMG as a specification formalism for
the definition of PIMs [3]. This turns models to a mixture of text and diagrams
which is often difficult for non-experts to evaluate and understand, i.e. the models
loose their simplicity and high level of abstraction which are the most appealing
features of modeling.

2 The Goals and Approaches of our Project

Our general idea is to develop and use a diagrammatic formalism to define
and reason about models and model transformations. Therefore, a major focus
of our research is on the analysis of diagrammatic modeling, MDA and model
transformations based on a clean mathematical foundation. This includes the
analysis of some of the existing approaches, languages and tools which are used
in model-driven engineering. Further, based on this analysis and due to the needs
arising during the development of a well-structured and well-founded approach to
diagrammatic modeling and model transformation, we adapt and further develop
the theoretical foundations.

Our project involves an inter-disciplinary research where both theoretical
computer scientists and software engineers are working together to solve practi-
cal and theoretical problems. The challenge is to establish a common conceptual
platform between the theoreticians and the software engineers to enable discus-
sions about these problems. We have made a stepwise progress which started
by studying the basics of Category Theory, Graph Theory, MDA and model
transformations. Now we are studying some existing tools and approaches that
are directly related to MDA, especially tools that are based on graph trans-
formations and OMG standards. After understanding the principles of these
approaches, we compare them with each other and find the commonality and

39

differences between them. At the same time, we study some typical cases where
model transformations are used and we have decided to use class diagram to
database scheme transformation in our case study. Based on our preliminary
investigations and analysis, we decided to use the Eclipse Modeling Framework
(EMF) as the basis for our implementations. We chose EMF because of the clear
semantics of Ecore, which is the metamodel of EMF models. Moreover, EMF is
an open source initiative and many of the existing tools are implemented as
plug-ins to Eclipse. Currently, we are working on the design of a toolset that
will exploit the proposed mathematical foundation which is intended to be our
formalization approach.

Our approach is based on the generic formalism Diagrammatic Predicate
Logic (DPL) [9,8]1. We consider DPL a suitable specification formalism to de-
fine diagrammatic modeling languages with a strong mathematical foundation,
first, because models and metamodels in MDA are graph-based, and also because
DPL is based on Graph Theory and Category Theory (CT), which is the mathe-
matics of diagrammatic notations. Further adaptations of DPL have shown that
it is also a promising approach for the formalization of model transformations
[5]. Graph Theory is already used as a basis for modeling and model transforma-
tions. The concepts of typing and typed graphes are used frequently in software
engineering communities to talk about metamodels and their instances, respec-
tively. In addition, graphical model transformations are often linked to graph
transformations and several implementations of triple graph grammars (TGG)
are discussed in the literature.

DPL is a graph-based specification format that takes its main ideas from
both categorical and first-order logic (FOL), and adapts them to SE needs [9]. In
DPL, software models are represented by diagram specifications. These diagram
specifications are structures which consist of a graph G and a set of diagrams
in G which are labeled with predicates from a predefined signature [6]. Each
labeled diagram corresponds to a constraint. The notion of labeled diagrams is
nothing but a graph-based analog of a logical formula whose arity is a graph
instead of a set. In DPL, each modeling language corresponds to a modeling
formalism which consists of a signature and a diagram specification; where the
signature corresponds to language constructs and the diagram specification spec-
ifies the metamodel of the language. The DPL formalism is a generalization and
adaptation of the categorical sketch formalism where signatures are restricted
to a limited set of predicates: limit, colimit and commutative diagrams [7]. This
generalization is necessary to make DPL suitable for use in SE.

Research in the field of model transformations has shown that model trans-
formation approaches are categorized into relational, where logic programming
is used to express relations between models; graphical, which is based on the the-
ory of graph-transformations; and hybrid, which is a mixture of both [1]. DPL
can be seen as a natural enhancement of the graphical approaches which extends

1 The DPL framework is called Generalized Sketches in previous publications, however,
since the concept of "sketch" is misleading in SE, the name of the formalism is
changed to DPL.

40

these approaches by a graph-based specification formalism and a corresponding
graph-based logic, which is also part of our ongoing project.

The goals of our project are summarized as follows:

– development and adaptation of the theory of DPL and exploit these theories
for the definition of diagrammatic specifications,

– analysis of the metamodel of EMF and relational database systems as dia-
gram specifications in the DPL formalism and the transformation between
them as case-studies, and,

– design and implementation of a framework for model-driven development
that uses properties and capabilities from DPL.

The framework will consist of modeling tools, code-generation facilities and
transformation definition tools. The modeling tools will be used to specify both
signatures and diagram specifications, i.e. both models and modeling formalisms.
The code-generation and model transformation tools will be used to define and
execute model-to-code and model-to-model transformations, respectively. By de-
veloping tools that support DPL as a generic pattern for specifying and develop-
ing diagrammatic specification techniques and transformations between them,
we can evaluate and exploit the practical values of DPL in many aspects of
modeling and MDA.

References

1. Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In OOPSLA 2003, editor, Generative Techniques in the context of MDA,
2003.

2. Zinovy Diskin. Mathematics of UML: Making the Odysseys of UML less dramatic.
Practical foundations of business system specifications, chapter 8, pages 145–178.
Kluwer Academic Publishers, 2003.

3. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: practice and promise.
Addison-Wesley, 1 edition, April 2003.

4. OMG. OMG Model Driven Architecture Web Site, June 2007. Object Management
Group, http://www.omg.org/mda/index.htm.

5. Laura Rivero, Jorge Doorn, and Viviana Ferraggine. Encyclopedia of Database Tech-
nologies and Applications, chapter Mathematics of Generic Specifications for Meodel
Management I and II, pages 351–366. Information Science Reference, 2005.

6. Adrian Rutle, Uwe Wolter, and Yngve Lamo. Diagrammatic software specifications.
In Iceland Reykjavik University, editor, The 18th Nordic Workshop on Programming
Theory (NWPT’06), october 2006.

7. Adrian Rutle, Uwe Wolter, and Yngve Lamo. Generalized sketches and model
driven architecture. Technical Report 367, Department of Informatics, University
of Bergen, Norway, 2008. Presented at CALCO Young Researchers Workshop 2007.

8. Uwe Wolter and Zinovy Diskin. The next hundred diagrammatic specification tech-
niques: A gentle introduction to generalized sketches. Technical Report 358, Dept
of Informatics, University of Bergen, July 2007.

9. Uwe Wolter and Zinovy Diskin. Generalized sketches: Towards a universal logic for
diagrammatic modeling in software engineering. 2008. Proceedings, ACCAT 2007,
ENTCS, Accepted for publication.

Author Index

Chin, Brian . 1

Fernandes, Clovis Torres 9
Figueiredo, Eduardo5

Garcia, Alessandro 5
Guerra, Eduardo Martins9

Harland, James 13
Holkner, Alex . 13

Kaur, Kuljit . 17

Melleg̊ard, Niklas 23

Nehmer, Nikolas 29
Nelson, Stephen 33
Noble, James .33

Pearce, David J 33

Reuter, Andreas 29
Rutle, Adrian . 37

Singh, Hardeep .17
Staron, Miroslaw 23

41

