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ABSTRACT 

As a way to gain greater insights into the operation of online communities, this 

dissertation applies automated text mining techniques to text-based communication to 

identify, describe and evaluate underlying social networks among online community 

members. The main thrust of the study is to automate the discovery of social ties that 

form between community members, using only the digital footprints left behind in their 

online forum postings. Currently, one of the most common but time consuming methods 

for discovering social ties between people is to ask questions about their perceived 

social ties. However, such a survey is difficult to collect due to the high investment in 

time associated with data collection and the sensitive nature of the types of questions 

that may be asked. To overcome these limitations, the dissertation presents a new, 

content-based method for automated discovery of social networks from threaded 

discussions, referred to as ‘name network’. As a case study, the proposed automated 

method is evaluated in the context of online learning communities. The results suggest 

that the proposed ‘name network’ method for collecting social network data is a viable 

alternative to costly and time-consuming collection of users’ data using surveys. The 

study also demonstrates how social networks produced by the ‘name network’ method 

can be used to study online classes and to look for evidence of collaborative learning in 

online learning communities. For example, educators can use name networks as a real 

time diagnostic tool to identify students who might need additional help or students who 

may provide such help to others. Future research will evaluate the usefulness of the 

‘name network’ method in other types of online communities. 
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CHAPTER 1: INTRODUCTION  

1.1 INTRODUCTION 
As social creatures, our daily life is intertwined with others within a wide variety 

of social networks involving our relatives, friends, co-workers, and a vast array of 

acquaintances and strangers. It is only natural that our digital life on the Internet is also 

made up of various social structures and networks. As Wellman (2001) noted, “computer 

networks are inherently social networks, linking people, organizations, and knowledge” 

(p. 2031). From this perspective, the Internet is more than just a means for people to 

support their existing social relationships; it also allows people to create new, exclusively 

virtual relationships through their membership in online groups and communities. This is 

made possible through the abundance of free and easy-to-use web-based information, 

communication, and community building technologies including communication 

technologies such as emails, web forums, chats, instant messaging, and twitter1; 

information dissemination and exchange technologies of web pages, wikis2, blogs3 and 

video blogs; social networking technologies such as Facebook, Myspace, and LinkedIn; 

online courseware such as Moodle, Blackboard, and Sakai; and virtual environments such 

as SecondLife and World of Warcraft.  

Each reply to an email, link to a web page, posting of a blog, or comment on a 

Youtube video, leaves a digital trace, a record that explicitly or implicitly connects the 

                                                 
1 Twitter is “a service for friends, family, and co–workers to communicate and stay connected through the 
exchange of quick, frequent answers to one simple question: What are you doing?” (http://twitter.com) 
2 Wiki is “a page or collection of web pages designed to enable anyone who accesses it to contribute or 
modify content” (http://en.wikipedia.org/wiki/Wiki) 
3 Blog is “a web site, usually maintained by an individual with regular entries of commentary, descriptions 
of events, or other material such as graphics or video” (http://en.wikipedia.org/wiki/Blogs) 



 

 2

poster to another online participant. Each of these recorded actions creates a network of 

attention around topics of interest, common affiliation, communities of practice, or 

collective action. Online contributions and interconnections are growing daily, reflected 

in the increasing volume of texts and a growing number of participants. The numbers are 

impressive: a 2008 Wikipedia compilation of sources estimated 4.6 terabytes of data 

posted daily on Usenet4; Technorati’s 2008 ‘State of the Blogosphere’5 indicates 900,000 

blogs are created each day, with 184 million people worldwide who have started a blog 

(23-26 million in the U.S.), and 346 million blog readers (60-94 million in the U.S.); 

various estimates suggest something in the order of 100 billion emails sent per day 

(Leggatt, 2007).   

This abundance of online data being captured and stored over the years offers a 

unique opportunity for social scientists and Internet researchers to study the inner 

workings of online communities. Researchers can now more closely scrutinize these 

recorded interactions and answer questions about what group’s interests and priorities 

are, how and why one online community emerges and another dies, how people reach 

agreement on common practices and rules in an online community, and how knowledge 

and information are shared among group members. Answers to these and other related 

questions will allow us to understand not only how people meet, communicate and 

establish social relationships online, but also how the Internet can be used to develop new 

technologies that better serve the information needs of members of online communities. 

For instance, social networking websites like Facebook and MySpace are good examples 

                                                 
4 http://en.wikipedia.org/wiki/USENET, retrieved March 30, 2009 
5 http://technorati.com/blogging/state-of-the-blogosphere, retrieved October 30, 2008 
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of how advancements in information technology can help people to meet online, and 

form and support a much larger number of online relationships than it has been possible 

before.  

However, many researchers and the public at large are finding it practically 

impossible to keep up with the vast amount of accumulated online data. This problem 

holds true even in smaller closed online communities. For example, in a single online 

class consisting of between 17-29 students from one of the datasets examined here, the 

members of the class easily generated hundreds of public discussion board postings in a 

short 15 week period, and that excludes postings in private discussions, email 

correspondence, and chat. But data volume alone does not fully speak to the enormity of 

the task associated with analyzing online data. To exploit an online dataset fully, 

researchers often need to examine the same set of data in multiple passes, each time 

looking for different things. Some of the many things that they can be looking for may 

include common patterns of exchange, development of shared language and 

understanding, and emergence of roles and positions that may be unique to online 

interactions. Each one of these kinds of passes takes a substantial amount of time to 

accomplish when managed by hand. Thus, it is not surprising that there is an increasing 

interest in the ability to retrieve and analyze online social networks automatically.  

Discovering details about online social networks automatically has already proven 

useful in deciding what information is relevant on the Internet, identifying credible 

websites, finding popular resources, and sharing information within a network of trust. 

Other uses of social network data include conducting viral marketing, identifying and 

tracking terrorist cells on the Internet, analyzing consumers’ perceptions of products, and 
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measuring the effectiveness of political campaigns in online and offline media.  

One of the reasons automated discovery of social networks has become so popular 

is that it tends to be unobtrusive, scalable and fast. Because the type of data typically 

analyzed comes from the public domain, it avoids the difficulties of obtaining respondent 

compliance in completing the often burdensome social network questionnaires. By 

avoiding human responses, automated network data collection is also not encumbered 

with many of the shortcomings related to the subjectivity of traditional data collection 

techniques, e.g., that, in a sociometric survey, respondents may provide partial answers, 

respond in ways they believe make their behavior look better, exaggerate interactions, 

forget people and interactions, or perceive events and relationships differently from other 

network members (see discussions by Dillman, 2000 and Lange et al., 2004).  

This dissertation focuses on new ways of discovering online social networks 

automatically. In particular, the work introduces and evaluates an automated approach for 

social network discovery from threaded discussions. Bulletin board style threaded 

discussions were chosen due to their wide acceptance and usage by various online 

communities.  

The most common automated method used to collect information on social 

networks in online communities is to gather ‘who talks to whom’ data which counts the 

number of messages exchanged between individuals from their recorded interactions. A 

higher number of messages exchanged is usually interpreted as a stronger tie between 

people. This method is often used with email-type data. In online communities that use 

threaded discussions, researchers have relied on information in posting headers about the 

chain of people who had previously posted to the thread (further referred to as ‘reference 
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chain’) to gather ‘who talks to whom’ data. For logical and practical reasons, researchers 

have generally assumed that the reference chain may reveal the addressee(s). More 

specifically, it is usually assumed that a poster is replying to the previous poster in the 

reference chain. (For the remainder of the dissertation, I refer to any social network that 

is built using information in the reference chain as a ‘chain network’.) Unfortunately, this 

assumption is not always true in highly argumentative and collaborative communities 

such as online classes. A previous poster is not always the addressee of the posting. A 

poster may address or reference other posters from earlier in the thread, from another 

thread, or even from other channels of communication (e.g., emails, chats, face to face 

meetings, etc). So, while the use of reference chains provides some mechanism to 

approximate ‘who talks to whom’ data for threaded discussions, such approximation is 

not very accurate and is likely to undercount the number of possible connections, thereby 

underestimating the connections among members of the network. To overcome the 

inherent flaws associated with gathering ‘who talks to whom’ data from threaded 

discussions, this dissertation proposes a new approach for inferring social networks based 

on the actual content of postings. The social networks built based on this approach will be 

referred to as name networks (for reasons that will be explained in Chapter 3).  

As a case study, the proposed ‘name network’ approach is evaluated in the context 

of online learning using data collected from six different graduate level online classes 

taught at the Graduate School of Library and Information Science, University of Illinois 

at Urbana-Champaign in Spring 2008. The online learning context was chosen because 

the online classes relied primarily on bulletin boards to conduct their discussions, each 

class represented a closed community with a finite number of online participates, and the 
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time frame for data collection had a clear beginning and end.  

The end result of the research is the development of a low-cost and time-efficient 

set of techniques for on-the-fly content analysis of online communities and a new schema 

for using these techniques to discover social networks automatically. The following 

section outlines the whole dissertation and describes the research questions. A summary 

of the main steps in the study are also presented in Figure 1.1 (Figures can be found at the 

end of each chapter). 

1.2 RESEARCH OUTLINE AND QUESTIONS 

1.2.1 Building Name Networks 

In order to develop an automated method for building name networks, the 

following research question needs to be addressed: 

Question 1: What content-based features of postings help to uncover nodes 

and ties between group members? 

To answer this question, Chapter 2 first discusses several possible ways of 

building social networks from text, drawing on examples from the existing literature in 

Computational Linguistics. Then Chapter 3 proposes and describes the new method 

called ‘name network’. In general, to build the name network, the method starts by 

automatically finding all mentions of personal names in the postings and uses them as 

nodes. To discover ties between nodes, the method connects a poster to all names found 

in his/her postings.  

1.2.2 Comparing Name Networks with Those Derived from Other Means 

To evaluate the proposed method of building social networks and identify what 

will be gained from using this more elaborate method, social networks derived using the 
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‘name network’ method are compared to those derived from other means, specifically (1) 

chain (reply-to) networks and (2) students’ self-reported (perceived) social networks. The 

chain networks are built automatically using students’ posting behaviors, and the self-

reported social networks are built based on the data collected via online questionnaire 

from students in the six online courses that participated in the study. Datasets and 

procedures used to evaluate the proposed ‘name network’ method are discussed in more 

detail in Chapter 4.  

Chapter 5 addresses the following research question: 

Question 2: How is the proposed name network associated with the chain 

network and with the self-reported network? 

To answer this question, the study relies on QAP correlations and exponential 

random graph models (p* models) to perform a comprehensive comparison between 

these networks. The supposition is that (1) the name network is capable of identifying 

communication patterns between people more accurately than the chain network, and (2) 

the name network more closely matches perceived structures of online participants than 

the chain network.  

As mentioned earlier, the ‘name network’ method is evaluated here in the context 

of an online learning environment. Below is a quick explanation of why uncovering 

perceived social structures of online participants is especially important in the learning 

context.  

Traditionally, it is presumed that observed social networks can more accurately 

reflect relations between group members compared to individual perspectives and thus 

provide a better representation of what is really going on in an online community. But for 
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online learning environments, due to the individualized nature of learning outcomes, it 

may be more important to identify and understand perceived social networks in order to 

study collaborative learning. This is because what is deemed as important or relevant to 

one student may only be marginally valued by another student. Until now, the only 

reliable way to collect perceived data has been through surveys which are difficult to 

collect due to the sensitive and resource-intensive nature of network questions. Therefore, 

it would be a methodological breakthrough if an automated method for mimicking 

perceived social networks is devised. 

1.2.3 Identifying Types of Social Relations in the Name Network 

To further explore the nature of the name network and evaluate its usefulness in 

the evaluation of collaborative learning, the types of social interactions and relations 

embedded in the name network are examined. This is discussed in Chapter 5. 

Specifically, Section 5.3 looks for relations that are known to be crucial in shared 

knowledge construction and community building such as ‘help’, ‘work together’ and 

‘socialize’, and thus important in achieving successful collaborative learning. The 

presence of these kinds of relations in the name network would signify its ability to 

reflect collaborative learning processes and perhaps even predict learning outcomes. 

Therefore, the last question is:  

Question 3: What types of social relations does the name network include?  

To address this question, a detailed, manual exploration of social networks and 

postings is conducted. This exploration uses a web-based text mining and visualization 

system called Internet Community Text Analyzer (ICTA), available at 

http://textanalytics.net.  
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ICTA was built as part of this dissertation research. It can be used to analyze a 

wide variety of other types of text-dependent online communities. A description of 

ICTA’s capabilities and interface is given in Chapter 4. Since its inception, ICTA has 

already proved to be useful in at least two separate studies. One was a LEEP language 

study by Haythornthwaite and Gruzd (2007). Another study used ICTA to analyze 

communal discourse produced by members of the “i-neighbors.org” website by Keith N. 

Hampton (the publication titled “Glocalization: Internet Use and Collective Efficacy”, in 

preparation). In this dissertation, ICTA was used as a visualization and assessment tool 

for presenting results derived from the ‘name network’ method.  

Chapter 6 presents the overall summary of the findings and specific examples on 

how the name network can be used to study online classes and assess collaborative 

learning. The chapter also addresses limitations of the ‘name network’ method and 

presents ideas for future research. 

1.3 MAIN CONTRIBUTIONS OF THE RESEARCH 
This work makes the following contributions to the research on online 

communities, social network analysis, computer-mediated communication and 

collaborative learning: 

 Development of a novel approach (name network) for content-based, automated 

discovery of social networks from threaded discussions in online communities 

and a framework for evaluating this new approach, 

 Demonstration of the proposed automated approach for collecting social network 

data as a viable alternative to the costly and time-consuming collection of users’ 

data on self-reported networks, 
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 Demonstration of how the name network can be used to study online classes and 

assess collaborative learning, 

 Development of the ICTA web-based system (http://textanalytics.net) for content 

and network analysis. 

1.4 FIGURES  
Figure 1.1: Study outline  

 
 

Main steps: 

 Step 1: Using postings from actual online classes, derive social networks 

using the ‘name network’ method (as proposed in this dissertation) and the 

‘chain network’ method.  

 Step 2: To determine whether social networks discovered by the ‘name 

network’ method are any different from those discovered by the ‘chain 

network’ method, compare them against each other. This is done, to ensure 

Name Network Chain Network 

Forum Postings 

Self-Reported Network 

Survey 

Step 2

Step 4 Step 4 

Step 1 Step 1 

Step 3 
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that there are enough differences to justify the time and expense to build an 

alternative to chain networks. Both methods are described in Chapter 3, and 

the results of the comparison are described in Chapter 5, Section 2. 

 Step 3: Collect information about actual social interactions in the class and 

build so-called self-reported networks by asking students to complete the 

online survey about their personal networks. This step is explained in more 

details in Chapter 4. 

 Step 4: Compare the self-reported network against the name network and the 

chain network in order to check which of the two types of networks (name or 

chain) better resembles actual social interactions in the class. To perform these 

comparisons, the study relies on QAP correlations, exponential random graph 

models (ERGMs or p* models), and the manual exploration of social networks 

and postings using Internet Community Text Analyzer (ICTA). This step and 

the results are described in Chapter 5, Section 3. 
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CHAPTER 2: LITERATURE REVIEW  

This chapter provides a brief overview of Social Network Analysis (SNA) and 

explains why it is an effective method for the study of online communities, and provides 

a review of common approaches to automated discovery of social network data.  

2.1 SOCIAL NETWORK ANALYSIS 
Social Network Analysis (SNA) is a commonly used method to study social 

interactions of online groups at an individual level as well as group level (e.g., 

Haythornthwaite et al., 1996; Haythornthwaite, 1998; Wasserman & Faust, 1994; 

Wellman, 1996). According to the social network perspective, individual behavior is 

defined by others. Thus, to understand individual behavior, we need to “describe patterns 

of relationships between actors, analyze the structure of these patterns, and seek to 

uncover their effect on individual behavior” (Nurmela et al., 1999; n.p.). SNA seeks to 

represent datasets in a form of social networks. In a social network, there are nodes which 

represent group members, and edges (often referred to as ties) that connect people by 

means of various types of relations. The strength of the relations is usually conveyed via 

a weight assigned to each tie.  

A network representation of social interactions provides researchers with an 

effective mechanism for studying collaborative processes in online communities, such as 

shared knowledge construction, information sharing and exchange, influence, support. 

Because the case examined in this dissertation is online learning communities, the three 

examples below demonstrate how SNA can be used to study social interactions in online 

classes. These are just a few of the many examples of studies that have relied on SNA to 

evaluate individual participation based on the position of individual nodes in a network, 
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and group cohesion based on general properties of a network.  

Using centrality, density and QAP correlation measures, Haythornthwaite (2001) 

compared class interactions across four different self-reported networks: Collaborative 

Work, Exchanging Advice, Socializing, and Emotional support. One of the main research 

questions posed in that study, that is also relevant to this dissertation work, was “Do the 

four relations describe similar structures or do they capture different aspects of student 

interaction?” The author found some similarity between the Collaborative Work and 

Exchanging Advice networks, but other networks described different network 

configurations. Furthermore, all but one network, Emotional Support, moved toward a 

team structure over time suggesting that by the end of the semester students interacted 

mostly with team members, “perhaps as a means to reduce communication load and 

complete the course” (p. 219). 

In another study, Reyes and Tchounikine (2005) demonstrated how a tutor could 

rely on participants’ centrality and group cohesion in a social network to assess 

collaborative learning. In one of the threaded discussions that they studied, group 

cohesion was extremely low. Upon further investigation, it was discovered that the two 

participants with the highest centrality were dominating the conversation, a condition that 

may be undesirable for learning communities where wider spread contribution is 

intended, and thus of value to identify. 

Among most recent work, Cho et al. (2007) explored different social network 

properties such as degree, closeness, betweenness, and structural holes to find the 

relationship between students’ positions in the social network and their success in the 

class, and to see which measures correlate with final grades. For example, they found that 



 

 14

“closeness centrality was significantly [and positively] associated with students’ final 

grades” (p. 322). Additionally, the authors used a novel change propensity measure to 

find “the degree to which an individual renewed his/her social and intellectual capital as 

the person participates in a new learning environment” (p. 318). This measure takes into 

account students pre-existing social networks with class members. They found that 

“students’ initial network positions had negative effects on change propensity,” meaning 

that “those who were central in the pre-existing network were more likely to stay in their 

initial social circles, whereas peripheral actors were more likely to alter their network 

compositions, since they are not bound to pre-existing networks” (p. 322).  

These studies demonstrate that SNA is a promising method that can be used to 

study group dynamics among online learners, and offers a new window into 

understanding the various social connections that develop within online communities. 

However, to study online communities using SNA, social network data about connections 

among members of a particular community needs to be collected. The following two 

sections describe common approaches to gathering data about social networks focusing 

on the newly emerging area of automated techniques. 

2.2 CURRENT METHODS TO COLLECT SOCIAL NETWORK DATA  
A traditional way to collect information about social networks is to ask group 

members themselves about their ties with others. However, this method is very time 

consuming and prone to a high rate of non-response. In survey research in general, there 

are two main reasons for high rates of non-response: asking questions that are highly 

sensitive, and conducting surveys that have a burdensome quantity or type of questions 

(Dillman, 2000). Furthermore, as shown in most of the studies on the accuracy of the 
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acquired social networks, “individual reports about social interactions differ substantially 

from the objective observations of these interactions” (Lange et al., 2004, p.354). 

Responders may lie, forget and/or simply perceive the events and relationship with other 

group members differently. As a result of these inherent flaws with survey data, many 

researchers are turning to cheaper and more objective, automated methods for collecting 

data on social networks. Some of these automated methods include using movement 

tracking devices (e.g., Matsuo et al., 2006), log analysis (e.g., Nurmela et al., 1999), and 

co-citation analysis (e.g., White et al., 2004). In online communities the most common 

automated method is based on finding ‘who talks to whom’ data, which counts the 

number of messages exchanged between individuals based on their recorded interactions. 

A higher number of messages exchanged is usually interpreted as indicating a stronger tie 

between people.  

While this method has some advantages, there is an important shortcoming of this 

approach. It has to do with the ability to count accurately the messages exchanged 

between people in common forms of computer-mediated communication such as chats 

and threaded discussion forums. Unlike email headers, chat messages or posting headers 

in discussion forums do not usually contain information about the addressee(s). What 

makes this even more challenging is that group chats and threaded discussions tend to be 

open-ended and free flowing communication that is accessible to every member of a 

group; as a result, it is difficult to determine automatically how much influence, if any, a 

particular student or posting might have on another member of the community. As a work 

around for this problem associated with threaded discussions, some researchers rely on 

information in posting headers about the chain of people who had previously posted to 
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the thread (referred to here as ‘reference chain’). For logical and practical reasons, it is 

generally assumed that the reference chain may reveal the addressee(s). More 

specifically, it is usually assumed that a poster is replying to the immediately previous 

poster in the reference chain. Unfortunately, the above mentioned assumption is not 

always true in highly active, argumentative, or collaborative communities such as online 

classes, or where many discussion topics may be in play at one time. A poster may also 

address or reference other posters from earlier in the thread, from another thread, or even 

from other channels of communication (e.g., emails, chats, face to face meetings, etc).  

Further, an individual may seem to respond to one post, but in the text refer to several 

others, synthesizing and bringing together comments of many posters. So, while the use 

of reference chains provides some mechanism to approximate ‘who talks to whom’ data 

for threaded discussions, such approximation is not very accurate and is likely to cause an 

undercounting of possible connections. Further, it is unclear to what extent chain 

networks represent ‘real’ social networks, i.e. those defined by the multi-relational set of 

interactions and perceptions. 

In the examples below if we were to rely on just the chain network to discover 

ties, we would miss some important ties. In Example 1, the chain network only finds one 

connection between Sam and Gabriel. But there are actually four possible connections 

with Sam. This is because except for Gabriel, the other addressees (Nick, Ann and Gina) 

in the sample message below were not among the people who had previously posted to 

the thread.  

In Example 2, Fred is the first person who posted to the thread, thus the reference 

chain is empty. As a result, the ‘chain network’ method finds no connections in this 
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posting. However, upon closer examination, there is actually one potential connection 

between the poster Fred and a person named Dan, who has not posted to the current 

thread. 

Example1: 

FROM: Sam  
REFERENCE CHAIN: Gabriel 

Nick, Ann, Gina, Gabriel: I apologize for not backing this up with a good 
source, but I know from reading about this topic that libraries […] 

 

Example 2: 

FROM: Fred 
REFERENCE CHAIN: <empty> 

I wonder if that could be why other libraries around the world have resisted 
changing – it’s too much work, and as Dan pointed out, too expensive. 

 

Based on the preceding discussion, SNA seems to be an effective method for the 

analysis of social interactions in online communities. However, SNA procedures in their 

current form can not accurately build social networks from a non-email type of 

communication such as chats or threaded discussions which are often favored in online 

communities. As mentioned earlier, the current work is focusing specifically on threaded 

discussions. However, this work is easily adaptable to accommodate other online data 

types such as non-threaded discussion lists, chats, wikis and blogs. The next section 

discusses a number of modern text mining techniques that can be used to overcome these 

inherent flaws in the methodological approach currently used in SNA for inferring social 

network data from threaded discussions.  
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2.3 AUTOMATED DISCOVERY OF SOCIAL NETWORKS FROM 
TEXTUAL DATA 

Text mining techniques have been gaining in sophistication over the past decade. 

These techniques now offer ways to discover social networks from documents published 

on the Internet and text-based online communication. In general, to discover social 

networks from textual data, the following steps are taken: 

 Node Discovery, when all references to people such as names, pronouns, and 

email addresses are identified.  

 Coreference and Alias Resolution, which resolves ambiguities about people, e.g., 

differentiating between people with the same name and creating a single identity 

for those with multiple aliases. 

 Tie Discovery, which determines whether or not there are social connections 

between people identified in the first two steps.  

The following describes each of these three steps and provides examples from the 

literature. 

2.3.1 Common Practice: Node Discovery 

Node discovery from text is usually conducted through the discovery of personal 

names and other references to people in the text. It is part of a broader task in 

Computational Linguistics (CL), called Named Entities Recognition (NER). NER itself is 

a set of text mining techniques designed to discover named entities, connections and the 

types of relations between them (Chinchor, 1997). In NER, a named entity is defined 

very broadly. It may be a person, organization, or even a geographic location. NRE is 

commonly used in various Natural Language Processing (NLP) applications such as 
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machine translation, information extraction, and question answering systems. An 

example of an application that deals specifically with people’s names is anonymization or 

pseudonymization for the purpose of hiding sensitive data in private or secret documents 

such as personal medical records and vital government documents (e.g., Medlock, 2006; 

Sweeney, 2004; Uzuner et al., 2007). 

Since it is relatively easy to find pronouns and email addresses in text6, the 

following review focuses on the discovery of personal names. There are two primary 

approaches to finding personal names in the text. The first and easiest approach is to look 

up each word in a dictionary of all possible personal names. If a word is in the dictionary 

of names, then it is considered to be a name. Examples of electronic dictionaries with 

English names include the Dictionary of First Names (Hanks et al., 2006), the publicly 

accessible U.S. Census7, a commercial InfoSphere Global Name database from IBM8, 

and a web resource ‘Behind the Name’9. Researchers who have relied on this approach 

include Harada et al. (2004), Patman and Thompson (2003), Sweeney (2004). This 

approach is easy to implement and run; however, it tends to leave out names that are not 

already found in the dictionary. These may be names of non-English origin, informal 

variations of names, or nicknames. Additionally, this approach does not take into account 

that in different sentences a word may be a name or just a noun, e.g., “Page asked for my 

                                                 
6 Pronouns can be found by comparing each word in the text with a list of possible pronouns, and email 
addresses can be found by matching each word with a string pattern like [part1]@[part2].[part3]. Even as 
people begin to disguise their email addresses to avoid web crawlers, it is not much more of a programming 
task to remove blanks or search for ‘at’ instead of ‘@’. 
7 US Census - http://www.census.gov/genealogy/names/dist.all.last 
8 IBM InfoSphere Global Name - http://www-
306.ibm.com/software/data/ips/products/masterdata/globalname 
9 ‘Behind the Name’ website - http://www.behindthename.com 
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help” and “Look at page 23”. To make sure that an algorithm finds the name ‘Page’ in 

the first sentence above and ignores the word ‘page’ in the second, some researchers may 

consider only capitalized words as potential candidates for personal names and ignore 

others. However, this restriction is not very practical with informal texts such as 

computer-mediated communication where names are often not capitalized. 

An alternate approach to finding personal names can be used that does not require 

using a dictionary of names. This approach applies linguistic rules or patterns to the 

content and sentence structure to identify potential names. The linguistic rules and 

patterns are often built based on characteristic attributes of words such as word 

frequencies, context words, word position in the text. Some work in this direction 

includes that of Chen et al. (2002), Bikel et al. (1997), Nadeau et al. (2006), Sekine and 

Nobata (2004), and Yang and Hauptmann (2004).  

In practice, these two approaches are usually used together; for example, finding 

all names based on the dictionary first, and then using linguistic rules/patterns to find 

names that are not in the dictionary. Using such a hybrid approach, Minkov et al. (2005), 

for example, reported a 10-20 per cent improvement in accuracy. The downside of a 

hybrid approach is that it tends to increase the time needed to process the textual data. 

For a more detailed survey of modern NER techniques, see Nadeau and Sekine (2007).  

For the ‘name network’ method, I use a hybrid approach to find and extract 

personal names, similar to the one described above (see Section 3.1.1 for more details).  

2.3.2 Common Practice: Coreference and Alias Resolution 

Once names and other words that refer to people (e.g., titles, pronouns, email 

addresses) are identified, the next step is coreference and alias resolution. The goal of this 
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step is two-fold: to group all mentions of the same person together (for example, ‘you’, 

‘John’, ‘Mr. Smith’ and ‘j.smith@mail.net’), but at the same time to distinguish between 

two or more people with the same name. Similar to the previous step of identifying 

named entities, for coreferencing, Computational Linguistics (CL) relies on a more 

general approach based on Machine Learning (ML) techniques and tries to link not just 

names, but any coreferring noun phrases across sentences and documents; where noun 

phrases may refer to people, organizations or any other objects in the world. In this 

instance, CL uses ML techniques to determine the likelihood that a set of noun phrases 

might refer to the same entity. The likelihood is measured based on the unique 

characteristic attributes of noun phrases such as the distance between noun phrases in the 

text, lexical similarities, how often phrases collocate with each other, their agreement in 

gender and semantic meanings, etc. For recent work in this area, see Culotta et al, 2007; 

Luo et al, 2004; Soon et al, 2001; Yang et al, 2008. 

In practice, to discover a social network from transcripts of computer-mediated 

communication (CMC), there is usually no need to perform a full coreference and alias 

resolution. Quite often only resolution among personal names, email addresses and 

sometime pronouns is sufficient to complete the task. That is why researchers working 

with CMC-type data such as emails often rely on simple rule-based or string-matching 

approaches. For example, McArthur and Bruza (2003) approached a pronoun coreference 

resolution in an email archive by simply replacing pronouns ‘I’, ‘my’, ‘me’ with the 

sender’s name and pronouns ‘you’ and ‘your’ with the receiver’s name. There are also a 

number of simple but effective methods that match variations of names and/or email 

addresses by relying on phonetic encoding and/or pattern matching techniques (e.g., Bird 
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et al., 2006; Christen, 2006; Feitelson, 2004; Patman and Thompson, 2003). For example, 

a simple rule may state that an email address belongs to a person if it contains either 

his/her first or last name and the initial of the other. According to this rule, some 

examples of emails that will be attributed to John Smith are john.smith@mail.org, 

jsmith@mail.net, john@smith.net, s.john@mail.net. For a more in-depth review of 

personal name matching techniques, see the recent survey conducted by Reuther and 

Walter (2006). 

The second part of this step, alias resolution, requires special attention. Alias 

resolution can be performed as part of general NER, but it can also be conducted as a 

standalone procedure; it has a broad range of applications in research on authorship, 

citation analysis, spam detection, author disambiguation in digital libraries, and more. 

The purpose of the various approaches to alias resolution is to distinguish between two or 

more people with the same name by identifying the unique ‘signature’ that can be 

associated with each person. These approaches often rely on either unique linguistic 

characteristics of a person’s writing (e.g. common writing styles, punctuation marks, 

average length of sentences, expertise keywords, etc.; e.g., Fleischman and Hovy, 2004; 

Hsiung, 2004; Hsiung et al., 2005; Mann and Yarowsky, 2003; Pedersen et al., 2006) or 

network-based patterns of interactions (e.g., common senders and recipients; e.g., Hölzer 

et al., 2005; Malin et al., 2005). When extracting social networks from web pages, alias 

resolution is often addressed by automatically assigning a set of expertise keywords (see 

Bollegala et al., 2006; Matsuo et al., 2006; Matsuo et al., 2007) or summaries of several 

contextual sentences (Phan et al., 2006) to each name in the text. The assumption here is 

that two different people (even with the same name) are usually mentioned in different 
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contexts in the text. So, the task is reduced to finding a set of discriminating words and/or 

semantic features to describe uniquely a particular person.  

However, a content-based approach on its own is not likely to work well for 

online classes. This is because all students are usually engaged in the discussion of the 

same topics; thus, they all are using more or less similar keywords in their postings. As a 

result, many students are likely to have similar content-based ‘signatures’. Therefore, for 

the ‘name network’ method to work effectively, the work presented here has added the 

use of traffic-based features such as information from the reference chains and not just 

content-based features. Specifically, to perform coreference and alias resolution, names 

extracted from the content of messages (content-based feature) are associated with unique 

identifiers in the form of posters’ email addresses found in the posting headers (traffic-

based feature). All names that are associated with the same email address are considered 

to belong to the same person. (See Section 3.1.2 for a detailed description of the 

algorithm.) 

2.3.3 Common Practice: Tie Discovery 

After all network nodes are identified and grouped to represent unique people, the 

next step is to uncover if and how these nodes are interconnected. There are two main 

methods in the literature for automated discovery of ties based on textual information. 

One is based on similarity between users’ profiles. A profile is either created manually by 

a person on their own (e.g. a Facebook profile) or pulled out automatically from 

information on the Internet (e.g., a person’s homepage, emails, or parts of the text written 

about that person by others). A simple way to measure the similarities is to count how 

many profile items two people have in common (e.g., Adamic and Adar, 2003). Another 
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common approach includes measuring the semantic similarity between words extracted 

from the profiles. According to this method, two people are connected when the value of 

semantic similarity between their profiles is higher than a predefined threshold. In other 

words, people are considered to be connected when there is a substantial overlap of 

words and phrases found in their profiles. There are many different sources on how to 

measure semantic similarity, e.g., Kozima and Furugori (1993), Maguitman et al. (2005), 

and Resnik (1999). A variation of this method is often used for expert or cooperator 

identification. For example, Campbell et al. (2003) relied on keywords submitted by 

users and the content of the users’ emails to form what they call an expertise graph which 

connects people based on their self-professed expertise. 

Another method is to use some sort of co-occurrence metric to calculate the 

number of times two names co-occur in close proximity within the text. This approach is 

especially popular among researchers who use web pages to build networks. This is 

because search engines make it easy to count the co-occurrence of two people on web 

pages. Matsuo et al. (2006) counted the number of hits from an Internet search engine in 

response to a query consisting of two names joined via the boolean operator ‘AND’. 

Kautz et al. (1997) used this approach in their application called ReferralWeb for 

visualizing and searching social networks on the Web.  

Out of the two possible approaches described above to build the name network, 

the co-occurrence-based approach was chosen for this dissertation work. Specifically, the 

co-occurrence between posters’ email addresses found in the posting headers and names 

found in the body of posters’ messages were used to reveal social ties in the online 

classes (See Section 3.1.2). The main reason for rejecting the approach that measures 
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similarity between users’ profiles is because it is unclear whether this approach finds 

‘real’ social ties. For example, just because two students in a class have similar interests 

as evidenced by the similarities outlined in their users’ profiles, it does not necessarily 

mean that they share a social tie or even talk to each other in the class10.  

2.4 SUMMARY 
This chapter provided a brief overview of Social Network Analysis and explained 

why it is an effective method for studying online communities in general and learning 

communities in particular. The chapter also reviewed several possible ways of collecting 

social network data with a focus on automated techniques. The literature review in this 

chapter was designed to prepare the grounds for addressing the first research question: 

What content-based features of postings help to uncover nodes and ties between group 

members? The next chapter directly addresses this research question by proposing and 

describing a new method called ‘name network’ for inferring social networks from 

postings in threaded discussion. 

 

                                                 
10 However, this is an interesting subject of a separate empirical study. 
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CHAPTER 3: METHOD 

This chapter describes the novel content-based approach for inferring a social 

network from postings in threaded discussions, referred to as ‘name network,’ that was 

derived for this dissertation. The approach starts by finding all mentions of personal 

names in the discussion postings. These become the nodes in the name network. Once all 

nodes are identified, the next step is to discover how these names/nodes are connected to 

each other in order to infer a social network. These two basic steps for building the name 

network are discussed in greater detail in the following sections. But, before proceeding 

to the discussion of these steps, it is important to consider some of the challenges 

associated with building the name network. As shown in Figure 3.1 (given at the end of 

this chapter): (1) some names found in the postings do not belong to group members 

(e.g., kurt, dewey); (2) some words that may be personal names are not used as names in 

a particular context (e.g., mark); (3) some names belong to names of buildings or 

organizations (e.g. Santa Monica); and (4) group members may refer to each other using 

informal names (e.g., Chris instead of Christopher) or western style names for 

international students (e.g., Kevin instead of Kwang). For the ‘name network’ technique 

to be workable and successful, it had to address these challenges.  

3.1 NAME NETWORK METHOD 
To develop the ‘name network’ method, the best practices from the literature on 

Computational Linguistics (described in Section 2.3 above) were relied on as the basis for 

deriving the method described here. The following sections describe the actual 

implementation of the ‘name network’ method as proposed by the author and used in this 

work to discover social networks from the threaded discussions.   
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3.1.1 Name Network: Node Discovery  

Currently there are many software packages that can perform NRE-related tasks11. 

However, most of them are weak in terms of execution speed and accuracy. Furthermore, 

these packages are often trained on documents from newspaper or medical domains 

which make them unsuitable for working with the idiosyncratic spellings, capitalizations, 

and grammar in CMC-type data. To address these limitations, a hybrid approach to 

personal name discovery was used. The approach attempts to satisfy the following two 

criteria: (1) to process messages in real-time and (2) to understand informal online texts.  

The algorithm works as follows. First, to avoid redundancy and wasted processing 

time, any texts that belong to previous messages are removed. This is done automatically 

using a string matching mechanism called regular expressions. Specifically, the 

algorithm accomplishes this by removing all lines from the messages that appeared after 

a pattern ‘ <name> wrote: ’ and start with a greater-than character ‘>’, the specific 

designator used to indicate reply messages in this system (other systems may use other 

characters, e.g., ‘:’ in which case those would be used to identify previous message text). 

Second, it removes ‘stop-words ’, such as and, the, to, of, etc. There are many different 

versions of ‘stop-word’ lists freely available on the Internet. The one used in this work is 

part of the Natural Language Toolkit12, and it includes 571 words. Third, the algorithm 

normalizes all remaining words by stripping all special symbols from the beginning and 

end of any word, including possessives (e.g ‘--Nick’ or ‘Nick’s’ becomes Nick).  

 

                                                 
11 A comprehensive list of available Named Entity Recognition packages - http://alias-
i.com/lingpipe/web/competition.html 
12 Natural Language Toolkit - http://nltk.sourceforge.net 
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For all remaining words, to determine whether a word is a personal name, the 

algorithm relies on a dictionary of names and a set of general linguistic rules derived 

manually. To find first names, the procedure uses a dictionary containing over 5,000 of 

the most frequently used first names in the United States as reported by the 1990 US 

Census13. To find last names in the text, the algorithm looks for any capitalized word that 

follows a first name.  If a capitalized word is found in that context, the name is classified 

as a middle or last name. 

In addition to the dictionary, two additional sources of personal names were 

considered: a class roster (list of all class participants) (e.g., Matsuo et al., 2006) and the 

‘From’ field in the message header (e.g., Culotta et al., 2004). These options are possible 

because of the known set participants, and the information about posters associated with 

threaded discussion. However, the use of the class roster was not as effective as it was 

originally thought it would be. This is primarily because students often did not use formal 

names from the roster to refer to each other, but instead used nicknames and informal 

names (e.g., Ren for Karen, Dan for Daniel). Furthermore, the use of the class roster 

limits the ability of the algorithm to perform well on texts produced by groups with 

unknown membership. Thus, the use of the class roster for determining names was 

abandoned as an option for the ‘name network’ model. 

The second additional source of names (the ‘From’ field) proved to be more 

useful. In some cases, in addition to a poster’s email address, the ‘From’ field also 

includes his/her name enclosed within a set of parentheses. To recognize names from the 

‘From’ field of the message header, the algorithm uses a simple string matching pattern 

                                                 
13 1990 US Census - http://www.census.gov/genealogy/names 
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that looks for only words found within the round brackets (if any). For example, the 

following record “agruzd2@uiuc.edu (Anatoliy)” will produce Anatoliy. The ‘name 

network’ method retains the added step of checking for names in the message header 

formed in this way. 

To recognize names that are not likely to be found in the dictionary, such as 

nicknames, abbreviated names, unconventional names, etc. – for example CH or 

CarolineH – the algorithm relies on context words that usually indicate personal names 

such as titles (e.g., Professor, Major, Ms.) and greetings (e.g., Hi or Dear) (See Appendix 

A). In the future, post-thesis research, other types of context words can be considered as 

well, such as communication and motion verbs that usually express actions associated 

with humans (e.g. say, tell, warn, walk, run, etc). Such verbs can be obtained from 

various lexical resources such as VerbNet, EVCA, and VerbOcean (Chklovski & Pantel, 

2004; Klavans & Kan, 1998). 

Once all names are identified, it is then necessary to remove names of those who 

are not part of the social network. To exclude personal names that are part of a building 

or organization name, such as the Ronald Reagan Presidential Library, the algorithm first 

ignores all sequences of more than three capitalized words, and second removes phrases 

in which the last word was included in a pre-compiled list of prohibited words such as 

Street or Ave (See Appendix A). 

Finally, for all words that are identified as potential names, the algorithm attempts 

to determine the confidence level that the particular word is actually being used as a 

person’s name in the text. This is accomplished by factoring in the commonality of a 

name in the US Census (if applicable) and whether or not the first character of a word is 
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capitalized. For example, consider the word ‘page’. According to the US Census, the 

name ‘Page’ is possessed by 0.034 per cent of the population sample. Therefore, its 

confidence level assigned by the algorithm will be 
par

 0.034
; where par is a parameter that 

will take a value of 1 if the word is capitalized or a value greater than 1 otherwise. This is 

done to “punish” non-capitalized words and reduce their confidence level of being a 

name. The current version of the algorithm adopts a conservative approach by setting the 

value of par to 10 for all non-capitalized words and 1 for capitalized words. (The 

threshold was set manually, based on the observed quality of the results obtained from a 

few sample datasets.) That is, the final score for non-capitalized ‘page’ will be 
10

 0.034 = 

0.003. Since it is less than a pre-set threshold of 0.0099 the word will be removed from 

the further consideration.  

While the algorithm described above is very thorough, it is still not capable of 

achieving 100 per cent accuracy. This is because at this point in the process, incorrectly 

spelled names may be missed and some possible false-positive words may still be on the 

list. However, since accurate name extraction is a vital foundational building block in 

automated inference of social networks, the resulting accuracy should be as close to the 

100 per cent level as possible. In cases where it is applicable, the ICTA tool has been 

designed to allow human intervention to bridge the gap between automated name 

discovery and the final list of names. This allows those with knowledge of the group 

members (e.g., knowing nicknames and full names) and/or of the subject matter 

(knowing that references to Reagan may be to a library or airport in the current context) 

to fine-tune the name list. 
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Thus, to increase the final level of accuracy, the ICTA tool includes a web-

enabled interface where researchers can manually review and edit the list of extracted 

names created by the algorithm (see Figure 3.2). After running the name extractor, a 

researcher can use this interface to add names that were missed by the extractor or delete 

false-positive words. The algorithm will remember these words for future runs as well. 

To improve the readability of the extracted names, all names are displayed in the form of 

a tag cloud. The larger font size in the tag cloud indicates the higher frequency of 

occurrences of a particular name in the dataset. Clicking on any name from the tag cloud 

returns a list that shows all instances where that name was found along with 2-3 words 

preceding and following the name (see Figure 3.3), and from there a user can also go to 

the exact location in the text where a potential name was found. This is especially helpful 

for uncovering false-positive results. For example, in one of the experiments, it was 

possible to verify that a word ‘Mark’, a common name in the English language was not 

actually a name in that instance, but part of the term ‘Mark Up language’. To ensure the 

100 per cent accuracy of the final results discussed later in Chapter 5, all names found by 

the system were manually inspected using this interface.  

The end result of this semi-automated name extraction exercise is a list consisting 

of all occurrences of personal names in the postings.   

3.1.2 Name Network: Evaluation of Node Discovery 

To evaluate the accuracy and effectiveness of the proposed name extraction 

algorithm (further referred to as Local name extractor), results from this technique were 

compared with those from another automated name extractor constructed based on Alias-
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I LingPipe14, a state of the art toolkit for linguistic analysis, normally applied to formal 

texts. After selecting two non-intersecting sample datasets from the online learning 

discussions, Subset A (853 postings) and Subset B (534 postings), both extractors were 

used to find personal names from within the postings. The results were then compared 

using evaluation measures traditionally used in NER tasks: P precision and R recall. 

These measures are calculated in the following manner. Precision
FT1

T1
+

=P , defined as 

a ratio of all correctly identified names (T1) to all words labeled by the program as names 

(T1+F); where F is the number of false-positive results (words that were incorrectly 

labeled as names). And recall
T2
T1

=R , is defined as a ratio of all correctly identified 

names (T1) to all names in the dataset (T2). T2 is calculated by counting all distinct 

names found by both algorithms.  

The results demonstrate that the Local name extractor returned far fewer false-

positive results, than LingPipe: 12 and 16 per cent versus 40 and 57 per cent of the total 

number of extracted names in Subset A and B respectively (see Table 3.1). In other 

words, a user would have to remove fewer incorrectly labeled words when using the 

Local name extractor than with LingPipe. This fact is also supported by the higher values 

of precision P for the Local name extractor: 1.46 times higher for Subset A and almost 

two times higher for Subset B than for LingPipe. A more detailed examination of the 

results shows that a larger number of mislabeled words by LingPipe are capitalized words 

such as names of software products (e.g., ‘Adobe Acrobat’, ‘Dreamweaver’), words of 

exclamation and amazement such as ‘Aha’, ‘Yeah’, ‘Duh’,  ‘Wow’, and greetings such as 

                                                 
14Alias-I LingPipe toolkit for linguistic analysis - http://www.alias-i.com/lingpipe 
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‘Hi pg’, ‘Hey’, ‘Hello all’. This is probably because LingPipe was originally trained on 

newswire corpora where words of exclamation and amazement as well as greetings are 

rare. For the Local name extractor, the most common reason for false-positive results was 

the selection of words from the name dictionary such as ‘major’, ‘long’, and ‘mark’ that 

were not used as names in the text. Future research on this project will focus on reducing 

the number of false-positive results in the Local name extractor. 

When examining recall values, both algorithms showed comparable results around 

0.65 - 0.70. Recall indicates how many more words need to be added manually. Among 

the names that were missed by LingPipe were group names and nicknames (e.g., dw, ed) 

which are difficult to detect for any algorithms. But there were also missed names that 

should have been easy to find such as Wendy, Vincent, Scot, and Robert. As for the 

Local name extractor, the most frequently missed names were solitary last names that 

were not preceded or succeeded by other contextual words. This can be explained by the 

fact that the Local name extractor was not designed to recognize solitary last names 

because group members in these online communities were observed to refer to each other 

by their first names or nicknames. Since this is not necessarily true for other types of 

datasets, the future versions of the Local name extractor will include an option to look for 

solitary last names as well. The Local name extractor also missed four names of group 

members in Subsets A and three in Subset B due to the names’ foreign origins. For the 

purposes of this study, these names were later added manually using the web interface. 

Despite this drawback, the substantially higher precision makes the Local name extractor 

a very effective and efficient tool for personal name extraction. 
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3.1.3 Name Network: Tie Discovery and Alias Resolution 

After all network nodes consisting of previously extracted personal names are 

identified, the next step is to uncover if and how these nodes are interconnected. The 

method used relied on both the content of messages and the reference chain as provided 

in the threaded discussion data (i.e., the history of who posted before the current post) to 

infer ties between people.  

The algorithm works under the assumption that the chance of two people sharing 

a social tie is proportional to the number of times each of them mentions the other in 

his/her postings either as an addressee or a subject person. As a way to quantify this 

assumption, the algorithm adds a nominal weight of 1 to a tie between a poster and all 

names found in each posting. To demonstrate how the algorithm works, a sample posting 

below is used: 

From: wilma@bedrock.us 
Reference Chain:  tank123@gl.edu, hle@gl.edu  
 
Hi Dustin, Sam and all, I appreciate your posts from this and last week […]. I 
keep thinking of poor Charlie who only wanted information on “dogs“. […] 
Cheers, Wilma.  

 

Note: The ‘Reference Chain’ listed above is present in the stored data associated 

with each message so the threaded discussion software can reproduce the threads at any 

time. However, these data are not normally visible in this way to those engaging in 

threaded discussions. 

As indicated in the header, this posting is from wilma@bedrock.us, and it is a 

reply to the post by hle@gl.edu. And tank123@gl.edu is a person who actually started the 

thread. There are four names in the posting: Dustin, Sam, Charlie, and Wilma. According 

to the algorithm, there will be connections between the poster wilma@bedrock.us to each 
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name in the postings:  

wilma@bedrock.us - Dustin  
wilma@bedrock.us – Sam 
wilma@bedrock.us – Charlie 
wilma@bedrock.us – Wilma 

 

However, there are a few problems with this approach. First, Wilma is a poster; so 

there is no need for the wilma@bedrock.us – Wilma connection. Second, what will 

happen if more than one person has the same name? For example, suppose that there is 

more than one Sam in the group, how would we know which Sam is mentioned in this 

posting? Conversely, there could be situations where many different names can belong to 

one person. Furthermore, in the example above, Charlie is not even a group member; he 

is just an imaginary user. Ideally, the poster should not be connected to Charlie. To 

address these problems, it is typical practice to use an alias resolution algorithm.  

To disambiguate name aliases, the algorithm adopts a simple but effective 

approach that relies on associating names in the postings with email addresses in the 

corresponding posting headers (further referred as name-email associations). By learning 

name-email associations, the algorithm knows that there are, for example, two Nicks 

because of the existence of two associations for Nick with two different email addresses. 

The easiest way to discover such name-email associations is to use a class roster or 

University’s online phonebook directory. However, because students often did not use 

formal names from the roster to refer to each other (but nicknames and informal names), 

such resources were not used to complete this task in this case. Instead, a general 

approach was developed that learns all associations automatically.  
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The derived algorithm relies on an assumption, similar to one used by Hölzer et 

al. (2005), that the higher number of collocations of two objects generally indicates a 

stronger association between them. In this particular case, the two objects are (1) a 

personal name from the body of the posting and (2) an email from the posting header. To 

improve the accuracy of associations, instead of counting collocations for all names and 

all emails, the algorithm associates a name with either a poster’s email or with an email 

of potential addressee(s) (emails from the reference chain). As a point of clarification, the 

association between a name and poster’s email will be called Association type P (or just 

Association P), where P stands for poster. And the association between a name and 

addressee’s email will be called Association type A (or just Association A), where A 

stands for addressee. In addition to counting the number of collocations, the five-step 

alias resolution algorithm also assesses the confidence level for each association. The 

confidence level is assigned based on two criteria: the position of a name in the posting 

(e.g., at the beginning, middle or end of the posting), and a list of context words as 

described below.  

Step 1. Determining Associations Type P. A poster’s name usually appears near 

the end of a posting in the signature. To find the Association P and estimate its 

confidence level, the algorithm first calculates how far a name is from the end of the 

posting using the following formula: 
100
pos

, where pos is a relative position of a name 

inside the posting (in per cent). This value is taken as an initial value of the confidence 

level of Association P.  
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Step 2. Determining Associations Type A. Next, the algorithm estimates the 

confidence level of Association A. To calculate the initial value of the association, it uses 

the complement of the formula from Step 1: 1-
100
pos

. This is because the closer the name 

is to the beginning of the posting, the more likely it is to be a part of the greeting. And if 

a word is part of the greeting, then it is more unlikely that the name belongs to a poster.  

Step 3. Taking Into Account Context Words. Next, the algorithm checks if a 

name appears in close proximity (1-2 words) to one or more words or phrases that are 

commonly used in the signature such as ‘thank you’, ‘best regards’, ‘cheers’, or a 

character indicating a new line. (A dictionary of these words/phrases was compiled 

manually before running the algorithm. See Appendix A.) If yes, the value of the 

confidence level of Association P is increased by a factor of m. And if a name appears in 

close proximity to words or phrases that commonly appear with addressees, then the 

confidence level of Association A is also multiplied by m. The words that commonly 

appear with addressees include those used in greetings – ‘hi’, ‘hello’, ‘dear’, etc; those 

used to state agreement – ‘agree with’, ‘disagree’; or words that refer to others – 

‘according to’, ‘said that’, etc. In the current version of the algorithm, m was set to 2 for 

reasons described below. 

One of the main reasons for using a multiplier m is to resolve situations where 

Association A is equal to Association P (within a 10 per cent margin of error). This 

situation may arise when a name is found near the middle of the posting. For example, 

when a short message is followed by a long signature, this might cause the name in the 

signature to appear in the middle of the message. In such situations, by relying only on 
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information about the position of a name in the message, it would be impossible to 

determine whether a name belongs to a poster or an addressee. But if it is known that a 

name appears in close proximity to one or more words that are commonly used in the 

signature, for example, then we can say with a higher level of confidence that the name 

belongs to the poster. To reflect this logic, the multiplication factor m was introduced. 

The value of 2 was chosen through a simple iterative procedure of parameter 

optimization. In this procedure, the algorithm was run on Subset A and B described in 

Section 3.1.2 with different values of m ranging from 1.5 to 3 (increased at an increment 

of 0.5 at each subsequent step). When a subsequent step did not produce better results, 

the iterative procedure was then stopped. The results showed that when m was less than 

2, there were 9 postings in Subset A and 4 postings in Subset B where associations P and 

A were improperly identified. Upon closer examination of the improperly identified 

postings, it was discovered that all of these postings had some text that came after the 

poster’s signature. However, when m was greater or equal to 2, all posters and addressees 

were identified correctly. That is why it was decided to set the value of m to 2 for the 

current study. However, for other types of CMC like mailing listservs, where postings 

may include more noise and where the position of a name has less to do with its role as a 

poster or an addressee, a higher value of m may be required.  

To demonstrate Steps 1-3, the sample posting given above is used again. The 

result of running Step 1, 2 and 3 is shown in Table 3.2. For each word that represents a 

personal name in the posting, the table includes information about (1) two context words 

preceding and following the word, (2) its relative position from the beginning of the 

posting in per cent, and (3) whether a name appears in close proximity (1-2 words) to one 
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or more words that are commonly used in the signature or with addressees. The last two 

columns in Table 3.2 show the estimated confidence level for associations P and A 

measured as described above. For example, the value of Association A (addressee) for 

Dustin is computed as 1-
100
pos

 = 1-
100

0
 = 1. To achieve the final estimate of Association 

A, 1 is then multiplied by 2 because the word ‘Dustin’ appears near one of the pre-

defined words commonly used with addressees - ‘Hi’.  

The next step explains the procedure of selecting the strongest association for 

each name. For example, this procedure will help to decide whether Sam is a poster and 

thus, should be associated with the poster’s email or is he a recipient of the posting and 

therefore, should be associated with an addressee’s email. 

Step 4. Choosing Between Association P or A: In step 4, the algorithm 

compares and selects the association – P for Poster or A for Addressee – with the highest 

confidence level. When the difference between values for P and A is insignificant (less 

than 10 per cent), it rejects both associations due to insufficient information to make the 

determination.  If P is greater than A, then the algorithm assigns that particular name to 

the poster’s email found in the ‘From’ field of the header. Otherwise, the name is 

assigned to an addressee’s email. In the example above, Charlie will be ignored due to 

the lack of evidence to support one association or the other. Wilma will be associated 

with the poster’s email wilma@bedrock.us.  

Dustin and Sam will be considered to be addressees. However, as noted earlier, 

there is no information on addressees’ emails in the posting headers. To work around this, 

the algorithm assumes that addressee(s) are likely to be somebody who posted in the 
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thread previously; therefore, there is a good chance that their emails are in the reference 

chain. But because it is not known to which email to associate each name, names are 

associated with all emails in the reference chain using different weights. The algorithm 

distributes weights based on an email’s position in the reference chain.  

Examination of the threaded discussions shows that the earlier an email appears in 

the reference chain, the less likely its owner is to be referred to in the current posting. 

Thus, it should get the least weight. A rectangular hyperbola function is a good candidate 

for weight assessment. The current version of the algorithm uses the following variation 

of the rectangular hyperbola function 
1pos

1
-1w

+
= , where pos is the email’s position in 

the reference chain. Following the formula above, when the value of pos is increasing, 

indicating that we are moving from the first person in the chain to the most recent one, 

the weight w will be also increasing from 0.5 to close to 1. In the sample posting above, 

Association A, between Dustin and tank123@gl.edu (thread starter), will get a weight of 

5.0
11

1
-1 =

+
 and between Dustin and hle@gl.edu will get a weight of 67.0

12
1

-1 =
+

.  

After processing all postings, the result is a list of name-email pairs and 

corresponding confidence levels. Because each message is unique, the confidence levels 

calculated based on different postings will be different across postings even for the same 

name-email pair. To combine evidence from different postings, the algorithm calculates 

the overall value of the confidence level based on the confidence values of all 

occurrences of each unique name-email pair. Below is a formula that was devised to 

accomplish this: 
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[OVERALL CONFIDENCE LEVEL] for each unique name-email pair =  NP • MP •Par + NA • MA 

MP, MA are the median confidence level values for associations type P and A 

correspondently for each unique name-email pair. Note: The reason median and 

not average function is used is to reduce the effect of possible outliers that may 

appear due to the variations in the posting formatting. 

NP, NA represent the number of occurrences of each unique name-email pair for 

associations type P and A correspondently. Note: The reason medians MP and MA 

are multiplied by NP and NA is to reflect the fact that the overall confidence level 

should grow proportionally to the number of the observed postings with that 

name-email pair.  

Par is an experimentally defined parameter (in the current version, it is set to 2). 

Par is used to give more weight to the MP-component of the formula. This is 

because there is less uncertainty in identifying associations of type P than 

associations of type A. 

 

To exclude ‘weak’ associations that might have appeared due to an error or those 

associations that do not have enough supportive evidence, the algorithm removes all 

associations where the value is less than 0.001 (defined experimentally). This is also an 

effective way to remove all names of people who have never posted to the bulletin board. 

Since each student in the class posted at least one message to the bulletin board, and the 

only people who did not post any messages but were mentioned by somebody in a class 

were non-class members, it is safe to remove non-posters from the cases studied.  

However, it may not be safe to remove non-posters from other online communities. For 

example, employees may be discussing their boss’ initiative using his name on the 

company’s online forum, but the boss has never posted to that online forum himself. 

Since the boss is also part of the social network, all connections to him discovered from 

the forum postings should be also included into the resulting name network. To address 



 

 42

such situations, ICTA provides the user with an option of whether to search for and 

include non-posters into the name network. 

Finally, to achieve the highest level of accuracy on this task, a semi-automated 

approach was adopted. More specifically, a web interface was developed to allow a 

manual correction of the extracted associations (see Figure 3.4). For each email address 

that had at least one name associated with it, ICTA displays a list of choices for possible 

aliases sorted by their confidence levels. Using this interface, a researcher can easily 

remove and/or add a new name-email association by selecting a name from a list of all 

names found in the dataset from a drop down menu. The manual examination of the 

resulting name-email pairs for the two sample datasets from Section 3.1.2, Subset A (853 

postings) and Subset B (534 postings), showed that the algorithm was able to associate all 

names with the corresponding email addresses correctly. 

Using the formula described above, the end result of Step 4 is a list of email-

candidates with their corresponding overall confidence level values for each distinct 

name found in the dataset. This list of email-candidates is then used during the final step 

of the alias resolution algorithm.  

Step 5. Disambiguating Personal Names: After learning all possible name-email 

associations and their overall confidence levels, the algorithm goes through all postings 

once again to replace those names mentioned in the body of the postings that have been 

associated with at least one email. If a name has more than one email-candidate, then the 

algorithm uses the email with the highest level of confidence. However, in some cases 

selecting an email with the highest level of confidence may produce an incorrect result. 

For example, in the sample dataset, there were two Wilmas: wilma@bedrock.us with the 
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confidence level set to 27.45 and wm2@iso.edu with the confidence level set to 18.83. If 

we were to select an email with the highest confidence level, then all mentions of Wilma 

in all postings would be attributed to only wilma@bedrock.us. But, of course, this would 

be wrong since in some instances it might be wm2@iso.edu.  

To ensure that the algorithm identifies the right Wilma, the following fail-safe 

measure was implemented. If there are more than one email-candidate, the algorithm then 

relies on an additional source of evidence – the reference chain. First, it identifies an 

overlap between email-candidates for a name (from Step 4) and emails from the reference 

chain. If the overlap is empty, then the algorithm proceeds as usual and uses the email 

with the highest confidence level (further referred to as the strongest candidate). When 

the overlap is not empty, it means that one or more email-candidates have previously 

posted to the thread. Based on the manual analysis of the dataset, the name mentioned in 

the posting is more likely to belong to an email-candidate that is also in the reference 

chain than to an email-candidate that is not. Taking this observation into consideration, if 

there are two possible email-candidates, as in case with Wilma, and the strongest 

candidate (wilma@bedrock.us) is not present in the reference chain, but the other 

candidate (wm2@iso.edu) is, then the algorithm uses the one that is also in the reference 

chain. In cases, when both email-candidates have previously posted to the thread, the 

algorithm takes the candidate who has posted the most recent posting to the thread.  

This section concludes the description of the ‘name network’ algorithm which 

consists of two main steps: node discovery and tie discovery. The next section below 

briefly explains the procedure for building chain networks, an alternative automated 

method for collecting network data from the bulletin board postings. 
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3.2 CHAIN NETWORK METHOD 
Chain networks are built automatically using information from the posting 

headers, specifically reference chains. (A reference chain refers to a running list of group 

members who previously posted to a particular discussion thread.) There are at least four 

distinct options for building chain networks (other options may be considered as 

variations of those listed below): 

 Option 1: Connecting a poster to the last person in the post chain only 

 Option 2: Connecting a poster to the last and first (=thread starter) person in the 

chain, and assigning equal weight values of 1 to both ties 

 Option 3: Same as option 2, but the tie between a poster and the first person is 

assigned only half the weight (0.5) 

 Option 4: Connecting a poster to all people in the reference chain with decreasing 

weights 

Originally all four options were considered for this study. However, in the end 

only Option 1 was used. This is because according to the results described in Section 

5.2.1, the other three options were judged to be unreliable and would have introduced far 

more false-positive connections; thus, reducing the accuracy of the chain networks.  

3.3 SUMMARY 
This chapter outlined the implementation of both the ‘name network’ and ‘chain 

network’ methods used in this study. The chapter also highlighted some of manual 

override features available in ICTA that researchers can use to further improve the 

accuracy of the node and tie discovery steps. The next step in the research is to evaluate  

the effectiveness of the two automated methods for building social networks and to 
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determine whether anything new or useful can be gained from using the new automated 

‘name  network’ method. As a standard for the evaluation, manually derived self-reported 

networks are used, built using surveys given to the students who have elected to 

participate in the study. The next chapter, Chapter 4 describes data collection procedures 

and tools for building students’ self-reported social networks. Chapter 5 reports on the 

procedures and results of the comparative analysis of the social networks derived using 

the ‘name network’ method against chain networks and self-reported social networks. 

3.4 FIGURES AND TABLES 
Figure 3.1: A personal network for Tyler from a sample dataset  

 
Notes:  

 The size of each node represents out-degree (the number of ties to others) 
 The nodes with the dotted circles around them were added by the author to highlight some 

of the differences between the two networks. 
 The light grey nodes in the Name Network were identified by the system as non-posters. 

 

Name Network

kurt -> Kurt Cobain, a lead 
singer for the rock band 
Nirvana 
dewey -> John Dewey, 
philosopher & educator 
santa_monica -> Santa 
Monica Public Library 
mark –> mark up language 

Chain Network
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Figure 3.2: A web interface for editing extracted names: Top 30 names automatically 
extracted from the Internet Researchers’ listserv for messages posted during October 2002 

  

Figure 3.3: A list of messages containing “Jeremy” 

 

Figure 3.4: Web interface for manual alias resolution  

 
Note: In the example above, the system assigned four names Dan, Daniel, Nick, and DS to 
dswartz@smth.com. However, after a manual examination of the results, a user deleted Nick who 
was incorrectly associated with this email due to his frequent collocations in postings with Dan. 
Also a question mark next to DS indicates a small confidence level (less than 1).  
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Table 3.1: Comparing Local and LingPipe name extractors 
Subset A Subset B  

Local LingPipe Local LingPipe 
Total # names 1459 997 929 577 

Total # correct distinct names discovered (T1) 331 340 195 176 
False-Positive (incorrectly identified) (F) 45(12%) 227(40%) 39(16%) 238(57%) 
# names in common 171 99 
# of missed names found by the alternate algorithm (D) 160 165 74 96 
# of missed names of group members (M) 4 0 3 0 
Total names in the dataset T2=T1+M+D 500 500 272 272 
Precision P = T1/(T1+F) 0.88 0.60 0.83 0.43 
Recall R = T1/T2 0.66 0.68 0.71 0.65 

 
 
Table 3.2: The results of running the ‘name network’ algorithm 

Words 
to the Left 

Name Words 
to the Right 

Position, 
% 

(pos) 

Context 
word? 

Association P 
(Poster?) 

100
pos

 •  2† 

Association A 
(Addressee?) 

(1-
100
pos

) •  2† 

Hi  Dustin Sam and 0 Yes (‘Hi’) 0 1 • 2 = 2 
Hi Dustin Sam and all 1 Yes (‘Hi’) 0.01 0.99 • 2 = 1.98 

Of poor Charlie who only 50 No 0.50 0.50 
Cheers *  Wilma  88 Yes  

(‘Cheers’ 
and a new 
line) 

0.88 • 2 = 1.76 0.12 

Notes:  
‘*’  indicates a new line 
† -  multiply by 2 only if a name appears in close proximity (1-2 words) to one or more words 

that are commonly used in the signature (for Association P) or with addressees (for 
Association A). 
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CHAPTER 4: DATA COLLECTION 

This chapter begins with a description of two datasets used for training and 

evaluation of name networks, and then moves into a discussion of data gathering 

procedures for building students’ self-reported social networks. The chapter ends with a 

description of a web-based system called ICTA that was developed and used in this 

research for data management, manipulation, exploration and visualization. 

4.1 DATASETS 
The main dataset for this study consists of bulletin board postings and students’ 

responses to an online questionnaire from six graduate level online classes at the 

Graduate School of Library and Information Science (GSLIS), University of Illinois at 

Urbana-Champaign (UIUC). See Table 4.1 for more details about these classes. The data 

was collected in Spring 2008 as part of a larger study on online learning in collaboration 

with Caroline Haythornthwaite.  

Instructors in these classes primarily relied on Moodle (an open source course 

management system) to make announcements, distribute class materials and facilitate 

weekly discussions using bulletin boards. Once a week, students met online using a 

locally implemented chat facility integrated into the Moodle environment. During these 

live sessions, the instructor delivered the lecture via a live audio feed. During the lecture, 

students could ask questions or answer instructor’s questions by typing in the chat room. 

During some live sessions, the instructors divided students into smaller discussion 

groups, with each group using a separate chat room for their discussions. The data used 

here includes only those bulletin board discussions that were public to the class as a 

whole.  
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A different, but similar dataset collected as part of an earlier study was used for 

training and iterative improvements of the ‘name network’ method. This dataset consists 

of bulletin board postings from eight iterations of the same online class, given by the 

same instructor at the GSLIS from 2001 to 2004. These discussions were conducted using 

a local implementation of the online learning environment developed at GSLIS. See 

Table 4.2 for more details. For the pilot study, two samples from this dataset were used: 

Sample A consists of 853 postings in 12 bulletin boards, and Sample B consists of 534 

postings in 5 bulletin boards.  

These two datasets were selected because they possess a few unique 

characteristics that make them ideal candidates for conducting these experiments. These 

characteristics include: being a close community (with known membership), having a 

clear beginning and end to the time frame for data collection, and a non-intrusive data 

collection capability. 

Prior to the beginning of the recent data collection, permission was obtained from 

the University of Illinois Institutional Review Board and the instructors of the selected 

classes. Next, an alert message was posted to the online ‘news and announcement’ 

bulletin board for each class. This alert message (see Appendix B) informed students that 

their public postings and chat room logs would be made available for analysis after the 

class is over. If students did not want their text quoted in any way, they were asked to 

contact the researchers. (A similar procedure had been followed for the earlier data 

collection.) All students’ names have been anonymized to protect their privacy. 

4.2 COLLECTING SELF-REPORTED SOCIAL NETWORKS 
Students’ self-reported social networks were collected via an online questionnaire 
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administered once near the end of the semester (See Appendix C). The questionnaire was 

designed based on Haythornthwaite’s 1999 LEEP study protocol. To encourage 

participation in the questionnaire, all respondents were automatically enrolled in a 

random drawing for one of three iPod Shuffles. The questionnaire consisted of three main 

sections: (1) students’ perceived social structures, (2) prominent members of the class, 

and (3) interactions in the class as a whole. The first two sections were specifically 

designed to collect information on self-reported social networks. The first section asked 

students to indicate the frequency of their associations with each classmate on a scale 

from 1 to 5 (with [5] indicating a more frequent association) with respect to three 

different relations: learning something new about the subject matter from another student, 

working together, and friendship. The second section asked students to nominate 5 to 8 

prominent students that best fit the following four criteria: “influential in one’s learning”, 

“important in promoting discussion”, “help with understanding a topic or assignment” 

and “made class fun”. Each question in section 1 and 2 was designed to discover one of 

the many possible social relations (e.g., learn, work, help, etc) that might exist between 

the students. The third and final section was designed to assess learning at a group level 

by asking students questions about knowledge building and sense of community 

dimensions as proposed by Law (2005) and Lin et al. (2007). Completion of the 

questionnaire was voluntary. Students were provided with a consent form online. A list of 

all students in each class was included and the students answered by ranking and/or 

selecting individuals who meet the criterion.  

Special consideration was given to decide when exactly to invite students to fill 

out the questionnaire. If asked too early in the semester, students could not have been 
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together long enough to make judgments about the strength of their relationships to each 

other. On the other hand, the end of the semester is not a good time because it is known 

to be very busy period in students’ lives. Further, if asked to fill out the questionnaire 

long after the class is over, there is a risk that students’ reflections of class interactions 

would not be as accurate. Taking these considerations into account, it was decided to 

invite participants approximately 3-4 weeks prior to the end of the semester and then send 

a reminder to complete the questionnaire right after the end of the semester. Out of 128 

students who were invited to complete the questionnaire, 81 students (63 per cent) 

completed the survey. 

A self-reported network was built to capture the ‘strong’ ties among classmates 

using the following procedure. First, the procedure added a tie between each respondent 

and his or her nominees. For the questions from section 1 of the survey, only nominations 

with an association level of three or higher were considered. This is because a nomination 

with an association level less then three means that a student “doesn’t know” the nominee 

or the nominee is “just another member of class”. Such responses indicate no or a very 

weak personal connection between the student and the nominee, and therefore they were 

not used to establish a tie in the self-reported network. For the questions from section 2 of 

the survey, all nominations were considered since the questions in this section were 

already designed to solicit answers only about strong connections in the class. 

The next step was to assign weights to each tie. The weights were assigned based 

on how many times each nominee was selected by the same respondent in different 

questions of the survey. To better reflect actual social relationships between students, the 

procedure removed all ‘weak’ ties with a weight of less than three. This design decision 
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reflects the principle of relational multiplexity from Sociology that tells us that people 

with closer relationships are likely to maintain ties based on more than one type of 

relation (see, for example, Haythornthwaite, 2008). Since the procedure only kept so-

called ‘strong’ ties, it is very likely that they will be symmetric. To help restore some ties 

missing due to the non-respondents, the resulting network was symmetrized.  

Open source software called phpESP15 was used to conduct the survey. A Social 

Network Analysis tool called ORA16 v.1.9.5.2.6 was used for storage and basic 

manipulations of the network data. Internet Community Text Analyzer (ICTA)17 

described in the following section was used to build name and chain networks 

automatically and to explore postings in the datasets manually. 

4.3 INTERNET COMMUNITY TEXT ANALYZER (ICTA) 
As part of this dissertation work, I developed a web-based system for content and 

network analysis and visualization called Internet Community Text Analyzer (ICTA). 

This section describes some background information about the development process of 

ICTA, its infrastructure and user interface in more details.  

At the beginning of my PhD program in 2006, my advisor, Professor Caroline 

Haythornthwaite, came to me with a challenge. She had a large archive of bulletin board 

postings from eight online classes collected over a period of four years. Each class in this 

archive generated on average about 1500 postings. The challenge was that other than 

looking through the data manually one message at a time, there was no quick or easy way 

                                                 
15 phpESP - http://phpesp.sourceforge.net 
16 ORA - http://www.casos.cs.cmu.edu/projects/ora 
17 Internet Community Text Analyzer (ICTA) - http://textanalytics.net 
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to analyze and make sense of such a large amount of data.  Since I came to the Library 

and Information Science field with a Computer Science background, I immediately 

realized that a possible solution to this challenge is to develop some kind of automated 

system that will allow researchers like my adviser to not only explore and manipulate 

users’ generated online textual data but to also visualize and analyze such data and 

ultimately derive some wisdom from it.  

The main goal in developing ICTA is to provide researchers and other interested 

parties with an automated system for analyzing text-based communal interactions with 

the help of various interactive visualizations. ICTA’s web-based architecture will 

stimulate collaborative research by allowing researchers to access and analyze datasets 

remotely from anyplace where there is web access and quickly share their results with 

their collaborators anywhere in the world. Another benefit of a web-based software 

implementation is the ability to outsource data processing and have all the heavy 

computing be done on a speedier remote server. For example, once data has been entered 

on a stand-alone website, it can then be sent to ICTA to be analyzed in real-time, and 

then immediately returned and presented using useful visualizations to a community’s 

web space. 

The first version of ICTA v1.0 was developed and presented at the Communities 

and Technologies conference in 2007. ICTA v1.0 made it much easier to explore and 

analyze the dataset. It facilitated searching the stored versions of the text from these eight 

classes. The main screen of this tool provided the user with a means to select the class 

and bulletin board(s) to be analyzed and perform the analysis. During the analysis, the 

system looked for the top 100 noun phrases in the selected bulletin boards based on their 
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frequency counts. A tag cloud was then generated to give an immediate visual 

representation of all of the noun phrases that were identified during the analysis phase 

(see Figure 4.1). The size of a noun phrase within the cloud correlated with its frequency 

count, the higher the frequency, the larger the word would appear within the tag cloud. 

By clicking on any noun phrase from the initial list of 100 noun phrases, ICTA v1.0 

returned a list of all instances where that particular noun phrase was located within the 

dataset (see Figure 4.2). And by clicking on any of the instances the researcher could then 

see the full posting, with the selected noun phrase highlighted. As an alternative 

approach, the user could also search by an individual noun phrase, instead of performing 

the top 100 words analysis. In this case, the user would simply type the desired phrase 

into a text box, and ICTA then returned a list of all instances where that particular noun 

phrase was found (if it is present in the dataset) as described earlier.  

In the 2006-2007 LEEP language study conducted together with Professor 

Caroline Haythornthwaite, ICTA v1.0 allowed us to study word use in eight online 

classes and answered questions like what the community interests and priorities are and 

what are the patterns of language that characterize a particular community. For example, 

we were able to discover an interesting pattern in the use of the topic of databases that is 

of particular relevance and importance to the field of Library and Information Science 

(LIS) and to the students in the classes. It turned out that the use of words like 

“database(s)” and “RDB”18 actually declined over time in terms of the per cent of 

messages in the semester containing at least one occurrence of the word. At first this did 

not seem to be appropriate given the importance of the term; however, the percentage 

                                                 
18 RDB stands for “Relational Data Base” 
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reduction in use may reflect the increased familiarity with databases that students have in 

general as these become more part of the overall curriculum. (See more details in 

Haythornthwaite & Gruzd, 2007) 

The analysis of these eight online classes with ICTA v1.0 showed that the system 

was useful in the preliminary exploration of large datasets and in the identification of 

important issues/topics being discussed by group members and their changes over time. 

However, this first study with ICTA also warranted two important improvements. First, 

ICTA v1.0 did not have capabilities to upload a new dataset for the analysis 

automatically which made it less valuable for other researchers who want to analyze their 

own datasets. As a result, the first improvement to the next version of ICTA was to add 

an interface where anybody can create their own account and upload their own data for 

further analysis with ICTA. Second, ICTA v1.0 primarily focused on the text analysis of 

online interactions. Although useful, text analysis alone does not provide a complete 

picture of an online community. Specifically, it does not take into account relationships 

between group members that may also provide important insights into the internal 

operation of an online community. For example, using a simple automated text analysis, 

we can easily tell that there are many disagreement-type postings from a particular 

dataset; however, this information alone does not tell us whether the postings are coming 

from just a few members who tend to disagree with each other or is it the general 

characteristic of this particular community as a whole. In other words, when it comes to 

studying online communities via their textual exchanges, it is important not only to know 

what they are all talking about, but also to whom they are talking. To increase the range 

of the types of research questions that a researcher could address with ICTA and 
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hopefully provide researchers with an additional view into the inner working of an online 

community, I added a social network discovery and visualization component to the 

system. These new components in ICTA can use both traffic-based (who talks to whom) 

and content-based data to automatically extract social networks information and offer 

various visual representations of the analysis. 

There are some other projects on the Internet that broadly share a few similar 

functionalities with ICTA, however they are designed for other fields and have different 

implementation and goals in mind. These are visualization tools like Swivel19 and IBM’s 

Many Eyes20 that allow anybody to upload some data and then visualize it by selecting 

one of the available visualizations types such as graphs, charts, histograms, etc. There are 

three main differences between these pure visualization tools and ICTA. First, these tools 

are not tuned to work with computer-mediated communication (CMC)-type data such as 

emails, forum postings or chat transcripts, etc. They mostly work with data that is already 

organized in a table format such as a table of top 50 US companies that made most 

money in 2008 and their corresponding revenues. Second, these online tools provide only 

top-level visualizations without interactive features that would allow researchers to be 

better engaged with their data by being able to explore and delve into their datasets at 

different levels of granularity. Finally, the visualization tools mentioned here lack some 

basic security features. Most researchers are working with private datasets; at the very 

least they all want some control over who can have access to their dataset and view the 

results. Overall, the data visualization tools mentioned above are easy to use and good for 

                                                 
19 Swivel - http://www.swivel.com 
20 IBM’s Many Eyes - http://manyeyes.alphaworks.ibm.com  
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the masses since they allow for basic visualizations, sharing and discussion over the 

Internet. But for the reasons mentioned above, these tools are not satisfactory for 

researchers whose needs are very different. The newest version of ICTA tries to address 

all these problems. 

In its current state, ICTA is a fully functional prototype designed to test and 

evaluate the effectiveness of different text mining and social network discovery 

techniques. The goal at this stage is to identify a range of optimal values for various 

parameters that control automated procedures. Eventually, these optimal values will be 

used as default settings in a future simplified single-step ‘one-button’ version of ICTA. 

Below is a brief description of ICTA’s current multi-step interface and functionalities. 

First, a user starts by importing a dataset. To do this, he/she can upload a file or 

specify the location of an external repository (See Figure 4.3). Currently, ICTA can parse 

computer-mediated communication (CMC) that has been stored in one of three data 

formats: XML (e.g., RSS feeds), MySQL database or CSV text file. After the data is 

imported, the second step is to remove any text that may be considered as noise (See 

Figure 4.4). This is an optional step that is primarily designed to remove redundant or 

duplicate text that has been carried forward from prior messages. To accomplish this, 

ICTA simply removes all lines that start with a symbol commonly indicating quotation 

such as “>” or “:”. But a user is not restricted to just these two symbols. In fact, in the 

‘expert’ mode, it is possible to remove almost any text patterns such as URLs or email 

addresses from messages using a mechanism called regular expression. 

After the data importing and cleansing steps are completed, the data is then ready 

to be analyzed. In this stage, ICTA uses capabilities from ICTA v1.0 described above to 



 

 58

build concise summaries of the communal textual discourse. This is done by extracting 

the most descriptive terms (usually nouns and noun phrases) and presenting them in the 

form of interactive concept clouds and semantic maps (see Figure 4.5) or stacked graphs 

that show the use of important topics over time (see Figure 4.6). With a summary in 

hand, a researcher or a member of an online group can quickly identify emerging 

community interests and priorities as well as patterns of language and interaction that 

characterize a community. (See Haythornthwaite & Gruzd, 2007, for more details on this 

type of text analysis.)  

Another feature that is available in the ‘text analysis’ step is to define different 

groups or categories of words/phrases/patterns (so-called linguistic markers) and then 

count how many instances of each category are in a dataset and then display them in a 

form of a treemap view (See Figure 4.7 & 4.8). Using this functionality, a researcher, for 

example, can define and use categories consisting of various linguistic markers that have 

been shown to be useful in identifying instances of social, cognitive and/or meta-

cognitive processes such as decision-making, problem-solving, question-answering, etc 

(see, for example, Alpers et al., 2005; Corich et al., 2006; Pennebaker & Graybeal, 2001). 

For demonstration purposes, ICTA comes with several commonly used categories such as 

‘agreement’, ‘disagreement’, ‘uncertainty’, ‘social presence’, etc. Users can modify the 

existing categories or create their own that will better reflect their research questions. 

The final part of the analysis stage consists of building chain networks and name 

networks as described in previous sections of this work. This part is the focal point of this 

dissertation. When building these networks from a CMC-type dataset, there are a lot of 

different parameters and thresholds choices to select from. To find the most optimal 
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configuration for a particular type of datasets, ICTA’s interface allows users to fine tune 

many of the available parameters and thresholds. For example, one of the choices that is 

likely to influence network formation is how to estimate tie strengths between 

individuals. ICTA provides a range of options for doing this estimation: from a simple 

count of the number of messages exchanged between individuals to an estimation based 

on the amount of information exchanged between individuals. For ease of use and a 

quicker start, users can also use the default options.  

After networks are built, they can be visualized and explored using a built-in 

network visualization tool. Users also have the option of exporting the resulting networks 

to other popular social network analysis programs such as Pajek21 or UCINET22. In 

addition to a number of basic visualization features such as scaling, changing graph 

layouts, selecting cut off points to hide ‘weak’ nodes or ties, ICTA can also display 

excerpts from messages exchanged between two individuals to show the context of their 

relations. The ability to call up and display excerpts from messages makes it a lot easier 

to ‘read’ a network and understand why a particular tie exists. This feature is activated by 

moving a mouse over an edge connecting two nodes (see Figure 4.9). ICTA is also 

capable of simultaneously displaying two different types of networks of the same group 

on the same graph using different colors to display edges from different networks. The 

latter makes it easier to study the quality of and differences/similarities between different 

networks.  

                                                 
21 Pajek - http://vlado.fmf.uni-lj.si/pub/networks/pajek 
22 UCINET - http://www.analytictech.com/ucinet 
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To implement interactive visualizations, I used the Flare Prefuse23 library 

developed at the University of California in Berkeley (Heer et al., 2005). Flare Prefuse is 

an open-source ActionScript library for creating visualizations that run in the Adobe 

Flash Player. The main reason for using Flare Prefuse is two-fold. First, the library makes 

it much easier for developers to create professional looking, interactive visualizations that 

are very easy to customize for a particular application. Flare Prefuse has also been 

successfully used in other web applications such as GrOWL - a tool for editing and 

visualizing ontologies for the semantic web (Krivov et al., 2007), PhotoArcs - a tool for 

creating and sharing photo-narratives (Ames & Manguy, 2006), and by Medynskiy et al. 

(2006) to visualize online software development communities.  

The second reason for using Flare is that it is fully integrated with Adobe Flash 

which is a leading multimedia platform on the Internet. Adobe Flash Player is now 

undisputedly the de facto method for playing videos, animations and visualizations on the 

Internet. As a result, most web browsers and other Internet-enabled devices (mobile 

phones, play stations, etc) are capable of playing Flash applications. Thus, by choosing 

Flash as the main engine for visualizations, ICTA is more accessible to the end users 

regardless of their hardware platform or Internet browser choice.   

4.4 SUMMARY 
This chapter described two datasets used for training and evaluation of name 

networks, and data gathering procedures for building students’ self-reported social 

networks. The chapter also introduced a web-based system called ICTA that was 

developed and used in this research for data management, manipulation, exploration and 

                                                 
23 Flare Prefuse library - http://flare.prefuse.org 
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visualization. The next chapter describes how the data collected for this research was 

analyzed to address the research questions set forth in Section 1.2 and what was 

discovered during the analysis.  

4.5 FIGURES AND TABLES 
Figure 4.1: First version of ICTA.  Main screen: here user can select the specific course and 
bulletin board(s) to be analyzed, and the system then looks for the top 100 noun phrases 
found in the selected bulletin boards based on their frequency counts.   

 
Figure 4.2: First version of ICTA: “Information” in context 
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Figure 4.3: ICTA: Importing dataset  

  
  
Figure 4.4: ICTA: Cleansing dataset  

 
  
Figure 4.5: ICTA: An example of a concept cloud (a) and a semantic map (b) 

 
 

(b) (a) 
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Figure 4.6: ICTA: Stack graph showing the use of important topics over time  

 
 
Figure 4.7: ICTA: Sample linguistic markers in the category called “Agreement” (a) and the 
proportion of messages in each predefined social, cognitive or meta-cognitive category (b) 

 
Note: *** (three stars) at the end of a word means that a word may have different endings. For 
example, "read***" will be equal to "read", "reads", "reading", "readings".  
* (one star) between words in a phrase is a placeholder for "any word". For example, "from * post" 
will be equal to "from my post", "from his post", and "from Nick's post". 

(b) (a) 
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Figure 4.8: ICTA: A treemap view of various predefined social, cognitive and meta-cognitive 
categories found in a sample dataset 

 
Note: Each box represents a certain social, cognitive or meta-cognitive category as defined by 
ICTA’s user. The size of a box corresponds to the proportion of postings in the dataset that match 
each category. By clicking on any of the found categories, a user will be presented with a treemap 
representing found linguistic markers in each category.  
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Figure 4.9: ICTA: Social network visualization 
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Table 4.1: Spring 2008 LEEP classes: Basic statistics for class-wide bulletin board postings   
 Class #1 Class #2 Class #3  Class #4 Class #5 Class #6 

Number of  
Messages 608 855 1,502 164 412 497 

Number of Participants 28 20 25 21 19 15 
Number of Bulletin 
Boards 46 36 29 9 14 12 

Avg. Number of 
Characters per Message 1352 886 1090 1047 1310 863 

 
 
Table 4.2: 2001-2004 LEEP classes: Basic statistics for class-wide bulletin board postings 

 F01A F01B F02A F02B F03A F03B F04A F04B 
 

Number of  
Messages 1207 1581 1469 1895 1279 1242 1493 2157 

Number of 
Participants 38 47 47 54 54 46 54 52 

Number of Bulletin 
Boards 22 22 28 28 25 24 28 27 

Avg. Number of 
Characters per 
Message 

1073 1056 864 898 1286 953 967 1058 
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CHAPTER 5: ANALYSIS AND FINDINGS 

This chapter provides a detailed analysis of the data collected for this research and 

offers a set of findings by addressing each of the three research questions set forth in 

Section 1.2.  

5.1 BUILDING NAME NETWORKS 
The first research question is  

Question 1: What content-based features of postings help to uncover nodes 

and ties between group members? 

This question was discussed in detail in Chapter 3. In short, personal names in 

postings were used to find nodes and ties between people in the name network. Personal 

names were chosen as the main input into building the name network because they are 

good indicators of social ties. Linguistically speaking, the use of personal names 

performs two main communicative functions as identified by Leech (1999): (1) addressee 

identification and attention-getting, (2) social bond maintenance function. The first 

function is self-explanatory, when calling somebody by his/her name, a person identifies 

somebody among others to talk to and at the same time tries to get that person’s attention. 

The main purpose of social bond maintenance is to sustain and reinforce social 

relationships. For example, when someone uses formal names and titles, it might be to 

indicate subordination in the relationship. Or, someone might use informal names or 

nicknames to show the same social status or to emphasize friendship. The social bond 

function of naming is especially important in online groups. Since names are “one of the 

few textual carriers of identity” in discussions on the web (Doherty, 2004, p. 3), their use 

is crucial for the creation and maintenance of a sense of community (Ubon, 2005) and of 



 

 68

social presence (Rourke et al, 2001). As Ubon (2005) put it, by addressing each other by 

name, participants “build and sustain a sense of belonging and commitment to the 

community” (p.122). In sum, by focusing on personal names, the ‘name network’ method 

can quickly identify addressees of each message and thus automatically discover “who 

talks to whom” in one-to-many types of online communication such as threaded 

discussions and chats. Furthermore, the social bond function of personal names suggests 

that the discovered ties between people will not just reflect communication patterns, but 

are also likely to reflect real social relationships between people. 

5.2 NAME NETWORKS VERSUS CHAIN NETWORKS 
For ease of discussion, the second research question is split into two separate 

questions: 

Question 2.1: How is the proposed name network associated with the chain 

network? 

Question 2.2: How is the proposed name network associated with the self-

reported network? 

This section only addresses Question 2.1; Question 2.2 is answered below in 

Section 5.3. In addition to using quantitative analysis, qualitative content analysis of the 

postings was also used to provide a better understanding of differences between the name 

network and the chain network. This provided the information necessary to address the 

third research question:  

Question 3: What types of social relations does the name network include? 
The analysis began with comparing the name network and the chain network 

using QAP correlations (Krackhardt, 1987). This was done to determine the level of 

overlap between these two types of networks. QAP correlation relies on Pearson’s 
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correlation coefficient to compare relational data. It was chosen as the method of 

measurement for this work because “it presumes neither random sampling of cases from 

a population […] nor independence of observations” (White et al., 2004, p. 116). 

Software called ORA was used to compute the QAP correlations.  

The results of the comparison are presented in Table 5.1. All tests were significant 

(p<=0.05). In all classes, pairs of name and chain networks demonstrated moderate 

correlations between 0.45 and 0.69 (See the ‘QAP’ column in Table 5.1). As expected, 

there is some overlap between posting behavior as represented by the chain network and 

‘naming’ behavior as represented by the name network. However, there are also 

substantial differences in what is revealed by each of these networks. To better 

understand these differences and assess the accuracy of both networks, the next section 

compares all connections that make up each tie from the name network with those from 

the chain network. More specifically, the next step in the analysis determines how many 

connections discovered by the ‘name network’ method were not discovered by the ‘chain 

network’ method and vice versa.  

5.2.1 Connections Missed by the Chain Network 

The chain network is built based on the information in the reference chains; as a 

result, it will fail to connect a poster to poster’s addressee whose email is not yet in the 

reference chain. This situation can arise in one of two ways: (1) when it is a first posting 

of a new thread or (2) when an addressee has not posted anything to an existing thread. 

Since all of the names extracted for building the name network were manually inspected 

for accuracy in the study, it is fair to use these names as actual addressees of postings or 

people who are somehow connected to the poster. Using an automated script, the number 
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of instances was counted for each of the two situations described above. The counts 

revealed some pleasantly unexpected results (See Table 5.2). On average, the ‘chain 

network’ method missed about 33 per cent of the potentially important connections as 

compared to the ‘name network’ method. Of the missed connections, about 70 per cent 

(or 23 per cent from the total count) came from postings that were the thread starters 

(Column A) and about 30 per cent (or 10 per cent from the total count) came from 

subsequent messages in a particular thread (Column B). What stands out about this 

finding is that the majority of missed addressees (70 per cent) were found in the thread 

starting messages. This discovery is especially interesting given that most previous 

research on interactivity in online discussions only uses ‘reply’ messages to estimate 

class interactivity (see, for example, Bonnett et al., 2006). However, these findings 

suggest that thread starting postings should not be ignored and can also be very 

interactive in nature. This is because many of these types of postings tend to include 

references to discussions that occurred among the community members in different 

threads. Therefore, thread starting postings should also be seriously considered when 

estimating interactivity of online discussions. Since the ‘name network’ method is 

capable of capturing connections to other group members even in the thread starting 

messages, the method also might be a good model for studies on group interactivity. 

Future research is needed to confirm this observation.  

Another 7 per cent of connections that were missed by the ‘chain network’ 

method (Column D) were connections that occurred when an actual addressee or a 

‘reference’ person was the author of a previous posting in the thread, but not the most 

recent one. This happened because the ‘chain network’ method, as presented in this work, 
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connects a message sender to the most recent poster in the thread. Generally speaking, it 

is easy to revise the ‘chain network’ method to include these 7 per cent of missed 

connections. The revised method would connect a poster to all previous posters or to two 

most recent posters in the thread. However, this will likely also introduce more false-

positive connections; thus, adversely affecting the overall accuracy of the ‘chain network’ 

method. This conclusion comes from examining the relationship between an actual 

addressee and his/her position in the reference chain (see Table 5.2). Specifically, when 

examining all cases where an addressee is in the reference chain (COLUMN C and D in 

Table 5.2), in 90 per cent of those cases, the addressee is the most recent poster in the 

reference chain (COLUMN C). Thus, if a person in the reference chain who is not the 

most recent poster were considered as an addressee of a posting, this would be right in 

only 10 per cent or less of the times.   

To determine the exact nature of connections that were missed by the chain 

network, all postings that correspond to columns A and B in Table 5.2 were examined for 

all six classes. This content analysis, described next, helped address the third research 

question by revealing what types of social interactions the name network includes. 

Situation 1: First Posting of a Thread. The semi-automated content analysis of 

postings using ICTA revealed that among the most commonly used names in the first 

posting of a new thread was the instructor’s name. Specifically, instructor’s name was 

used to  

 Ask the instructor about something (e.g., “[Instructor’s name] if you see this 

posting would you please clarify for us”), 

 Ask peers to clarify something that the instructor said during the lectures (e.g., “I 
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remember [Instructor’s name] asking us to email her with topics [...] I wonder if 

that is in replacement of our bb question?”), or 

 Share information with classmates obtained from the instructor via some other 

personal communication such as email. (e.g., “I just got a reply from [Instructor’s 

name], and she said that […]”) 

This type of postings, and the ties derived from them, is very important in the 

context of learning. This is because ‘student-instructor’ ties derived from these messages 

can be used to identify students who are repeatedly asking for instructor’s help. For 

example, a high weight for a tie between a student and the instructor suggests that a 

student is uncertain about class content or procedure, and an indication that extra 

attention may be needed from the instructor. However, if many students are connected to 

the instructor via these types of messages, then it may indicate that lectures or other class 

materials are unclear to not just one student and thus either the materials or a delivery 

method might need to be reconsidered by the instructor.  

Another common category of messages involves an instructor mentioning a 

student. These were usually announcements from the instructor containing names of 

students responsible for leading a class discussion. For example, “Dan, [...] Since you 

have studied [Topic], would you get our discussion going on the forum for this week”. 

Sometimes an instructor praises a student for some good work in the class. This suggests 

that if there is a tie from an instructor to a student based on this kind of postings, it is very 

likely that this student is doing well in the class. Identifying reliable and successful 

students in a class may be of importance for an instructor or for school’s administration, 

especially when formal grading information is unavailable. For example, an instructor 
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can use such information to assign students into more effective groups, e.g., depending 

on pedagogic need, they might assign at least one student who is doing above average in 

the class to a group, or they might assign the high achievers to a group of their own.  

Another common type of message in this category involves an instructor listing 

groups with their individual members for smaller group discussions. After examining 

these postings, I concluded that the ties derived from them do not necessarily reflect 

relationships between the instructor and a student. Instead, these postings can be used to 

automatically identify students who were assigned to work together, thus potentially 

creating ‘work’ ties. ‘Work’ ties are especially important for studying online groups since 

they are often precursors of even closer ties between online participants (See, for 

example, Haythornthwaite, 2002). This was confirmed by several students in the 

comment section of the online survey. They viewed the breakdown into smaller groups 

during live sessions as a good way to get to know their peers.  

The last category of messages involved a student mentioning other student(s). In 

these cases, the poster often took a leadership role in a group, for example, by 

summarizing other group members’ postings or assigning roles for a project as 

demonstrated in the following excerpt:   

“Some quick poking around shows that Steve and myself are here in Champaign, 
[...] and Nicole is in Chicago. [...] does anyone have a strong desire to be our 
contact person to the administrators” 

This type of messages is useful in identifying active group members and group 

leaders and would be very useful when studying collaborative learning. However, a lot of 

messages like this from the same person may be perceived negatively by other group 

members. For example, in a related study, when analyzing a large collection of Usenet 
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newsgroup messages, Fiore et al. (2002) found that online participants who dominated 

the conversations were often viewed unfavorably. Nevertheless, a more detailed analysis 

is needed to study the influence of this type of connections in the online learning 

environment.  

Situation 2: Subsequent Posting in a Thread. The detailed examination of 

subsequent postings revealed three main types of references/relations: 

 A reference to an event or interaction that happened outside the bulleting board 

(e.g., “Dan and I have been corresponding via e-mail and he reminded me that we 

should be having discussion here”). This type of messages is likely to connect 

people who work together.  It is also suggestive of stronger personal ties. This is 

because according to the idea of media multiplexity, stronger ties tend to 

communicate via more communication channels (See, for example, 

Haythornthwaite & Wellman, 1998; Haythornthwaite, 2001).  

 A reference to someone as part of a group when providing a feedback to the 

whole group or posting on behalf of the whole group and signing the names of all 

group members (e.g., “Angela and Natasha, I couldn't wait to see your site. I 

knew it was going to [be] awesome!”). This is another type of messages that will 

likely indicate ‘work’-related ties.  

 A reference to somebody who presented or posted something a while ago or via 

different communication channel (e.g., “[…] it made me think of the faceted 

catalogs' display that Susan posted”). These postings appear to be useful for 

identifying ‘learning’ ties. This is because they show that a poster was not just 

commenting on the previous post, but rather on something that was said a while 



 

 75

ago. This means that the poster was following the class discussion, and a student 

mentioned in the posting made some significant contribution to the discussion that 

resonated with the current poster. All these activities can be categorized as 

evidence of learning. 

In sum, based on the discussion in this section, the name network is shown to be 

well adept at detecting three of the social relations that are considered by many 

researchers to be crucial in shared knowledge construction and community building: 

‘help’, ‘work’ and ‘learning’. 

5.2.2 Connections Missed by the Name Network 

The previous section summarized common types of connections that were missed 

by the chain network. However, because on average only 25 per cent of all postings 

include personal names, it is important to also check what types of connections were 

missed by the name network. For this analysis, I randomly selected one of the bulletin 

boards in Class #1.This sample set consisted of 71 postings. Out of 71, 43 postings did 

not mention any personal names. The manual content analysis of these 43 postings 

revealed that the majority of the postings (31 postings, 72 per cent) did not address any 

particular person in the class, but rather addressed the class as whole. Usually, these 

messages expressed the opinion of the author about a matter that is being discussed 

and/or attempted to summarize what has been said in the forum without referring to any 

particular person or posting in the class. In some cases, a student posted a link that he or 

she believed to be relevant to the class discussion/topic. The results described above 

suggest that it is possible to ignore messages without names since these messages, for the 

most part, do not address any particular person in the class. An alternative view is to 
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develop a hybrid approach of using the chain network and the name network to 

complement each other. To make a final recommendation, this issue will be a subject of a 

post-dissertation research. Further research might also explore how the balance between 

these more general postings and the name-using postings affect perceptions of class 

functioning. 

5.3 NAME NETWORKS VERSUS SELF-REPORTED NETWORKS 
This section covers the second half of the second research question: 

Question 2.2: How is the proposed name network associated with the self-

reported network? 

In order to answer this question, results from the chain network and the name 

network were compared with results from the self-reported network to determine which 

of the two derived networks is a better approximation of the self-reported social network 

(if any). Until now, the only reliable way to collect perceived data has been through 

surveys that demand both the time of the researcher and of the participants. Therefore, it 

would be a methodological breakthrough if an automated method for mimicking 

perceived social networks were devised. 

For this analysis, pair wise comparisons of the three types of networks were 

conducted using statistical network models and specifically Exponential Random Graph 

models (p* models; Robins, in press, 2007). To build p* models, I used XPNET software 

(Wang et al., 2006). There are a few important reasons why p* models were selected to 

conduct this comparison and not other statistical models or QAP correlations. First, since 

some students did not participate in the survey, some possible ties were probably missing 

in the self-reported networks. As a result, QAP correlations would likely produce 
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inadequately lower results. Second, parameters estimated by a p* model are easy to 

interpret and compare across different pairs of networks. Finally, a p* model is the only 

statistical model that is capable of modeling different network structures as well as 

individual characteristics of the group members (Snijders, 2008).  

Using p* models, for each class I estimated the parameter EdgeAB for a pair of 

the chain network and the self-reported network first and then for a pair of the name 

network and the self-reported network. The parameter EdgeAB indicates the likelihood of 

two networks sharing ties not by a chance alone. The results are shown in Table 5.3. The 

model was converged (t–statistics<0.1 for all estimated parameters) and the model was 

found to be significant (the goodness of fit for EdgeAB was less than 0.1 and between 1 

and 3 for all other parameters) for all classes, except the case of a pair of the name and 

self-reported networks for Class #6.  

The results show that for four out of six classes, the name network is consistently 

more likely to share ties with the self-reported network than the chain network (more than 

just by a chance alone). This supports my general expectation that the name network is 

more reflective of students’ perceived relationships. However, for two smaller classes, 

Class #5 and Class #6, the name network was less likely to match the self-reported 

network than the chain network. (For Class #6, the model was not significant.) This was a 

very puzzling but intriguing result. It led to a separate investigation which is described in 

subsequent sections. The results of this investigation, as laid out in Section 5.3.1, 

provided some plausible explanations for the underperformance of the ‘name network’ 

method and suggested some concrete steps on how to further improve the ‘name 

network’ method in the future.     
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To find out why the name networks for Class #5 and Class #6 were less likely to 

share ties with the self-reported networks than the chain networks, I analyzed the network 

signatures for two students, Nick and Anna, from Class #5. These two students were 

selected because their network signatures were the most different in each of the two types 

of networks. One student, Nick, had several ties in the self-reported network that were 

missing in the name network. The second student, Anna, had a couple of ties in the name 

network that were missing in the self-reported network. For these two students, I 

examined all of their ties that exist in the self-reported network but not in the name 

network and vice versa. One of the main goals of this analysis was to identify what 

caused the ‘name network’ method to miss some self-reported ties and to include some 

ties that are not in the self-reported network. Furthermore, the analysis helped to identify 

any additional clues from the content of postings that can be used to improve the ‘name 

network’ extractor. For this examination, I used ICTA. 

5.3.1 Why Did the Class #5 Name Network Miss Some Self-Reported Ties? 

A student named Nick from Class #5 was selected by seven other students in the 

self-reported survey, but strangely in the name network, Nick was not connected to any 

of these seven individuals. After a brief investigation, it was determined that Nick only 

posted three messages to the bulletin board for the whole semester. There was simply not 

enough evidence on the bulletin board for the name network to discover ties to other 

individuals. So, on the surface, it is not clear what the basis was for these seven 

nominations from his fellow students. A posting from the instructor can shed some light 

on this mystery. The instructor mentioned Nick on the bulletin board once, when 

assigning students into smaller discussion groups for the chat sessions. It turned out that 
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the other two students who were assigned to work with Nick were among those who 

nominated Nick in the survey. This suggested an important future improvement to the 

‘name network’ method. In addition, to connecting a poster with all people who are 

mentioned in the body of his or her posting, the ‘name network’ method should also 

connect any people whose names co-occur in close proximity in the same messages. With 

such a modification, Nick would gain two more additional ties in the name network to the 

two students who nominated him in the survey. As a proof of the concept, I re-built the 

name network for this class using co-occurrence of names in the text as an additional 

indicator of personal ties and re-run the comparison analysis between the name network 

and the self-reported network for Class #5. This time the likelihood of sharing ties 

between these two networks increased from 0.96 to 1.50 (t-statistics = 0.067) which is 

higher than the corresponding value from the chain network (1.03). This result led to 

adding an additional option for building the name network in ICTA. This new option 

allows a researcher to select whether or not to connect people in the name network based 

on the co-occurrence of their names in the text.  

The instructor’s message also suggested that the transcripts of chat conversations 

may contain additional evidence in support of ties disclosed in the survey. Having access 

to all class-wide chat transcripts, I imported them into ICTA and examined the use of the 

name ‘Nick’ in the chat messages. I discovered that all seven students who selected Nick 

in the survey were either mentioned by Nick, mentioned in the same context with Nick 

(worked together) and/or they mentioned Nick in the chat conversations. For example, 

“Nick and Phil, I'm thinking that the framing tool might be useful for your projects”. This 

anecdotal evidence suggests that the analysis of any additional communication media 
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used in a class will improve the discovery of social networks within a class and will 

better reflect self-reported social networks. This observation is in line with the previous 

research on media multiplexity which asserts that people with stronger ties tend to use 

more media than those with weaker ties (See, for example, Haythornthwaite & Wellman, 

1998; Haythornthwaite, 2001).  

The approach of examining multiple data sources to discover social networks is 

not new and has been employed by social scientists for decades; for example, researchers 

often combine different data collection instruments such as interviews and on-site 

observations to improve the reliability of their social network data. But this approach has 

gained more popularity in the last decade due to the wide use of Internet by different 

groups and communities as their primary communication and publishing media. For 

instance, Stefanone and Gay (2008) relied on both email networks and forum networks to 

study social interactions of undergraduate students. Matsuo et al. (2006) used self-

declared FOAF (Friend-of-a-Friend) networks, web-mined collaborator networks, and 

face-to-face meeting networks to build Polyphonet, a community support system for two 

different conferences. Aleman-Meza et al. (2006) used two social networks, FOAF 

(Friend-of-a-Friend) extracted from pages on the Semantic Web and a co-authorship 

network of authors from the DBLP Computer Science Bibliography24 to determine the 

degree of Conflict of Interest among potential reviewers and authors of scientific 

publications. It is also important to note that although there seems to be an increasing 

interest in this approach, it is not always feasible or possible to collect social network 

data from multiple sources for any particular online communities. Some groups may only 

                                                 
24 DBLP Computer Science Bibliography - http://www.sigmod.org/dblp/db 
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use one channel of communication. Also, there is still the ongoing research question of 

how to combine evidence of social relationships from different types of data.  

In my post-thesis analysis, I am planning to devise and evaluate a method for 

collecting and combining evidence from both bulletin boards and chat transcripts to build 

the name network.  

5.3.2 Why Did the Class #5 Name Network Include Some Ties That Were Not 
in the Self-Reported Network? 

Anna is a well connected student in the self-reported network. However, she only 

had three strong ties in the name network. For the purposes of this section, I only focus 

on two ties from the name network that are missing in the self-reported network. (The 

third tie was reported in the self reported network and thus is not relevant to this part of 

the discussion.) The two ties in questions are with fellow students Rick and Mark.  

The tie between Anna and Rick resulted from Rick posting three different 

messages to Anna thanking her for “insights”, “thoughtful comments”, and “all the 

wonderful posts and information”. However, surprisingly there was no tie between these 

two students in the self-reported network. After a detailed investigation, it turned out that 

Rick did select Anna in the survey as a person who influenced his learning and helped the 

most in the class. (Rick was not nominated by Anna.) But because all ties with a weight 

less than 3 were removed (See Section 4.2), a tie of 2 between Anna and Rick also 

disappeared. As an experiment, I built a ‘learning’ network based on the students’ 

responses to only one of the question in the survey about ‘learning’. In this learning 

network, there was a tie between Anna and Rick. Next I compared this ‘learning’ network 

with the original name network (without using co-occurrences). The resulting likelihood 
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has slightly increased from 0.96 to 1.17 (t-statistics = -0.062). This suggests that the 

name network was a bit more similar to the ‘learning’ network than to the overall self-

reported network for this particular class. Therefore, the continuation of this study will be 

to compare the name network with each type of the self-reported networks to determine if 

the name network is better in predicting ‘learning’ ties than others. However, it is 

possible that for some other class, depending on the prevalence of one type of 

interactions over the other, the name network can better reflect other types of self-

reported networks such as ‘friendship’ or ‘work’ networks. Therefore, as a future 

improvement, the ‘name network’ method should be able to not just discover ties but also 

categorize them into different relations. This can be done by using information about 

roles of participants (e.g., student, guest speaker, instructor, etc), a position of a message 

in the thread as suggested in Section 5.2.1, and/or the context words where particular 

names are mentioned in a posting. For example, words like “thank you”, “help”, 

“assistance” may indicate that a student helping another student, thus they are connected 

via the ‘help’ relation. With such an algorithm in hand, it will be possible to build the 

name network that reflects only ‘help’ relations, only ‘learning’ relations, only friendship 

or some other relation that is important to members of a certain online community.  

The discussion above also suggests that attention needs to be paid to the weight 

selected for the tie cutoff. This may vary by sample, relation, discussion, etc. Therefore, 

to make ICTA as flexible as possible, it was decided to keep all ties discovered by the 

‘name network’ algorithm regardless of the weight, and allow a researcher to set a 

threshold for the tie cutoff in the final visualization.  
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The tie between Anna and Mark resulted from Mark posting two messages with 

Anna’s name in them. The first posting from Mark was a question directed at Anna, 

“Anna -- what did you mean by [word] in paragraph 3 of your reply?” The second 

message was a thank you message from Mark to Anna for posting an interesting article to 

the bulletin board. (There were no messages from Anna mentioning Mark’s name.) But 

regardless, this may be enough to suggest a tie between Mark and Anna. Unfortunately, 

because Mark did not participate in the survey, the self-reported network did not include 

a tie between them. In such case, a researcher can rely on tools like ICTA to conduct a 

semi-automated content analysis of messages to make the final decision about the 

accuracy of the ‘name network’ method. 

5.3.3 Accounting for Agreement and Disagreement in the Postings  

This section describes another possible reason for why the name network 

sometimes includes ‘false-positive’ ties (ties that are not part of the self-reported 

network). It should be noted that for practical and ethical reasons the questionnaire used 

to collect the self-reported networks avoided asking about negative ties and concentrated 

on neutral to positive types of relationships like friendship. As a result, by definition, the 

self-reported network does not include any ‘dislike’ or ‘negative’ types of ties. However, 

the ‘name network’ method does not have any predisposition towards filtering or 

ignoring negative ties. Negative ties can be inferred from postings that are considered to 

be confrontational in tone; for example, when one student disagrees with another on some 

issue. And the ‘name network’ method does not distinguish between negative, neutral or 

positive types of postings. For this reason, it is possible that the ‘name network’ method 

will include negative ties while the self-reported network will ignore those same ties 
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entirely.  

To verify this supposition, I conducted a manual content analysis of postings from 

one of the 6 classes, Class #5. Specifically, I wanted to find out whether the expression of 

agreement in a posting might lead to a declaration of a tie between a poster and an 

addressee in a self-reported network. Or conversely, the expression of disagreement 

might lead to no declaration of a tie between a poster and an addressee in a self-reported 

network. The analysis started with the examination of all 156 instances from 125 postings 

when a personal name was used. First, I identified the tone of each posting, specifically 

the level of poster’s agreement or disagreement with an addressee of the posting. The 

‘agreement’-type of postings included phrases like “Rick, I completely agree with you”, 

“love your idea”, “great post”, “impressed with Ann’s posting”, and some examples of 

the ‘disagreement’-type of postings are “Stephen, yes - but what I was referring to […] ” 

or “Mark, […] I would take issue with this because I think […]”. Second, for all students 

who participated in the survey, I counted (1) how many times a name was used to 

intensify agreement with an addressee when there was also a tie between the poster and 

the addressee in the self-reported network and (2) how many times a name was used to 

express disagreement with an addressee and there was not a tie between the poster and 

this addressee in the self-reported network.  

The results are presented in Table 5.4. As it turned out, in Class #5, personal 

names were used more often to intensify agreement than disagreement. This suggests the 

supportive and non-confrontational nature of this class. In another study of eight LIS 

online classes, Haythornthwaite and Gruzd (2007) found similar results showing that 5 to 

12 per cent of messages expressed agreement, compared to less than 1 per cent 
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expressing disagreement. In another study of online collaborative learning, Nguyen and 

Kellogg (2005) also found that naming occurred more often in expressions of agreement 

than disagreement. As an explanation for the prevalent use of personal names within 

agreement postings, Savignon and Roithmeier (2004) proposed that their use helps to 

sustain the collaboration, achieve so-called neutral footing and to avoid “strong 

declarations of fact”. 

Next, I examined whether there was a relationship between the tone of a posting 

and the existence of a self-reported tie between a poster and an addressee. Of the 49 ties 

discovered by the name network, 21 came from postings where a name was mentioned at 

least once in agreement, 3 came from postings that expressed disagreement, and the 

remaining 24 postings were neutral in tone. Of the 21 ties that expressed agreement, 16 of 

those ties were also found in the self-reported network. As for the 3 ties that expressed 

disagreement and discovered by the name network, none of them were found in the self-

reported network. This observation coupled with the previous research by others in this 

area (described below) suggests that the ‘name network’ method may be better at 

predicting self-reported ties from postings that express agreement than disagreement. 

This phenomenon can be explained by a simple fact that positive messages tend to leave 

positive impressions on the reader/addressee of the message and negative messages tend 

to leave negative impressions. This is inline with the empirical findings by Mabry (1997) 

who also discovered that “[m]essages seeking positive or negative coalescence on an 

issue were significantly related to a message's perceived emotional tone” (n.p.). 

Following this argument, it is expected that any name network (as described in this work) 

built based on the dataset with a lot of confrontational messages will not resemble 
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perceived social networks unless these perceived social networks seek out representation 

of ‘dislike’ relationships.  Further research with datasets where both agreement and 

disagreement postings are common is needed to reach a more definitive conclusion. 

Although the number of messages expressing disagreement was very low in Class 

#5 and does not appear to strongly influence the ‘name network’ method, the literature 

review shows that confrontational messages are not that uncommon in online learning 

forums. For instance, Williams and Humphrey (2007) studied interactivity in threaded 

discussions of seven graduate-level courses in the Teaching English as a Second 

Language program. In some cases Williams and Humphrey (2007) observed that names 

were used to increase confrontation. This usually happened when names were used as 

intensifiers with so-called FTAs (face-threatening speech acts) such as “disagreement or 

dissatisfaction with a previous posting”. However, Williams and Humphrey also did 

further suggest that “FTAs are important for meaningful class discussions, because it is 

partly through disagreement and its resolution that meaning is constructed” (p.139).  

In conclusion, the proportion of postings expressing agreement versus 

disagreement depends on a variety of factors such as the polarizing nature of a discussion 

topic, individual beliefs, group’s willingness to achieve a common goal, forum’s policies, 

the performance of a moderator to mitigate a conflict and so on. There is also a 

possibility that a group that was initially in complete agreement may develop conflicting 

views on some topic later. As stated by Mabry (1997), “[d]ialogues of all sorts often turn 

from platforms for agreement to the exchanging of claims (contentions) and 

counterclaims” (n.p.). Therefore, in the future post-thesis research, to even further 

improve the ‘name network’ method, it will be helpful to recognize situations when a 
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name is used to express friendliness/agreement versus confrontation/disagreement with 

an addressee. This can be done in an automated fashion by using sentiment analysis. 

Sentiment analysis is the field of study that deals with automated techniques for 

identifying emotional polarity of text. (The recent review of the state-of-the-art 

techniques in the sentiment analysis is published that of Pang & Lee, 2008). A simple 

approach could be developed to first determine a poster’s attitude toward an addressee of 

the posting and then only select neutral or friendly postings to build the name network. 

On the other hand, it may be useful to know if a particular topic is becoming 

controversial which can be a signal to an instructor to preemptively intervene and to 

manage a conflict before it escalates. 

5.4 SUMMARY 
This chapter described a comprehensive analysis of the ‘name network’ method 

using both quantitative and qualitative approaches. The analysis revealed that there are 

clear and critical differences between the social networks discovered by the ‘name 

network’ method versus those discovered by the ‘chain network’ method. The analysis 

also revealed that the name network tends to better resemble self-reported social 

interactions in the class than the chain network. Finally, the analysis of postings used to 

derive the name network suggested a number of important improvements for the ‘name 

network’ method. The next and last chapter summarizes and presents these and other 

important findings and suggestions for future research that came out of this study. 
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5.5 TABLES 
Table 5.1: QAP correlations between pairs of the name and chain networks for six online 
classes 

 # of Students Chain Network  
Density 

Name Network 
Density 

QAP 
correlations* 

Class #1 28 0.23 0.13 0.50 
Class #2 20 0.48 0.35 0.51 
Class #3  25  0.48 0.28 0.58 
Class #4 21 0.08 0.1 0.45 
Class #5 19 0.22 0.15 0.53 
Class #6 15 0.39 0.17 0.69 
* The number of random permutations used for the analysis was 5,000 

 
 
Table 5.2: The relationship between an actual addressee and his/her position in the 
reference chain 

# of times an addressee is NOT in 
the reference chain when found in … 

# of times when an addressee 
is IN the reference chain as … 

Class # of all 
postings* 

# of found 
instances of 

named 
addressees  

a first posting of 
a new thread 

a subsequent 
posting in a 

thread  

the most 
recent poster 

other 
 

   COLUMN A COLUMN B COLUMN C COLUMN D 
Class #1 608 149 50 11 81 7 
Class #2 855 271 59 30 153 29 
Class #3 1,502 306 37 21 232 16 
Class #4 164 96 17 16 51 12 
Class #5 412 156 46 26 76 8 
Class #6 497 107 27 4 73 3 
Average 
(%) 

 100% 23% 10% 60% 7% 

* On average, about 25% of all postings included personal names 
 
 
Table 5.3: EdgeAB - the likelihood of two networks to share ties not by a chance alone 

Chain* & Self-Reported Networks Name* & Self-Reported Networks Class 
Estimated parameter 

EdgeAB 
t-statistics Estimated parameter 

EdgeAB 
t-statistics 

Class #1 0.81 0.075 1.73  -0.085 
Class #2 0.99 0.044 1.52 0.031 
Class #3 1.17 -0.057 1.31 0.001 
Class #4 0.61 -0.007 1.11 0.064 
Class #5 1.03 -0.004 0.96 -0.071 
Class #6 1.33 0.053 0.82  Not significant 
* Because self-reported networks likely include only strong ties (Bernard et al. 1981), all weak ties (with 
weights less than 2) were removed from all chain and name networks (except those for Class #4 due to 
its low network density). Following the requirements of XPNET, both chain and name networks were 
then binarized, a process where all weights of existing ties were set to 1. Finally, all networks were 
symmetrized using the following procedure: if there is a connection between one student to another, 
then it was assumed that for strong ties there is also a connection in the opposite direction. 
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Table 5.4:  A relationship between a tone of a posting and the existence of a self-reported tie 

 In the self-reported 
network 

Not in the self-reported 
network 

Agreement 16 5 

Disagreement 0 3 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

6.1 CONCLUSIONS 
The ‘name network’ method as proposed and evaluated in this work provides one 

more option for understanding and extracting social networks from online discussion 

boards, and it is a viable alternative to costly and time-consuming collection of users’ 

data on self-reported networks. 

For the cases studied, the name network provided on average 40 per cent more 

information about social ties in a group as compared to the chain network. This additional 

information is available mostly because the name network can account for instances 

when a poster addresses or references somebody who has not previously posted to a 

particular thread. The ability of the name network to find message addressees based on 

the content of the message makes it possible to also discover social networks from 

Internet data where message addressees can not be determined from the information in 

the message header. Some examples of such data include chats, blogs, news stories, 

Youtube comments.  

Furthermore, there is evidence that the name network provides a better reflection 

of self-reported ties than the chain network. This is primarily because the name network 

is well adept at detecting three of the social relations that are considered by many 

researchers to be crucial in shared knowledge construction and community building: 

‘learning’, ‘work’ and ‘help’. For example, ‘learning’ relations were often discovered by 

the ‘name network’ method in postings that refer to somebody else who has presented or 

posted something earlier. By referencing ideas or comments from earlier postings the 

poster demonstrates that he or she was following the class discussion and learning with 
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and from others. ‘Work’ relations were commonly revealed by the ‘name network’ 

method through postings that refer to an interaction that happened outside the bulleting 

board or postings that mention members of the same study group in the same context. 

Finally, ‘help’ relations were often discovered in postings from students asking for the 

instructor’s help or postings that mention classmate’s name in the context of words like 

“thank you”, “help”, “assistance” indicating that a student is helping another student. 

These characteristics of the name network make the method a useful diagnostic tool for 

educators to evaluate and improve teaching models from the student’s perspective.  

Some specific examples of how ties in the name network can be interpreted and 

used in the assessment of e-learning are listed below.   

(1) To identify students who might need extra attention from the instructor, 

we can look for students with more connections (abnormally higher tie weight) to the 

instructor (especially those with connections that were derived from the thread starting 

postings). Or if we discover that many different students are connected to the instructor 

over a short span of time, this may indicate that lectures or other class materials were 

unclear. This can serve as a signal to the instructor to either cover the materials again, 

adjust the materials or change the delivery method. 

(2) To find students who are doing well in the class and may be good 

candidates to provide help to their peers and aid in the learning process of their fellow 

students, we can look for students who have connections going from the instructor to 

them. On the surface, it might not be obvious as to how one can use such connections to 

identify potential student-helpers. However, when you couple this with the knowledge 

that most instructors tend to reprimand bad students in private and praise good students in 
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public (over the bulletin board) such as complementing a student for some good work in 

the class, then it becomes clear why such connections are good identifiers of successful 

students in a class.  

(3) To identify students who tend to or would likely to work together on 

projects, we can look for strong ‘student’ to ‘student’ ties. If two students are connected 

in the name network, it usually means that they are either already working together on or 

tend to positively view each other postings and/or class presentations. The instructor can 

use this information to find students who share same interests and to group them together 

for more successful group projects.  

(4) To find active group members who often take a leadership role in a 

group, we can look for nodes that have many connections to other students, especially 

those connections that were derived from postings mentioning more than one student. 

These types of nodes tend to be initiated by students who have taken the initiative and 

organized their fellow students to complete a particular task or objective. The instructor 

can use this information about potential group leaders to select a contact person in a 

group or find a person who would be good in leading a class discussion or organizing 

other class-related activities.  

The study also suggested the following improvements for ICTA that have already 

been implemented: (1) using co-occurrence of names as an additional indicator of 

possible ties between people, (2) allowing ICTA’s users to select whether or not to 

include non-posters who are mentioned by group members into the name network, (3) 

providing ICTA’s users with an option to set a cutoff value for the tie weight filter. 
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Furthermore, the results of this research also suggested at least three additional 

future improvements that might help to increase the accuracy of social network discovery 

using the ‘name network’ method. The suggested improvements include (1) identifying 

types of different relations based on the context words used in the postings, (2) using 

multiple data sources to increase confidence in the existence of dyadic relationships, and 

finally (3) using techniques from sentiment analysis to determine the level friendliness of 

the relationships.  

In conclusion, the ‘name network’ method for social network discovery proposed 

in this dissertation can be used to transform even unstructured Internet data into social 

network data. With the social network data available, it is much easier to analyze and 

make judgments about social connections between community members. The ‘name 

network’ method can be used where more traditional methods for data collection on 

social networks such as surveys are too costly or not possible, or they can be used in 

conjunction with traditional methods.  

6.2 LIMITATIONS OF THE METHOD 
This section briefly describes three main limitations of the ‘name network’ 

method and suggests possible solutions.  

First, the ‘name network’ method is more expensive computationally then the 

‘chain network’ method. This limitation can be addressed by integrating the ‘name 

network’ method directly into a system used by an online community. This way, new 

postings can be processed on the fly as they come into the system, instead of analyzing 

all postings at once which takes longer. Also with the improvements in the hardware and 

the efficiency of text mining techniques, this limitation will be less of an issue in the 
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future.  

The second limitation of the method is its implementation of the alias resolution 

method. Currently it uses an email address as a unique identifier of a participant. This 

approach assumes that each student uses only one email address to post messages to the 

bulletin board. This assumption is true for the datasets in the study. However, for other 

online groups this may not be the case. Thus, the alias resolution procedure in the ‘name 

network’ method needs to be modified to work properly with datasets from other 

domains. This can be accomplished by using one of the alternative alias resolution 

methods described in Section 2.3.2.  

Finally, the ‘name network’ method relies only on postings that include personal 

names. However, based on the empirical evidence from Section 5.2, on average, only 

about 25 per cent of all postings contain personal names. This means that we are 

potentially missing a chance to discover possible social ties from the remaining 75 per 

cent of the postings. This may be especially problematic for small size datasets like Class 

#5. A possible solution to address this limitation is to rely on multiple data sources if 

available, as suggested in Section 5.3.1, and/or use the ‘chain network’ method to extract 

ties from postings that do not include personal names. The future research will address 

this question by conducting a more detailed content analysis of postings that do not 

include personal names to find out their functions in online discussions and decide how to 

use these types of message in deriving social networks of class participants if at all.  

6.3 FUTURE RESEARCH 
Many online classes are now using multiple types of electronic communication 

methods such as forums, chats, and wikis to carry on their discussions. It is important to 
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know how we can capture and combine network information from these various data 

streams to build a more comprehensive view of an online community. In my post-thesis 

research, I am planning to devise and evaluate a method for collecting and combining 

evidence from bulletin boards, chat transcripts and wikis to build the name network. 

Some of the challenges here include matching names that people use across different 

communication mediums. For example, a system needs to know that ‘AnneT’ on the 

bulletin boards is the same person as ‘Anne2’ in the chat room and ‘Anne Tolkin’ on a 

wiki page. Another challenge is how to use pages on a class wiki, which are essentially 

web pages, to discover social ties between people. This is because in their raw form, wiki 

pages or web pages in general provide very little information about dyadic relationships. 

For example, discovering that two people are mentioned on the same web page as 

attending the same presentation is not sufficient, on its own, to make judgments about 

their social relationship. Nevertheless, with the proper text mining techniques, web pages 

may still reveal explicit or implicit declarations of relationships between two or more 

people. However, from a programming point of view, the latter is a more challenging task 

compared to analyzing threaded discussions, because the majority of web pages is 

essentially unstructured text that requires a lot more automated processing to discover 

relational declarations. 

Another future direction involves applying the ‘name network’ method to datasets 

in other domains. So far the ‘name network’ method has only been tested in the e-

learning environment. The future research will include the testing of the ‘name network’ 

method with data generated by other types of online communities such as health support 

groups, communities of political bloggers, emerging communities of the creators and 
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viewers of Youtube videos (a popular video sharing site) and rapidly growing and diverse 

communities in the Second Life (a 3-dimensional virtual world). As mentioned earlier, to 

be effective in datasets of other domains, the ‘name network’ method will require 

additional modifications to the name alias algorithm. For example, currently the ‘name 

network’ method resolves name aliases by assuming that each group member uses only 

one unique email address to post messages to the forum. However, this is not always the 

case in online forums. A participant may post messages using different email addresses. 

Another challenge is that in chat transcripts, there is no information about users’ email 

addresses.  

In the future research, I also plan to even further improve the ‘name network’ 

method. For instance, one way to make the name network to more closely resemble 

perceived social interactions is to ignore postings that express confrontation or 

disagreement. This is because an initial data analysis suggests that ties derived from 

postings expressing confrontation/disagreement are less likely to be reported by people. 

Another way to improve the ‘name network’ method is not only to identify automatically 

that two people are connected, but also to find out automatically how they are connected, 

what types of social relations they share, and what roles they have in a group. For 

example, while the ‘name network’ method provides data that two people are connected, 

it does not reveal the nature of their relationships automatically. Their relationships may 

be a friendship, but it may equally be strictly formal (e.g., supervisor-subordinate). The 

future research will need to rely on additional techniques for automated role and 

relationship identification. For example, a method can closely examine the context in 

which personal names are mentioned in the text. For example, if two names appear in the 
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same sentence with a word like “committee”, then an assumption can be made that these 

two people are members of the same organization, oriented to the same responsibilities. 

Some initial work in this direction has been done by Matsuo et al. (2007) and Mori et al. 

(2005) on web pages and by Diehl et al. (2007), Carvalho et al. (2007) and McCallum et 

al. (2005) on email datasets.  

In conclusion, this is an exciting, new area of research. More and more web 

applications25 (often called social web apps) are using information about users’ personal 

networks to help users find more relevant information, share information with friends or 

make better decisions. As text mining techniques become more accessible, more web 

applications will take full advantage of online social network data. Industry led initiatives 

in this direction by Facebook26 and Google27 need to be noted due to their significance 

and reach. Each company has built a free web interface which gives web developers 

access to the personal networks information of their and their partners’ users. This has 

resulted in an explosion of various useful social web apps. While most of this newly 

available data is already pre-organized into a network form, additional processing of the 

texts produced by these communities as proposed and described in this dissertation could 

reveal even more details about the nature of social ties between their members. 

 

 

                                                 
25 An up-to-date list of popular social web applications that utilize information about online social networks 
- http://www.programmableweb.com/tag/social  
26 Facebook Developer’s API - http://developers.facebook.com 
27 Google Open Social - http://code.google.com/apis/opensocial  
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APPENDIX A: CONTEXT WORDS FOR NAME DISCOVERY 

Context words left to a 
sender 

'*', '-', '/', '~', 'cheers', 'thanks', 'thank you', 'yours', 
'sincerely', 'regards', 'wishes', 'take care', 'see you soon' 

Context words right to a 
sender 

'*', 'ps', 'p.s.', 'ps.', 'ps,' 

Context words left to an 
addressee  

'i', 'hi', 'hello', 'dear', 'hey', 'replay', 'to', 'cc', 'from', 'as', 
'with', 'agree', 'disagree', 'and', 'p.s.', 'ps', 'ps.', 'ps,' 

Context words right to 
an addressee 

'i', 'wrote', ',', 'pointed', 'said', 'and' 

Context words left to 
any name 
 

'hi’, ‘hello’, ‘dear’, ‘hey’, ‘prof’, ‘professor’, ‘ms’, 
‘mr’, ‘mrs’, ‘dr’, ‘gov’, ‘sen’, ‘lt’, ‘col’, ‘cheers’, 
‘thanks’, ‘yours', 'regards’, ‘wishes’, ‘care’, ‘soon' 

Context words right to 
non-name  

'street’, ‘ave’, ‘st’, ‘association’, ‘foundation’, ‘award’, 
‘university’, ‘school’, ‘department’, ‘conference’, 
‘drive’, ‘institute’, ‘system’, ‘college’, ‘method' 

Note: ‘*’ indicates a new line. 
 

 



 

 110

APPENDIX B: GENERAL ALERT LETTER FOR ONLINE CLASSES 
General Alert Letter for LEEP classes 
To: GSLIS Students in LEEP class 
From: Caroline Haythornthwaite 
Re: Alert re use of transcripts of class-wide online discussions 
 
This message is to alert you to research being conducted by Caroline 
Haythornthwaite, Associate Professor in Graduate School of Library and Information 
Science, and to provide you with details about the study and your rights as a 
participant. This work is being conducted with Anatoliy Gruzd, a doctoral student at 
GSLIS, for whom this research comprises part of his doctoral dissertation work. In 
the future, other Research Assistants working with Professor Haythornthwaite may 
also be involved in this study.  
 
In our research, we are looking at how students learn and interact online. This work is 
being undertaken to help us understand learner behaviors in online settings, and is 
part of an ongoing research program by Caroline Haythornthwaite that examines 
online learning. Results from this study will help faculty and administration to 
understand online learning processes and to design effective programs for future 
students.  
 
The research examines the transcripts of the class chat (main room only, not including 
whispers or chat in other rooms), and postings to Moodle forums (those open to the 
whole class) in order to study how students communicate online. The only transcripts 
being examined are those that are already recorded as part of class records and which 
are public to the class as a whole. 
 
In any reports or publications, all data will be anonymized. While looking at trends, 
something that has been written in the class chat room or in discussions may provide 
a good example to show to others. Should such examples be used in reports or 
publications, all names of class members will be changed to pseudonyms. 
 
If you do not want any text of yours to be used as examples, please email, or write to 
Caroline Haythornthwaite (contact information below) and your online text will not 
be used in this way. Only information aggregated with use by others will be used. 
Only members of the research team will know that you have asked for your text not to 
be quoted. Please send such requests as soon as possible, and preferably by no later 
than one month after the end of the semester. Later requests will be honored as well, 
but research reports may already have been given or submitted which cannot be 
altered. 
 
As part of this study, we are also interested in students' perceptions of class 
interaction. To gather that information, we will be asking you at a later date to 
complete a short online survey. We anticipate that this will take you no longer than 15 
minutes to complete, and details will follow about this. In most cases we will ask you 
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to complete this once at the end of the semester. For some classes we will ask for 
cooperation in tracking perceptions of interaction over the semester, and would ask 
you to complete a survey three times during the semester. Again, details will follow 
about this. 
 
Participation in any part of this study is voluntary. Risks associated with the research 
are very low, and are considered no greater than those of everyday life. Minimal risk 
is associated with the impact on reputation if text from class-wide LEEP discussions, 
or diagrams of class interaction, even with anonymization, reveal information that 
may be considered to affect an individual's reputation. 
 
Results of this research will be disseminated in academic venues, including working 
papers, conference papers, journal publications, book chapters, and dissertation work 
in print or online. 
 
Students may discontinue participation at any time, with no negative consequences. 
Your instructor will have no knowledge of your agreement to participate or your 
decision to withdraw. The decision to participate, decline, or withdraw from 
participation will also have no effect on your grades at, status at, or future relations 
with the University of Illinois. 
 
If you have any other questions or concerns about this research, please contact 
Caroline Haythornthwaite (haythorn@uiuc.edu or 217-244-7453).  
 
If you have any questions about your rights as a participant in this study, please 
contact the University of Illinois Institutional Review Board at 217-333-2670 (collect 
calls accepted if you identify yourself as a research participant) or via email at 
irb@uiuc.edu. The Institutional Review Board is the office at the University of 
Illinois responsible for protecting the rights of human subjects involved in studies 
conducted by University of Illinois researchers. 
 
Please print a copy of this informed consent document for your records. 
 
Thank you for your participation. 
 
Caroline Haythornthwaite (haythorn@uiuc.edu) 
Associate Professor, Graduate School of Library and Information Science 
University of Illinois at Urbana-Champaign, 501 East Daniel St., Champaign, IL, 
61820 
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APPENDIX C: ONLINE QUESTIONNAIRE 
SECTION 1: Please answer the first THREE questions for EACH student in the class. 

With [5] indicating a more frequent association, please indicate on a scale from [1] to [5] 

1. HOW OFTEN YOU LEARNED SOMETHING NEW ABOUT THE CLASS 

SUBJECT MATTER FROM EACH STUDENT IN YOUR CLASS: 

With [5] indicating a more frequent association, please indicate on a scale from [1] to [5], 

2. HOW OFTEN YOU WORKED WITH EACH STUDENT IN THE CLASS: 

With [5] indicating a closer relationship, please indicate on a scale from [1] to [5],  

3. YOUR FRIENDSHIP RELATIONSHIP WITH EACH OF THE OTHER 

MEMBERS OF THE CLASS (considering both work for this class and for other 

classes or associations) 

1 - don’t know this person 

2 - just another member of class 

3 - a slight friendship 

4 - a friend  

5 - a close friend 

 

SECTION 2: Please answer the remaining FOUR questions by SELECTING ONLY 5 

TO 8 STUDENTS from the list. 

4. From the list of all students, SELECT THE 5 TO 8 STUDENTS WHO HAVE 

BEEN MOST INFLUENTIAL IN YOUR LEARNING IN THIS CLASS. 

5. From the list of all students, SELECT THE 5 TO 8 STUDENTS WHO HAVE 

BEEN MOST IMPORTANT IN PROMOTING DISCUSSION IN THIS CLASS. 

6. From the list of all students, SELECT THE 5 TO 8 STUDENTS WHO MOST 

OFTEN GAVE  YOU OR FELLOW CLASSMATES HELP WITH 

UNDERSTANDING A TOPIC OR ASSIGNMENT IN THE CLASS: 

7. From the list of all students, SELECT THE 5 TO 8 STUDENTS WHO MOST 

OFTEN MADE CLASS FUN AND ENJOYABLE. 
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SECTION 3:  

With [5] indicating greater agreement with the statement, please indicate on a scale of 

[1] to [5] how much you agree with each of the following statements about your class.   

1 - never 

2 - rarely 

3 - for some of the course 

4 - during most of the course 

5 - throughout the whole course 

I learned a great deal about the subject in this class 

I felt that the class worked together throughout the class 

I felt that class members welcomed new ideas 

I felt that class members were supportive 

I felt satisfied with class interaction 

I enjoyed this class 

 

LAST PAGE 

Our research explores how interaction in online classes relates to student learning and 

experiences. If you have further comments about interaction in this class, please leave us 

a note here. 

Thank you very much for your participation. Please click SUBMIT to complete the 

questionnaire.  
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