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Figure 4.20 MIMO System ID Results for Random Step Changesin All Inputs: City Condition
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4.5 Summary

Theindividual SISO models developed match well with data, and the resulting model residuals have been
verified to be independent white noise. These modelsarelow order. Analysis of the MIMO model created from
combining the SISO modelsindicates a 5" order model, but is less effective for devel oping a prediction model.
Using subspace methods for creating aMIMO model also indicates a5" or 6" order model, and is adequate for

predicting the system dynamics.
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Chapter 5. Model Validation

To ensure that the modeling approach outlined in this thesis appropriately predicts the dynamic behavior of
vapor compression cycles, simulation results were compared to experimental data obtained as outlined in Chapter 4.
Although the modeling approach presented in Chapter 2 is appropriate for both subcritical and transcritical cycles,
the comparisons shown here are for an automotive transcritical vapor compression cycle.

Theimplicit assumption is made that the comparisons between simulated and experimental results for the
given operating conditions are indicative of the model’ s predictive capability at all operating conditions allowed by
the modeling assumptions. This reflects the observation that it isimpossible to fully validate amodel; it is merely
possible to demonstrate that the model is not invalid for agiven set of data.

The first section outlines the general validation procedure, and includes a description of the various
parameters used in the simulation. The second section gives observations regarding the choice of parameters, and
presents the initial model validation results. The final section discusses additions made to the model-based on the

initial results, and presents the results of the improved model validation.

5.6 Validation Procedure
The parameters for each of theindividual components are grouped in three categories: measurable,

empirical, and tunable. The measurable parameters are physical characteristics of the component such as lengths,
masses, diameters, etc. These were measured for each of the components and are assumed to be correct within
measurement accuracy. The empirical parameters are efficiencies or other empirically determined relationships.
The tunable parameters generally cannot be measured easily, but are known to be within a certain range of values
and are assumed to follow commonly accepted parameter correlations.

Thusthe general procedure for validating the model consists of fixing the measured and empirical
parameters, and adjusting the tunable parameters within acceptabl e bounds so that the simulated dynamics

approximate the experimentally recorded dynamics.

5.6.1 Physical Parameters

5.6.1.1 Evaporator and Gas Cooler
Hydraulic Diameter — For different types of heat exchangers (plate, tube, microchannel, etc.) this value will

be calculated differently. Suggestions for calculating this value for the different types of heat exchangers are
available in the literature, and are heat exchanger dependent. For the microchannel heat exchangers used in the
experimental system, the microchannel port diameter was obtained from the manufacturer and verified with
measurements.

Fluid Flow Length—Thisvalue is defined as the length that the fluid travels from the entrance to the exit of
the heat exchanger. All possiblefluid flow paths are assumed to have the same length. Many heat exchangers use a
series of tubes or plates arranged in a serpentine manner for fluid flow. Often these tubes or plateswill join at a
“header” and the fluid is redistributed before entering the next “pass” or series of or tubes or plates.

Cross-sectional Area— This value can be calculated using the hydraulic diameter. For most heat exchangers
the cross-sectional areais not constant. The number of tubes or plates per pass generally increases as the fluid

evaporates or decreases as the fluid condensates, thus changing the cross-sectional area. For the purposes of
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modeling a constant cross-sectional areais assumed. If the cross-sectional areais calculated from the hydraulic
diameter, then it does not take into account headers, distributors, etc.

Internal Volume — This value can either be calculated as the product of cross-sectional areaand fluid flow
length or be measured experimentally. The former does not account for headers, entrance pipes, etc. and is
considered to be the lower bound. The latter includes all these “extra’ volumes and is considered to be the upper
bound. Thusthis parameter can be tuned within these bounds.

Internal Surface Area— This parameter is calculated from the hydraulic diameter.

External Surface Area— This parameter is either calculated from the known fin geometry, or obtained from
the manufacturer.

Mass — This parameter is easily obtained from the manufacturer or measured. Because the header pipes do
not play acritical role in heat transfer, the mass of these may be included or neglected.

Specific Heat — The value of this parameter is easily obtained from a standard heat transfer textbook with

knowledge of the heat exchanger material.

5.6.1.2 Compressor
Displacement — The displacement of the compressor is generally available from the manufacturer.

5.6.1.3 Expansion Valve
Area of Opening— Thisvalueis generally available from the manufacturer.

5.6.1.4 Internal Heat Exchanger
Internal Volume of Hot/Cold Side — This value is generally available from the manufacturer.

Mass — This parameter is easily obtained from the manufacturer or measured. Because the header pipes do
not play acritical rolein heat transfer, the mass of these may be included or neglected.
Specific Heat — The value of this parameter is easily obtained from a standard heat transfer textbook with

knowledge of the heat exchanger material.

5.6.2 Empirical Parameters

5.6.2.1 Evaporator and Gas Cooler
Mean Void Fraction— Many correlations are available as outlined in Chapter 1. For these simulations, a

general slip ratio correlation is assumed.
Single-Phase Flow Heat Transfer Coefficient— This value can be estimated using an empirical correlation

chosen by the user. For these simulations, the Dittus-Boelter correlation [18] was used.

5.6.2.2 Compressor
Isentropic Efficiency — This value can be estimated using experimental steady state data, or obtained from

the manufacturer.

Volumetric Efficiency — This value can be estimated using experimental steady state data, or obtained from
the manufacturer.

Rate Limit — Actual compressors are rate-limited in their ability to change speed. Thisvalue can be

measured from data.
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5.6.2.3 Expansion Valve
Control Input Relationship— The control input is related to the valve opening assuming alinear

relationship. The empirical parameters for this equation can be determined using experimental data.

Discharge Coefficient — This value can be estimated using experimental steady state data, or obtained from
the manufacturer.

Rate Limit — Actual expansion valves are rate-limited in their ability to change the valve opening. This

value can be measured from data.

5.6.2.4 Internal Heat Exchanger
Lumped Heat Transfer Coefficient — This value can be estimated using experimental steady state data.

5.6.2.5 Pipe Losses
Between components there are both momentum losses associated with friction, as well as thermal

losses/gains due to heat transfer to the environment. Both of these types of losses change during atransient

response. From the Darcy-Weisbech equation [39] assuming horizontal pipe lengths, the momentum losses are given

Using this equation a semi-empirical relationship can be obtained for modeling the pressure losses between
components. However, asimple alternative is available. The use of pressure loss equations isto ensure the correct
prediction of pressure at the inlet and outlet of the compressor and expansion valve, so that the calculated mass flow
rateswill be accurate. Instead of using the measured values of pressure at the compressor and expansion valve inlets
and outlets to determine the empirical parameters used in the mass flow rate equations, the measured pressures of
the gas cooler and evaporator are used. Thus the mass flow rate equations are adjusted to predict the correct mass
flow rate using the pressures before they are adjusted with pressure drop correlations. The pressure drop
correlations are effectively lumped into the empirical parameters for the mass flow rate equations.

The thermal losses/gains due to heat transfer to the environment are considered constant for the initial

model validation. These dynamicswill be included as part of the improved model validation.

5.6.3 Tunable Parameters

5.6.3.1 Evaporator
Void Fraction Slip Ratio— Slip ratio is defined as the ratio of the velocities of the vapor and liquid phases

in atwo-phase flow. The generally accepted bounds on this parameter are given by the homogeneous correlation

and the Zivi correlation. The homogeneous correlation assumes aslip ratio of unity, S=1, and the Zivi correlation
givestheslipratioas S= (r ¢ /r g )1/3 . At thetime of writing of thisthesis, there was no known published data

on measured void fraction for transcritical fluids. Therefore, they are assumed to behave similarly to the more
commonly studied fluids. Because these correlations are not verifiable for carbon dioxide, the upper bound is not a
hard bound, but a guideline to be considered when tuning this parameter.

Two-Phase Flow Heat Transfer Coefficient — For transcritical cycles, this parameter has been measured in
[28] to be from 3 to 22 kW/(nPK) depending on the quality of the fluid and the operating condition. Therefore the

average heat transfer coefficient in the two-phase region could justifiably be chosen within thisrange.
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5.7 Initial Model Validation
The final choice of most parametersis straightforward. The values used in the simulation are shown in

Table5.7. The effective crosssectional areawas originally calculated using the hydraulic diameter. However, the
transient response of pressure was observed to be too fast, indicating that the volume was underestimated. Measured
values for volume confirmed this conclusion. While the entrance/exit pipe length could have been included, this
was found to be unnecessary. The selected value for cross-sectional areawas cal culated using the measured internal
volume of the heat exchanger divided by the length of fluid flow. The value for the lumped two-phase flow heat
transfer coefficient was selected as 4 kW/(nPK). This choice is consistent with experimental studies[28] and results
in the appropriate transient behavior. The value for slip ratio was chosen by the Zivi correlation. Although higher
values of slip ratio resulted in a better response for evaporator superheat, the lack of justifying research in the area of
void fraction for carbon dioxide prevents the use of values higher than commonly accepted norms. The empirical
relationships for mass flow through the compressor and expansion valve were devel oped using steady state data.
However, since the transient response of pressureis largely afunction of the time integral of net mass flow entering
the heat exchanger, some tuning of these equations was required after including them in the simulation.

Recall from Chapter 4 that the experimental data consisted of a PRBS applied to the available inputs of
compressor speed, expansion valve opening, evaporator air flow rate, and gas cooler air flow rate. For model
validation the outputs of evaporator pressure, gas cooler pressure, evaporator superheat, evaporator exit air
temperature, and gas cooler exit air temperature are compared. Mass flow rate is not compared because the mass
flow rate sensor has significant dynamic filtering built into the measurement. For each transient response, the mass
flow rate was verified to match at the steady state, but is not included because the sensor dynamicsresultin a
transient response that is misleading. The model was compared to the experimental datataken and each of the three
operating conditions. Only the results for the 3™ operating condition (highway condition) are included here. For all
results, the scale of the output variable isimportant when making comparisons and evaluating the validity of the

model. Some of the resulting transients do not appear to agree, unless they are viewed in the proper context.
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Table 5.7 Parameter Values for Model Validation

Component Parameter Units Value Comment
Mass [kgl 2.458 |Measured
Specific Heat [kJ/ka/K] 0.879  |Aluminum
Hydraulic Diameter [m] 1.092E-03 |From Manufacturer
Internal Volume [m"3] 3.275E-04 |Measured
Cross-Sectional Area [m"2] 1.433E-04 |Calculated from Internal Volume
Internal Surface Area [m"2] 0.800 |Calculated from Hydraulic Diameter
External Surface Area [m"2] 4.458 |From Manufacturer
5 Fluid Flow Length per Pass [m] 1.000 |Measured
‘§ Average Number of Micrchannel Plates per Pass [-] 1.500 |Measured
e Average Number of Passes [ 2.285 |Measured
S Number of Parallel Paths [-] 4 Measured
w Number of Micrchannel Ports per Plate [ 17 From Manufacturer
Total Fluid Flow Length [m] 2.285 |Calculated
Total Number of Fluid Flow Paths [] 102 Calculated
Two-phase Flow Heat Transfer Coefficient [kW/m"2/K] 4 Tuned Parameter
Superheat Flow Heat Transfer Coefficient [KW/m"2/K] 1.933 |Calculated from Dittus-Boelter Equation
Exterior Fluid Heat Transfer Coefficient [kW/m~2/K]] 0.0464 |Calculated from data
Exterior Fluid Specific Heat [kJ/kg/K] 1.007 JAir
Slip Ratio [-] 2.13 Zivi Correlation
Mass [kg] 3.280 |Measured
Specific Heat [kJ/ka/K] 0.879  |Aluminum
Hydraulic Diameter [m] 6.350E-04 |From Manufacturer
Internal Volume [m"3] 1.800E-04 |Measured
Cross-Sectional Area [m"2] 1.651E-04 |Calculated from Internal Volume
Internal Surface Area [m"2] 0.565 |Calculated from Hydraulic Diameter
5 External Surface Area [m"2] 7.090 |From Manufacturer
g Fluid Flow Length per Pass [m] 1.090 |Measured
(@] Average Number of Micrchannel Plates per Pass [-1 65 Measured
a Average Number of Passes [-] 1 Measured
o Number of Parallel Paths [ 1 Measured
Number of Micrchannel Ports per Plate [-] 4 From Manufacturer
Total Fluid Flow Length [m] 1.090 |Calculated
Total Number of Fluid Flow Paths [-] 260 Calculated
Supercritical Flow Heat Transfer Coefficient [kW/m"2/K] 2.592 |Calculated from Dittus-Boelter Equation
Exterior Fluid Heat Transfer Coefficient [KW/m”2/K] 0.042 |Calculated from data
Exterior Fluid Specific Heat [kJ/ka/K] 1.007 |Air
_ 5 Mass [kal 0.865 |Measured
g = = Specific Heat [kJ/kg/K] 0.879 |Aluminum
ol S Internal Volume (Hot Side) [m"3] 1.260E-05 |Measured
c S Internal Volume (Cold Side) [m"3] 2.202E-05 |Measured
u Lumped Heat Transfer Coefficient [kW/K] 0.0935 |Calculated from data
Compressor Displacement [m"3] 5.000E-07 |From Manufacturer
5 Empirical Parameter: Ck [-] -0.0254 |Calculated from data
§ Empirical Parameter: Dk [-1 0.117 |Calculated from data
s Empirical Parameter: n [-] 1.25 Calculated from data
g Empirical Parameter: Ak [-1 -0.0357 |Calculated from data
(&) Empirical Parameter: Bk [-] 0.9227 |Calculated from data
Rate Limit [rom/s] 50 Calculated from data
c Empirical Parameter: Kv #1 [] 2.112E-05 |Calculated from data
-g © Empirical Parameter: Kv #2 [-] 5.550E-02 |Calculated from data
S Empirical Parameter: Kv #3 [] -6.906E-07 Calculated from data
< > Empirical Parameter: n [-] 0.5 Calculated from data
u Rate Limit [Vis] 1 Calculated from data

Figures5.21 - 5.26 show the model outputs for changes in compressor speed. For all the model outputs
there is general agreement, but also notabl e discrepancies. For evaporator pressure the model agreesin the speed of
the response and the steady state gain. However, a2 order effect isvisible in the data, but absent in the model.

For gas cooler pressure the speed of the response and the steady state gain also match within acceptabl e tol erances.
Thereis an obvious discrepancy as the peak response of the model is larger and more pronounced than the data. For
evaporator superheat, the general shape of the transient is correct, but the peak and steady state magnitudes are
incorrect, as well as the speed of the response. The evaporator exit air temperature appears to match well. The exit

air temperature for the gas cooler matches well, except for a constant steady state offset. This offset is due to asmall
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inaccuracy in calculating theinitial conditions of the gas cooler. Thetotal heat transfer from the gas cooler can be
calculated from 1) the measured mass flow rate of air, and the inlet and exit air temperatures, or 2) the mass flow
rate of refrigerant, and the inlet and exit fluid enthal pies (cal culated from measured pressures and temperatures).
Both of these methods are approximately equal at the steady state. In calculating the initial conditions, the systemis
forced to match the measured refrigerant conditions rather than the air conditions. However, the assumption of
uniform pressure in the gas cooler skews the enthal py calculations slightly, and thus the energy calculations. Thus

the calculation of the gas cooler exit temperatureis slightly higher than measured for all simulations.
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Figure 5.21 Model Validation: Compressor Speed Step Changes
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Figure 5.23Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed
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Figure 5.26 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor Speed

Figures 5.29 - 5.34 show the model outputs for changes in expansion valve opening. Evaporator pressure
matches well except for asmall error in the gain. Gas cooler pressure also matches well except for asmall offset
and an initial peak response that is not present in the data. Evaporator superheat, evaporator exit air temperature, and
gas cooler exit air temperature all predict poorly. Thereason for thisis evident upon closer evaluation of the
experimental data. Asthe valveisopened, asurge of refrigerant enters the evaporator. This hastwo effects: first,
the increase in net mass flow into the evaporator builds pressure, and second, the surge of mass flow increases the
length of two-phase flow. Asthe pressure builds, the saturation temperature rises, and the differencein
temperatures between the refrigerant and the heat exchanger wall (and air) decreases. This decrease contributes to
less heat transfer. However, because the two-phase flow refrigerant has a higher heat transfer coefficient than the

superheated refrigerant, the increase in two-phase flow length resultsin more heat transfer. Whether the bulk
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temperature of the heat exchanger wall (and air) initially increases or decreases depends on which of these two
effects dominates. In the experimental data, the exit air temperature from the evaporator initially decreases sharply
and then increases. However, in simulation therise in pressure, and thus refrigerant temperature, appears to
dominate, and thus the exit air temperature simply increases. Experience has shown that by changing the simulation
parameters theinitial decrease can be captured, but not to the extent exhibited by the data.

Thereason for the drastic initial decreasein exit air temperature is evident upon closer evaluation of the
refrigerant and wall temperatures recorded in data. In Figure 5.27 these temperatures are shown. Note that the exit
air temperature would appear to follow the exit refrigerant temperature. Upon closer examination (Figure 5.28), the
data clearly shows that the exit air temperature actually decreases before the exit refrigerant temperature. Thisisan
indication of the problem of maldistribution in the evaporator. Because the evaporator has four parallel paths, a
distributor is used to allocate equal amounts of fluid flow to each of the four paths. However, if the distribution of
fluid between the four pathsis unequal, the evaporator will perform poorly. The evaporator used was known to have

problems with maldistribution.
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Figure 5.27 Evaporator Temperatures for Step Changes in Expansion Valve Opening
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Figure 5.28 Evaporator Temperatures for Step Changes in Expansion Valve Opening (Close View)

During the transient tests, the number of temperature measurements was limited, the evaporator refrigerant
outlet temperature is only measured at one of the four parallel paths. The decrease in exit air temperature before the
decrease in refrigerant outlet temperature is evidence that when the valve was opened, the surge of mass flow almost
instantaneously changed the distribution of fluid flow. Evaporator paths that previously were receiving very little
liquid fluid flow suddenly received much more, rapidly cooling the heat exchanger walls and the exit air. Note that

the data and simulation are similar excepting the initial drop in temperature.



This sudden decrease also explains the discrepancy in evaporator superheat temperature. Both data and
model have the same transient shape, except that for datathe steady state gain for an increase in superheat is
negative, while the steady state gain for the model is positive. For this to happen in simulation requires that the heat
transfer coefficient for the air side be greater than that for the refrigerant side. Sincethisis not physically feasible,
thelogical conclusion isthat thisis caused by an increase in heat transfer due to a suddenly improved refrigerant
distribution.

The seeming discrepancy between the model and data for gas cooler exit air temperature can also be simply
explained. Note that the magnitude of the change in temperature for datais atenth of a degree and therelative
signal to noiseratio issmall. Although the predicted transient response is clear for the noisefree simulation, the

magnitude of this change is also small, and no conclusion can be made whether data and model do or do not agree.
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Figure 5.31 Model Validation: Gas Cooler Pressure for Step Changes in Expansion Valve Opening
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Figure 5.34 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Expansion Valve Opening

Figures 5.35- 5.40 show the model outputs for changes in evaporator air flow rate. Model prediction and
data match well for evaporator and gas cooler pressure in shape and response time, but with incorrect gain for the
gas cooler pressure. Evaporator superheat matches extremely well. The model prediction for evaporator exit air
temperature responds too quickly, but matches the steady state gain. Again, the responses for gas cooler exit air

temperature aretoo small to make a definite conclusion.
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Figure 5.37 Model Validation: Gas Cooler Pressure for Step Changes in Evaporator Air Mass Flow Rate
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Figure 5.38 Model Validation: Evaporator Superheat for Step Changesin Evaporator Air Mass Flow Rate
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Figure 5.39 Model Validation: Evaporator Exit Air Temperature for Step Changes in Evaporator Air Mass Flow
Rate
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Figure 5.40 Model Validation: Gas Cooler Exit Air Temperature for Step Changesin Evaporator Air Mass Flow
Rate
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Figure 5.41 Gas Cooler Inlet Air Temperature for Step Changes in Gas Cooler Air Mass Flow Rate

Figures 5.42 - 5.47 show the model outputs for changes in gas cooler air mass flow rate. The transient
responses for evaporator pressure, superheat and exit air temperature are without discernable dynamics and too
small in magnitude to draw a conclusion. The responsesfor gas cooler exit air temperature match well excepting the
constant offset. The model prediction for gas cooler pressure has small but discernable dynamics. The model
predictions, however, are too small to compare. This can be explained by the experimental setup. The air that exits
the gas cooler isrecirculated through a glycol chiller before passing over the gas cooler again. When the mass flow
rate of air is decreased suddenly, both the gas cooler and chiller are operating with the same capacity for heat
transfer. Thusthe exit air from the gas cooler becomes hotter, but the air entering the gas cooler becomes col der

(Figure5.41), and the net change in heat transfer is very small.



In the data the total heat being transferred from the gas cooler decreases slightly, explaining the small
decreasein gas cooler pressure. However, in simulation the combined change of decreased mass flow rate of air and

decreased inlet air temperature balance such that the pressure remains virtually constant.
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Figure 5.43Model Validation: Evaporator Pressure for Step Changesin Gas Cooler Air Mass Flow Rate
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Figure 5.44 Model Validation: Gas Cooler Pressure for Step Changes in Gas Cooler Air Mass Flow Rate
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Figure 5.45Model Validation: Evaporator Superheat for Step Changes in Gas Cooler Air Mass Flow Rate
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Figure 5.46 Model Validation: Evaporator Exit Air Temperature for Step Changes in Gas Cooler Air Mass Flow
Rate
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Figure 5.47 Model Validation: Gas Cooler Exit Air Temperature for Step Changesin Gas Cooler Air Mass Flow
Rate

5.7.1 Observations
Some general observations need to be made regarding the model validation process. Most of the parameters

required by the model are known values. Experience has shown that the transient response of the system was
relatively insensitive to changes in most parameters. In general, a change of afactor of two or more in the value of
any of the physical parameters was necessary to produce a noticeable difference in the transient response. For the
control engineer this property of being robust to parameter changesis adesirable quality.

Moderate changes in other parameters, however, did result in different transient responses. Specifically,
the choice of the two-phase flow heat transfer coefficient in the evaporator changed the shape and magnitude of the

output responses. This effect is due, in part, to how the choice of this parameter affects the calculated initial



conditions of the system. Having cal culated the amount of heat being transferred from the evaporator, and given the
refrigerant side heat transfer coefficients, four equations are solved simultaneously for the external fluid heat
transfer coefficient, length of two-phase flow, and the lumped wall temperatures of the two-phase and superheat
regions. Different values for the two-phase flow heat transfer coefficient will result in adifferent initial value for
the length of two-phase flow, which affects the dynamic response considerably. The choice of slip ratio also affects
the transient response notably. The value for slip ratio determines the value of the void fraction, and thus the
amount of liquid and vapor refrigerant. A larger slip ratio resultsin asmaller void fraction and more liquid massin
the evaporator. The amount of refrigerant mass inventory in the evaporator appears to affect the transient response
much more than the values of the physical geometry of the heat exchanger.

The model is also extremely sensitive to the algebraic relationships for mass flow as given for the
compressor and expansion valve. The principle dynamics of the system appear to be caused by the redistribution of
mass inventory, and the unsteady state differences between inlet and outlet mass flow rate into the heat exchangers.
The simplified dynamic model does not include some of the small, fast transient behavior that would dampen and
stabilize the system. Like many nonlinear dynamic systems, a vapor compression cycle seemsto have both slow and
fast dynamic manifolds. The slow dynamic manifolds are determined by the dominant system dynamics. The fast
dynamic manifolds that force the dynamic system to remain on the slow dynamic manifold in the physical system
are neglected in the model for simplicity. Thissimplicity comes at the price of being sensitive to small changesin

mass flow.

5.8 Improved Model Validation

5.8.1 Model Additions

5.8.1.1 Inter-Component Dynamics
Theinitial model assumed that the fluid exiting a component immediately enters the next component, and

that transport delays, pipe chamber dynamics, etc. were negligible. However, the experimental data shows that
dynamics are present in the pipe connections between components.

Figure 5.48 shows that the fluid entering the gas cooler has a constant offset demonstrating heat transfer
losses from the pipe, aswell asa 1% order filtering effect. Using identification techniques, assuming that the
compressor exit temperature is the driving signal, and that the gas cooler entrance temperature is the output signal, a
clear 1% order dynamic can beidentified (the constant offset is removed for the identification). For the three
operating conditions, the gains were identified to be 0.97, 0.99, and 1.00, and the time constants were identified as
51.8, 25.2, and 29.4 seconds.
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Figure 5.48 System Temperatures for Step Changesin Compressor Speed

This dynamic is not entirely unexpected. The parasitic heat |0ss through the pipe explains the constant
offset. The slowly varying temperature of the pipe mass during a transient response would cause a 1% order filtering
effect to the temperature. Note that the gain is approximately unity, and therefore the steady state offset remains
virtually constant. The 1% order time constant varies with operating condition, but remains within an order of
magnitude. Unfortunately, during the transient tests, the number of temperature measurements was limited, and the
necessary information for identifying the dynamics of the other pipe lengths to and from the internal heat exchanger
isnot available. Although the pipe length between the expansion valve and evaporator is relatively short, the fluid
in this section istwo-phase, and therefore at a uniform temperature. Undoubtedly, there are also heat transfer |osses
and possibly dynamicsin this section, but these are impossible to identify without the ability to measure fluid quality
at each point. Therefore, for all the other pipe lengths, the time constants are assumed to be proportional to the pipe
mass. In reality thistime constant would also be afunction of heat transfer coefficient, heat transfer area, etc.

However, asan initial estimate only the mass of the pipeis considered. These values are given in Table5.8.

Table 5.8 Estimated Time Constants for Inter-Component Pipe Lengths

Inter-Components Pipe Mass [kg]|Time Constant [s]
Compressor — Gas Cooler 1.36 30.0
Gas Cooler — IHX 0.92 20.2
IHX - EEV 0.18 4.0
EEV — Evaporator 0.32 7.0
Evaporator — IHX 1.25 27.5
IHX — Compressor 0.27 6.0

5.8.1.2 Qil Separator Dynamics
Inreal systemsan oil separator is placed immediately after, orintegrated into, the compressor. The

experimental system used an oil separator located after the compressor. This device has a chamber that allows most
of the oil to be separated from the refrigerant. The oil isthen recirculated to the compressor to ensure |ubrication.
The assumed dynamic effect istwo-fold. First, because the oil separator operates intermittently depending on
pressure and the amount of oil accumulated, the predicted mass flow rate may be inaccurate depending on the

amount of oil being recirculated. When the oil separator isintegrated into the system, the semi -empirical compressor



model likely would be calibrated so as to implicitly take into account the mass flow rate of oil being recircul ated.
However, if the predicted mass flow rate is higher than reality, then the pressure in the gas cooler will build slower
than predicted. Second, the chamber of the oil separator will filter the pressure response of the gas cooler due to
compressibility effects. Thus the discrepancy between model and datafor the gas cooler pressure is attributed to this
device. If adetailed model isdesired, this component’s effect should be considered. However, for this research, the
model was deemed sufficient without this addition.

5.8.2 Improved Results
Although an appropriate model for the oil separator was not developed or included in the model, the 1%

order delays between components were added to the simulation to evaluate if these dynamics improved the model
validation. Figures5.49 — 5.54 demonstrate that some dynamic effects are improved. The model correctly predicts
the 2" order effect for evaporator pressure, and the gas cooler exit air temperature has a slower response more
consistent with the data. However, including these dynamicsresultsin agreater steady state offset for the system
pressures. The contribution of these dynamics appears to be minimal. Because the inclusion of these inter-
component dynamics would greatly increase the dynamic order while not increasing accuracy significantly, they are

deemed nonessential and are not included in the final model used for dynamic analysis or for future control design.
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Figure 5.50 Improved Model Validation: Evaporator Pressure for Step Changes in Compressor Speed
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Figure 5.51 Improved Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed
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Figure 5.52 Improved Model Validation: Evaporator Superheat for Step Changes in Compressor Speed
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Figure 5.53 Improved Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor
Speed
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Figure 5.54 Improved Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor
Speed



5.9 Summary
Overall theinitial model validation demonstrated agreement between model and data. Notable

discrepancies can be explained, and in general could be avoided by correcting the experimental setup to perform
more like an actual air conditioning system. Some improvements to the model were suggested and eval uated.
These improvements did correct minor errors, but were not deemed worth the added complexity and higher dynamic
order to use in the final model for analysis or future controller design. The improved model could be used for

simulation purposes.
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Chapter 6. Model Linearization and Dynamic Analysis

The lumped parameter model developed for two-phase flow heat exchangersin previous sectionsis highly
nonlinear. For analysis and model reduction purposes, alinear model is needed. Furthermore, most classical control
design techniques require alinear model. Therefore, in this section we outline the procedure for achieving such a

model.

6.10 General Linearization Procedure
This procedure follows a standard linearization procedure, where the partial derivatives of the nonlinear

functions with respect to the states and inputs are cal cul ated neglecting the 2" and hi gher order terms[20,36]. This
isfollowed for the static components as well asthe internal heat exchanger. However, the gas cooler and evaporator

models have a unique form. The linearization procedure for these componentsis as follows.
The heat exchanger models developed previously are of the form of Equation 6.5. Assuming Z(X,U) is
full rank for all X and U, this can be rearranged as Equation 6.6. The assumption that Z(X,U) isfull rank istrue if

the original modeling assumptions are true. Specifically, aslong as the length of any of the assumed regionsis

greater than zero, Z(X,U) will beinvertible.

Z(xu):x = f(xu) (6.5)
x=Z(xu) " f(xu) 66
=g(x,u)

Using the assumption X = X, + dX , alocal linearization of this, neglecting higher order terms, would be

Equation 6.7. Or by making the substitution dX = X - X, , Equation 6.7 becomes6.8. Because X, =0 this

equation simply becomes Equation 6.9.

é u S u
dx = e‘ﬂ_g (X + gﬂ_g (du (6.7)
8™l &MUl g
é u s u
X- X, = eﬂ—g ax- x,)+ gﬂ_g u-u,) (6.8)
80 8 8Tulxu, 6
é u s u
)‘(=§-ﬂ—g L](x- xo)+gﬂ—g u(u uo) (6.9)
8110, 8 eMul.u, 8

Expanding the first term of Equation 6.9 results in Equation 6.10. Likewise, expanding the second term

results in Equation 6.11. Thisis of the familiar form X = AX+ BuU (Equation 6.12). This form will be denoted as
Equation 6.13, or in the standard form as Equation 6.14 using the substitutions in Equation 6.15.
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éﬂg f:'_ i l‘:l zéﬂz u
: a=12,,..| 6| -1zl | é a |fl, ..
81Xl 6114, 8 Ml
(6.10)
_ L €9 u
- Xp,Ug g_ u
@ﬂx Xo:“oa
: 0 6| U
&9 =2, I g 611
@ﬂu %o O @ﬂu %ot Bl
L6 0 L6 0
X:[ |]leE i(x- Xo)+[zlxou0]léﬁ du- u,) (6.12
- | LS P 7 glul,
%/_J
Fx R
Xx=Z*Fdx+Z *F,du (6.13)
X = Adx+ Bdu (6.14)
A=Z'F,
(6.15)
B=Z"'F,

The nonlinear output equations are denoted as Equation 6.16. The linearized version is then given as

Equation 6.17, or in the standard form as Equation 6.18, using the substitutionsin Equation 6.19.

y =g(x,u) (6.16)
dy = G,dx+ G,du (6.17)
dy = Cdx+ Ddu (6.18)
C=G,

(6.19)
D=¢G,

6.11 Derivation
Symbolic results are presented here for each component. Numerical results are included for each

component aswell asthe overall system. These results were achieved evaluating the models at the highway driving
condition.

6.11.1 Variable Speed Compressor
Recall that the compressor was modeled with an equation for mass flow (Equation 6.20) and an equation

= h(Pout ! Sk ) ' and

in? m)’ hout,isentropic

for isentropic efficiency (Equation 6.21) where ', =T (P h

S, = S(P h ) . Theisentropic efficiency is assumed to be afunction of pressure ratio (Equation 6.22).

in?"lin

ae 10
ap, O~

m, :wkvkrkgl+ck - D, POUti - (6.20)
8 in @ B
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1
hy

out

h [hout,isentropic + hin (h k ~ 1)]

(6.21)

o Ak m:)ou'[

in ﬂ
6.11.1.1 Symbolic Representation
Let the inputs and outputs be defined by Equations6.23and 6.24. Thus y = f (u) A local linearization

(6.22)

isgivenas Y = DU ,where D isdefined in Equation 6.25, and the matrix elements are listedin Table 6.9, where

OLII l 0
selected partial derivatives are cal cul ated as —_—=- A< = P—:
indg
1-[hout,s _ aThout s Wsk | 9 1-[houts a[houts 9 1-[houts _ a[houts Qéqsk | 9
T“:;n g 1Tsk | éﬂ infh, ﬁ 1-“:)out gﬂ out B 1-[hin g TISk pomgﬂhn PinB
u=w, R, Ry h] 623
y = [rnK hout Tout ]T (6'24)
ﬂf édn d, dgy dmfJ
o =D=50 d, d, d243 (6.25)
60 daz d33 349
Table 6.9 Matrix Elements for Equation 6.25
e =0
P, 0"+
d11 Vkl’kgl+C D, OUtT =
8 in @ +
2
Cge =0 =
d, Wkaaqh c1+C, - D, aEP"“tE W Vkrkgel?—kg ou 9
inlh, % Pln ﬂ |n P
3
d13 _ kakr kéﬁ-@Dk out
é out |n ﬂ
1
=)
d, kakng% §'+Ck' Dkgjpomg —
8 inlp, % in @ é
21 Gh, el oeThy,s  agh, &
d22 T _kghouts"-hn(hk - 1)]+g_zé : +hin k::l:l
k THDIFI 7] hk %3] 1-":)m 1-[Pm Al




Table 6.3 (cont.)

1 QﬂTh el ¢fh E Mouts fh, 6l
d23 ghout,s + ] - hln :U
T[Pou h @ﬂ out ﬂ out
&1 (Iéﬂhouts l\J
d a—+h, -1
, .z N
d32 @TOUI & ¢ 12 %%houts + hln(h k ~ 1)] * g;]i(ﬁiﬂhoum + Inﬂh . gldu
gﬂhout P & K ﬂRn 9 k gé ﬂRn ﬂRn g
g_ el 2 Qéﬂ[ : qhouts n - 1)]3
d alTout 9 a.ITout 96 hk Ut 9 u
33 - A o
éﬂpout o EMoule,, 5, 201 6 oeﬂhouts o, & & o
é eh out eﬂ out ﬂJ g
BT | Oe1 eéTh 0
d G out : 7~ 1 h - 1)
* 8ﬂhout Pout ﬁm@ 1-[hin ( “ )H

6.11.1.2 Numerical Representation
The evaluation of these equations at the highway operating condition yields the following matrix (Equation

6.26).
¢ 24317e-5 16904e-5 -13667e- 6 - 2.1098e- 4
p=¢ 0 -0023185  0.0081173 1.2261 (6.26)
& 0 - 0020016 0.016451 105854

6.11.2 Electronic Expansion Valve
Recall that the expansion valve was modeled with an equation for mass flow (Equation 6.27) and assumed

isenthal pic expansion (Equation 6.28), where I, (P h ) Recall that the area of the valve is assumed to be

n?'"in
alinear function of agiven input (Equation 6.29), and that the discharge coefficient is assumed to change with

Reynold’s number (Equation 6.30). After substitution, the mass flow rate equation is defined by three empirical
parameters (Equation 6.31).

=AC[r, (R, - Py )" 6.27)
hm =h,, (6.29)
A =D, +b,u, (629
C,=b e et
49 (6.30)
»b, b O
mv ra
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6.11.2.1 Symbolic Representation

(6.31)

Let the inputsand outputs be defined by Equations6.32and 6.33. Thus y = f (u) A local linearization

isgivenas Y = DU ,where D isdefined in Equation 6.34, and the matrix elements are listed in Table 6.10. For

OUt

notational simplicity, let den, =1+ k; l+k u, é (:}[r

u=[u, P, P, h, (6.32)
y=[m, h, T.J (6.33)
i Ci'dn d, d; dlA@
ﬁ: :g 0 0 d24g (6.34)
go 0 d33 d34H
Table 6.10 Matrix Elements for Equation 6.34
& k,0 ae 10
d k,k,g1+—=4r (P, - P,
11 1 2@1 m/g ( t g—g
d12 k1(1+ kzuv )&"'_:n[r Pm - Pout)]n_lér \ +@r - :(Pm - Pout)% 1 g
m, g 8 gﬂpm hn ﬂ @denv (%]
& ko v @10
d - — 5 T
13 k1(1+k2uv)g1+rn/én[r (P Pout)] [rv] denVB
d14 k1(1+k2uv)§-+£gn[r V(Pin - Pout n 1%“’ . |n - out Lg
m, g gﬂhln R, ﬂ @ en %]
d24 1
5
d33 aﬂ-out :
Sﬂw%a
8
d, LI =
§Mou e, 5

6.11.2.2 Numerical Representation

The evaluation of these equations at the highway operating condition yields the following matrix (Equation

6.35).



00019444  4563%- 6 - 3354%- 6 - 15184e- 4i
0 0 0 14 (6.35)
u

0 0 0.010952 0g

@D D> D> (D

6.11.3 Gas Cooler
Recall that the gas cooler could be modeled with several different choices of state variables, depending on

the derivation approach. Three possible choices of states are given as X = [F’C hC TW]T

x¢= [PC m, TW]T , and X¢= [UC m, EWW]T . The different models are denoted as

Z(x,u)x = f(xu), Z{x(u9xC= f(x,u(), and xC = f (x€uC), where the function f (X,u) is defined in
Equation 6.36, and the matrices Z(X, u) and Z((X(, u() are defined in Chapter 4. The model outputs are given as

nonlinear functions of the states and inputs, Y = g(X, u) . Let theinputs and outputs for the first representation be

defined by Equations 6.37 and 6.38.

anh, - Myhy, - 2, AT - T,)u
flxu)=§ m, - i (6.36)

ga AT -T,)-a,A(M,-T.) @
u=lm, My h, T, m[ (6.37)
= [Pc Pot To Taow Trow M ]T (6.39)

The assumptions regarding the air temperature Ta1 are the samefor all representations. For heat transfer an
average air temperature across the gas cooler is assumed (Equation 6.39). The energy balance for the air given a heat
exchanger with N regionsis given in Equation 6.40. Solving for Ta (Equation 6.41) and simplifying the expression

assuming one region results in Equation 6.42.

T, +T

- a,in a,out 6.39
a 5 (6.39)
. L, u
maiGC,air (Ta,in - aout) voea (Ta - Tw,i )L;I (6.40)
Bi=1 I‘Total u
eo LITWI U
2><rT‘]alr p.air a in T2 Abea L l;l
Ta — Gi=1 Ltotal U (6.41)
2>¢n Cp air AYJ
2: +a AT,
Ta rhaur p.air a in A) w (6.42)
2>¢n Cp air oA)

For the linearization, the partial derivatives of the average air temperature arerequired. First recall that the
air-side heat transfer coefficient is afunction of mass flow rate of air. Specifically, we assume that the heat transfer

coefficient scales with Reynold’ s number (where the prime denotesinitial values) as given in Equation 6.43. Thus
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the partial derivative of heat transfer coefficient with respect to mass flow rate of air can be written as Equation
6.44. The partial derivatives of air temperature are then given in Equations6.45, 6.46, and 6.47.

..M
a, _ake o aema,,o

ad i 6.43
ag gReﬂ:ﬂ em¢ o (6.43)
fa, _ o, O g § 9 o
m, em¢ gem, o

T
; ) aOA) (6.45)
ﬂTW ZXrn Cpalr oAJ

2:m, C

TlTa - g (6.46)
1-lTa,in 2XIT] Cpalr A\)

T 2>Cp,airA)(Ta,in - ngao - r:nair ﬂﬂao g

ﬂ a_ — air @ 647

: 2
ﬂrnair (zxrnaircp,air +aoA))
Several assumptions are made to define the output relationships, aswell as explicitly relate intermediate

variables to states or inputs. These relationships differ for each representation. For the first representation, some of

=T, - T

a,n?

the outputs are states; the other outputs are defined as h,,, =2h. - h,, T

a,out

T out _T(Pc, hout) andm, =r .V, where V, = AL, . Several intermediate variables are used in the

model, and can be related thermodynamically to states or inputs. The average refrigerant temperature is calculated
h. +h P,h )+T(P.,h

asT, T(Pc,hc) However, since h, ZmTOUt then T, » T(R.hw) 5 (R OUt),andforthepartial

m _@m| O, 1z
h 5, ﬂhin Zgﬂhc

m. 1ae'nT|
d
ﬂ out Zgﬂh P, @

derivativesof T, the approximations are

used.

For the second representation, some of the outputs are again states; the other outputs are defined as

=21, -T

am’

hout = 2hc - hn' T and T,

a,out

—T(Pc,hout) where I —Vﬂ, h, =h(F’c,rc),and

C

r,out

TI' :T(PC’rC)'

For the third representation, some of the outputs are again states; the other outputs are defined as

hout = th - hn' Ta,out

=21, - T

aln’ c?’ out

Tr,out_ (P h )Wherer Vﬂ u :&

PC = P(UC’rC)’ hC = h(uC’rC)'and TI' :T(UC’rC)'



6.11.3.1 Symbolic Representation
For the first representation, the partial derivatives of the functions f (x,u) and g(x,u) with respect to

the states and inputs are defined in Equations6.48 - 6.51, with the matrix elementslisted in Table 6.11.

ﬂf éfx,ll fx,12 fx13u
——=R=g 0 OH (6.48)
fix = :
Sfx,?,l fx,32 fX33H
éfu,ll fu,12 fu,13 O O lil
1f _é U
ﬂ_ u _éfu,21 fU,22 0 O O L'j (649)
8 O 0 fu34 fu,BSH
€1 0 0
e u
é 0 gx,22 U
éo0 0 140
jg—GX:é a (6.50)
ix é 0 0 Oy43()
ggx,Sl gx,52 0 H
@x,Gl gx,62 0 Q
€ 0 O 0 0O u
g) 0 gus O 0 3
9 -6 Qo0 0 0f (6.51)
fu : g) 0 0 Quu gu,453 .
g) 0 Ouss O 0 3
@0 0 0 0g

Table 6.11 Matrix Elements of Equations6.48 - 6.51

fx,ll 'aiAgrll; :

&Ml 5
AT | ©

fow | - 2m -a,A%—H -

12 rno Agﬂhc PCT

fx,l3 aiA

fx,31 aiAa:;r :
gl 5

f><,32 aiAa:]-r :
&Mhele 5




Table 6.5 (cont.)

AT
fes | -2,A-aA +a T
33 |A OAJ oAb ﬂTWg
1:u,ll hin
fu,12 - hout
fu,13 min + mout
fu,21 1
fu,zz -1
2T, 0
fu,34 avo :
1TTain 7]
O
f,. g—_A)T T, +ao'°bg—a =
> my;, My, g
gx,22
g aﬂTT 0
X,43 ﬂT
a-[Tr,out O
gx,51 :
éﬂPc out @
aaTTr out| O
gx,52 é B
1-[hout P. ﬂ
o}
r -
gx,61 % 1Vc
&l
8
r -
gx,62 ﬁ‘[-[ < -_\/c
sTle 5
Qu,23 -1
2qT. 0
B | 2T 5
21T, 0
Ou.45 2 L
TIrnair (%)
a-[Tr out O
gu,53 :
é 1-[hout ﬂ
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For the second representation, the partial derivatives of thefunctions f (x(,u() and g (X(, u() with

respect to the states and inputs are defined in Equations 6.52- 6.55, with the matrix elementslisted in Table 6.12.

ﬂf éfx,ll fx(ELZ fx,13l;|
o F¢=20 0 0 (652
Sfxq%l fx, 2 fx%BH
ﬂf gfuq?[l fu¢12 fqu|.3 O O L:'I
T Fe=gf% f O 0 0§ (653
§0 0 o fg, fu%5H
é1 0 0 u
9%, 9%, O g
éo 0 14
‘H_ngg:é u (6.54)
x¢ e 0 0 gfuy
299,51 9¢, O E
g 0 1 0 ¢
«€© 0 O 0 Ou
gO 0 g$. O 0 H
1 @0 0 0 004
— = G9: A a (6.55)
fuc g) 0 0 gL(P,44 99,45[]
© 0 9%s; O o u
o0 0o o o0y

Table 6.12 Matrix Elements of Equations6.52 - 6.55

C&h| 2 #m| 0
fX(Jl - 2rnout gﬂ_P +- a'i Agﬂp -
sl &Rl 5
f | - oMo N gﬂgﬂ{ g
=gy e
fX(,lS aIA
5
fla aiAaTr -
gl 5
5
f a,A . +
Vg,
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Table 6.6 (cont.)

T 6
fx(33 - aIA- aoA) +aopba-[ ai
T, o
1:u(,ll hin
fu(,12 - hout
fu(,la min + rhout
fu(,zl 1
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2T, 0
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For the third representation, the partial derivatives of the functions f (x((,u (() and g (X((, u (() with

respect to the states and inputs are defined in Equations 6.56 - 6.59, with the matrix elementslisted in Table 6.13.

éf
" e &
M -re=%o
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ef
W e éf“gl
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8 0
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Table 6.7 (cont.)
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Table 6.7 (cont.)

98 4 Z‘éﬂ M. ¢ 1

a,in ﬂ
2T, 0
95,45 2 L
ﬂrnair 9
a-[Tr ou 0
98s | - t B
1-[hout Q

6.11.3.2 Numerical Representation
The numerical evaluation of these equations can be done using the explicit formulas given in this section.

Alternatively, because these representations are simply related by a state transformation, any of the three given

representations can be cal culated with knowledge of one of the other representations. For example, since

Zx = Z&( thetransformation T ¢= Z *Z Ccan be used to substitute X = (Z A G)Xq?and solvefor
Fe¢=F ( lZG) and G¢ =G ( '1203. Furthermore, it was shown in Chapter 2 that because

IX=7Z&(=f (X, u), Z ( can be solved explicitly from Z . Thusonly the first representation needs to be
evaluated, and the second representation can then be calculated. Likewise thethird representation isrelated by a
transformation matrix T = Z*, and can be used to solvefor F &= F, (Z'l) and G#=G, (Z'l).

Recalling the standard state space form for these equations (Equation 6.60) we can then write the state
space matrices {A, B,C, D} for all three representations in terms of the matrices {Z, F.F,.G, ,Gu} (Equations
6.61 - 6.63).

X = Adx + Bdu
dy = Cdx+ Ddu
A=Z"'F
B=Z"F,

C=G,
D =G,
At=ZC'F Z'Z¢

B¢=Z¢'F,
C¢=G,z*'z¢
D¢=G,

(6.60)

(6.61)

(6.62)



ACG=F 7
B¢=F,
C¢=G "
D¢=G,

(6.63)

The evaluation of these equations at the highway operating condition yields the following matrices
(Equations 6.64 - 6.73).

¢ -16202 -17117  2706.50
A=S-03185 -33263 5259 (6.64)
£0.0030427 02912 - 0.6006f
¢ - 40465 89885€5  2696.70
Ac=© 0 0 ou (6.65)
e u
€0.0087329 - 1534.9 - 0.6006f
& 49.465 - 6170.6 0508261
Ae=¢ 0 0 oY (6.66)
e u
& 46335 5930.1 - 0.6006f
62327167 4650667 35937 0 ou
B={15574e5 311175 240.47 0 0! (6.67)
é 0 0 0 0002348 - 1.8354f
¢ 51525 -20850¢5  160.49 0 ou
Be=¢ 1 1 0 0 U (6.68)
e u
& 0 0 0 0092348 - 18354
¢ 56467 11286 0.087208 0 0i
Be=¢ 1 1 0 0 od (6.69)
e u
& 0 0 0 026625 - 52017f
¢ 1 0 ou
e u
g 0 2 ol
é 0 0 1a (6.70)
C=é a
g 0 0 0.23025
2 0.0061247 0.39706 ou
u
§ 3.70lle- 6 - 0.00019046 on
6 239 - 9209467 oy
g 2997 - 12324¢€6 og
é 0 0 10 (6.71)
Ct=a a
é 0 0 0.230250
g 19664 - 8.0872¢5 od
u
§.00054338 - 223.49 og
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€4.1209€5 1847 0d
g 5515  71.782 oY
u
é 0 0 0.34685( (6.72)
C@: é L’l
& 0 0 0.079861
g 3618.8 25563 og
8 1 0 0g
é 0 0 0 0 0d
e u
g 0 0 -1 0 o
é 0 0 0 0 0u (6.73)
D= D¢: D¢: é a
a 0 0 0 076975 - 098402
g 0 0 - 05729 0 og
8 0 0 0 0 04

6.11.4 Evaporator
Recall that the evaporator could be modeled with several different choices of state variables, depending on

the derivation approach. Three possible choices of statesaregivenasX =[L, P, h, T, TW2]T ,

x¢= [L1 P m T, Twz]T ,and X@¢= [Jl Jz m, EM EM]T . The different models are denoted
as Z(x,u)x = f(x,u), Z{x,u)xC= f(x,u(),and xC= f(x&uC), where the function f (X,u) is defined
in Equation 6.74, and the matrices Z(X, u) and Z‘(X(, u() are defined in Chapter 4. The model outputs are given

as nonlinear functions of the states and inputs, Y = g(x, u) . Let the inputs and outputs for the first representation
be defined by Equations6.75and 6.76.

e &L 0§ u
am_(th -h_ )+a, L AT, - T,) ¢
g m( in g) |1A %Eﬂ( wil rl) H
é el, ¢ u
f(xu) = g“"‘" o )2 méﬁm - T“)E 6.74)
é mn - rhout l;'
g aoAb(Ta' Tm)'ailA(Tm' Trl) 3
@ aoAb(Ta'Twz)'aizA(Twz'Trz) H
u= [min mout hin Ta,in r.ha ]T (6-75)
y = [Ll Pe hout TV\ﬁL Tw2 Ta,out Tr out Tr,sh me]T (6-76)

Several assumptions are made to define the output relationships, aswell as explicitly relate intermediate
variables to states or inputs. The assumptions regarding the air temperature T, are the same for all representations.
For heat transfer an average air temperature across the evaporator is assumed (Equation 6.77). The energy balance
for the air given a heat exchanger with N regionsis given in Equation 6.78. Solving for T, (Equation 6.79) and

simplifying the expression assuming two regions results in Equation 6.80.
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Ta — _ain a,out 6.7
- 5 (6.77)
. L, u
maiGC,air (Ta,in - aout) voea (Ta - Tw,i )L’J (6-78)
Bi=1 I‘Total u
e° LITWI U
2><rnalr p.air aln +aoA\) L U
Ta - €i=1 Lol U 6.79)
2>¢n Cp air oA\)
eLT,, L T.,U
2><m Cp aeram a A\)E |_2 "2 l;l
Ta - é Lrota Total U (6.80)
2>¢n Cpalr AJ

For the linearization, the partial derivatives of the average air temperature are required. First recall that the
air-side heat transfer coefficient is afunction of mass flow rate of air. Specifically, we assume that the heat transfer
coefficient scales with Reynold’ s number (where the prime denotes initial values) as given in Equation 6.81. Thus
the partial derivative of heat transfer coefficient with respect to mass flow rate of air can be written as Equation

6.82. The partial derivatives of air temperature are then given in Equations6.83 - 6.87.

..M . ..M
a, _akRe o _amn, 0

a, _ : 6.81
a¢ &Refy &MG o .
Ta, _ e, 0 eado (6.82)
TIrhair n.‘;mgl:r ﬂ (e;mair Q |
g Total (6.83)
T“-l 2xrn Cpalr A)
@l 0
a, A
., _ LTotaI p (6.84)
ﬂTW,l 2>¢n Cp air A)
el, 6
a,A
., ng z (6.85)
ﬂTW,z 2xrn Cpalr OAO |
M, 2mCo (6.86)

1-|Ta,in 2><m Cpalr A\)
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fa, O

& 0
i S L o L S

ﬂmair (Zmaircp,air +ao'Ab)

Several assumptions are made to define the output relationships, aswell as explicitly relate intermediate

(6.87)

variablesto states or inputs. These relationships differ for each representation. For the first representation, some of

= 2T, - Tois Toow = T(Po,how),

the outputs are states; the other outputs are defined as T e Nout

a,out rout

T o= 2(T,-T,),andm, = [r @-g)+r g(g)]ASL1 +1 ,AL,. Severa intermediate variables are
used in the model, and can be related thermodynamically to states or inputs. Becausethe fluid in thefirst regionis

assumed to be a combination of saturated liquid and saturated vapor, the propertiesfor thisregion, I' ¢ ., h and

f.g?

Tr 1, areonly afunction of the evaporation pressure, P,. Inthe second region the average refrigerant properties are

hg +hout
caculated as T, , :T(Pe,hz) and r , = (P,,h,). However, since h, :T then

T.(R)+T(P,h,,)

sat e’ out
T, »
2

, and for the partial derivativesof T,, the approximations

8

_ T
® 2§ dp, TP,

e

r,out

W, L@ 6 g Tz - 18T,

h, B 1Thout 28 ﬂhz P

areused. Similarly thefollowing partial derivatives

I, _@fz

180 e, v, 1,
R s,

= 2Th,, ; =, zgﬂh

of I, areused: —— Flnally, recall that mean

ZPg

void fraction is afunction of the state variables, inputs, and the parameter S (slip ratio): g = f(P h ..h S)

e? lout? " lin?

For the second representation, some of the outputs are again states; the other outputs are defined as

= 2Ta -T Tr,out _T(Pe’hout) Tr,sh = 2(Trz - Trl)' and hout = 2h2 - hg , Where

a,n’

T

a,out

h,=h(P,,r,). 1, ((1- @)+, @)]AL,. Additionally, the

A(SL

. . . . ﬂr 2 _— I-Total e me N ~ l‘,l
foll ad sed: = A - 1- + 1,
ollowing partial derivativesare u ﬂLl (L2 )2 g LTota| (I’ § ( g) r g (g ))H

_ ‘ﬂr &1 0
(g) o _gp\sl-zﬂ

For the third representation, the partial derivatives with respect to the states and inputs are not derived

fr,

ael_oedrf(__) dr,
TP, gzgedP 47+ dp,

)C\ c

explicitly, but calculated using amatrix transformation (see Section 6.11.4.2). Thus no assumptions about the
output relationships or intermediate variables need to be made.
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6.11.4.1 Symbolic Representation
For the first representation, the partial derivatives of the functions f (x,u) and g(x,u) with respect to

the states and inputs are defined in Equations6.88 - 6.91, with the matrix elementslisted in Table 6.14.
éfx,ll f x,12 O f x,14 0 l‘;l

u
é x,21 fx,22 fx,23 0 f

ﬂf € X'25l;|
ﬂ—:FX =e 0 0 0 0 ou (6.89)
X e u
éfx,41 fx,42 0 f><,44 fx,45[j
Sfx,Sl fx,52 fx,53 fx,54 fx,SSH
gfu,ll 0 fu,13 0 O 8
it : fix 0 0 0y
ﬂ_u =F, = gfual fox O 0 0 ﬂ (6.89
é 0 0 0 fu,44 fu,45(j
S 0 0 0 fu,54 fu,55u
€1 0 0 0 04
e u
a 0 1 0 0 0 u
€0 0 1 0 o0u
e u
% & 0 0 0 1 0 u
==G. =€ 0 0 0 0 1u (6.90)
> * é a
égxﬁl O O gx,64 gx,65l;|
g 0 gx,72 gx,73 O 0 H
e 0 gx,82 gx,83 O 0 l;'
ggx,gl gx,92 gx,93 O 0 H
@& 0 0 0 0
u
D0 0 0 04
@0 0 0 o0u
e u
9 §O 0O O 0 0 u
B-c=00 0 0 o0 (6.92)
fu “ & a
éj O O gu,64 gu,65l;|
© 0 0 0 ou
e u
@ 0 O 0 0q
g) O gu,93 O O g
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Table 6.14 Matrix Elements of Equations6.88 - 6.91

A
fon | 222 (T - )
. Lrotal
_dhy L, aeiT,lo
1:><,12 - rnin_ |1A
dPe Total edP %}
L,
fX,l4 |1A I—I—
otal
a,A
fx,21 - L;(TWZ - Tr2)
Total
_dh L, &4T,,0
f><,22 Moyt d_Pg - aiZ'A\ ﬂPZ
e Total ﬂ
L T,0
fx,23 - rhout - aiZA 2 a-[ 2

Total 1Thout ﬂ

L
fx aiZA 2
% I‘Total
AT, 0
foar | 2oAG 2
41 0 1“-1 5
a&IT .0
fx ai A rli
42 1 dPe p
AT, O
fx,44 -a A -a A ta A x
ﬂTm a
2T, 0
f><,45 a, A, T =z
w2 @
T, 0
fx,51 a, A L L
19
T, 0
fx ai A . I
52 2 '”Pe p
HT,,0
fx ai A : x
o ? 1-[hout %]
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Table 6.8 (cont.)

6E'|1T 0
f)(,54 OA)
ﬂ
O
fx,ss -a;,A - a,A ta, ﬂ T
w @
fu,ll I"lin - hg
fu,13 I’.nin
fu,22 hg - hout
fu,31 1
fu,32 -1
fu,44 OA) T[T

&fa, 0, (- 2 O
fu,45 gﬂm—airgpb(-ra TM)+a0A\) ﬂmair;

fu,54 OA)

ﬂT
2T, O
f T,- T
"o ﬂrnalr —A\) OAb malr ﬂ
[T,
Oy.61 Zg :
ﬂl-l (4]
&[T, O
gx,64 2 I
ﬂTwl 4]
T, 0
Oxes | 2 -
ﬂTwz a
9 @Tr,out 9
X, 72 -
8 ﬂPe hout g
a.[Tr out 9
gx,73 -
S, 5
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Table 6.8 (cont.)

g @T"O‘“ O aﬂ-rl 0
A
a‘[-l-r out 9
9y -
N 8 Mo Ir,

Oy01 [[r ((@-g)+r 9 (g_)] - T Z]Acs

L,
D

8
Asks

h, @

Egatlr . asr ¢, \0
Oxo2 gdpf i(l' G)+gT;ig)Q+(r g d :UA&S . T
e @ e@d U P

1 aEﬁlr
2 8ﬂh2

o
SAsL

P. g

gx,93

LT, 0
(I
T, 0

oo | 2t
g,66 ﬂmag

gu,65 1

gu,gs grg' )dhn uA\sL

For the second representation, the partial derivatives of thefunctions f (x(,u() and g (X(, u() with

respect to the states and inputs are defined in Equations6.92 - 6.95, with the matrix elementslisted in Table 6.15.

é fqu f x(,]iz O f xﬁ4 O U

é U
ﬂf e fx¢21 fx¢22 fx%?» O fx¢25 U
e
é fxq:41 fx¢42 0 f><¢44 f x¢45 U
gfxq,:Sl fx¢52 fxq,;s3 fxq,:54 fxq,;SS H
(i}fu(]:ll 0 fu(]:13 0 0 u
o ¢, o o oY
ﬂf ? u,22 [:l
[ = F¢= gfugl f& O 0 0 3 (6.93)
20 0 0 f& fly
8 O 0 O fuqim fu%5u
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6 1 0 0 0 0
é U
‘?O 1 0 0 0 g
gg%l 9%, 9%, O 03
. éo 0 0 1 0 G
ﬂzegzg 0 0 0 0 1 U (6.94)
X e u
@ggm 0 0 95364 99,65@
299,71 99,72 9973 0 0 3
&% 9% 9% O O0u
€o o 1 o0 ol
© 00 O 0 0
& 0
go 00 O 0 4
© 00 0 0 U
u
. go 00 0 0y
ﬂ: ¢=0 0 0 O 0 G (6.95)
u e u
@ 0 0 gfu 9%:s0
© 00 O ou
e u
@@ 00 0 04
00 0 o0}y

Table 6.15Matrix Elements of Equations 6.92 - 6.95

a,A
fx(,ll L:Otal (Tm - Trl)
dh o)
f><(,12 - mind_Pg-ailA LLl aeggl:
e Total e @
L
e | @nA—
. ' I‘Total
o |2 gﬂﬂh2| %Hr,6 a,A T -T.)-a,A L, &[T, Qaeﬂrzg
X, u . - w2 r2 i2 -
tgﬂrz pe' ﬂl-lﬂ LTotaI Totalgﬂr peﬁﬂ @
dh, aaq[h amh Gedr , 0
mout dP 2mout§g PI ZI _9 P2 L
.y T rzgﬂrwerzﬁﬂe%
X,22 .
o L O .
SﬂP L5 STl BTP g
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Table 6.9 (cont.)

q %[r Lz Eqrrrz —Q&ﬂrz 9
fx(,23 rrl)ut a'i2 -
gﬂ P ﬂrns ﬂ Total gﬂr 2|p 1Trne (4]
L
f( a. 2
X,25 |2A LTota|
T, 0
fX(,4l oAb T[L g
T, 0
flo | @y A dpli
e @
&
Flaa | -auA-a,A +a,A T =
6
f)((,45 OA) T[T
fho | @A T2 Sva A ST 020
T“— ﬂ gﬂr 2 P, 1-“_1 %)
B ..
fls, aiZAm T"'gaL %ng
' CCTP, |2 ST, |, 2R 5
f. | a A@Trz Oxr , ©
X,5 i2
gﬂr 2 P, 1Tme ﬂ
T 0
fx(,54 aoAaa;-[-[Ta I
wl @
O
fls | - @A - a,A +a, a:)ﬂ T
w @
fu(,ll I"lin - hg
1:u(,13 min
fu(,22 hg - hout
fu(,31 1
fu(,32 B 1
6
fu(,44 oAb ﬂT
ﬂ




Table 6.9 (cont.)

O
filas _AbT T, +aOA) ﬂT
alr |r g
fu(,54 OA) ﬂT
2T, o
fu(‘55 g—_A)T T )+aoA\3 o ﬂ
g( qh %Tr O
X,31
Sﬂrz P, ﬂI—1 ﬂ
9., éﬂIh _ 2| C_)(ﬂ[rzgﬂ aﬂhgg
) gﬂp ra ﬂ 8ﬂr2|P ﬂpeaj g PeB
9 s, zqu_hZ Qﬂrz?
| gTr2f, 26TM. &
T 0O
g>(<,6l Zf[“_ai
19
T, O
9{6a ZgﬂT T
wl @
2T, O
Ofes | 2 T T
w2 @
g, Z@Trz %"20
| ggﬂrZ Peéﬂl‘lﬂ
g¢ -l 9+<; To| Sdr, ¢ aeT, o
X,72 gﬂpe rzﬂ 8ﬂr2 Pe: P, aﬂ d& 5
g)(('73 2& %[rzg
gﬂl’z Peﬁ. Tm g
08, | 20z Fr 0
, 81“’2 Peﬁﬂl‘l o
oo | pe| 2, BT Sr, 0 e, &
x,82 gﬂPe ; B 8ﬂr2 Pe: ﬂPeB dPe %
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Table 6.9 (cont.)

Oes Zallid %2
‘ 8ﬂr2 pe ﬂmeb
T.0
9864 22 i-1

TITai ﬂ

T,

95,65 2 x
ﬂmaﬂ

For the third representation, the partial derivatives of the functions f (x((,u(() and g (X((, u(() with
respect to the states and inputs are cal culated by means of atransformation matrix (see Section 6.11.4.2).

6.11.4.2 Numerical Representation
The numerical evaluation of these equations can be done using the explicit formulas given in this section.

Alternatively, because these representations are simply related by a state transformation, any of the three given
representations can be cal culated with knowledge of one of the other representations. For example, since

Zx = Z &< the transformation T ¢= Z *Z Ccan be used to substitute X = (Z A G)X¢and solvefor
Fe=F, (Z' lZG) and G¢ = GX(Z 1z ‘]3 Furthermore, it was shown in Chapter 2 that because

IX=7Z&(=f (X, u), Z ( can be solved explicitly from Z . Thusonly the first representation needs to be
evaluated, and the second representation can then be calculated. Likewise the third representation isrelated by a
transformation matrix T = Z ", and can be used to solvefor F &= F, (Z ’ 1) and G#=G, (Z ) 1).

Recalling the standard state space form for these equations (Equation 6.96) we can then write the state
space matrices {A, B,C, D} for all three representations in terms of the matrices {Z, F.F,.G, ,Gu} (Equations

6.97 - 6.99).

X = Adx + Bdu
dy = Cdx+ Ddu
A=Z"'F
B=Z"F,

C =G,

D =G,
At=ZC'F Z'Z¢
B¢=Z¢'F,
C¢=G,z*'z¢
D¢=G,

(6.96)

(6.97)

(6.98)
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ACG=F 7
B¢=F,
C¢=G "
D¢=G,

(6.99)

The evaluation of these equations at the highway operating condition yields the following matrices

(Equations 6.100 - 6.109).

¢ -13172 0019652 - 0.0034846 -1.8206  0.0077459
§ -9%781  -13987  -80.3% 1080.3 178.56y,
A=é -55693  -1055  -50.097 - 33407 111.360
§-0078%5 0016212 0  -15469 0.0066648,]
g -15566 0.23949 01724 - 21378 - 0.7134§
é - 26367 0017536 22109  -18206 0.0077459
§ -3012 -62765 50966€6 1080.3 178.567,
A¢= & 0 0 0 0 04
g 0078365  0.016212 0 -15469 0.0066648
g 49712  0.34417 -10938  -21.378 - 0.7134f
¢ -12999 -17.483 - 29887 12049 ou
g -12575 -52312 - 73344 0 013311y
At=8 0 0 0 0 0l
§ 1453 21746  3717.4 - 15469 00066648 ]
g 16.045 189.24 3100.1 0.029154 - 0.80448f
¢ 59205 - 49659 - 0.030496 0 0Q
§ 73734 -11447¢5 18.095 0 0
B=¢& 37445 -79442 - 055957 0 04
g 0 0 0 005994 98119
g 69%.13 -58389 - 035857  0.0599% 758410
¢ 59205 - 4.9659 - 0.030496 0 ou
g TIM -1144765 18.095 0 o
B¢=¢& 37445 -7944.2 - 055957 0 0l
g 0 0 0 00594 98119
€ 69.13 -58389 - 0.35857 0.05994 7.5841f
é- 78.069 0 0.043604 0 0d
g 0 -13.434 0 0 o)
B¢=2 1 -1 0 0 0d
g 0 0 0 012051 21199
& 0 0 0 012951  16.386f
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é 1 0 0 0 ou
¢ 0 1 0 0 oY
e u
é 0 0 1 0 0l
g 0 0 0 1 o4 (6.106)
c=¢& 0 0 0 10
§ - 16367 0 0 0.6089 01392,
g 0  0.012587 0.59651 0 og
é 0  0.0016356 0.59651 0 0d
& 00059679 9.4734e- 6 - 1576le- 5 0 o
é 1 0 0 0 ou
g 0 1 0 0 03
& 37865 060725 - 63448 0 0l
g€ o 0 0 1 o (6.107)
ce=¢6 0 0 0 0 U
& 1.6367 0 0 06089 01392
2 22587 037482 - 37848 0 03
é 22587 03633 - 37848 0 0d
& 0 0 1 0 o
é - 069939 0.026933 4.6041 0 0u
g 414.98 62084  1.0613.65 0 0y
e -1281 387.2 2742 7 0 0d
g 0 0 0 0.46284 0g (6.108)
cCe=¢é -82234 0.31667 54.135 0 0.46284U
g 0 0 0 028182 0064427}
g - 2.4317 238.79 2071.9 0 03
& - 69763 231.99 1809.6 0 04
& 40387e-5 -6.042e-5 0.98967 0 O}y
& 0 0 0 0 0d
g 0 0 0 0 03
& 0 0 0 0 0d
€ o0 0 0 0 0g (6.109)
D=D¢=D¢=€ 0 0 0 0 ou
g 0 0 0 02519 16.784(
e 0 0 0 0 ou
e u
e o0 0 0 0 04
& o 0 0 0 o

6.11.5 Internal Heat Exchanger
Recall that the internal heat exchanger was modeled with three differential equations (Equations6.110 -

T, +T, T+ T
6.112), where T, ... = % and T . = WTCM Thus the outlet temperatures are calcul ated as
_ _ _ u
Th,out - 2Th,ave - Th,in and Tc,out - 2Tc,ave - Tc,in - The states are assumed to be X = [Th,ave Tc,ave Twall] .
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m, (hh,ih “h out) hAh( h ave ~ waII ) (r VC ) h ave (6.110)
rhc (hc,in - e out) cA: ( cave WaII ) = (r VCp )CTc,ave (6.111)
cAc( c ave waII )+ah Ah( h ave TwaII ) = (r VCp )Wa”TwaII (6- 112)

To simplify the implicit nature of these equations for linearization, the assumptions are made that

e Cph(T,Lin - Th,out) and h,; - h o » Cpc (chin - TC‘Out). This assumption of average specific

heats will admittedly fail near the critical point. This problem will be addressed in future models of the heat
exchanger. After substitution, the differential equations are given in Equations6.113 - 6.115.

2n}1cph(Th,ih B have) hA’n( have - waII) (rVC ) have (6.113)
2m C ( c in "~ cave) CA:( cave - wall) (r VC ) c ave (6'114)
cAc( cave wall)+ahph( have Twall):(r ch)wa”Twall (6-115)

6.11.5.1 Symbolic Representation
The inputs and outputs are given in Equation 6.116 and 6.117. The partial derivatives of the differential

equations f (X, u) and output equations g (X, u) with respect to the states and inputs are defined in Equations
6.118 - 6.121, with the matrix elementslisted in Table 6.16.

u= [mh mC P Pc hh in hc in (6.116)
y= [hh,out hc,out Th,out Tc,out ]T (6.117)
it efx 11 0 fx,lal;j
T =F = g 0 fr2 fx,zsg (6.118)
Sfx,31 fx,32 fx,33H
i éfun 0 fu,13 0 fus 0 U
ﬂ_u =Fy _g 0 fu,22 0 fu,24 0 fu,zag (6.119)
é 0 0 0 0 0 0 H
€,u O 00
e u
Bog,=8 Gz g (6.120)
fix * &g, 0 00 '
é a
e Oy42 00
© 0 gy O gu 000
u
ﬂ_g — — g) 0 0 gu,24 0 gu,26|j (6.121)
fu ! g) 0 Ou3s 0 Gu,35 g .
'eO 0 O Qy,44 0 9u4s()
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Table6.16 Matrix Elements for Equations 6.118- 6.121

ahAh(Th,ave - Twall ) ?ﬂcph |

(Cph) gﬂh,ave
2rhncph(Th,ave - Th,in)+ahA1(Th,ave - TwaJI ) é%ﬂr h |
r h) gﬂTh ,ave

2meC, - a A+

f %11

=
Sl
©
=
@>C33m>m>m>(P>m

Qe

e

B

»
>

1:><,13

A

rVCp A

+acAE(Tc,ave - Twall) éﬁ-[cpc |

2mCCpc-

ah

X,22

rvC

szpC(TQ ave ~

)

T

Pc

c,m) +a CA (Tcave -

o
o
(<Y ('D_L ™ D D O D

rC)

o))

>

fx,23

i
Q)

X,31

%sn
>

©

wall

f X,32

a A
rvc

P /wall

:

X,33

- (2,A *a A)
(r VCP)WaII

u,11

2Cph (Th,in - Th,ave)
(rve,),

h Al(Th,ave - Twall )éa-[c Ph |

)

SR

9
Ty0e @

u,13

@)(‘D_& D> D> D P> 9(')&

(rv)

2Ihhncph(-l—h,ave - Th,in)+ahAh(Th,ave - Twall)éah' h

8ﬂph Thae 5

B ccve

u,15

8

2r.hnCph é‘arrh,in
(r ch)h gﬂhn,in

RO

fu,22

2c (r.,.-T

pc\'cin c,ave)

(r VC, )C

u,24

CA(Tc,ave - Twall )@CPJ

C..)

Zrncc Pc (Tc,ave -

SR |,
:

a

2

c,in) +acA(Tc

ave TwaII )@r ¢

('m>('D_; D D D ('D>£>\

(ro)

sTR

ClTeae @

6
T+

1-|-|—c, in
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Table 6.10 (cont.)
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6.11.5.2 Numerical Representation
The evaluation of these equations at the highway operating condition yields the following matrices

(Equations 6.122 - 6.125).

é - 23.671 0 480720

A=8 0 -13421 88852 (6.122)
§ 024584 024584 - 0.49169f
¢ 1238.6 0 011027 0 3.3377 ou

B=S 0 - 21100 0 047957 0 31118 (6.123)
g o0 0 0 0 0 Of
£14.819 0 oi
e U

coe 0 230 o (6.124)
& 2 0 0d
g 0 2 o4
6 0 0 -0082148 0  -1468 o0

5 _Z 0 0 0 - 0.025361 0o - 0.687353 (6.125)

"¢ 0 0 -0.006122 0 -0.19819 0
& 0 0 0 - 0.012587 0 - 05951}
6.11.6 System

The model for the overall system isfound by appropriately defining the component model inputsin terms
of system inputs and component outputs. This procedure can done analytically using selection matrices or

numerically by using algorithms availablein MATLAB.

6.11.6.1 Symbolic Representation
The complexity of the symbolic representation of the overall system model is obvious given the symbolic

representations of the component models. A symbolic representation of the overall system would be too complex to

provide useful insight to the system dynamics. Therefore, only the numerical representations are included.

6.11.6.2 Numerical Representation
For simplicity, the numerical entries of the system matrices {A, B,C, D} evaluated at the highway driving

condition are given in Tables 6.17 - 6.22.

Table6.17 System ‘A’ Matrix: Columns 1- 6

-1.3172 0.02249 0.044662 -1.8206 0.0077459 | 0.00305
-95.781 -17.332 -105.46 1080.3 178.56 0.0084956
-556.93 -1.1519 -49.853 -33.407 111.36 0.10717
-0.078365 | 0.016212 0 -1.5469 0.0066648 0
-15.566 0.27286 0.73851 -21.378 -0.7134 0.035862
0 0.96771 -99.131 0 0 -18.701
0 -0.05211 -1.7011 0 0 -0.27629
0 0 0 0 0 0.0030427
0 0.19201 3.0457 0 0 0.10203
0 0.0099758 28.058 0 0 0.028837
0 0 0 0 0 0
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Table 6.18 System ‘A’ Matrix: Columns 7- 11

0.11597 0 -0.58513 -0.16143 0
-20.26 0 102.23 84.283 0
3.3133 0 -16.718 -0.81857 0
0 0 0 0 0
1.3635 0 -6.8799 -1.8981 0
-1802.6 2706.5 458.22 332.37 0
-32.686 52.593 -2.9097 5.7034 0
0.2912 -0.6006 0 0 0
7.2278 0 -26.458 -10.212 4.8702
0 0 0 -123.95 88.852
0 0 0.24584 0.24584 -0.49169
Table 6.19 System ‘B’ Matrix
0.11512 -0.000121 0 0 0 0
143.37 -2.7836 0 0 0 0
7.2809 -0.19318 0 0 0 0
0 0 0.05994 9.8119 0 0
1.3536 -0.00142 0.05994 7.5841 0 0
-395.96 12.557 0 0 0 0
2.5144 0.11633 0 0 0 0
0 0 0 0 0.092348 -1.8354
2.4083 0 0 0 0 0
0 -0.51309 0 0 0 0
0 0 0 0 0 0
Table 6.20 System ‘C’ Matrix: Columns1- 6
0 0.0016356 0.59651 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
-1.6367 0 0 0.6089 0.1392 0
0 0 0 0 0 0
Table 6.21 System ‘C’ Matrix: Columns 7 - 11
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.23025 0 0 0
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Table 6.22 System ‘D’ Matrix

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.2519 16.784 0 0
0 0 0 0 0.76975 -0.98402

6.12 Simulation
To verify that the linearization procedure does not compromise the model fidelity significantly, the

linearized model simulation is added to the model validation plots from the previous chapter and compared (Figures
6.55 - 6.60). Although there are small discrepancies between the nonlinear model and the linearized model, both

models adequately predict the transient response of the physical system, as per the discussion in Chapter 5.

Em‘ FWVTWWW_W'_VV‘N'_W'V_VWV_W ((WWYYW-vy y""r'f
1;1900— .
Qim' 1
gim— -
© 1800 — v | v 1

Figure 6.56 Linearized Model Validation: Evaporator Pressure for Step Changes in Compressor Speed
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Figure 6.59 Linearized Model Validation: Evaporator Exit Air Temperature for Step Changesin Compressor
Speed
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Figure 6.60 Linearized Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor
Speed
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6.13 Dynamic Analysis
After accepting the linearized models as good approximations of the nonlinear system, the eigenvalues and

Hankel singular values can be computed. These numerical measures are helpful for assessing the possibilities for
model reduction. The numerical values are given for the highway operating condition.

6.13.1 Eigenvalues
The eigenvalues for the gas cooler, evaporator, internal heat exchanger, and overall system are givenin

Equations 6.126 - 6.129 respectively. Note the presence of eigenvalues that differ by an order of magnitude. This
indicates that the components and system exhibit multiple time scale behavior, and that model reductionis
appropriate. Also note the presence of azero eigenvaluein Equations6.126 and 6.127 that is aresult of the pure
integration of mass flow due to the conservation of mass equation in both the gas cooler and evaporator. This
exposes the redundant dynamic mode that creates the zero eigenvalue in Equation 6.129. Because there is no change
in the total refrigerant mass, both conservation of mass equations are not independent, and only oneistruly needed.
The most probable choice for areduced order model-based on the system eigenvaluesis a 5" order model (retaining

the five slowest eigenval ues).

é - 53.374
€ - 13.745Y

| (A,) =& 0.411280 (6.126)
g 0.13166y;
8 OH
¢ - 49.943)

| (A)=& 012332 (6.127)
3 Og
¢ - 134.37y

| (A,) =& - 23.722; (6.128)
& 0.277414
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-124.02y,
-54, 1658
- 49.6084
-28.09;
-14.5980
-1.9951; (6.129)
47228+ 0.23312i U
47228~ 0.23312i §
- 0.174918
-0.06074(
oy

Comparing these values to the eigenvalues of the identified modelsis enlightening. The eigenvalues for the

0.
0.

%ZD
N—
Il
DD D D D> @ D> (D> D> D> D> D> D> D> D> D> (D~

MIMO model identified for the idle and city models using subspace methods (direct method) are given in Equations
6.130 and 6.131. Because an identified model was not obtained for the highway condition a direct comparison of
eigenvalues cannot be made, but a general comparison of the five slowest eigenvalues of the system model with the

eigenvalues of theidentified models can be made (Figure 6.61).

& -02386 |
g- 0.1073+ o.oegsig
| (Age) =& 0.1073- 0.0693 U (6.130)

€ 0.0469+0.0038.
& 0.0469- 0.0038if
- 1.8055
- 0.4067
- 01371
0.0447 +0.0150i
0.0447 - 0.0159iU

00130 §

(N Y ey e e’

(6.131)

| (Ay) =

D:D> (D> D (D> D> (D> D> D~
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6.13.2 Hankel Singular Values

-0.8
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-0.4

-0.2 0

The Hankel singular values for the overall system are given in Equation6.132. Recall that the system has

one redundant dynamic mode due to the conservation of mass equationsin both the gas cooler and evaporator. This

leads to a zero eigenvalue, and an ill-conditioned matrix. Because the calculation of Hankel singular values of a

system with an ill -conditioned matrix leads to numerical difficulties, the redundant dynamic mode is removed before

calculating these values. Thus only ten Hankel singular values are shown in Equation 6.132 and in Figure 6.62.

Note the presence of valuesthat differ by orders of magnitude. Thisalso indicates that model reductionis

appropriate. Specifically, logical choices for reduced order models based on the Hankel singular values are 3" and

6" order models.

S toAos: B Cos) =

& 5078.9 U
é (
€ 75069 !
€ 333.05 U
e u
g 32963
& 24.088 U

u

» (D> (D

e u
60.29111 (|
€0.11337 Y
e u
£0.009632(
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Figure 6.62 Hankel Singular Values

6.13.3 Contrallability and Observability
Thelinearized system model can also be evaluated for controllability and observability. The controllability

and observability matrices are calculated using the definitions in Equations6.133 and 6.134 where N isthe number
of states[9]. The rank of these matricesis given as Rank(C) =5 and Rank(O) =5.

c=[B AB AB .. A"'B] (6.133)
o=[c cA cA ... cA"| (6.134)
6.13.4 Summary

Linearized models for each comp onent were presented. A linearized model of the system was formed by
the appropriate combination of the linearized component models. The analysis of the component models revealed
multiple-time scale behavior and the presence of apure integrator in the evaporator and gas cooler models. The
linearized system was observed to have five slow eigenvalues, five fast eigenvalues, and one zero eigenvalue
resulting from amodeling redundancy. The Hankel Singular Values indicated that a3 or 6" order model would be
logical choices for areduced order model. Evaluation of the controllability and observability of the system revealed
five observable/controllable modes. All of these results motivate the search for areduced order model of the system

dynamics.
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Chapter 7. Model Reduction

“Modeling for control is parsimonious and implicit. It is parsimonious, because the model should not be
mor e detailed than that required by the specific control task. Itisimplicit, because the extent of the necessary detail

is not known before the control task isaccomplished.” P. V. Kokotovic [21]

7.1 Motivation
Using the modeling procedure outlined in Chapter 2, dynamic models for the various components of

subcritical and transcritical cycles have been derived and validated with experimental data. Linearized versions of
these models have also been developed. While these models are not of excessively high order, simpler and lower
order models are always desirable for controller design purposes if they can be achieved without compromising the
model’ s fidelity significantly. Empirical models constructed in Chapter 4 demonstrated that lower order models
were sufficient for predicting the dominant dynamic behavior of the system. Furthermore, analysis of the linearized
version of the derived models also indicated that the dominant dynamic behavior could be captured with alow order
model.

This chapter seeks to answer four questions. First, given several choices of state representations, which
will yield the best reduced order model approximation of the full order system? Second, given the chosen
representation, which states should be considered fast/slow? Third, does the resulting reduced order model
adequately approximate the full order model? Fourth, what is the physical interpretation of the choices of the
fast/slow states?

Model reduction for control designisavast field of study. Many, if not most, of the methods currently
available require the model be evaluated numerically so that appropriate balanced realizations or matrix operations
can be used. Thisresultsin state transformations, in which the physical meaning of the state variablesislost. In
contrast, the singular perturbation method allows the symbolic reduction of models based on engineering knowledge
of the model parameters. In this thesis, a primary objective of model reduction is the physical insight gained asto
which physical phenomenon occur relatively fast, and which can be considered to be the dominant physical
dynamics. Thus, athough the multitude of numerical model reduction techniques can be performed with the
linearized models obtained in Chapter 6, the approaches to be considered in this chapter are restricted to those that

preserve the physical meaning of the dynamic states.

7.2 Singular Perturbation Method
In the context of thisthesis, asingularly perturbed system is defined by Equation7.1. The system exhibits

multiple time scale behavior. The perturbation parameter, €, isassumed to be small, and X is chosen to represent
the slow dynamicsand z to represent the fast dynamics of the system. Singularly perturbed systems are observed
in many physical systems[26], including fluid dynamics, electrical circuits, aerospace systems, chemical systems,
biological systems, and many others. These physical systems often contain small “parasitic” parameters that
increase the dynamic order of the model. For control-oriented modeling, these parameters are generally neglected.
The singular perturbation approach provides a method for justifying such assumptions, and means for analyzing the

implications of these assumptions on the resulting reduced order model.
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x = f(x,ze,t)
ez=g(x zet)
Thetechniques for applying this model reduction method discussed in this thesis will involve linear time-

(7.1)

invariant models of singularly perturbed systems (Equation 7.2). These systems generally involve matrices that are
ill-conditioned. The condition number of a matrix isthe ratio of the largest singular value to the smallest singular
value. A system that exhibits multiple time scale behavior will have eigenvalues that differ by orders of magnitude,
and therefore have alarge condition number. The perturbation parameter, €, isapproximately the ratio of the slow
eigenvalues to the fast eigenvalues. Naidu [26] notes that € represents an intrinsic property of the system and does

not necessarily have to appear explicitly in the system.

exu_eA, A uéxu €Biu

o Al S, -
éxul '

y:[Cl Cz]gzg"'[D]u

7.3 Procedure
As mentioned in the introduction to this chapter, the singular perturbation approach allows the symbolic

model reduction of systems, by using the assumption that a certain parameter or ratio of parametersissmall. This
requires an explicit choice of the perturbation parameter. This may not be possible for complex physical models,
where the perturbation parameter may be implicit, or the fast phenomena unknown. The singular perturbation
approach can also be applied to a system that is represented numerically. In thiscase, algorithms are generally used
to either approximate the system viaresidualization, or transform the given representation such that the fast and
slow dynamics are completely decoupled. In both approaches, the resulting models are reduced in order, including
termsthat partially compensate for the effects of the neglected fast dynamics. (Note that referencesto “ neglecting”
dynamics does not refer to eliminating these rel ationships, but merely assuming that fast dynamics can be
approximated by instantaneous algebraic relationships). The following sections illustrate both of these approachesin
order to properly explain how these approaches need to be adapted to be applied to the models developed in this
thesis.

7.3.1 Symbolic Model Reduction
This approach is best illustrated using a common example of a DC motor included in many textbooks about

singular perturbation model reduction[20,21]. Asdescribed in[21], the model consists of an equation for
mechanical torque (Equation 7.3), and an equation for the electrical transient (Equation7.4), where i, U, R, and
L arethe armature current, voltage, resistance and inductance respectively, J isthe moment of inertia, W isthe

angular speed, and Ki and kw' are the torque and back e.m.f. developed with constant excitation flux f .

Kokotovic asserts that in all well designed motors L issmall, and can be considered to be the perturbation

parameter.

Jw = Ki (7.3)
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(7.4)

Li=-kw- R+u
Assuming that L is zero, Equation 7.4 reduces to an algebraic constraint (Equation 7.5) and after

substitution into Equation 7.3 the resulting equation is the commonly used 1% order model of the DC motor

(Equation 7.6).
(7.5)

i =
k
2 k
JW=-—w+—u (7.6)
R R
Khalil suggeststhat it is preferable to choose the perturbation parameter as a dimensionless combination of

physical parameters[20]. He extends the above example by first defining several dimensionless variables as

w IR
, =—, |, =——,and U, =——, and then rewriting Equations 7.3 and 7.4 as Equations 7.7 and 7.8, where
W KW
T, =L/R istheelectrical time constant, and T,, = JR/K? is the mechanical time constant.

dw

T dtr =i, 7.7)
di .

T.—=-w, - i +u, (7.8)

S

Assuming that T, << T, and defining the dimensionlesstime variable t, =t/T,,, the state equations can

be rewritten as Equations 7.9 and 7.19. Theratio T, /T m then becomes the obvious choice for the perturbation

parameter.

aw, = (7.9)
dt, ' '
2T, Odi, .

——=-W, - i, +u, (7.10)

ng Zdtl’
Toillustrate the relationship between eigenval ues and the perturbation parameter Equations7.7 and 7.8 are

written in state space format (Equation 7.11). The eigenvalues of the full order system can be computed

symbolically (Equation 7.12).

ev.0_€0 3 Uav o €0u
e u=€& 5 Ll gte (7.1)
e, i &7 .0elr 0 &
— ——
A B
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1€ 1 1 4 U
| (A)=Z& —=+ /— —0
26 T. \T.” TTag (7.12)
:i[- 1+4/1- 4e]
T

Theratio of the eigenvalues is easily computed as well (Equation7.13). Assuming +/1- 4e » 1, the
perturbation parameter is found to be the ratio of the eigenvalues (Equation 7.14). Thisisin agreement with
Kokotovic who notes that the perturbation parameter is on the order of theratio of the slow and fast eigenvalues
[21]. This also demonstrates that choosing € as a dimensionless parameter is preferable because the ratio of

eigenvaluesis aways dimensionless.

I, _-1+41-4e _ 4
I, -1-V1-4e (1+41- 2e)

(7.13)

L
I,

7.3.2 Numerical Model Reduction
Given the representation in Equation 7.2, different methods for obtaining approximate reduced order

e (7.14)

M

models are available. Two methods are discussed here: residualization and a decoupling transformation.

7.3.2.1 Residualization
A common way of approximating the system in Equation 7.2 isto simply set Z=0. The resulting

algebraic equation can be solved for Z intermsof X and substituted into the remaining differential equation. This
istermed “residualizing” Z by Skogestad and Postlethwaite [33]. The resulting formulas for the reduced order state

space model are given in Equation 7.15.

A= AL- AALTA,
B =B,- A,A,'B,
C, =C,- C,A,'A,
D, =D-C,A,"'B,

7.3.2.2 Decoupling Transformation
By applying the transformation in Equation 7.18 to the system in Equation 7.2it is possible to decouple the

(7.15)

fast and slow dynamics, such that the system can be represented as Equation 7.16. Interestingly, no matrix inversion

is necessary for calculating T! (Equation 7.19). The matrices L and M arefound as the solution to the Ricatti
Equations 7.20 and 7.21. Further explanation of this technique, aswell as a proof of itsvalidity can be found in[21]
and [26].

&,U_6A 006X U €80
é. u=e0 A e uaté, w (7.16)
i é 106% 0 &Bra
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As:An' Aizl-

Ar = A, T LA,
(7.17)
B, =B, - MLB, - MB,
B, =B, - LB,
é.- ML - MU
T=a" E (7.18)
g L P
él M
T'=g" 5 (7.19)
&L I,-Lmy
LA, +A, - LA,L- A,L=0 (7.20)
AM- MA, +A,=0 (7.21)

7.3.3 Application of Singular Perturbation
The application of the singular perturbation method for reducing the models developed in Chapter 2 has

some interesting challenges. Specifically, the complexity of the analytical models prevents the explicit

identification of a perturbation parameter to reduce the models symbolically. Evaluating the models numerically
permits the cal cul ation of eigenvalues and the subsequent observation that the models do exhibit two-time scale
behavior. However, the desire to maintain the physical meaning of the dynamic states prevents the application of
any type of state transformation, such as abalanced realization. Additionally, for the components modeled, there are
several possible choicesfor state variables, without the knowledge of which state variables are fast and which are
slow. A method is needed that identifies the fast and slow states, and provides a means to compare different
possible representations as choices for model reduction. This processis separated into four parts: dimensional
analysis, comparison, residualization, and eval uation.

7.3.4 Dimensional Analysis
In order to appropriately compare different model representationsit is necessary to nondimensionalize the

models. Thefirst stepisto select the dimensional basis. For each component, we select physical parameters that
correspond to the fundamental units of mass, length, temperature, and time. These bases are initially selected
independently for each component because the analysis and comparisons made only involve that specific
component. If comparisons are to be made of the entire system model, a uniform dimensional basis must be selected

for the entire system. For more information regarding the application of dimensional analysisto control systems, see
[6].
7.3.5 Comparison

Intuition dictates that the most ideal representation for residualization is amodal form where the states are
not coupled and explicitly associated with the eigenvalues. Thus the fast/slow dynamics are explicitly associated
with the states and the choice of statesto residualizeis obvious. Alternatively, arepresentation that is either upper
or lower diagonal is preferable because the off-diagonal termswould not affect the eigenvalues. The off-diagonal
terms would, however, affect the conditioning of the matrix and possibly the reduced order model approximation.

Thus given several acceptable model representations, the “best” choice for residualization would be the
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representation that is diagonally dominant or block diagonally dominant with the fast states decoupled from the slow
states. There are several methods available for measuring the relative coupling of the dynamics; these include
diagonal dominance, induced matrix norms, and the Relative Gain Array. Block diagonal dominance is much more
difficult to measure numerically, and is not discussed. If the system isnot diagonal dominant, an alternative means
of determining which state should be residualized is finding an appropriate scaling matrix to form a balanced
realization.

7.3.5.1 Diagonal Dominance
The mathematical definition of diagonal dominanceisgivenin Equation7.22. In words, amatrix is

diagonally dominant in the sense that the absol ute value of the diagonal element of each row is strictly greater than
the sum of the absolute val ues of the off-diagonal elements. To be specific, thisis row diagona dominance.
Column diagonal dominance is similarly computed, but not considered here. Note that this comparison is only

relevant for dimensionally equivalent representations.

lal> A 3] (7.22)

it
7.3.5.2 Matrix Norms
The induced matrix norms also give a measure of diagonal dominance. These are defined in Equations 7.23

- 7.25asthe induced one norm (maximum column sun), the induced infinity norm (maximum row sum), and the
induced two norm (maximum singular value). The minimal value of each these normswill occur for astrictly
diagonal representation, with the minimal value being equal to the largest eigenvalue (Equation 7.26) (Proof in
[33]). Thusthese norms can provide a means of comparing the diagonal dominance of different representations.

For thisthesis, the induced two norm (maximum singular value) is used. Again note that this comparison is only

relevant for dimensionally equivalent representations.

5
"A“.l = ?xg |6H | (7.23)
oSy 0
Al = mexEa 2 -,j|§ﬂ (7.2
]
||A4||2 - max( ) =4I max (AT A) (7.25
mac (A) £ A (7.26)

7.3.5.3 Relative Gain Array
The Relative Gain Array for a square matrix is defined in Equation 7.27, wherethe = denotes element-by-

element multiplication (Schur product). The RGA will be identity only if the matrix is upper or lower diagonal.

Therefore diagonal elements close to unity indicate diagonal dominance.

T

L(A)=A" (A1) .27

7.3.5.4 Scaling Matrix
For systemsthat are not diagonally dominant, but still exhibit multiple time scale behavior, an aternative

method for selecting the states to be residualized is by evaluating the scaling matrix necessary to form a balanced
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realization. In the context of this thesis, balancing the system matrices is performed by finding ascaling matrix S
such that the norm of Equation 7.28is minimized. When calculating the scaling matrix, the entriesof S are
generally restricted to integer exponents of 2 so that computation errors are not introduced. By evaluating the
diagonal entriesof S, appropriate choices of which states should be residualized can be made. Thisis equivalent to
visually inspecting the matrix and determining that the entries of a specific row are an order of magnitude higher
than the other rows. Thisrow isassumed to be multiplied by ]/e . Thus by dividing thisrow by € placesthe

system of equations inthe standard form (Equation 7.1). The elements of the scaling matrix give a numerical
measure for which rows have entries that are relatively large. For this method the best representation for model

reduction could be chosen as the representation with the lowest condition number (the | east ill-conditioned).
éIAS SBU
e u
&§CS 04§

7.3.6 Residualization
After determining the best choice of the available representations for model reduction, the states are

(7.28)

reordered into the standard form (Equation 7.2). The number of desired statesis residualized according to Equation
7.15, and the approximated eigenval ues can be compared to the full order eigenval ues.
7.3.7 Comparison

After the chosen representation has been residualized, the eigenval ues of the reduced order model can be
compared to those of the full order model. The approximation error can be calculated and verified to be within
acceptable limits. Additionally, many physical insights can be gained by evaluating which physical states are

associated with fast dynamics, and which are associated with slow dynamics.

7.4 Results
Using the procedure outlined above, the linearized component models devel oped can be reduced in order.

First, each of the possible representations for the component models is nondimensionalized. The various
representations are eval uated to determine the most suitable representation for model reduction, aswell aswhich
states should be residualized. Reduced order models are cal culated and compared to the full order models.
Observations regarding the physical meaning of the negligible dynamics are made. The reduced order models are
combined to create a reduced order system model. This model is compared to the full order nonlinear and linearized

model s through analysis and simul ation.

7.4.1 Gas Cooler
Recall the three possible choices of states for the gas cooler were given as X = [PC h, TW]T ,
x¢= [PC m, TW]T , and X¢= [UC m, EW]T Theresulting A matrix for each of these models as

presented in Chapter 6 are given in Equations 7.29 - 7.31. These are the numerical results given the chosen
dimensions. A nondimensional basisis selected as as: length— length of fluid flow in the gas cooler, mass—

refrigerant mass inventory in the gas cooler, temperature — 273 K, and time — refrigerant mass inventory divided by
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mass flow rate. These are evaluated for the highway driving condition at steady state. The numerical valuesfor this

basis, aswell as the resulting numerical values for the nondimensional states are givenin Table 7.1

é -16202 -1711.7 2706.50
A=$-031485 33263 52598 (7.29)
£0.0030427 02912 - 0.60064
é - 49465 8988565 26%.70
Ac=¢ 0 0 ol (7.30)
é u
£0.0087329 -15349 - 0.60064
é 49.465 - 6170.6 0.508260
Ae=¢ 0 0 ou (7.31)
é a
g 46335 5930.1 - 0.6006(
Table 7.1 Nondimensional Basis for the Gas Cooler
Pressure _ Enthalpy _ Temperature Mass Energy
[kPa=kg/m/sY2]  [kd/kg=m Y2isY2] (K] [kg] [kd=m Y2+kg/sY2]
Length 2.285 -1 2 2
Mass 0.0423 1 1 1
Time 0.9646 -2 -2 -2
Temperature 273 1
1.989E+01 5.612E+03 2.730E+02 4.229E-02 2.373E+02

Using this basis to nondimensionalize the system via a similarity transformation (Equations7.32 - 7.34)

results in the matrices given in Equations 7.35 - 7.37 where the bar denotes the nondimensional representation.

&19.8001 0 oi
T=¢ 0 561150 U (7.32)
e u
g o 0o 273§
¢ 198901 0 oi
To=$ 0 0042288 of (7.33)
& 0 0 2734
& 237.29 0 oi
Te=$ 0 0042288 oY (7.34)
& 0 0 237294
¢ -16202 - 482925 37147
A=T7AT=S- 0001116 - 33.263 25587 (7.39)
£0.00022168 59857 - 0.6006f
¢ - 49465 19108 37147)
Ac=Te AT o= 0 0 oY (7.36)
00063397 - 023683 - 0.6006f]
& 49.465 - 10996 050826()
Ae=T@'ATTe=5 0 0 o ¢ (7.37)
£46335 10568 - 0.6006
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Evaluating these for diagonal dominance using the measures outlined earlier in this chapter yields no useful
information. All the representations given are not diagonally dominant, which can be confirmed by inspection. The
best representation is then determined by condition number. The condition number for each of the representations
(ignoring the zero singular value) is given as 3465571, 651524, and 729.6 for the A, A(, and AC representations
respectively. Based on these values the third representation is chosen for model reduction. The necessary scaling

matrix to obtain a balanced realization is calculated, and given as S = diag ([8 1 1]) Thus the obvious choice
of the state to be residualized isthefirst state, or the refrigerant energy.

7.4.1.1 Reduced Order Model
For discussion purposes, reduced order models are calculated for all three representations. These models

are not included, but their eigenvalues are calculated and compared to the eigenval ues of the full order model
(Tables 7.2 - 7.4). Fromthesetablesitis clear that the first representation is a poor choice for model reduction,
because the zero eigenvalue dynamic is not explicitly associated with any state. The reduced order models for both
the second and third representation yield equivalent eigenvalues. Thisis dueto the fact that the states of the second
representation are simply constant multiples of the states of the third representation.

For all representations, it is obvious that residualizing the wall temperature/energy dynamics leads to the
removal of the slowest eigenvalue. Thusfor the gas cooler the refrigerant energy (equivalent to pressure) dynamic
isfast, the wall temperature/energy dynamic is slow, and there is a pure integrator for the conservation of mass. The
final reduced order model used is given (in dimensional form) in Equations 7.38- 7.41. Thisreduced order model is

a2" order system with states defined as X®= [I’r‘lC EW]T :

Table 7.2 Gas Cooler Eigenvalue Comparison for Reduced Order Modelsof A

Eliminate: Pressure Eliminate: Enthalpy Eliminate: Wall Temp.
Full Order Reduced Order | Percentage || Reduced Order | Percentage || Reduced Order | Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error Eigenvalues Error
-49.943 -10.254 79.5%
-0.123 -0.092 25.1% -0.140 13.7%
0 0 0.0% 0 0.0% 0 0.0%
Table 7.3 Gas Cooler Eigenvalue Comparison for Reduced Order Models of A(
Eliminate: Pressure Eliminate: Wall Temp.
Full Order Reduced Order Percentage Reduced Order Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error
-49.943 -10.254 79.5%
-0.123 -0.125 1.0%
0 0 0.0% 0 0.0%
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Table 7.4 Gas Cooler Eigenvalue Comparison for Reduced Order Models of A«

Eliminate: Refrigerant Energy Eliminate: Wall Energy
Full Order Reduced Order Percentage Reduced Order Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error
-49.943 -10.254 79.5%
-0.123 -0.125 1.0%
0 0 0.0% 0 0.0%

. 0 |
A =5 X (7.39)

& 149.97 - 012451
g =€ 1 -1 0 0 Ou (7.39)

' 8 52.84 105.72 0081689 0.26625 - 5. 2917H

@1.8169 e5 18. 9781)

8- 3439.5 0.73756Y

e u

é 0 0.346850 (7.40)
C=e u

é 0 0.079861

€ 42994 0.26266U

e u

e 1 0g

é 2108.4 4214 3.2562 0 0@

g 81.943 163.78 - 0.87345 0 OH

é 0 0 0 0 0d (7.41)
D =¢ a

é 0 0 0 076975 - 0.98402

€ 29181 58324 - 015346 0 od

e U

e 0 0 0 0 0f

7.4.2 Evaporator
Recall the three possible choices of states for the evaporator were given as

X:[Ll Pe ho TV\LI. TWZ]T' X¢: [Ll Pe me TV\Ll TWZ]T’and

x@= [U~l ljz m, EM EWZ]T . Theresulting A matrix for each of these models as presented in Chapter 6

are given in Equations 7.42 - 7.44. These are the numerical results given the chosen dimensions. A nondimensional
basisis selected as: length— length of fluid flow in the gas evaporator, mass— refrigerant mass inventory in the
evaporator, temperature — 273 K, and time — refrigerant mass inventory divided by mass flow rate. These are
evaluated for the highway driving condition at steady state. The numerical valuesfor this basis, aswell asthe

resulting numerical values for the nondimensional statesare givenin Table 7.5.

é -13172 0019652 - 0.0034846 -1.8206  0.0077459 )

e u

& -9%78L 13.987 80.326 1080.3 178.56@ (7.42)
A=é -556.93 - 1.0525 - 50.097 - 33.407 111.360

S - 0078365 0016212 0  -15469 0.0066648 ]

g -15566 0.23949 0.1724 - 21.378 - 0.7134§

140



é - 26367 0.017536 221.09 -1.8206 0.0077459 1

é a

(:a 30512 62.765 5.0966 e6 1080.3 178.56L:j (7.43)

Al= ¢ 0 0 0 0 0d

& 0078365  0.016212 0 -15469 0.0066648

g 49712  0.34417 -10038 - 21.378 - 0.7134f

é -12.999 -17.483 - 2988.7 1.2049 0y

é a

é 1.2575 52.312 733.44 0 0.1%111:J (7.44)

At=¢ 0 0 0 0 ou
§ 14535 21746 37174 - 15469 00066648
g€ 16.045 189.24 3100.1 0.029154 - 0.80448f
Table 7.5 Nondimensional Basis for the Evaporator
Length Pressure _ Enthalpy Temperature Mass Energy
[m] [kPa=kg/m/sY2]  [kdkg=m Y21sY2] (K] [kg] [kd=m Y2rkg/sY2)
Length 1.859826 1 -1 2 2
Mass 0.0412 1 1 1
Time 0.9448 -2 -2 -2
Temperature 273 1
1.860E+00 2.482E+01 3.875E+03 2.730E+02 | 4.120E-02 1.596E+02

Using this basis to nondimensionalize the system viaa similarity transformation (Equations7.45 - 7.47)

results in the matrices given in Equations 7.48 - 7.50 where the bar denotes the nondimensional representation.

6185083 0 0 0 ou
g 0 248150 0 0 0f
T=¢ 0 0 387499 0 0u
€ o0 0 o 273 0g
g 0 0 0 0 2734
¢ 185083 0 0 0 ou
g 0 248150 0 0 o
Te=¢ 0 0 00411966 0 0u
g 0 0 0 273 0g
& 0 0 0 0 273
¢ 150636 0 0 0 0u
g 0 159636 0 0 o
Te=¢ 0 0 00411966 0 oG
g 0 0 0 15963 o
g 0 0 0 0  159.636§
6 -1.30172 02621  -7.2603 - 267.25
g - 71785 - 13.987 - 12543 11884
A=T'AT=¢ -02673 -000674  -50007 - 23536
g 00005339  0.0014736 0 -15469
@ - 013605 0021769 2447 - 21378
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- 2.6367 0.23398 4.8974 - 267.25 1.137y

é
€ . 20868 - 62.765 8461 11884 1964 4Y
— . é a (7.49
AC=TC'AM ¢= & 0 0 0 0 0d
g 0.0005339  0.0014736 0 - 1.5469 0.00666483
& 0.33866 0.031285 - 1.6506 - 21.378 - 0.71344
5 - 12999 -17.483 - 0.77127 1.2049 ou
. - - u
_ 1 1.2575 52312 - 0.18928 0 0-1331151 (7.50)
A¢=T ¢! AUT ¢= 0 0 0 0 ou

14535 21746 095933 - 15469 0.0066648 ]
16045  189.24 080004 0020154 - 0.80448

Evaluating these for diagonal dominance using the measures outlined earlier in this chapter yields no useful

@D D> D> D D> D> (D

information. All the representations given are not diagonally dominant, which can be confirmed by inspection. The
best representation is then determined by condition number. The condition number for each of the representations
(ignoring the zero singular value) is given as 2659305, 2370524, and 6779.1 for the A, A(, and AL
representations respectively. Based on these values the third representation is chosen for model reduction. The

necessary scaling matrix to obtain abalanced realization is cal culated, and given as
S=diag ([2 8 1 05 0.25]). Thus the obvious choice of the states to be residualized is the second state,

or therefrigerant energy in the second region, and possibly the first state, or the refrigerant energy in the first region.

Thisis somewhat equivalent to residualizing the pressure and two-phase flow length in the second representation.

7.4.2.2 Reduced Order Model
For discussion purposes, reduced order models are calculated for all three representations. These models

are not included, but their eigenvalues are cal culated and compared to the eigenvalues of the full order model
(Tables 7.6 - 7.8). From thesetablesitis clear that the first representation is a poor choice for model reduction,
because the zero eigenvalue dynamic is not explicitly associated with any state. The reduced order models for both
the second and third representation yield similar eigenvalues, but the third representation approximates the slow
eigenvalues with the least error. From the gas cooler results, it is obvious that residualizing the wall
temperature/energy dynamics leads to the removal of the slowest eigenvalue. Similarly for the evaporator, the
refrigerant energy (similar to pressure and two-phase flow length) dynamics are fast, the wall temperature/energy
dynamics are slow, and thereis a pure integrator for the conservation of mass. The final reduced order models used

are shown. The 4™ order model is given (in dimensional form) in Equations 7.51 - 7.54. This reduced order model is
a4™ order system with states defined as X®, = U, m, E, sz]T . The 3 order model is given (in
dimensional form) in Equations 7.55 - 7.58. This reduced order model is a3 order system with states defined as

x¢ =%, E, E

w2
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Table 7.6 Evaporator Eigenvalue Comparison for Reduced Order Models of

A

Eliminate: Pressure Eliminate: Pressure, Length Eliminate: Pressure, Enthalpy
Full Order Reduced Order | Percentage | Reduced Order | Percentage [[ Reduced Order | Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error Eigenvalues Error
-53.374 -43.033 19.4%
-13.745
-0.411 -0.375 8.9% -0.914 122.3% -0.336 18.3%
-0.132 -0.048 63.6% -0.062 52.8% -0.047 64.6%
0 0 0.0% 0 0.0% 0 0.0%
Table 7.7 Evaporator Eigenvalue Comparison for Reduced Order Models of A(
Eliminate: Pressure Eliminate: Pressure, Length
Full Order Reduced Order Percentage Reduced Order Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error
-53.374
-13.745 -11.622 15.4%
-0.411 -0.409 0.6% -0.375 8.8%
-0.132 -0.133 1.2% -0.151 14.8%
0 0 0.0% 0 0.0%
Table 7.8 Evaporator Eigenvalue Comparison for Reduced Order Models of A«
Eliminate: Refrig. Energy #2 Eliminate : Refrig. Energy #1,
Refrig. Energy #2
Full Order Reduced Order Percentage Reduced Order Percentage
Eigenvalues Eigenvalues Error Eigenvalues Error
-53.374
-13.745 -13.902 1.1%
-0.411 -0.414 0.7% -0.427 3.8%
-0.132 -0.132 0.2% -0.141 7.4%
0 0 0.0% 0 0.0%
é -12.579 - 2743.6 1.2049 - 0.044488u
A= g 0 0 0 o (7.51)
“ @ 14.012 34125 - 1.5469 0.061999@
e u
& 11.49% 44691 0029154 - 0.322%4
é- 78.069 44896 0.043604 0 0y
5 _g 1 -1 0 0 og (7.52)
"o 0 -55843 0 012951  21.199u
e u
& 0 - 4859% 0 01291 16.386y
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- 0.70004
400.05

- 22141
- 8231

- 8.1718

S
&

3.8934e- 5

o

O O O O O o oo

8 o

1
- 86.967

s

156.91
10170
2143.1
0

1845

0

1406 .4
1295
0.99901

4.3448

- 2482.9
137.42

0

51.086

0

50.718
77.91
0.00024165

4.2265 0
97427 0
- 2686.2 0
0 0.46284
49.695 0
0 0.28182
- 375.99 0
- 1443 0
0.99052 0 -
- 0.0069163 0
- 159.43 0
- 99.433 0
0 0
- 0.081322 0
0 0
- 61.32 0
- 59.574 0
15516e- 5 0
0 0u
- 0.20472 0.0124413
1.1303 - 0.36364
-1 0 0
- 058294 0.048574  0.12951
- 44493 003985  0.12951
- 0.67053  0.0025444 §
38.319 0.164913
- 2.1208 1.06360
0.46284 og
- 0.78841 0.49276U
028182  0.064427{,
- 0.78274 0.636518
- 1.2024 0.63471()
-3.72%e- 6 - 1.605e- 8}
- 025678 - 0.0024297
- 16.643 1.3868
-107.34 - 0.076752
0 0
-3.0192 - 0028533
0 0
-64.237 - 0.028328
-64.054 - 0.43515
1.6197e- 6 - 1.3497e- 7
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7.4.31nternal Heat Exchanger
Recall the A matrix presented in Chapter 6 for the internal heat exchanger (Equation 7.59). Since multiple

representations do not need to be compared, and all the states have the same units, nondimensionalizing the model is
not necessary. However, the state(s) to be residualized have yet to be determined. The eigenvaluesfor A in
Equation 7.59 are given in Equation 7.60. Because two of the eigenvalues are two orders of magnitude greater than
the third, two states can be residualized.

¢ - 23671 0 480720
A=$ 0 -121  sa8s! (7.59)
§ 024584 024584 - 0.49169f
6134375
& u (7.60)
1 (A)=2 23722@
g§-0277 ¢

By inspection, the A matrix appears to be diagonally dominant. Using the definition of diagonal
dominance, it is confirmed that Equation 7.22 holds. Additionally, using the induced two norm we find that the
maximum singular value, 160.98, is the same order of magnitude as the largest eigenvalue, -134.38. Finally, the

diagonal elements of the Relative Gain Array are relatively close to unity (Equation 7.61). Accepting the fact that

A isdiagonally dominant, then the logical choice of states to be residualized are the first and second states
(refrigerant temperatures) and to retain the third state (wall temperature). The resulting 1% order model has an
eigenvalue of -0.278, which approximates the slow eigenvalue of the full order system with 0.3% error. Again, the
conclusion is reached that the refrigerant dynamics are much faster than the heat exchanger wall dynamics. The final
reduced order model used is given in Equations7.62 - 7.65.

é 1182 0 -0182y
L(A)=¢ o 1585 -0585! (7.61)
§0182 -058 17664
A =[- 0.27835] (7.62)
B, =[ 12.864 -38651 0.0011452 0.0008785  0.034665 0.057] (7.63)
é3.0489()
u
c o gL.5257l:J (7.64)
" &0.41150
5132410
6 77538 0 -0.013118 0 062106 oy
5 - g 0 -362.32 0 - 0.017126 0 - 0.153033 (7.65)
& 10465 0 00031947 0 0083821 0d
g 0 -31444 0 -0.005441 0 -01328Y
7.4.4 System

The full order system model was presented in Chapter 6. The reduced order component models derived

above are combined to form a reduced order system model. For the system model, only five outputs are considered,

y= [Te,sh P P T Tewo ]T . If the 4™ order model of the evaporator is used, the resulting system model



is6" order and presented in Equations 7.66 - 7.70. If the 3" order model of the evaporator is used, the resulting
system model is 5" order and presented in Equations7.71 - 7.74. (Note that the reduced order system has one
redundant state from the conservation of energy in both the evaporator and gas cooler, evidenced by the zero
eigenvalue. Thusthetrue reduced order system isfound by combining the reduced order component models and
removing the redundant state.) The 6" order model approximates the eigenvalues of the full order model within 8%.
The eigenvalues of the 5" order system model approximates the eigenvalues of the full order model within 11%
error (Table 7.9).

-11.974 - 22729 12049 - 0035315 0.001785  0.088072

e
g 0010924 - 4.6201 0 - 0000102 9.466e- 5 0.0001268
_é& 13967  339.3 -15469 0061606 0000162  0.0019741 (7.67)
Ao = g 11.1 38219 0029154 -0.32636 0001411 0017177
é -12815 - 79261 0 - 0023462 -010501  0.125450
§-o08M31  -1299 0 0061791 0045393 - 0.32448
6- 0076305  0.0004555 0 0 0 0y
€ 0001776 - 2.698e- 5 0 0 0 o
5 & 6.262e-5 - 00001450 0.12951 21.199 0 0u (7.68)
T % 0000545 - 00012694  0.12951 16.386 0 0f
& 019144  0.0004088 0 0 026625  -520170
& 0039912 - 0.0007573 0 0 0 of
¢ -13037 - 45836 0 058612 00017293 0.021057()
S 30876 97050 0 15686 0.0046281 0.056352] (7.69)
C,=6 -51.081 - 20736 0 -09321 19755 500060
g 0 0 028182 0064427 0 og
g 0 0 0 0 0079861 0f
¢0.00066801 - 0.0015562 0 0 0 ou
g 0.0017877 - 0.0041646 0 0 0 og 7.70)
D,=¢& 76308  0.016295 0 0 0 0u
g 0 0 0.2519 16.784 0 04
g 0 0 0 0 0.76975 - 0.98402§
6 -25464 - 00010992 - 69%e-5 9.303e-5 4.5413e- 50
€ 7479 -014146 0020411 000244  0.10472Y .71
A,=8& -1775 11462  -.35011 0.0030653  0.0988270
§ -54935 -012895 -0019%8 - 01052 0.11603]
@ 2848 -0083953 0064252 0045268 - 0.33062f
6 0001846 - 2739%- 5 0 0 0 Ou
g - 0.083945  0.0003855 0.12951 21.199 0 og o
B, =¢- 0070196 - 00008471 012951 16.386 0 oY
§ 01996  0.0003601 0 0 026625  -52917
& 0045229 - 0.0007891 0 0 0 od
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(:a 891.31 - 1.3119 0.62457 - 0.00021397 - 0.074841@
g 21354 40.125 0.39245 0.064065 2.9894 773
Cs=€ -1976l& -5.1401 - 0.78455 19.747 462494 '

g 0 028182  0.064427 0 og

g 0 0 0 0.079861 0f

é 0.083753 - 0.002052 0 0 0 Ou

é 1]

a 2.534 0.011005 0 0 0 OL'J (7.74)

D = (f,- 7.9563 0.014352 0 0 0 OL;|

g 0 0 02159 16784 0 0

e 0 0 0 0 0.76975 - 0.98402{
Table 7.9 Comparison of System Eigenvalues: Full Order and Reduced Order Models
Full Order -124.02 -54.165 -49.608 -28.09 14508 | -1.995 | -0.472+0.233i | -0.175 | -0.0607 0
Eigenvalues
Reduced Order | pininated | Eliminated | Eliminated | Eliminated -15.648 | -2.060 | -0.475:0.232i | -0.177 | -0.0613 0
Eigenvalues
Efr’;re”tage 7.2% 3.3% 0.4% 1.4% 0.9% | 0.0%
Reduced Order | ginated | Eliminated | Eliminated | Eliminated | Eliminated | -2.202 | -0.518+0.238i | -0.182 | -0.0628 0
Eigenvalues
Eﬁ:}cre”tage 10.4% 8.3% 3.9% 3.4% | 0.0%

To verify that the reduced order model approximations are sufficient, simulation results for both the 5 and

6" order system models are compared to the original nonlinear and linearized models, aswell asdata. Figures7.1 -

7.6 show that residualizing the fast states has negligible impact on the transient response of the system. In fact the

simulation results from both reduced order models are indistinguishable from the full order linearized model (11"

order).
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Time N

Figure 7.1 Reduced Order Model Validation: Compressor Speed Step Changes
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Figure 7.4 Reduced Order Model Validation: Evaporator Superheat for Step Changes in Compressor Speed
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Figure 7.5 Reduced Order Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor
Speed
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Figure 7.6 Reduced Order Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor
Speed

7.5 Other Model Reduction Possibilities

While attempting to discover the dominant dynamics of the system, several alternative model reduction
attempts were made with mixed success. These attempts are included here to inform the reader of methods to avoid,
aswell as possibilities for model reduction under certain conditions.

7.5.1 Lumped Evaporator Wall Temperature
The wall temperature/energy dynamics have been shown to be the dominant dynamics of the system, along

with the location of refrigerant mass. A logical step for reducing the system order further isto simplify the wall
temperature assumptions by considering a single uniform wall temperature rather than separate wall temperatures
for each region. The principle difficulty with this approach is the calculated initial conditions. Asexplainedin
Chapter 5, given measured data and component parameters, the initial conditions for the dynamic state variables can
be calculated. Thisincludesthe lumped wall temperatures and the effective length of two-phase flow. When a
uniform wall temperature is assumed, the resulting initial condition can be drastically different from that calculated
assuming separate wall temperatures. This difference can affect the transient response noticeably. While this
assumption is not implausible, more research as to the implications needs to be made before a conclusion can be
drawn.

7.5.2 Negligible Gas Cooler Outlet Air Temperature
Experience has shown that residualizing the wall temperature state in the gas cooler model leads to gross

errorsin the prediction of gas cooler exit air temperature. However, the effects on the other system outputs appear
to belimited. Thusif gas cooler air temperature is not avariable of concern, apossibility exists of reducing the

order of the system model further. Again, more research is needed before arecommendation can be made.

7.6 Summary
In this chapter, an 11'" order dynamic model for atranscritical air conditioning system has been reduced to

a5™ order dynamic model without considerable lossin model accuracy. Experience has shown that further
reduction may be possible. The common model resulting from the PDE derivation was shown to be less desirable
for model reduction. The dominant dynamics of the system were identified to be the wall temperature/energy

dynamics and the location of refrigerant mass. The refrigerant energy dynamics were shown to be faster than the
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dominant dynamics by an order of magnitude, and could thus be residualized without notable loss of model

accuracy.
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Chapter 8. Conclusions and Future Work

8.1 Summary of Results

Thisthesis makes several key contributions to the study of vapor compression system dynamics. First, an
existing modeling approach is applied to a unique type of vapor compression cycle, namely the transcritical cycle.
Second, a different modeling approach is presented and shown to be equivalent to the more common approach of
simplifying the governing PDESto achieve the desired ODEs. This energy based approach is more straightforward
to derive and simpler conceptually. This approach also exposes some freedom in choosing the system states. Third,
the resulting models are validated using experimental data and recommendations are made for improving the model
validation. Fourth, both the analysis of the linearized models, as well as the empirical models constructed using
system identification techniques indicate that areduced order model of the system dynamicsis adequate for
predicting the dominant system dynamics. Finally, variations of the singular perturbation technique are used to find
reduced order component models. The more commonly derived models are shown to be inappropriate for model
reduction, while the reduced order models using the alternatively derived models result in good approximations of
the full order system, as well as expose a redundant dynamic mode. A reduced order system model is constructed

using the reduced order component models and validated against experimental data.

8.2 Future Work
This research has many aspects that have yet to be explored. A few of these are mentioned here, including

improvements in model validation, model reduction, controller design, and modeling of complex systems.

8.2.1 Model Validation
In Chapter 4 many observations were made regarding problemswith the experimental data. Specifically:

1) maldistribution of refrigerant in the prototype evaporator, 2) oil recirculation altering the temperature
measurement of fluid entering the compressor, 3) lack of necessary temperature measurements to explore the inter-
component dynamics, and 4) need for unfiltered mass flow measurements. Correcting the problem with evaporator
maldistribution is necessary for system efficiency, and therefore should not be a problem in a commercially
manufactured system. Also, most commercial compressors have oil recirculation built into the compressor chamber,
and skewed temperature readings should not be a problem with non-prototype compressors. 1n the future, additional
temperature measurements will be included to verify conponent dynamics, and venturi meters to measure transient
mass flow will be used.

At the time of writing of thisthesis, experimental datafor validation of atranscritical system with low-side
receiver was not available. However, all practical transcritical systems operate with this component. Therefore the
predictive ability of this approach should be compared to data collected on such a system.

Additionally, the modeling approach presented has been validated principally on an automotive transcritical
air conditioning system. To truly test the validity of this approach, it should be extended to include subcritical air
conditioning cycles, and could be experimentally verified on automotive, residential or industrial systems. This
obviously requires alarge amount of additional work, but is necessary to provide exhaustive validation of the

modeling approach.
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8.2.2 Model Reduction
The justification for the reduced order modelsis obviously dependent on the experimental system. All

results presented in this thesis are for an automotive transcritical cycle. A logical part of future work isto validate
the modeling approach and explore possibilities for model reduction on other types of systems. Preliminary
investigationsinto residential or commercial systemsindicate that long pipe |engths between components would
necessitate the inclusion of inter-component dynamics. However, the principal conclusion that the dominant
dynamics are the storage of energy in the heat exchanger walls should hold for these other systems where the heat
exchangers are more massive.

8.2.3 Controller Design
Thisthesis has repeatedly discussed the objective of developing control-oriented models. Therefore, this

research isonly partially complete until the models have been used for controller design and verified with

experimental implementation.

8.2.4 Complex Systems
Finally, alargely unexplored area of research is the control of more complex multi-component air

conditioning systems. These systemshave the potential to benefit the most from more advanced control strategies
whose design would require a control-oriented model. The approach presented in this thesis of component level
modeling and model reduction makes the transition to more complex systems easy and straightforward, by simply

appropriately defining the component input-output rel ationships to form the overall system model.
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