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Figure 4.20 MIMO System ID Results for Random Step Changes in All Inputs: City Condition 
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4.5 Summary 
The individual SISO models developed match well with data, and the resulting model residuals have been 

verified to be independent white noise.  These models are low order.  Analysis of the MIMO model created from 

combining the SISO models indicates a 5th order model, but is less effective for developing a prediction model.  

Using subspace methods for creating a MIMO model also indicates a 5th or 6th order model, and is adequate for 

predicting the system dynamics. 
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Chapter 5. Model Validation 

To ensure that the modeling approach outlined in this thesis appropriately predicts the dynamic behavior of 

vapor compression cycles, simulation results were compared to experimental data obtained as outlined in Chapter 4. 

Although the modeling approach presented in Chapter 2 is appropriate for both subcritical and transcritical cycles, 

the comparisons shown here are for an automotive transcritical vapor compression cycle. 

The implicit assumption is made that the comparisons between simulated and experimental results for the 

given operating conditions are indicative of the model’s predictive capability at all operating conditions allowed by 

the modeling assumptions. This reflects the observation that it is impossible to fully validate a model; it is merely 

possible to demonstrate that the model is not invalid for a given set of data. 

The first section outlines the general validation procedure, and includes a description of the various 

parameters used in the simulation.  The second section gives observations regarding the choice of parameters, and 

presents the initial model validation results.  The final section discusses additions made to the model-based on the 

initial results, and presents the results of the improved model validation. 

5.6 Validation Procedure 
The parameters for each of the individual components are grouped in three categories: measurable, 

empirical, and tunable.  The measurable parameters are physical characteristics of the component such as lengths, 

masses, diameters, etc.  These were measured for each of the components and are assumed to be correct within 

measurement accuracy.  The empirical parameters are efficiencies or other empirically determined relationships.  

The tunable parameters generally cannot be measured easily, but are known to be within a certain range of values 

and are assumed to follow commonly accepted parameter correlations. 

Thus the general procedure for validating the model consists of fixing the measured and empirical 

parameters, and adjusting the tunable parameters within acceptable bounds so that the simulated dynamics 

approximate the experimentally recorded dynamics. 

5.6.1 Physical Parameters 
5.6.1.1 Evaporator and Gas Cooler 

Hydraulic Diameter – For different types of heat exchangers (plate, tube, microchannel, etc.) this value will 

be calculated differently.  Suggestions for calculating this value for the different types of heat exchangers are 

available in the literature, and are heat exchanger dependent.  For the microchannel heat exchangers used in the 

experimental system, the microchannel port diameter was obtained from the manufacturer and verified with 

measurements. 

Fluid Flow Length – This value is defined as the length that the fluid travels from the entrance to the exit of 

the heat exchanger.  All possible fluid flow paths are assumed to have the same length. Many heat exchangers use a 

series of tubes or plates arranged in a serpentine manner for fluid flow.  Often these tubes or plates will join at a 

“header” and the fluid is redistributed before entering the next “pass” or series of or tubes or plates. 

Cross-sectional Area – This value can be calculated using the hydraulic diameter. For most heat exchangers 

the cross-sectional area is not constant.  The number of tubes or plates per pass generally increases as the fluid 

evaporates or decreases as the fluid condensates, thus changing the cross-sectional area.  For the purposes of 
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modeling a constant cross-sectional area is assumed. If the cross-sectional area is calculated from the hydraulic 

diameter, then it does not take into account headers, distributors, etc.  

Internal Volume – This value can either be calculated as the product of cross-sectional area and fluid flow 

length or be measured experimentally.  The former does not account for headers, entrance pipes, etc. and is 

considered to be the lower bound.  The latter includes all these “extra” volumes and is considered to be the upper 

bound.  Thus this parameter can be tuned within these bounds. 

Internal Surface Area – This parameter is calculated from the hydraulic diameter. 

External Surface Area – This parameter is either calculated from the known fin geometry, or obtained from 

the manufacturer. 

Mass – This parameter is easily obtained from the manufacturer or measured.  Because the header pipes do 

not play a critical role in heat transfer, the mass of these may be included or neglected. 

Specific Heat – The value of this parameter is easily obtained from a standard heat transfer textbook with 

knowledge of the heat exchanger material. 

5.6.1.2 Compressor 
Displacement – The displacement of the compressor is generally available from the manufacturer. 

5.6.1.3 Expansion Valve 
Area of Opening – This value is generally available from the manufacturer. 

5.6.1.4 Internal Heat Exchanger 
Internal Volume of Hot/Cold Side – This value is generally available from the manufacturer. 

Mass – This parameter is easily obtained from the manufacturer or measured.  Because the header pipes do 

not play a critical role in heat transfer, the mass of these may be included or neglected. 

Specific Heat – The value of this parameter is easily obtained from a standard heat transfer textbook with 

knowledge of the heat exchanger material. 

5.6.2 Empirical Parameters 
5.6.2.1 Evaporator and Gas Cooler 

Mean Void Fraction – Many correlations are available as outlined in Chapter 1.  For these simulations, a 

general slip ratio correlation is assumed. 

Single -Phase Flow Heat Transfer Coefficient – This value can be estimated using an empirical correlation 

chosen by the user.  For these simulations, the Dittus-Boelter correlation [18] was used. 

5.6.2.2 Compressor 
Isentropic Efficiency – This value can be estimated using experimental steady state data, or obtained from 

the manufacturer. 

Volumetric Efficiency – This value can be estimated using experimental steady state data, or obtained from 

the manufacturer. 

Rate Limit – Actual compressors are rate-limited in their ability to change speed.  This value can be 

measured from data. 
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5.6.2.3 Expansion Valve 
Control Input Relationship – The control input is related to the valve opening assuming a linear 

relationship.  The empirical parameters for this equation can be determined using experimental data. 

Discharge Coefficient – This value can be estimated using experimental steady state data, or obtained from 

the manufacturer. 

Rate Limit – Actual expansion valves are rate-limited in their ability to change the valve opening.  This 

value can be measured from data. 

5.6.2.4 Internal Heat Exchanger 
Lumped Heat Transfer Coefficient – This value can be estimated using experimental steady state data. 

5.6.2.5 Pipe Losses 
Between components there are both momentum losses associated with friction, as well as thermal 

losses/gains due to heat transfer to the environment.  Both of these types of losses change during a transient 

response. From the Darcy-Weisbech equation [39] assuming horizontal pipe lengths, the momentum losses are given 

as 
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Using this equation a semi-empirical relationship can be obtained for modeling the pressure losses between 

components. However, a simple alternative is available.  The use of pressure loss equations is to ensure the correct 

prediction of pressure at the inlet and outlet of the compressor and expansion valve, so that the calculated mass flow 

rates will be accurate.  Instead of using the measured values of pressure at the compressor and expansion valve inlets 

and outlets to determine the empirical parameters used in the mass flow rate equations, the measured pressures of 

the gas cooler and evaporator are used.  Thus the mass flow rate equations are adjusted to predict the correct mass 

flow rate using the pressures before they are adjusted with pressure drop correlations.  The pressure drop 

correlations are effectively lumped into the empirical parameters for the mass flow rate equations. 

The thermal losses/gains due to heat transfer to the environment are considered constant for the initial 

model validation.  These dynamics will be included as part of the improved model validation. 

5.6.3 Tunable Parameters 

5.6.3.1 Evaporator 
Void Fraction Slip Ratio – Slip ratio is defined as the ratio of the velocities of the vapor and liquid phases 

in a two-phase flow.  The generally accepted bounds on this parameter are given by the homogeneous correlation 

and the Zivi correlation.  The homogeneous correlation assumes a slip ratio of unity, 1=S , and the Zivi correlation 

gives the slip ratio as ( ) 3/1
gfS ρρ= .  At the time of writing of this thesis, there was no known published data 

on measured void fraction for transcritical fluids.  Therefore, they are assumed to behave similarly to the more 

commonly studied fluids.  Because these correlations are not verifiable for carbon dioxide, the upper bound is not a 

hard bound, but a guideline to be considered when tuning this parameter. 

Two-Phase Flow Heat Transfer Coefficient – For transcritical cycles, this parameter has been measured in 

[28] to be from 3 to 22 kW/(m2K) depending on the quality of the fluid and the operating condition.  Therefore the 

average heat transfer coefficient in the two -phase region could justifiably be chosen within this range. 



 76 

5.7 Initial Model Validation 
The final choice of most parameters is straightforward.  The values used in the simulation are shown in 

Table 5.7.  The effective cross-sectional area was originally calculated using the hydraulic diameter.  However, the 

transient response of pressure was observed to be too fast, indicating that the volume was underestimated.  Measured 

values for volume confirmed this conclusion.  While the entrance/exit pipe length could have been included, this 

was found to be unnecessary.  The selected value for cross-sectional area was calculated using the measured internal 

volume of the heat exchanger divided by the length of fluid flow. The value for the lumped two-phase flow heat 

transfer coefficient was selected as 4 kW/(m2K). This choice is consistent with experimental studies [28] and results 

in the appropriate transient behavior.  The value for slip ratio was chosen by the Zivi correlation.  Although higher 

values of slip ratio resulted in a better response for evaporator superheat, the lack of justifying research in the area of 

void fraction for carbon dioxide prevents the use of values higher than commonly accepted norms.  The empirical 

relationships for mass flow through the compressor and expansion valve were developed using steady state data.  

However, since the transient response of pressure is largely a function of the time integral of net mass flow entering 

the heat exchanger, some tuning of these equations was required after including them in the simulation. 

Recall from Chapter 4 that the experimental data consisted of a PRBS applied to the available inputs of 

compressor speed, expansion valve opening, evaporator air flow rate, and gas cooler air flow rate.  For model 

validation the outputs of evaporator pressure, gas cooler pressure, evaporator superheat, evaporator exit air 

temperature, and gas cooler exit air temperature are compared. Mass flow rate is not compared because the mass 

flow rate sensor has significant dynamic filtering built into the measurement. For each transient response, the mass 

flow rate was verified to match at the steady state, but is not included because the sensor dynamics result in a 

transient response that is misleading. The model was compared to the experimental data taken and each of the three 

operating conditions.  Only the results for the 3rd operating condition (highway condition) are included here.  For all 

results, the scale of the output variable is important when making comparisons and evaluating the validity of the 

model.  Some of the resulting transients do not appear to agree, unless they are viewed in the proper context. 
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Table 5.7 Parameter Values for Model Validation 

Mass [kg] 2.458 Measured
Specific Heat [kJ/kg/K] 0.879 Aluminum
Hydraulic Diameter [m] 1.092E-03 From Manufacturer
Internal Volume [m^3] 3.275E-04 Measured
Cross-Sectional Area [m^2] 1.433E-04 Calculated from Internal Volume
Internal Surface Area [m^2] 0.800 Calculated from Hydraulic Diameter
External Surface Area [m^2] 4.458 From Manufacturer
Fluid Flow Length per Pass [m] 1.000 Measured
Average Number of Micrchannel Plates per Pass [-] 1.500 Measured
Average Number of Passes [-] 2.285 Measured
Number of Parallel Paths [-] 4 Measured
Number of Micrchannel Ports per Plate [-] 17 From Manufacturer
Total Fluid Flow Length [m] 2.285 Calculated
Total Number of Fluid Flow Paths [-] 102 Calculated
Two-phase Flow Heat Transfer Coefficient [kW/m^2/K] 4 Tuned Parameter
Superheat Flow Heat Transfer Coefficient [kW/m^2/K] 1.933 Calculated from Dittus-Boelter Equation
Exterior Fluid Heat Transfer Coefficient [kW/m^2/K] 0.0464 Calculated from data
Exterior Fluid Specific Heat [kJ/kg/K] 1.007 Air
Slip Ratio [-] 2.13 Zivi Correlation
Mass [kg] 3.280 Measured
Specific Heat [kJ/kg/K] 0.879 Aluminum
Hydraulic Diameter [m] 6.350E-04 From Manufacturer
Internal Volume [m^3] 1.800E-04 Measured
Cross-Sectional Area [m^2] 1.651E-04 Calculated from Internal Volume
Internal Surface Area [m^2] 0.565 Calculated from Hydraulic Diameter
External Surface Area [m^2] 7.090 From Manufacturer
Fluid Flow Length per Pass [m] 1.090 Measured
Average Number of Micrchannel Plates per Pass [-] 65 Measured
Average Number of Passes [-] 1 Measured
Number of Parallel Paths [-] 1 Measured
Number of Micrchannel Ports per Plate [-] 4 From Manufacturer
Total Fluid Flow Length [m] 1.090 Calculated
Total Number of Fluid Flow Paths [-] 260 Calculated
Supercritical Flow Heat Transfer Coefficient [kW/m^2/K] 2.592 Calculated from Dittus-Boelter Equation
Exterior Fluid Heat Transfer Coefficient [kW/m^2/K] 0.042 Calculated from data
Exterior Fluid Specific Heat [kJ/kg/K] 1.007 Air
Mass [kg] 0.865 Measured
Specific Heat [kJ/kg/K] 0.879 Aluminum
Internal Volume (Hot Side) [m^3] 1.260E-05 Measured
Internal Volume (Cold Side) [m^3] 2.202E-05 Measured
Lumped Heat Transfer Coefficient [kW/K] 0.0935 Calculated from data
Compressor Displacement [m^3] 5.000E-07 From Manufacturer
Empirical Parameter: Ck [-] -0.0254 Calculated from data
Empirical Parameter: Dk [-] 0.117 Calculated from data
Empirical Parameter: n [-] 1.25 Calculated from data
Empirical Parameter: Ak [-] -0.0357 Calculated from data
Empirical Parameter: Bk [-] 0.9227 Calculated from data
Rate Limit [rpm/s] 50 Calculated from data
Empirical Parameter: Kv #1 [-] 2.112E-05 Calculated from data
Empirical Parameter: Kv #2 [-] 5.550E-02 Calculated from data
Empirical Parameter: Kv #3 [-] -6.906E-07 Calculated from data
Empirical Parameter: n [-] 0.5 Calculated from data
Rate Limit [V/s] 1 Calculated from data
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Figures 5.21 - 5.26 show the model outputs for changes in compressor speed. For all the model outputs 

there is general agreement, but also notable discrepancies. For evaporator pressure the model agrees in the speed of 

the response and the steady state gain.  However, a 2nd order effect is visible in the data, but absent in the model.  

For gas cooler pressure the speed of the response and the steady state gain also match within acceptable tolerances.  

There is an obvious discrepancy as the peak response of the model is larger and more pronounced than the data.  For 

evaporator superheat, the general shape of the transient is correct, but the peak and steady state magnitudes are 

incorrect, as well as the speed of the response.  The evaporator exit air temperature appears to match well.  The exit 

air temperature for the gas cooler matches well, except for a constant steady state offset. This offset is due to a small 



 78 

inaccuracy in calculating the initial conditions of the gas cooler.  The total heat transfer from the gas cooler can be 

calculated from 1) the measured mass flow rate of air, and the inlet and exit air temperatures, or 2) the mass flow 

rate of refrigerant, and the inlet and exit fluid enthalpies (calculated from measured pressures and temperatures).  

Both of these methods are approximately equal at the steady state. In calculating the initial conditions, the system is 

forced to match the measured refrigerant conditions rather than the air conditions.  However, the assumption of 

uniform pressure in the gas cooler skews the enthalpy calculations slightly, and thus the energy calculations.  Thus 

the calculation of the gas cooler exit temperature is slightly higher than measured for all simulations. 

 

Figure 5.21 Model Validation: Compressor Speed Step Changes 

 

Figure 5.22 Model Validation: Evaporator Pressure for Step Changes in Compressor Speed 

 

Figure 5.23 Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed 



 79 

 

Figure 5.24 Model Validation: Evaporator Superheat for Step Changes in Compressor Speed 

 

Figure 5.25 Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor Speed 

 

Figure 5.26 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor Speed 

Figures 5.29 - 5.34 show the model outputs for changes in expansion valve opening.  Evaporator pressure 

matches well except for a small error in the gain.  Gas cooler pressure also matches well except for a small offset 

and an initial peak response that is not present in the data. Evaporator superheat, evaporator exit air temperature, and 

gas cooler exit air temperature all predict poorly.  The reason for this is evident upon closer evaluation of the 

experimental data. As the valve is opened, a surge of refrigerant enters the evaporator.  This has two effects: first, 

the increase in net mass flow into the evaporator builds pressure, and second, the s urge of mass flow increases the 

length of two-phase flow.  As the pressure builds, the saturation temperature rises, and the difference in 

temperatures between the refrigerant and the heat exchanger wall (and air) decreases.  This decrease contributes to 

less heat transfer.  However, because the two-phase flow refrigerant has a higher heat transfer coefficient than the 

superheated refrigerant, the increase in two-phase flow length results in more heat transfer.  Whether the bulk 



 80 

temperature of the heat exchanger wall (and air) initially increases or decreases depends on which of these two 

effects dominates.  In the experimental data, the exit air temperature from the evaporator initially decreases sharply 

and then increases.  However, in simulation the rise in pressure, and thus refrigerant temperature, appears to 

dominate, and thus the exit air temperature simply increases. Experience has shown that by changing the simulation 

parameters the initial decrease can be captured, but not to the extent exhibited by the data.   

The reason for the drastic initial decrease in exit air temperature is evident upon closer evaluation of the 

refrigerant and wall temperatures recorded in data.  In Figure 5.27 these temperatures are shown.  Note that the exit 

air temperature would appear to follow the exit refrigerant temperature.  Upon closer examination (Figure 5.28), the 

data clearly shows that the exit air temperature actually decreases before the exit refrigerant temperature.  This is an 

indication of the problem of maldistribution in the evaporator.  Because the evaporator has four parallel paths, a 

distributor is used to allocate equal amounts of fluid flow to each of the four paths.  However, if the distribution of 

fluid between the four paths is unequal, the evaporator will perform poorly. The evaporator used was known to have 

problems with maldistribution.   

 

Figure 5.27 Evaporator Temperatures for Step Changes in Expansion Valve Opening 

 

Figure 5.28 Evaporator Temperatures for Step Changes in Expansion Valve Opening (Close View) 

During the transient tests, the number of temperature measurements was limited, the evaporator refrigerant 

outlet temperature is only measured at one of the four parallel paths.  The decrease in exit air temperature before the 

decrease in refrigerant outlet temperature is evidence that when the valve was opened, the surge of mass flow almost 

instantaneously changed the distribution of fluid flow.  Evaporator paths that previously were receiving very little 

liquid fluid flow suddenly received much more, rapidly cooling the heat exchanger walls and the exit air.  Note that 

the data and simulation are similar excepting the initial drop in temperature. 
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This sudden decrease also explains the discrepancy in evaporator superheat temperature.  Both data and 

model have the same transient shape, except that for data the steady state gain for an increase in superheat is 

negative, while the steady state gain for the model is positive.  For this to happen in simulation requires that the heat 

transfer coefficient for the air side be greater than that for the refrigerant side.  Since this is not physically feasible, 

the logical conclusion is that this is caused by an increase in heat transfer due to a suddenly improved refrigerant 

distribution. 

The seeming discrepancy between the model and data for gas cooler exit air temperature can also be simply 

explained.  Note that the magnitude of the change in temperature for data is a tenth of a degree and the relative 

signal to noise ratio is small. Although the predicted transient response is clear for the noise-free simulation, the 

magnitude of this change is also small, and no conclusion can be made whether data and model do or do not agree. 

 

Figure 5.29 Model Validation: Expansion Valve Opening Step Changes 

 

Figure 5.30 Model Validation: Evaporator Pressure for Step Changes in Expansion Valve Opening 

 

Figure 5.31 Model Validation: Gas Cooler Pressure for Step Changes in Expansion Valve Opening 
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Figure 5.32 Model Validation: Evaporator Superheat for Step Changes in Expansion Valve Opening 

 

Figure 5.33 Model Validation: Evaporator Exit Air Temperature for Step Changes in Expansion Valve Opening 

 

Figure 5.34 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Expansion Valve Opening 

Figures 5.35 - 5.40 show the model outputs for changes in evaporator air flow rate.  Model prediction and 

data match well for evaporator and gas cooler pressure in shape and response time, but with incorrect gain for the 

gas cooler pressure. Evaporator superheat matches extremely well. The model prediction for evaporator exit air 

temperature responds too quickly, but matches the steady state gain.  Again, the responses for gas cooler exit air 

temperature are too small to make a definite conclusion.  
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Figure 5.35 Model Validation: Evaporator Air Mass Flow Rate Step Changes 

 

Figure 5.36 Model Validation: Evaporator Pressure for Step Changes in Evaporator Air Mass Flow Rate 

 

Figure 5.37 Model Validation: Gas Cooler Pressure for Step Changes in Evaporator Air Mass Flow Rate 

 

Figure 5.38 Model Validation: Evaporator Superheat for Step Changes in Evaporator Air Mass Flow Rate 
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Figure 5.39 Model Validation: Evaporator Exit Air Temperature for Step Changes in Evaporator Air Mass Flow 
Rate 

 

Figure 5.40 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Evaporator Air Mass Flow 
Rate 

 

Figure 5.41 Gas Cooler Inlet Air Temperature for Step Changes in Gas Cooler Air Mass Flow Rate 

Figures 5.42 - 5.47 show the model outputs for changes in gas cooler air mass flow rate.  The transient 

responses for evaporator pressure, superheat and exit air temperature are without discernable dynamics and too 

small in magnitude to draw a conclusion. The responses for gas cooler exit air temperature match well excepting the 

constant offset. The model prediction for gas cooler pressure has small but discernable dynamics. The model 

predictions, however, are too small to compare.  This can be explained by the experimental setup.  The air that exits 

the gas cooler is recirculated through a glycol chiller before passing over the gas cooler again.  When the mass flow 

rate of air is decreased suddenly, both the gas cooler and chiller are operating with the same capacity for heat 

transfer.  Thus the exit air from the gas cooler becomes hotter, but the air entering the gas cooler becomes colder 

(Figure 5.41), and the net change in heat transfer is very small. 
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In the data the total heat being transferred from the gas cooler decreases slightly, explaining the small 

decrease in gas cooler pressure.  However, in simulation the combined change of decreased mass flow rate of air and 

decreased inlet air temperature balance such that the pressure remains virtually constant. 

 

Figure 5.42 Model Validation: Gas Cooler Air Mass Flow Rate Step Changes 

 

Figure 5.43 Model Validation: Evaporator Pressure for Step Changes in Gas Cooler Air Mass Flow Rate 

 

Figure 5.44 Model Validation: Gas Cooler Pressure for Step Changes in Gas Cooler Air Mass Flow Rate 
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Figure 5.45 Model Validation: Evaporator Superheat for Step Changes in Gas Cooler Air Mass Flow Rate 

 

Figure 5.46 Model Validation: Evaporator Exit Air Temperature for Step Changes in Gas Cooler Air Mass Flow 
Rate 

 

Figure 5.47 Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Gas Cooler Air Mass Flow 
Rate 

5.7.1 Observations 
Some general observations need to be made regarding the model validation process. Most of the parameters 

required by the model are known values. Experience has shown that the transient response of the system was 

relatively insensitive to changes in most parameters.  In general, a change of a factor of two or more in the value of 

any of the physical parameters was necessary to produce a noticeable difference in the transient response. For the 

control engineer this property of being robust to parameter changes is a desirable quality.  

Moderate changes in other parameters, however, did result in different transient responses.  Specifically, 

the choice of the two-phase flow heat transfer coefficient in the evaporator changed the s hape and magnitude of the 

output responses. This effect is due, in part, to how the choice of this parameter affects the calculated initial 
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conditions of the system. Having calculated the amount of heat being transferred from the evaporator, and given the 

refrigerant side heat transfer coefficients, four equations are solved simultaneously for the external fluid heat 

transfer coefficient, length of two-phase flow, and the lumped wall temperatures of the two-phase and superheat 

regions.  Different values for the two-phase flow heat transfer coefficient will result in a different initial value for 

the length of two-phase flow, which affects the dynamic response considerably.  The choice of slip ratio also affects 

the transient response notably.  The value for slip ratio determines the value of the void fraction, and thus the 

amount of liquid and vapor refrigerant.  A larger slip ratio results in a smaller void fraction and more liquid mass in 

the evaporator.  The amount of refrigerant mass inventory in the evaporator appears to affect the transient response 

much more than the values of the physical geometry of the heat exchanger. 

The model is also extremely sensitive to the algebraic relationships for mass flow as given for the 

compressor and expansion valve.  The principle dynamics of the system appear to be caused by the redistribution of 

mass inventory, and the unsteady state differences between inlet and outlet mass flow rate into the heat exchangers. 

The simplified dynamic model does not include some of the small, fast transient behavior that would dampen and 

stabilize the system. Like many nonlinear dynamic systems, a vapor compression cycle seems to have both slow and 

fast dynamic manifolds.  The slow dynamic manifolds are determined by the dominant system dynamics.  The fast 

dynamic manifolds that force the dynamic system to remain on the slow dynamic manifold in the physical system 

are neglected in the model for simplicity.  This simplicity comes at the price of being sensitive to small changes in 

mass flow. 

5.8 Improved Model Validation 

5.8.1 Model Additions 

5.8.1.1 Inter-Component Dynamics 
The initial model assumed that the fluid exiting a component immediately enters the next component, and 

that transport delays, pipe chamber dynamics, etc. were negligible.  However, the experimental data shows that 

dynamics are present in the pipe connections between components. 

Figure 5.48 shows that the fluid entering the gas cooler has a constant offset demonstrating heat transfer 

losses from the pipe, as well as a 1st order filtering effect.  Using identification techniques, assuming that the 

compressor exit temperature is the driving signal, and that the gas cooler entrance temperature is the output signal, a 

clear 1st order dynamic can be identified (the constant offset is removed for the identification). For the three 

operating conditions, the gains were identified to be 0.97, 0.99, and 1.00, and the time constants were identified as 

51.8, 25.2, and 29.4 seconds. 



 88 

 

Figure 5.48 System Temperatures for Step Changes in Compressor Speed 

This dynamic is not entirely unexpected.  The parasitic heat loss through the pipe explains the constant 

offset.  The slowly varying temperature of the pipe mass during a transient response would cause a 1st order filtering 

effect to the temperature.  Note that the gain is approximately unity, and therefore the steady state offset remains 

virtually constant. The 1st order time constant varies with operating condition, but remains within an order of 

magnitude. Unfortunately, during the transient tests, the number of temperature measurements was limited, and the 

necessary information for identifying the dynamics of the other pipe lengths to and from the internal heat exchanger 

is not available.  Although the pipe length between the expansion valve and evaporator is relatively short, the fluid 

in this section is two-phase, and therefore at a uniform temperature.  Undoubtedly, there are also heat transfer losses 

and possibly dynamics in this section, but these are impossible to identify without the ability to measure fluid quality 

at each point.  Therefore, for all the other pipe lengths, the time constants are assumed to be proportional to the pipe 

mass.  In reality this time constant would also be a function of heat transfer coefficient, heat transfer area, etc.  

However, as an initial estimate only the mass of the pipe is considered. These values are given in Table 5.8. 

Table 5.8 Estimated Time Constants for Inter-Component Pipe Lengths 

Inter-Components Pipe Mass [kg] Time Constant [s] 

Compressor – Gas Cooler 1.36 30.0 

Gas Cooler – IHX 0.92 20.2 

IHX – EEV 0.18 4.0 

EEV – Evaporator 0.32 7.0 

Evaporator – IHX 1.25 27.5 

IHX – Compressor 0.27 6.0 
 

5.8.1.2 Oil Separator Dynamics 
In real systems an oil separator is placed immediately after, or integrated into, the compressor.  The 

experimental system used an oil separator located after the compressor.  This device has a chamber that allows most 

of the oil to be separated from the refrigerant.  The oil is then recirculated to the compressor to ensure lubrication.  

The assumed dynamic effect is two-fold.  First, because the oil separator operates intermittently depending on 

pressure and the amount of oil accumulated, the predicted mass flow rate may be inaccurate depending on the 

amount of oil being recirculated. When the oil separator is integrated into the system, the semi -empirical compressor 
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model likely would be calibrated so as to implicitly take into account the mass flow rate of oil being recirculated.  

However, if the predicted mass flow rate is higher than reality, then the pressure in the gas cooler will build slower 

than predicted. Second, the chamber of the oil separator will filter the pressure response of the gas cooler due to 

compressibility effects. Thus the discrepancy between model and data for the gas cooler pressure is attributed to this 

device.  If a detailed model is desired, this component’s effect should be considered. However, for this research, the 

model was deemed sufficient without this addition. 

5.8.2 Improved Results  
Although an appropriate model for the oil separator was not developed or included in the model, the 1st 

order delays between components were added to the simulation to evaluate if these dynamics improved the model 

validation. Figures 5.49 – 5.54 demonstrate that some dynamic effects are improved.  The model correctly predicts 

the 2nd order effect for evaporator pressure, and the gas cooler exit air temperature has a slower response more 

consistent with the data. However, including these dynamics results in a greater steady state offset for the system 

pressures. The contribution of these dynamics appears to be minimal.  Because the inclusion of these inter-

component dynamics would greatly increase the dynamic order while not increasing accuracy significantly, they are 

deemed nonessential and are not included in the final model used for dynamic analysis or for future control design. 

 

Figure 5.49 Improved Model Validation: Compressor Speed Step Changes  

 

Figure 5.50 Improved Model Validation: Evaporator Pressure for Step Changes in Compressor Speed 
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Figure 5.51 Improved Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed 

 

Figure 5.52 Improved Model Validation: Evaporator Superheat for Step Changes in Compressor Speed 

 

Figure 5.53 Improved Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor 
Speed 

 

Figure 5.54 Improved Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor 
Speed 
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5.9 Summary 
Overall the initial model validation demonstrated agreement between model and data.  Notable 

discrepancies can be explained, and in general could be avoided by correcting the experimental setup to perform 

more like an actual air conditioning system.  Some improvements to the model were suggested and evaluated.  

These improvements did correct minor errors, but were not deemed worth the added complexity and higher dynamic 

order to use in the final model for analysis or future controller design.  The improved model could be used for 

simulation purposes. 
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Chapter 6. Model Linearization and Dynamic Analysis 

The lumped parameter model developed for two-phase flow heat exchangers in previous sections is highly 

nonlinear. For analysis and model reduction purposes, a linear model is needed. Furthermore, most classical control 

design techniques require a linear model. Therefore, in this section we outline the procedure for achieving such a 

model. 

6.10 General Linearization Procedure 
This procedure follows a standard linearization procedure, where the partial derivatives of the nonlinear 

functions with respect to the states and inputs are calculated neglecting the 2nd and higher order terms [20,36].  This 

is followed for the static components as well as the internal heat exchanger.  However, the gas cooler and evaporator 

models have a unique form.  The linearization procedure for these components is as follows. 

The heat exchanger models  developed previously are of the form of Equation 6.5.  Assuming ),( uxZ  is 

full rank for all x  and u , this can be rearranged as Equation 6.6. The assumption that ),( uxZ  is full rank is true if 

the original modeling assumptions are true.  Specifically, as long as the length of any of the assumed regions is 

greater than zero, ),( uxZ  will be invertible. 

),(),( uxfxuxZ =⋅ &  (6.5) 
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 (6.6) 

Using the assumption xxx o δ+= , a local linearization of this, neglecting higher order terms, would be 

Equation 6.7. Or by making the substitution oxxx −=δ , Equation 6.7 becomes 6.8.  Because 0=ox&  this 

equation simply becomes Equation 6.9. 
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Expanding the first term of Equation 6.9 results in Equation 6.10.  Likewise, expanding the second term 

results in Equation 6.11. This is of the familiar form BuAxx +=& (Equation 6.12). This form will be denoted as 

Equation 6.13, or in the standard form as Equation 6.14 using the substitutions in Equation 6.15. 
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uFZxFZx ux δδ 11 −− +=&  (6.13) 

uBxAx δδ +=&  (6.14) 
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The nonlinear output equations are denoted as Equation 6.16.  The linearized version is then given as 

Equation 6.17, or in the standard form as Equation 6.18, using the substitutions in Equation 6.19. 

( )uxgy ,=  (6.16) 

uGxGy ux δδδ +=  (6.17) 

uDxCy δδδ +=  (6.18) 

u

x
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GC

=
=

 (6.19) 

6.11 Derivation 
Symbolic results are presented here for each component. Numerical results are included for each 

component as well as the overall system.  These results were achieved evaluating the models at the highway driving 

condition. 

6.11.1 Variable Speed Compressor 
Recall that the compressor was modeled with an equation for mass flow (Equation 6.20) and an equation 

for isentropic efficiency (Equation 6.21) where ( )inink hP ,ρρ = , ( )koutisentropicout sPhh ,, = , and 

( )inink hPss ,= .  The isentropic efficiency is assumed to be a function of pressure ratio (Equation 6.22). 
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6.11.1.1 Symbolic Representation 
Let the inputs and outputs be defined by Equations 6.23 and 6.24.  Thus ( )ufy = .  A local linearization 

is given as Duy = , where D  is defined in Equation 6.25, and the matrix elements are listed in Table 6.9, where 
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Table 6.9 Matrix Elements for Equation 6.25 
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Table 6.3 (cont.) 
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6.11.1.2 Numerical Representation  
The evaluation of these equations at the highway operating condition yields the following matrix (Equation 

6.26). 
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6.11.2 Electronic Expansion Valve 
Recall that the expansion valve was modeled with an equation for mass flow (Equation 6.27) and assumed 

isenthalpic expansion (Equation 6.28), where ( )ininv hP ,ρρ = .  Recall that the area of the valve is assumed to be 

a linear function of a given input (Equation 6.29), and that the discharge coefficient is assumed to change with 

Reynold’s number (Equation 6.30). After substitution, the mass flow rate equation is defined by three empirical 

parameters (Equation 6.31). 
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6.11.2.1 Symbolic Representation 
Let the inputs and outputs be defined by Equations 6.32 and 6.33.  Thus ( )ufy = .  A local linearization 

is given as Duy = , where D  is defined in Equation 6.34, and the matrix elements are listed in Table 6.10. For 

notational simplicity, let ( ) ( )[ ]n
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Table 6.10 Matrix Elements for Equation 6.34  
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6.11.2.2 Numerical Representation  
The evaluation of these equations at the highway operating condition yields the following matrix (Equation 

6.35).  
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6.11.3 Gas Cooler 
Recall that the gas cooler could be modeled with several different choices of state variables, depending on 

the derivation approach.  Three possible choices of states are given as [ ]T
wcc ThPx = , 

[ ]T
wcc TmPx =′ , and [ ]T

wwcc EmUx =′′ .  The different models are denoted as 

( ) ( )uxfxuxZ ,, = , ( ) ( )uxfxuxZ ′′=′′′′ ,, , and ( )uxfx ′′′′=′′ , , where the function ( )uxf ,  is defined in 

Equation 6.36, and the matrices ( )uxZ ,  and ( )uxZ ′′′ ,  are defined in Chapter 4. The model outputs are given as 

nonlinear functions of the states and inputs, ( )uxgy ,= .  Let the inputs and outputs for the first representation be 

defined by Equations 6.37 and 6.38.   
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coutroutawoutc mTTThPy ,,=  (6.38) 

The assumptions regarding the air temperature aT  are the same for all representations.  For heat transfer an 

average air temperature across the gas cooler is assumed (Equation 6.39). The energy balance for the air given a heat 

exchanger with n  regions is given in Equation 6.40.  Solving for aT  (Equation 6.41) and simplifying the expression 

assuming one region results in Equation 6.42. 
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For the linearization, the partial derivatives of the average air temperature are required.  First recall that the 

air-side heat transfer coefficient is a function of mass flow rate of air.  Specifically, we assume that the heat transfer 

coefficient scales with Reynold’s number (where the prime denotes initial values) as given in Equation 6.43.  Thus 
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the partial derivative of heat transfer coefficient with respect to mass flow rate of air can be written as Equation 

6.44.  The partial derivatives of air temperature are then given in Equations 6.45, 6.46, and 6.47. 

m

air

air
m

l

l

o

o

m
m









′

=







′

=
′ &

&
eR

Re
α
α

 (6.43) 








 ′








′

=
∂
∂

air

o
m

air

air

air

o

mm
m

m
m &&

&
&

αα
 (6.44) 

ooairpair

oo

w

a

ACm
A

T
T

α
α

+⋅
=

∂
∂

,2 &
 (6.45) 

ooairpair

airpair

ina

a

ACm

Cm

T
T

α+⋅

⋅
=

∂
∂

,

,

, 2

2

&

&
 (6.46) 

( )

( )2
,

,,

2

2

ooairpair

air

o
airowinaoairp

air

a

ACm

m
mTTAC

m
T

α

α
α

+⋅









∂
∂

−−⋅
=

∂
∂

&

&
&

&
 (6.47) 

Several assumptions are made to define the output relationships, as well as explicitly relate intermediate 

variables to states or inputs. These relationships differ for each representation.  For the first representation, some of 

the outputs are states; the other outputs are defined as incout hhh −= 2 , inaaouta TTT ,, 2 −= , 

( )outcoutr hPTT ,, = , and ccc Vm ρ=  where totalcsc LAV = .  Several intermediate variables are used in the 

model, and can be related thermodynamically to states or inputs.  The average refrigerant temperature is calculated 

as ( )ccr hPTT ,= .  However, since 
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used. 

For the second representation, some of the outputs are again states; the other outputs are defined as 

incout hhh −= 2 , inaaouta TTT ,, 2 −= , and ( )outcoutr hPTT ,, = , where
c

c
c V

m
=ρ , ( )ccc Phh ρ,= , and 

( )ccr PTT ρ,= . 

For the third representation, some of the outputs are again states; the other outputs are defined as 

incout hhh −= 2 , inaaouta TTT ,, 2 −= , and ( )outcoutr hPTT ,, = , where
c

c
c V

m
=ρ , 

c

c
c m

U
u = , 

( )ccc uPP ρ,= , ( )ccc uhh ρ,= , and ( )ccr uTT ρ,= . 
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6.11.3.1 Symbolic Representation 
For the first representation, the partial derivatives of the functions ( )uxf ,  and ( )uxg ,  with respect to 

the states and inputs are defined in Equations 6.48 - 6.51, with the matrix elements listed in Table 6.11. 
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Table 6.11 Matrix Elements of Equations 6.48 - 6.51 
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Table 6.5 (cont.) 
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For the second representation, the partial derivatives of the functions ( )uxf ′′,  and ( )uxg ′′,  with 

respect to the states and inputs are defined in Equations 6.52 - 6.55, with the matrix elements listed in Table 6.12. 
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Table 6.12 Matrix Elements of Equations 6.52 - 6.55 
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Table 6.6 (cont.) 
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For the third representation, the partial derivatives of the functions ( )uxf ′′′′ ,  and ( )uxg ′′′′ ,  with 

respect to the states and inputs are defined in Equations 6.56 - 6.59, with the matrix elements listed in Table 6.13. 
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Table 6.13 Matrix Elements for Equations 6.56 - 6.59 
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Table 6.7 (cont.) 
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Table 6.7 (cont.) 
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


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∂
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








∂

∂
−

cPout

outr

h

T ,
 

 

6.11.3.2 Numerical Representation  
The numerical evaluation of these equations can be done using the explicit formulas given in this section.  

Alternatively, because these representations are simply related by a state transformation, any of the three given 

representations can be calculated with knowledge of one of the other representations. For example, since 

xZZx ′′= , the transformation ZZT ′=′ −1  can be used to substitute ( )xZZx ′′= −1  and solve for 

( )ZZFF xx ′=′ −1  and ( )ZZGG xx ′=′ −1 .  Furthermore, it was shown in Chapter 2 that because 

( )uxfxZZx ,=′′= , Z ′  can be solved explicitly from Z .  Thus only the first representation needs to be 

evaluated, and the second representation can then be calculated.  Likewise the third representation is related by a 

transformation matrix 1−=′′ ZT , and can be used to solve for ( )1−=′′ ZFF xx  and ( )1−=′′ ZGG xx . 

Recalling the standard state space form for these equations (Equation 6.60) we can then write the state 

space matrices { }DCBA ,,,  for all three representations in terms of the matrices { }uxux GGFFZ ,,,,  (Equations 

6.61 - 6.63). 

uDxCy
uBxAx

δδδ
δδ

+=
+=&

 (6.60) 

u

x

u

x

GD
GC

FZB

FZA

=
=

=

=
−

−

1

1

 (6.61) 

u

x

u

x

GD
ZZGC

FZB

ZZFZA

=′
′=′

′=′

′′=′

−

−

−−

1

1

11

 (6.62) 
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u

x

u

x

GD
ZGC

FB
ZFA

=′′
=′′

=′′
=′′

−

−

1

1

 (6.63) 

The evaluation of these equations at the highway operating condition yields the following matrices 

(Equations 6.64 - 6.73). 

















−

−−
−−

=

6006.02912.00030427.0

593.52263.3331485.0
5.27067.1711202.16

A  (6.64) 

















−−

−
=′

6006.09.15340087329.0

000
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















−

−−
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

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




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ee
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

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


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
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−
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
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e
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23025.000

100
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e

e
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C
 (6.71) 
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



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

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





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=′′

001
0563.258.3618

079861.000

34685.000
0782.715515
0184751209.4 e
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
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









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



−
−

−

=′′=′=

00000
0057295.000

98402.076975.0000

00000
00100
00000

DDD
 (6.73) 

6.11.4 Evaporator 
Recall that the evaporator could be modeled with several different choices of state variables, depending on 

the derivation approach.  Three possible choices of states are given as [ ]T
wwoute TThPLx 211= , 

[ ]T
wwee TTmPLx 211=′ , and [ ]Twwe EEmUUx 2121

~~~~~
=′′ . The different models are denoted 

as ( ) ( )uxfxuxZ ,, = , ( ) ( )uxfxuxZ ′′=′′′′ ,, , and ( )uxfx ′′′′=′′ , , where the function ( )uxf ,  is defined 

in Equation 6.74, and the matrices ( )uxZ ,  and ( )uxZ ′′′ ,  are defined in Chapter 4. The model outputs are given 

as nonlinear functions of the states and inputs, ( )uxgy ,= . Let the inputs and outputs for the first representation 

be defined by Equations 6.75 and 6.76.   

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) 





















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



−−−
−−−
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−
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




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




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=

2222

1111
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2

2
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1

,
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rwiiwaoo

outin

rw
Total

iioutgout

rw
Total

iiginin

TTATTA
TTATTA

mm

TT
L
L

Ahhm

TT
L

L
Ahhm

uxf

αα
αα

α

α

&&

&

&

 (6.74) 

[ ]T
ainainoutin mThmmu &&& ,=  (6.75) 

 [ ]T
eshroutroutawwoute mTTTTThPLy ,,,211=  (6.76) 

Several assumptions are made to define the output relationships, as well as explicitly relate intermediate 

variables to states or inputs. The assumptions regarding the air temperature aT  are the same for all representations.  

For heat transfer an average air temperature across the evaporator is assumed (Equation 6.77). The energy balance 

for the air given a heat exchanger with n  regions is given in Equation 6.78.  Solving for aT  (Equation 6.79) and 

simplifying the expression assuming two regions results in Equation 6.80. 
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,, outaina

a

TT
T

+
=  (6.77) 

( ) ( )







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=
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i
iwa
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i
oooutainaairpair TT
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ATTCm
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,,,, α&  (6.78) 
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iwi
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a ACm
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T
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
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
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
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∑
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 (6.79) 
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







++⋅

=
,

2,21,1
,,

2

2

&

&

 (6.80) 

For the linearization, the partial derivatives of the average air temperature are required.  First recall that the 

air-side heat transfer coefficient is a function of mass flow rate of air.  Specifically, we assume that the heat transfer 

coefficient scales with Reynold’s number (where the prime denotes initial values) as given in Equation 6.81.  Thus 

the partial derivative of heat transfer coefficient with respect to mass flow rate of air can be written as Equation 

6.82.  The partial derivatives of air temperature are then given in Equations 6.83 - 6.87. 

m

air

air
m

l
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o
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m
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







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=




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′
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′ &

&
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α
α

 (6.81) 
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
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
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∂
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o
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o
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m
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 (6.82) 
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






 −

=
∂
∂

,
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1 2 &
 (6.83) 
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



=
∂
∂
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1, 2 &
 (6.84) 
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



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=
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α+⋅
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∂
∂
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,
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&
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Several assumptions are made to define the output relationships, as well as explicitly relate intermediate 

variables to states or inputs. These relationships differ for each representation.  For the first representation, some of 

the outputs are states; the other outputs are defined as inaaouta TTT ,, 2 −= , ( )outeoutr hPTT ,, = , 

( )12, 2 rrshr TTT −= , and ( ) ( )[ ] 2211 LALAm cscsgfe ργργρ ++−= .  Several intermediate variables are 

used in the model, and can be related thermodynamically to states or inputs.  Because the fluid in the first region is 

assumed to be a combination of saturated liquid and saturated vapor, the properties for this region, gf ,ρ , gfh , , and 

1rT , are only a function of the evaporation pressure, eP . In the second region the average refrigerant properties are 

calculated as ( )22 ,hPTT er =  and ( )22 ,hPeρρ = .  However, since 
22

outg hh
h

+
=  then 
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2
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 are used.  Similarly the following partial derivatives 

of 2ρ  are used: 





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. Finally, recall that mean 

void fraction is a function of the state variables, inputs, and the parameter S (slip ratio): ( )ShhPf inoute ,,,=γ .  

For the second representation, some of the outputs are again states; the other outputs are defined as 

inaaouta TTT ,, 2 −= , ( )outeoutr hPTT ,, = , ( )12, 2 rrshr TTT −= , and gout hhh −= 22 , where 

( )22 , ρePhh = , 
2

2
2 LA

m

cs

=ρ , 12 mmm e −= , and ( ) ( )[ ] 11 1 LAm csgf γργρ +−= .  Additionally, the 

following partial derivatives are used: 
( )
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2 1
LAm cse

ρ
. 

For the third representation, the partial derivatives with respect to the states and inputs are not derived 

explicitly, but calculated using a matrix transformation (see Section 6.11.4.2).  Thus no assumptions about the 

output relationships or intermediate variables need to be made. 
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6.11.4.1 Symbolic Representation 
For the first representation, the partial derivatives of the functions ( )uxf ,  and ( )uxg ,  with respect to 

the states and inputs are defined in Equations 6.88 - 6.91, with the matrix elements listed in Table 6.14. 


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






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Table 6.14 Matrix Elements of Equations 6.88 - 6.91 
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Table 6.8 (cont.) 
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Table 6.8 (cont.) 

82,xg  







−














∂

∂

e

r

he

outr

dP
dT

P

T

ou t

1,  

83,xg  













∂

∂

ePout

outr

h

T ,  

91,xg  ( ) ( )[ ][ ] csgf A21 ργργρ −+−  

92xg  ( ) ( ) ( ) 2
2

1

2

1 LA
P

LA
dP
d

dP

d

dP

d
cs

he
cs

e
fg

e

g

e

f















∂
∂

+



















−+




















+−







 ργ
ρργ

ρ
γ

ρ
 

93,xg  2
2

2

2
1

LA
h cs

Pe















∂
∂ρ

 

65,ug  12 −







∂
∂

ai

a

T
T

 

66,ug  







∂
∂

a

a

m
T

2  

93,ug  ( ) 1LA
dh
d

cs
in

fg 















−

γ
ρρ  

 
For the second representation, the partial derivatives of the functions ( )uxf ′′,  and ( )uxg ′′,  with 

respect to the states and inputs are defined in Equations 6.92 - 6.95, with the matrix elements listed in Table 6.15. 























′′′′′
′′′′

′′′′
′′′

=′=
′∂

∂

55,54,53,52,51,

45,44,42,41,

25,23,22,21,

14,12,11,

0
00000

0
00

xxxxx

xxxx

xxxx

xxx

x

fffff
ffff

ffff
fff

F
x
f

 (6.92) 























′′
′′

′′
′

′′

=′=
′∂

∂

55,54,

45,44,

32,31,

22,

13,11,

000
000

000
0000
000

uu

uu

uu

u

uu

u

ff
ff

ff
f

ff

F
u
f

 (6.93) 
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

































′′′
′′′

′′′

′′′

=′=
′∂

∂

00100
00
00

00
10000
01000
00
00010
00001

83,82,81,

73,72,71,

65,64,61,

33,32,31,

xxx

xxx

xxx

xxx

x

ggg
ggg

ggg

ggg

G
x
g

 (6.94) 



































′′
=′=

′∂
∂

00000
00000
00000

000
00000
00000
00000
00000
00000

65,64, uu

u

gg
G

u
g

 (6.95) 

Table 6.15 Matrix Elements of Equations 6.92 - 6.95 

11,xf ′  ( )11
1

rw
Total

ii TT
L

A
−

α
 

12,xf ′  







−−

e

r

Total
ii

e

g
in dP

dT
L
L

A
dP

dh
m 11

1α&  

14,xf ′  
Total

ii L
L

A 1
1α  

21,xf ′  ( ) 







∂
∂















∂
∂

−−−







∂
∂















∂
∂

−
1

2

2

22
222

2

1

2

2

22
L

T
L
L

ATT
L

A
L

h
m

ee P

r

Total
iirw

Total

ii

P
out

ρ
ρ

α
αρ

ρ
&  

22,xf ′  



















∂
∂












∂
∂

+










∂
∂

−



















∂
∂












∂
∂

+










∂
∂

−

eP

r

e

r

Total
ii

ePe
out

e

g
out

P
T

P
T

L
L

A

P
h

P
h

m
dP

dh
m

e

e

2

2

222
2

2

2

22

2

2

2

ρ
ρ

α

ρ
ρ

ρ

ρ

&&
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Table 6.9 (cont.) 

23,xf ′  







∂
∂















∂
∂

−







∂
∂















∂
∂

−
eP

r

Total
ii

eP
out m

T
L
L

A
m

h
m

ee

2

2

22
2

2

2

22
ρ

ρ
α

ρ
ρ

&  

25,xf ′  
Total

ii L
L

A 2
2α  

41,xf ′  







∂
∂

1L
T

A a
ooα  

42,xf ′  








e

r
ii dP

dT
A 1

1α  

44,xf ′  







∂
∂

+−−
1

1
w

a
ooooii T

T
AAA ααα  

45,xf ′  







∂
∂

2w

a
oo T

T
Aα  

51,xf ′  







∂
∂















∂
∂

+







∂
∂

1

2

2

2
2

1 L
T

A
L
T

A
eP

r
ii

a
oo

ρ
ρ

αα  

52,xf ′  




















∂
∂















∂
∂

+













∂
∂

eP

r

e

r
ii P

T
P
T

A
e

2

2

22
2

2

ρ
ρ

α
ρ

 

53,xf ′  







∂
∂















∂
∂

eP

r
ii m

T
A

e

2

2

2
2

ρ
ρ

α  

54,xf ′  







∂
∂

1w

a
oo T

T
Aα  

55,xf ′  







∂
∂

+−−
2

2
w

a
ooooii T

T
AAA ααα  

11,uf ′  gin hh −  

13,uf ′  inm&  

22,uf ′  outg hh −  

31,uf ′  1 

32,uf ′  1−  

44,uf ′  







∂
∂

ai

a
oo T

T
Aα  
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Table 6.9 (cont.) 

45,uf ′  ( ) 







∂
∂

+−







∂
∂

air

a
oowao

air

o

m
T

ATTA
m &&

α
α

1  

54,uf ′  







∂
∂

ai

a
oo T

T
Aα  

55,uf ′  ( ) 







∂
∂

+−







∂
∂

air

a
oowao

air

o

m
T

ATTA
m &&

α
α

2  

31,xg ′  







∂
∂















∂
∂

1

2

2

22
L

h

eP

ρ
ρ

 

32,xg ′  







−




















∂
∂















∂
∂

+













∂
∂

e

g

ePe dP

dh

P
h

P
h

e

2

2

22

2

2
ρ

ρ
ρ

 

33,xg ′  







∂
∂















∂
∂

eP
m

h

e

2

2

22
ρ

ρ
 

61,xg ′  







∂
∂

1

2
L
Ta  

64,xg ′  







∂
∂

1

2
w

a

T
T

 

65,xg ′  







∂
∂

2

2
w

a

T
T

 

71,xg ′  







∂
∂





























∂
∂

1

2

2

22
L

T

eP

r ρ
ρ

 

72,xg ′  







−




















∂
∂















∂
∂

+













∂
∂

e

r

eP

r

e

r

dP
dT

P
T

P
T

e

12

2

22

2

2
ρ

ρ
ρ

 

73,xg ′  







∂
∂















∂
∂

eP

r

m
T

e

2

2

22
ρ

ρ
 

81,xg ′  







∂
∂















∂
∂

1

2

2

22
L

T

eP

r ρ
ρ

 

82,xg ′  



















−








∂
∂















∂
∂

+













∂
∂

e

r

eP

r

e

r

dP
dT

P
T

P
T

e

12

2

22

2

2
ρ

ρ
ρ
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Table 6.9 (cont.) 

83,xg ′  







∂
∂















∂
∂

eP

r

m
T

e

2

2

22
ρ

ρ
 

64,ug ′  12 −







∂
∂

ai

a

T
T

 

65,ug ′  







∂
∂

a

a

m
T

2  

 
For the third representation, the partial derivatives of the functions ( )uxf ′′′′ ,  and ( )uxg ′′′′ ,  with 

respect to the states and inputs are calculated by means of a transformation matrix (see Section 6.11.4.2). 

6.11.4.2 Numerical Representation  
The numerical evaluation of these equations can be done using the explicit formulas given in this section.  

Alternatively, because these representations are simply related by a state transformation, any of the three given 

representations can be calculated with knowledge of one of the other representations. For example, since 

xZZx ′′= , the transformation ZZT ′=′ −1  can be used to substitute ( )xZZx ′′= −1  and solve for 

( )ZZFF xx ′=′ −1  and ( )ZZGG xx ′=′ −1 .  Furthermore, it was shown in Chapter 2 that because 

( )uxfxZZx ,=′′= , Z ′  can be solved explicitly from Z .  Thus only the first representation needs to be 

evaluated, and the second representation can then be calculated.  Likewise the third representation is related by a 

transformation matrix 1−=′′ ZT , and can be used to solve for ( )1−=′′ ZFF xx  and ( )1−=′′ ZGG xx . 

Recalling the standard state space form for these equations (Equation 6.96) we can then write the state 

space matrices { }DCBA ,,,  for all three representations in terms of the matrices { }uxux GGFFZ ,,,,  (Equations 

6.97 - 6.99). 

uDxCy
uBxAx

δδδ
δδ

+=
+=&

 (6.96) 

u

x

u

x

GD
GC

FZB

FZA

=
=

=

=
−

−

1

1

 (6.97) 

u

x

u

x

GD
ZZGC

FZB

ZZFZA

=′
′=′

′=′

′′=′

−

−

−−

1

1

11

 (6.98) 
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u

x

u

x

GD
ZGC

FB
ZFA

=′′
=′′

=′′
=′′

−

−

1

1

 (6.99) 

The evaluation of these equations at the highway operating condition yields the following matrices 

(Equations 6.100 - 6.109).  























−−−
−−

−−−−
−−−

−−−

=

7134.0378.211724.023949.0566.15
0066648.05469.10016212.0078365.0

36.111407.33097.500525.193.556
56.1783.1080326.80987.13781.95

0077459.08206.10034846.0019652.03172.1

A
 (6.100) 























−−−
−−

−−
−−

=′

7134.0378.211093834417.0712.49
0066648.05469.10016212.0078365.0

00000
56.1783.108060966.5765.6230512

0077459.08206.109.221017536.06367.2
e

A
 (6.101) 























−
−

−−−
−−−

=′′

80448.0029154.01.310024.189045.16
0066648.05469.14.3717746.21535.14

00000
13311.0044.733312.522575.1

02049.17.2988483.17999.12

A
 (6.102) 























−−

−−
−

−−

=

5841.705994.035857.0389.5813.696
8119.905994.0000

0055957.02.79445.3744
00095.1851447.173734
00030496.09659.4205.59

e
B

 (6.103) 























−−

−−
−

−−

=′

5841.705994.035857.0389.5813.696
8119.905994.0000

0055957.02.79445.3744
00095.1851447.173734
00030496.09659.4205.59

e
B

 (6.104) 























−
−

−

=′′

386.1612951.0000
199.2112951.0000

00011
000434.130
00043604.00069.78

B
 (6.105) 
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

































−−−

−
=

0055761.164734.90059679.0
0059651.00016356.00

0059651.0012587.00
1392.06089.0006367.1

10000
01000

00100
00010
00001

ee

C
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



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










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






=′′=′=
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00000
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 (6.109) 

6.11.5 Internal Heat Exchanger 
Recall that the internal heat exchanger was modeled with three differential equations (Equations 6.110 - 

6.112), where 
2

,,
,

outhinh
aveh

TT
T

+
=  and 

2
,,

,
outcinc

avec

TT
T

+
= .  Thus the outlet temperatures are calculated as 

inhavehouth TTT ,,, 2 −=  and incavecoutc TTT ,,, 2 −= . The states are assumed to be [ ]T
wallavecaveh TTTx ,,= . 
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( ) ( ) ( ) avehhpwallavehhhouthinhh TVCTTAhhm ,,,,
&& ρα =−−−  (6.110) 

( ) ( ) ( ) aveccpwallavecccoutcincc TVCTTAhhm ,,,,
&& ρα =−−−  (6.111) 

( ) ( ) ( ) wallwallpwallavehhhwallaveccc TVCTTATTA &ραα =−+− ,,  (6.112) 

To simplify the implicit nature of these equations for linearization, the assumptions are made that 

( )outhinhhpouthinh TTChh ,,,, −≈−  and ( )outcinccpoutcinc TTChh ,,,, −≈− .  This assumption of average specific 

heats will admittedly fail near the critical point.  This problem will be addressed in future models of the heat 

exchanger.  After substitution, the differential equations are given in Equations 6.113 - 6.115. 

( ) ( ) ( ) avehhpwallavehhhavehinhhph TVCTTATTCm ,,,,2 && ρα =−−−  (6.113) 

( ) ( ) ( ) aveccpwallavecccavecinccpc TVCTTATTCm ,,,,2 && ρα =−−−  (6.114) 

( ) ( ) ( ) wallwallpwallavehhhwallaveccc TVCTTATTA &ραα =−+− ,,  (6.115) 

6.11.5.1 Symbolic Representation 
The inputs and outputs are given in Equation 6.116 and 6.117. The partial derivatives of the differential 

equations ( )uxf ,  and output equations ( )uxg ,  with respect to the states and inputs are defined in Equations 

6.118 - 6.121, with the matrix elements listed in Table 6.16. 

[ ]T
incinhchch hhPPmmu ,,&&=  (6.116) 

[ ]T
outcouthoutcouth TThhy ,,,,=  (6.117) 


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






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




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∂
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0
0
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x

fff
ff
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F
x
f
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
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
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


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
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






==
∂
∂

46,44,
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0000

0000
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uu

uu

uu
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u
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G
u
g

 (6.121) 
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Table 6.16 Matrix Elements for Equations 6.118 - 6.121 

11,xf  ( )

( )
( )

( ) ( )
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
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
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

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
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Table 6.10 (cont.) 
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6.11.5.2 Numerical Representation  
The evaluation of these equations at the highway operating condition yields the following matrices 

(Equations 6.122 - 6.125). 

















−

−
−

=

49169.024584.024584.0

852.8821.1340
8072.40671.23

A  (6.122) 
















−=

000000

118.31047957.00211000
03377.3011027.006.1238

B  (6.123) 



















=

020
002

03046.20
00819.14

C
 (6.124)  



















−−
−−

−−
−−

=

59651.00012587.0000
019819.00006122.000

68735.00025361.0000
04685.10082148.000

D
 (6.125) 

6.11.6 System 
The model for the overall system is found by appropriately defining the component model inputs in terms 

of system inputs and component outputs.  This procedure can done analytically using selection matrices or 

numerically by using algorithms available in MATLAB. 

6.11.6.1 Symbolic Representation 
The complexity of the symbolic representation of the overall system model is obvious given the symbolic 

representations of the component models.  A symbolic representation of the overall system would be too complex to 

provide useful insight to the system dynamics.  Therefore, only the numerical representations are included. 

6.11.6.2 Numerical Representation 
For simplicity, the numerical entries of the system matrices { }DCBA ,,,  evaluated at the highway driving 

condition are given in Tables 6.17 - 6.22.  

Table 6.17 System ‘A’ Matrix: Columns 1 - 6 

-1.3172 0.02249 0.044662 -1.8206 0.0077459 0.00305 

-95.781 -17.332 -105.46 1080.3 178.56 0.0084956 

-556.93 -1.1519 -49.853 -33.407 111.36 0.10717 

-0.078365 0.016212 0 -1.5469 0.0066648 0 

-15.566 0.27286 0.73851 -21.378 -0.7134 0.035862 

0 0.96771 -99.131 0 0 -18.701 

0 -0.05211 -1.7011 0 0 -0.27629 

0 0 0 0 0 0.0030427 

0 0.19201 3.0457 0 0 0.10203 

0 0.0099758 28.058 0 0 0.028837 

0 0 0 0 0 0 
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Table 6.18 System ‘A’ Matrix: Columns 7 - 11 

0.11597 0 -0.58513 -0.16143 0 

-20.26 0 102.23 84.283 0 

3.3133 0 -16.718 -0.81857 0 

0 0 0 0 0 

1.3635 0 -6.8799 -1.8981 0 

-1802.6 2706.5 458.22 332.37 0 

-32.686 52.593 -2.9097 5.7034 0 

0.2912 -0.6006 0 0 0 

7.2278 0 -26.458 -10.212 4.8702 

0 0 0 -123.95 88.852 

0 0 0.24584 0.24584 -0.49169 

Table 6.19 System ‘B’ Matrix 

0.11512 -0.000121 0 0 0 0 

143.37 -2.7836 0 0 0 0 

7.2809 -0.19318 0 0 0 0 

0 0 0.05994 9.8119 0 0 

1.3536 -0.00142 0.05994 7.5841 0 0 

-395.96 12.557 0 0 0 0 

2.5144 0.11633 0 0 0 0 

0 0 0 0 0.092348 -1.8354 

2.4083 0 0 0 0 0 

0 -0.51309 0 0 0 0 

0 0 0 0 0 0 

Table 6.20 System ‘C’ Matrix: Columns 1 - 6 

0 0.0016356 0.59651 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 1 

-1.6367 0 0 0.6089 0.1392 0 

0 0 0 0 0 0 

Table 6.21 System ‘C’ Matrix: Columns 7 - 11 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0.23025 0 0 0 
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Table 6.22 System ‘D’ Matrix 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0.2519 16.784 0 0 

0 0 0 0 0.76975 -0.98402 

6.12 Simulation 
To verify that the linearization procedure does not compromise the model fidelity significantly, the 

linearized model simulation is added to the model validation plots from the previous chapter and compared (Figures 

6.55 - 6.60).  Although there are small discrepancies between the nonlinear model and the linearized model, both 

models adequately predict the transient response of the physical system, as per the discussion in Chapter 5. 

 

Figure 6.55 Linearized Model Validation: Compressor Speed Step Changes  

 

Figure 6.56 Linearized Model Validation: Evaporator Pressure for Step Changes in Compressor Speed 
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Figure 6.57 Linearized Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed 

 

Figure 6.58 Linearized Model Validation: Evaporator Superheat for Step Changes in Compressor Speed 

 

Figure 6.59 Linearized Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor 
Speed 

 

Figure 6.60 Linearized Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor 
Speed 
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6.13 Dynamic Analysis 
After accepting the linearized models as good approximations of the nonlinear system, the eigenvalues and 

Hankel singular values can be computed.  These numerical measures are helpful for assessing the possibilities for 

model reduction.  The numerical values are given for the highway operating condition.  

6.13.1 Eigenvalues 
The eigenvalues for the gas cooler, evaporator, internal heat exchanger, and overall system are given in 

Equations 6.126 - 6.129 respectively.  Note the presence of eigenvalues that differ by an order of magnitude.  This 

indicates that the components and system exhibit multiple time scale behavior, and that model reduction is 

appropriate.  Also note the presence of a zero eigenvalue in Equations 6.126 and 6.127 that is a result of the pure 

integration of mass flow due to the conservation of mass equation in both the gas cooler and evaporator.  This 

exposes the redundant dynamic mode that creates the zero eigenvalue in Equation 6.129. Because there is no change 

in the total refrigerant mass, both conservation of mass equations are not independent, and only one is truly needed. 

The most probable choice for a reduced order model-based on the system eigenvalues is a 5th order model (retaining 

the five slowest eigenvalues). 

( )























−
−

−
−

=

0
13166.0
41128.0
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374.53

eAλ   (6.126) 

( )















−

−

=
0

12332.0

943.49

cAλ  (6.127) 

( )
















−
−

−

=
27741.0

722.23

37.134

hxAλ  (6.128) 
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( )









































=

0
0.06074-
0.17491-

0.23312i  - 0.47228-
0.23312i + 0.47228-

1.9951-
14.598-

28.09-
49.608-
54.165-
124.02-

sysAλ  (6.129) 

Comparing these values to the eigenvalues of the identified models is enlightening. The eigenvalues for the 

MIMO model identified for the idle and city models using subspace methods (direct method) are given in Equations 

6.130 and 6.131.  Because an identified model was not obtained for the highway condition a direct comparison of 

eigenvalues cannot be made, but a general comparison of the five slowest eigenvalues of the system model with the 

eigenvalues of the identified models can be made (Figure 6.61).  

( )
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i
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Aidle
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Figure 6.61 Comparison of Eigenvalues: Linearized Model and Identified Models  

6.13.2 Hankel Singular Values 
The Hankel singular values for the overall system are given in Equation 6.132.  Recall that the system has 

one redundant dynamic mode due to the conservation of mass equations in both the gas cooler and evaporator.  This 

leads to a zero eigenvalue, and an ill-conditioned matrix.  Because the calculation of Hankel singular values of a 

system with an ill-conditioned matrix leads to numerical difficulties, the redundant dynamic mode is removed before 

calculating these values.  Thus only ten Hankel singular values are shown in Equation 6.132 and in Figure 6.62. 

Note the presence of values that differ by orders of magnitude.  This also indicates that model reduction is 

appropriate. Specifically, logical choices for reduced order models based on the Hankel singular values are 3rd and 

6th order mo dels. 

( )







































=

0.009632
0.11337
0.29111
0.97586
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24.088
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333.05
750.69

9.5078

,, syssyssyshsv CBAσ  (6.132) 
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Figure 6.62 Hankel Singular Values 

6.13.3 Controllability and Observability 
The linearized system model can also be evaluated for controllability and observability.  The controllability 

and observability matrices are calculated using the definitions in Equations 6.133 and 6.134 where n  is the number 

of states [9].  The rank of these matrices is given as ( ) 5=CRank  and ( ) 5=ORank . 

[ ]BABAABBC n 12 −= K  (6.133) 

[ ]TnCACACACO 12 −= K  (6.134) 

6.13.4 Summary 
Linearized models for each comp onent were presented.  A linearized model of the system was formed by 

the appropriate combination of the linearized component models.  The analysis of the component models revealed 

multiple-time scale behavior and the presence of a pure integrator in the evaporator and gas cooler models.  The 

linearized system was observed to have five slow eigenvalues, five fast eigenvalues, and one zero eigenvalue 

resulting from a modeling redundancy.  The Hankel Singular Values indicated that a 3rd or 6th order model would be 

logical choices for a reduced order model.  Evaluation of the controllability and observability of the system revealed 

five observable/controllable modes.  All of these results motivate the search for a reduced order model of the system 

dynamics.  
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Chapter 7. Model Reduction 

“Modeling for control is parsimonious and implicit.  It is parsimonious, because the model should not be 

more detailed than that required by the specific control task.  It is implicit, because the extent of the necessary detail 

is not known before the control task is accomplished.” P. V. Kokotovic [21] 

7.1 Motivation 
Using the modeling procedure outlined in Chapter 2, dynamic models for the various components of 

subcritical and transcritical cycles have been derived and validated with experimental data.  Linearized versions of 

these models have also been developed. While these models are not of excessively high order, simpler and lower 

order models are always desirable for controller design purposes if they can be achieved without compromising the 

model’s fidelity significantly. Empirical models constructed in Chapter 4 demonstrated that lower order models 

were sufficient for predicting the dominant dynamic behavior of the system.  Furthermore, analysis of the linearized 

version of the derived models also indicated that the dominant dynamic behavior could be captured with a low order 

model.   

This chapter seeks to answer four questions.  First, given several choices of state representations, which 

will yield the best reduced order model approximation of the full order system?  Second, given the chosen 

representation, which states should be considered fast/slow? Third, does the resulting reduced order model 

adequately approximate the full order model?  Fourth, what is the physical interpretation of the choices of the 

fast/slow states? 

Model reduction for control design is a vast field of study.  Many, if not most, of the methods currently 

available require the model be evaluated numerically so that appropriate balanced realizations or matrix operations 

can be used. This results in state transformations, in which the physical meaning of the state variables is lost.  In 

contrast, the singular perturbation method allows the symbolic reduction of models based on engineering knowledge 

of the model parameters. In this thesis, a primary objective of model reduction is the physical insight gained as to 

which physical phenomenon occur relatively fast, and which can be considered to be the dominant physical 

dynamics.  Thus, although the multitude of numerical model reduction techniques can be performed with the 

linearized models obtained in Chapter 6, the approaches to be considered in this chapter are restricted to those that 

preserve the physical meaning of the dynamic states. 

7.2 Singular Perturbation Method 
In the context of this thesis, a singularly perturbed system is defined by Equation 7.1.  The system exhibits 

multiple time scale behavior.  The perturbation parameter, ε , is assumed to be small, and x  is chosen to represent 

the slow dynamics and z  to represent the fast dynamics of the system.  Singularly perturbed systems are observed 

in many physical systems [26], including fluid dynamics, electrical circuits, aerospace systems, chemical systems, 

biological systems, and many others.  These physical systems often contain small “parasitic” parameters that 

increase the dynamic order of the model. For control-oriented modeling, these parameters are generally neglected.  

The singular perturbation approach provides a method for justifying such assumptions, and means for analyzing the 

implications of these assumptions on the resulting reduced order model. 
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The techniques for applying this model reduction method discussed in this thesis will involve linear time -

invariant models of singularly perturbed systems (Equation 7.2).  These systems generally involve matrices that are 

ill-conditioned.  The condition number of a matrix is the ratio of the largest singular value to the smallest singular 

value. A system that exhibits multiple time scale behavior will have eigenvalues that differ by orders of magnitude, 

and therefore have a large condition number.  The perturbation parameter, ε , is approximately the ratio of the slow 

eigenvalues to the fast eigenvalues.  Naidu [26] notes that ε  represents an intrinsic property of the system and does 

not necessarily have to appear explicitly in the system. 
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7.3 Procedure 
As mentioned in the introduction to this chapter, the singular perturbation approach allows the symbolic 

model reduction of systems, by using the assumption that a certain parameter or ratio of parameters is small.  This 

requires an explicit choice of the perturbation parameter.  This may not be possible for comple x physical models, 

where the perturbation parameter may be implicit, or the fast phenomena unknown.  The singular perturbation 

approach can also be applied to a system that is represented numerically.  In this case, algorithms are generally used 

to either approximate the system via residualization, or transform the given representation such that the fast and 

slow dynamics are completely decoupled. In both approaches, the resulting models are reduced in order, including 

terms that partially compensate for the effects of the neglected fast dynamics.  (Note that references to “neglecting” 

dynamics does not refer to eliminating these relationships, but merely assuming that fast dynamics can be 

approximated by instantaneous algebraic relationships). The following sections illustrate both of these approaches in 

order to properly explain how these approaches need to be adapted to be applied to the models developed in this 

thesis. 

7.3.1 Symbolic Model Reduction 
This approach is best illustrated using a common example of a DC motor included in many textbooks about 

singular perturbation model reduction [20,21].  As described in [21], the model consists of an equation for 

mechanical torque (Equation 7.3), and an equation for the electrical transient (Equation 7.4), where i , u , R , and 

L  are the armature current, voltage, resistance and inductance respectively, J  is the moment of inertia, ω  is the 

angular speed, and ki  and ωk  are the torque and back e.m.f. developed with constant excitation flux φ .  

Kokotovic asserts that in all well designed motors L  is small, and can be considered to be the perturbation 

parameter. 

kiJ =ω&  (7.3) 
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uRikiL +−−= ω&  (7.4) 

Assuming that L  is zero, Equation 7.4 reduces to an algebraic constraint (Equation 7.5) and after 

substitution into Equation 7.3 the resulting equation is the commonly used 1st order model of the DC motor 

(Equation 7.6). 
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Khalil suggests that it is preferable to choose the perturbation parameter as a dimensionless combination of 

physical parameters [20].  He extends the above example by first defining several dimensionless variables as 

Ω
=

ω
ω r , 

Ω
=

k
iR

ir , and 
Ω

=
k
u

ur , and then rewriting Equations 7.3 and 7.4 as Equations 7.7 and 7.8, where 

RLTe =  is the electrical time constant, and 2kJRTm =  is the mechanical time constant. 
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Assuming that me TT <<  and defining the dimensionless time variable mr Ttt = , the state equations can 

be rewritten as Equations 7.9 and 7.19.  The ratio me TT  then becomes the obvious choice for the perturbation 

parameter. 
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To illustrate the relationship between eigenvalues and the perturbation parameter Equations 7.7 and 7.8 are 

written in state space format (Equation 7.11).  The eigenvalues of the full order system can be computed 

symbolically (Equation 7.12). 
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The ratio of the eigenvalues is easily computed as well (Equation 7.13).  Assuming 141 ≈− ε , the 

perturbation parameter is found to be the ratio of the eigenvalues (Equation 7.14). This is in agreement with 

Kokotovic who notes that the perturbation parameter is on the order of the ratio of the slow and fast eigenvalues 

[21]. This also demonstrates that choosing ε  as a dimensionless parameter is preferable because the ratio of 

eigenvalues is always dimensionless. 
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7.3.2 Numerical Model Reduction 
Given the representation in Equation 7.2, different methods for obtaining approximate reduced order 

models are available.  Two methods are discussed here: residualization and a decoupling transformation. 

7.3.2.1 Residualization 
A common way of approximating the system in Equation 7.2 is to simply set 0=z& .  The resulting 

algebraic equation can be solved for z  in terms of x  and substituted into the remaining differential equation.  This 

is termed “residualizing” z  by Skogestad and Postlethwaite [33].  The resulting formulas for the reduced order state 

space model are given in Equation 7.15. 
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7.3.2.2 Decoupling Transformation 
By applying the transformation in Equation 7.18 to the system in Equation 7.2 it is possible to decouple the 

fast and slow dynamics, such that the system can be represented as Equation 7.16.  Interestingly, no matrix inversion 

is necessary for calculating 1−T  (Equation 7.19).  The matrices L  and M  are found as the solution to the Ricatti 

Equations 7.20 and 7.21. Further explanation of this technique, as well as a proof of its validity can be found in [21] 

and [26]. 

u
B
B

z
x

A
A

z
x

f

s

f

s

f

s

f

s








+
















=








0

0
&
&

 (7.16) 



 135 

12

211

1222

1211

LBBB
MBMLBBB

LAAA
LAAA

f

s

f

s

−=
−−=

+=
−=

 (7.17) 








 −−
=

2

1

IL
MMLI

T  (7.18) 









−−

=−

LMIL
MI

T
2

11
 (7.19) 

022122111 =−−+ LALLAALA  (7.20) 
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7.3.3 Application of Singular Perturbation 
The application of the singular perturbation method for reducing the models developed in Chapter 2 has 

some interesting challenges.  Specifically, the complexity of the analytical models prevents the explicit 

identification of a perturbation parameter to reduce the models symbolically.  Evaluating the models numerically 

permits the calculation of eigenvalues and the subsequent observation that the models do exhibit two-time scale 

behavior.  However, the desire to maintain the physical meaning of the dynamic states prevents the application of 

any type of state transformation, such as a balanced realization.  Additionally, for the components modeled, there are 

several possible choices for state variables, without the knowledge of which state variables are fast and which are 

slow.  A method is needed that identifies the fast and slow states, and provides a means to compare different 

possible representations as choices for model reduction.  This process is separated into four parts: dimensional 

analysis, comparison, residualization, and evaluation. 

7.3.4 Dimensional Analysis  
In order to appropriately compare different model representations it is necessary to nondimensionalize the 

models.  The first step is to select the dimensional basis.  For each component, we select physical parameters that 

correspond to the fundamental units of mass, length, temperature, and time. These bases are initially selected 

independently for each component because the analysis and comparisons made only involve that specific 

component. If comparisons are to be made of the entire system model, a uniform dimensional basis must be selected 

for the entire system. For more information regarding the application of dimensional analysis to control systems, see 

[6]. 

7.3.5 Comparison 
Intuition dictates that the most ideal representation for residualization is a modal form where the states  are 

not coupled and explicitly associated with the eigenvalues. Thus the fast/slow dynamics are explicitly associated 

with the states and the choice of states to residualize is obvious.  Alternatively, a representation that is either upper 

or lower diagonal is preferable because the off-diagonal terms would not affect the eigenvalues.  The off-diagonal 

terms would, however, affect the conditioning of the matrix and possibly the reduced order model approximation. 

Thus given several acceptable model representations, the “best” choice for residualization would be the 
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representation that is diagonally dominant or block diagonally dominant with the fast states decoupled from the slow 

states. There are several methods available for measuring the relative coupling of the dynamics; these include 

diagonal dominance, induced matrix norms, and the Relative Gain Array. Block diagonal dominance is much more 

difficult to measure numerically, and is not discussed.  If the system is not diagonal dominant, an alternative means 

of determining which state should be residualized is finding an appropriate scaling matrix to form a balanced 

realization. 

7.3.5.1 Diagonal Dominance 
The mathematical definition of diagonal dominance is given in Equation 7.22.  In words, a matrix is 

diagonally dominant in the sense that the absolute value of the diagonal element of each row is strictly greater than 

the sum of the absolute values of the off-diagonal elements.  To be specific, this is row diagonal dominance.  

Column diagonal dominance is similarly computed, but not considered here. Note that this comparison is only 

relevant for dimensionally equivalent representations. 
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ijii aa  (7.22) 

7.3.5.2 Matrix Norms 
The induced matrix norms also give a measure of diagonal dominance. These are defined in Equations 7.23 

- 7.25 as the induced one norm (maximum column sum), the induced infinity norm (maximum row sum), and the 

induced two norm (maximum singular value).  The minimal value of each these norms will occur for a strictly 

diagonal representation, with the minimal value being equal to the largest eigenvalue (Equation 7.26) (Proof in 

[33]).  Thus these norms can provide a means of comparing the diagonal dominance of different representations.  

For this thesis, the induced two norm (maximum singular value) is used. Again note that this comparison is only 

relevant for dimensionally equivalent representations. 
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7.3.5.3 Relative Gain Array 
The Relative Gain Array for a square matrix is defined in Equation 7.27, where the ×  denotes element-by-

element multiplication (Schur product).  The RGA will be identity only if the matrix is upper or lower diagonal.  

Therefore diagonal elements close to unity indicate diagonal dominance. 

( ) ( )T
AAA 1−×=Λ  (7.27) 

7.3.5.4 Scaling Matrix 
For systems that are not diagonally dominant, but still exhibit multiple time scale behavior, an alternative 

method for selecting the states to be residualized is by evaluating the scaling matrix necessary to form a balanced 
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realization. In the context of this thesis, balancing the system matrices is performed by finding a scaling matrix S  

such that the norm of Equation 7.28 is minimized.  When calculating the scaling matrix, the entries of  S  are 

generally restricted to integer exponents of 2 so that computation errors are not introduced. By evaluating the 

diagonal entries of S , appropriate choices of which states should be residualized can be made.  This is equivalent to 

visually inspecting the matrix and determining that the entries of a specific row are an order of magnitude higher 

than the other rows.  This row is assumed to be multiplied by ε1 .  Thus by dividing this row by ε  places the 

system of equations in the standard form (Equation 7.1).  The elements of the scaling matrix give a numerical 

measure for which rows have entries that are relatively large.  For this method the best representation for model 

reduction could be chosen as the representation with the lowest condition number (the least ill-conditioned). 
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7.3.6 Residualization 
After determining the best choice of the available representations for model reduction, the states are 

reordered into the standard form (Equation 7.2).  The number of desired states is residualized according to Equation 

7.15, and the approximated eigenvalues can be compared to the full order eigenvalues. 

7.3.7 Comparison 
After the chosen representation has been residualized, the eigenvalues of the reduced order model can be 

compared to those of the full order model.  The approximation error can be calculated and verified to be within 

acceptable limits.  Additionally, many physical insights can be gained by evaluating which physical states are 

associated with fast dynamics, and which are associated with slow dynamics. 

7.4 Results 
Using the procedure outlined above, the linearized component models developed can be reduced in order.  

First, each of the possible representations for the component models is nondimensionalized.  The various 

representations are evaluated to determine the most suitable representation for model reduction, as well as which 

states should be residualized.  Reduced order models are calculated and compared to the full order models.  

Observations regarding the physical meaning of the negligible dynamics are made. The reduced order models are 

combined to create a reduced order system model.  This model is compared to the full order nonlinear and linearized 

models through analysis and simulation. 

7.4.1 Gas Cooler 

Recall the three possible choices of states for the gas cooler were given as [ ]T
wcc ThPx = , 

[ ]T
wcc TmPx =′ , and [ ]T

wcc EmUx =′′ .  The resulting A  matrix for each of these models as 

presented in Chapter 6 are given in Equations 7.29 - 7.31.  These are the numerical results given the chosen 

dimensions.  A nondimensional basis is selected as as: length – length of fluid flow in the gas cooler, mass – 

refrigerant mass inventory in the gas cooler, temperature – 273 K, and time – refrigerant mass inventory divided by 
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mass flow rate.  These are evaluated for the highway driving condition at steady state.  The numerical values for this 

basis, as well as the resulting numerical values for the nondimensional states are given in Table 7.1. 
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Table 7.1 Nondimensional Basis for the Gas Cooler 

  Pressure 
[kPa=kg/m/s∧2] 

Enthalpy 
[kJ/kg=m ∧2/s∧2] 

Temperature 
[K] 

Mass 
[kg] 

Energy 
[kJ=m ∧2*kg/s∧2] 

Length 2.285 -1 2   2 
Mass 0.0423 1   1 1 
Time 0.9646 -2 -2   -2 
Temperature 273   1   

  1.989E+01 5.612E+03 2.730E+02 4.229E-02 2.373E+02 

 
Using this basis to nondimensionalize the system via a similarity transformation (Equations 7.32 - 7.34) 

results in the matrices given in Equations 7.35 - 7.37 where the bar denotes the nondimensional representation. 
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Evaluating these for diagonal dominance using the measures outlined earlier in this chapter yields no useful 

information.  All the representations given are not diagonally dominant, which can be confirmed by inspection.  The 

best representation is then determined by condition number.  The condition number for each of the representations 

(ignoring the zero singular value) is given as 3465571, 651524, and 729.6 for the A , A′ , and A ′′  representations 

respectively. Based on these values the third representation is chosen for model reduction.  The necessary scaling 

matrix to obtain a balanced realization is calculated, and given as [ ]( )118diagS = .  Thus the obvious choice 

of the state to be residualized is the first state, or the refrigerant energy. 

7.4.1.1 Reduced Order Model 
For discussion purposes, reduced order models are calculated for all three representations.  These models 

are not included, but their eigenvalues are calculated and compared to the eigenvalues of the full order model 

(Tables 7.2 - 7.4).  From these tables it is clear that the first representation is  a poor choice for model reduction, 

because the zero eigenvalue dynamic is not explicitly associated with any state. The reduced order models for both 

the second and third representation yield equivalent eigenvalues.  This is due to the fact that the states of the second 

representation are simply constant multiples of the states of the third representation.   

For all representations, it is obvious that residualizing the wall temperature/energy dynamics leads to the 

removal of the slowest eigenvalue.  Thus for the gas cooler the refrigerant energy (equivalent to pressure) dynamic 

is fast, the wall temperature/energy dynamic is slow, and there is a pure integrator for the conservation of mass.  The 

final reduced order model used is given (in dimensional form) in Equations 7.38 - 7.41.  This reduced order model is 

a 2nd order system with states defined as [ ]T
wcr Emx =′′ . 

Table 7.2 Gas Cooler Eigenvalue Comparison for Reduced Order Models of A  

 Eliminate: Pressure Eliminate: Enthalpy Eliminate: Wall Temp. 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage 
Error 

Reduced Order 
Eigenvalues 

Percentage 
Error 

Reduced Order 
Eigenvalues 

Percentage 
Error 

-49.943     -10.254 79.5% 
-0.123 -0.092 25.1% -0.140 13.7%   

0 0 0.0% 0 0.0% 0 0.0% 

Table 7.3 Gas Cooler Eigenvalue Comparison for Reduced Order Models of A′  

 Eliminate: Pressure Eliminate: Wall Temp. 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage  
Error 

Reduced Order 
Eigenvalues 

Percentage  
Error 

-49.943   -10.254 79.5% 
-0.123 -0.125 1.0%   

0 0 0.0% 0 0.0% 
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Table 7.4 Gas Cooler Eigenvalue Comparison for Reduced Order Models of A ′′  

 Eliminate: Refrigerant Energy Eliminate: Wall Energy 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage  
Error 

Reduced Order 
Eigenvalues 

Percentage  
Error 

-49.943   -10.254 79.5% 
-0.123 -0.125 1.0%   

0 0 0.0% 0 0.0% 
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7.4.2 Evaporator 
Recall the three possible choices of states for the evaporator were given as 

[ ]T
wwoe TThPLx 211= , [ ]T

wwee TTmPLx 211=′ , and 

[ ]Twwe EEmUUx 2121
~~~~~

=′′ . The resulting A  matrix for each of these models as presented in Chapter 6 

are given in Equations 7.42 - 7.44.  These are the numerical results given the chosen dimensions.  A nondimensional 

basis is selected as: length – length of fluid flow in the gas evaporator, mass – refrigerant mass inventory in the 

evaporator, temperature – 273 K, and time – refrigerant mass inventory divided by mass flow rate.  These are 

evaluated for the highway driving condition at steady state.  The numerical values for this basis, as well as the 

resulting numerical values for the nondimensional states are given in Table 7.5. 
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Table 7.5 Nondimensional Basis for the Evaporator 

  Length 
[m] 

Pressure 
[kPa=kg/m/s∧2] 

Enthalpy 
[kJ/kg=m ∧2/s∧2] 

Temperature 
[K] 

Mass 
[kg] 

Energy 
[kJ=m ∧2*kg/s∧2] 

Length 1.859826 1 -1 2   2 
Mass 0.0412  1   1 1 
Time 0.9448  -2 -2   -2 
Temperature 273    1   

  1.860E+00 2.482E+01 3.875E+03 2.730E+02 4.120E-02 1.596E+02 

 
Using this basis to nondimensionalize the system via a similarity transformation (Equations 7.45 - 7.47) 

results in the matrices given in Equations 7.48 - 7.50 where the bar denotes the nondimensional representation. 
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Evaluating these for diagonal dominance using the measures outlined earlier in this chapter yields no useful 

information.  All the representations given are not diagonally dominant, which can be confirmed by inspection.  The 

best representation is then determined by condition number.  The condition number for each of the representations 

(ignoring the zero singular value) is given as 2659305, 2370524, and 6779.1 for the A , A′ , and A ′′  

representations respectively. Based on these values the third representation is chosen for model reduction.  The 

necessary scaling matrix to obtain a balanced realization is calculated, and given as 

[ ]( )25.05.0182diagS = .  Thus the obvious choice of the states to be residualized is the second state, 

or the refrigerant energy in the second region, and possibly the first state, or the refrigerant energy in the first region.  

This is somewhat equivalent to residualizing the pressure and two-phase flow length in the second representation. 

7.4.2.2 Reduced Order Model 
For discussion purposes, reduced order models are calculated for all three representations.  These models 

are not included, but their eigenvalues are calculated and compared to the eigenvalues of the full order model 

(Tables 7.6 - 7.8).  From these tables it is clear that the first representation is a poor choice for model reduction, 

because the zero eigenvalue dynamic is not explicitly associated with any state. The reduced order models for both 

the second and third representation yield similar eigenvalues, but the third representation approximates the slow 

eigenvalues with the least error.  From the gas cooler results, it is obvious that residualizing the wall 

temperature/energy dynamics leads to the removal of the slowest eigenvalue.  Similarly for the evaporator, the 

refrigerant energy (similar to pressure and two-phase flow length) dynamics are fast, the wall temperature/energy 

dynamics are slow, and there is a pure integrator for the conservation of mass. The final reduced order models used 

are shown.  The 4th order model is given (in dimensional form) in Equations 7.51 - 7.54. This reduced order model is 

a 4th order system with states defined as [ ]Twwer EEmUx 2114,
~~~~

=′′ . The 3rd order model is given (in 

dimensional form) in Equations 7.55 - 7.58. This reduced order model is a 3rd order system with states defined as 

[ ]T

wwer EEmx 213,
~~~=′′ . 
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Table 7.6 Evaporator Eigenvalue Comparison for Reduced Order Models of A  

 Eliminate: Pressure Eliminate: Pressure, Length Eliminate: Pressure, Enthalpy 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage 
Error 

Reduced Order 
Eigenvalues 

Percentage 
Error 

Reduced Order 
Eigenvalues 

Percentage 
Error 

-53.374 -43.033 19.4%     
-13.745       
-0.411 -0.375 8.9% -0.914 122.3% -0.336 18.3% 
-0.132 -0.048 63.6% -0.062 52.8% -0.047 64.6% 

0 0 0.0% 0 0.0% 0 0.0% 

Table 7.7 Evaporator Eigenvalue Comparison for Reduced Order Models of A′  

 Eliminate: Pressure Eliminate: Pressure, Length 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage  
Error 

Reduced Order 
Eigenvalues 

Percentage  
Error 

-53.374     
-13.745 -11.622 15.4%   
-0.411 -0.409 0.6% -0.375 8.8% 
-0.132 -0.133 1.2% -0.151 14.8% 

0 0 0.0% 0 0.0% 

Table 7.8 Evaporator Eigenvalue Comparison for Reduced Order Models of A ′′  

 Eliminate: Refrig. Energy #2 Eliminate : Refrig. Energy #1, 
Refrig. Energy #2 

Full Order 
Eigenvalues 

Reduced Order 
Eigenvalues 

Percentage  
Error 

Reduced Order 
Eigenvalues 

Percentage  
Error 

-53.374     
-13.745 -13.902 1.1%   
-0.411 -0.414 0.7% -0.427 3.8% 
-0.132 -0.132 0.2% -0.141 7.4% 

0 0 0.0% 0 0.0% 
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7.4.3 Internal Heat Exchanger 
Recall the A  matrix presented in Chapter 6 for the internal heat exchanger (Equation 7.59). Since multiple 

representations do not need to be compared, and all the states have the same units, nondimensionalizing the model is 

not necessary.  However, the state(s) to be residualized have yet to be determined. The eigenvalues for A  in 

Equation 7.59 are given in Equation 7.60. Because two of the eigenvalues are two orders of magnitude greater than 

the third, two states can be residualized. 
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0.277-
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By inspection, the A  matrix appears to be diagonally dominant.  Using the definition of diagonal 

dominance, it is confirmed that Equation 7.22 holds.  Additionally, using the induced two norm we find that the 

maximum singular value, 160.98, is the same order of magnitude as the largest eigenvalue, -134.38. Finally, the 

diagonal elements of the Relative Gain Array are relatively close to unity (Equation 7.61).  Accepting the fact that 

A  is diagonally dominant, then the logical choice of states to be residualized are the first and second states 

(refrigerant temperatures) and to retain the third state (wall temperature ).  The resulting 1st order model has an 

eigenvalue of -0.278, which approximates the slow eigenvalue of the full order system with 0.3% error. Again, the 

conclusion is reached that the refrigerant dynamics are much faster than the heat exchanger wall dynamics. The final 

reduced order model used is given in Equations 7.62 - 7.65. 
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7.4.4 System 
The full order system model was presented in Chapter 6.  The reduced order component models derived 

above are combined to form a reduced order system model. For the system model, only five outputs are considered, 

[ ]T
aocaoeceshe TTPPTy ,,,= .  If the 4th order model of the evaporator is used, the resulting system model 



 146 

is 6th order and presented in Equations 7.66 - 7.70. If the 3rd order model of the evaporator is used, the resulting 

system model is 5th order and presented in Equations 7.71 - 7.74.  (Note that the reduced order system has one 

redundant state from the conservation of energy in both the evaporator and gas cooler, evidenced by the zero 

eigenvalue.  Thus the true reduced order system is found by combining the reduced order component models and 

removing the redundant state.) The 6th order model approximates the eigenvalues of the full order model within 8%. 

The eigenvalues of the 5th order system model approximates the eigenvalues of the full order model within 11% 

error (Table 7.9).  
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Table 7.9 Comparison of System Eigenvalues: Full Order and Reduced Order Models  

Full Order 
Eigenvalues  

-124.02 -54.165 -49.608 -28.09 -14.598 -1.995 -0.472±0.233i -0.175 -0.0607 0 

Reduced Order 
Eigenvalues  

Eliminated Eliminated Eliminated Eliminated -15.648 -2.060 -0.475±0.232i -0.177 -0.0613 0 

Percentage 
Error 

    7.2% 3.3% 0.4% 1.4% 0.9% 0.0% 

Reduced Order 
Eigenvalues  

Eliminated Eliminated Eliminated Eliminated Eliminated -2.202 -0.518±0.238i -0.182 -0.0628 0 

Percentage 
Error 

     10.4% 8.3% 3.9% 3.4% 0.0% 

 
To verify that the reduced order model approximations are sufficient, simulation results for both the 5th and 

6th order system models are compared to the original nonlinear and linearized models, as well as data.  Figures 7.1 - 

7.6 show that residualizing the fast states has negligible impact on the transient response of the system.  In fact the 

simulation results from both reduced order models are indistinguishable from the full order linearized model (11th 

order). 

 

Figure 7.1 Reduced Order Model Validation: Compressor Speed Step Changes 
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Figure 7.2 Reduced Order Model Validation: Evaporator Pressure for Step Changes in Compressor Speed 

 

Figure 7.3 Reduced Order Model Validation: Gas Cooler Pressure for Step Changes in Compressor Speed 

 

Figure 7.4 Reduced Order Model Validation: Evaporator Superheat for Step Changes in Compressor Speed 

 

Figure 7.5 Reduced Order Model Validation: Evaporator Exit Air Temperature for Step Changes in Compressor 
Speed 
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Figure 7.6 Reduced Order Model Validation: Gas Cooler Exit Air Temperature for Step Changes in Compressor 
Speed 

7.5 Other Model Reduction Possibilities 
While attempting to discover the dominant dynamics of the system, several alternative model reduction 

attempts were made with mixed success.  These attempts are included here to inform the reader of methods to avoid, 

as well as possibilities for model reduction under certain conditions. 

7.5.1 Lumped Evaporator Wall Temperature 
The wall temperature/energy dynamics have been shown to be the dominant dynamics of the system, along 

with the location of refrigerant mass. A logical step for reducing the system order further is to simplify the wall 

temperature assumptions by considering a single uniform wall temperature rather than separate wall temperatures 

for each region. The principle difficulty with this approach is the calculated initial conditions.  As explained in 

Chapter 5, given measured data and component parameters, the initial conditions for the dynamic state variables can 

be calculated.  This includes the lump ed wall temperatures and the effective length of two-phase flow.  When a 

uniform wall temperature is assumed, the resulting initial condition can be drastically different from that calculated 

assuming separate wall temperatures.  This difference can affect the transient response noticeably.  While this 

assumption is not implausible, more research as to the implications needs to be made before a conclusion can be 

drawn. 

7.5.2 Negligible Gas Cooler Outlet Air Temperature 
Experience has shown that residualizing the wall temperature state in the gas cooler model leads to gross 

errors in the prediction of gas cooler exit air temperature.  However, the effects on the other system outputs appear 

to be limited.  Thus if gas cooler air temperature is not a variable of concern, a possibility exists of reducing the 

order of the system model further.  Again, more research is needed before a recommendation can be made. 

7.6 Summary 
In this chapter, an 11th order dynamic model for a transcritical air conditioning system has been reduced to 

a 5th order dynamic model without considerable loss in model accuracy.  Experience has shown that further 

reduction may be possible.  The common model resulting from the PDE derivation was shown to be less desirable 

for model reduction.  The dominant dynamics of the system were identified to be the wall temperature/energy 

dynamics and the location of refrigerant mass.  The refrigerant energy dynamics were shown to be faster than the 
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dominant dynamics by an order of magnitude, and could thus be residualized without notable loss of model 

accuracy. 
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Chapter 8. Conclusions and Future Work 

8.1 Summary of Results 
This thesis makes several key contributions to the study of vapor compression system dynamics.  First, an 

existing modeling approach is applied to a unique type of vapor compression cycle, namely the transcritical cycle.  

Second, a different modeling approach is presented and shown to be equivalent to the more common approach of 

simplifying the governing PDEs to achieve the desired ODEs.  This energy based approach is more straightforward 

to derive and simpler conceptually.  This approach also exposes some freedom in choosing the system states. Third, 

the resulting models are validated using experimental data and recommendations are made for improving the model 

validation. Fourth, both the analysis of the linearized models, as well as the empirical models constructed using 

system identification techniques indicate that a reduced order model of the system dynamics is adequate for 

predicting the dominant system dynamics. Finally, variations of the singular perturbation technique are used to find 

reduced order component models.  The more commonly derived models are shown to be inappropriate for model 

reduction, while the reduced order models using the alternatively derived models result in good approximations of 

the full order system, as well as expose a redundant dynamic mode. A reduced order system model is constructed 

using the reduced order component models and validated against experimental data. 

8.2 Future Work 
This research has many aspects that have yet to be explored.  A few of these are mentioned here, including 

improvements in model validation, model reduction, controller design, and modeling of complex systems. 

8.2.1 Model Validation 
In Chapter 4 many observations were made regarding problems with the experimental data.  Specifically: 

1) maldistribution of refrigerant in the prototype evaporator, 2) oil recirculation altering the temperature 

measurement of fluid entering the compressor, 3) lack of necessary temperature measurements to explore the inter-

component dynamics, and 4) need for unfiltered mass flow measurements.  Correcting the problem with evaporator 

maldistribution is necessary for system efficiency, and therefore should not be a problem in a commercially 

manufactured system.  Also, most commercial compressors have oil recirculation built into the compressor chamber, 

and skewed temperature readings should not be a problem with non-prototype compressors.  In the future, additional 

temperature measurements will be included to verify component dynamics, and venturi meters to measure transient 

mass flow will be used. 

At the time of writing of this thesis, experimental data for validation of a transcritical system with low-side 

receiver was not available.  However, all practical transcritical systems operate with this component.  Therefore the 

predictive ability of this approach should be compared to data collected on such a system. 

Additionally, the modeling approach presented has been validated principally on an automotive transcritical 

air conditioning system. To truly test the validity of this approach, it should be extended to include subcritical air 

conditioning cycles, and could be experimentally verified on automotive, residential or industrial systems. This 

obviously requires a large amount of additional work, but is necessary to provide exhaustive validation of the 

modeling approach. 
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8.2.2 Model Reduction 
The justification for the reduced order models is obviously dependent on the experimental system.  All 

results presented in this thesis are for an automotive transcritical cycle. A logical part of future work is to validate 

the modeling approach and explore possibilities for model reduction on other types of systems.  Preliminary 

investigations into residential or commercial systems indicate that long pipe lengths between components would 

necessitate the inclusion of inter-component dynamics.  However, the principal conclusion that the dominant 

dynamics are the storage of energy in the heat exchanger walls should hold for these other systems where the heat 

exchangers are more massive. 

8.2.3 Controller Design 
This thesis has repeatedly discussed the objective of developing control-oriented models.  Therefore, this 

research is only partially complete until the models have been used for controller design and verified with 

experimental implementation. 

8.2.4 Complex Systems  
Finally, a largely unexplored area of research is the control of more complex multi-component air 

conditioning systems.  These systems have the potential to benefit the most from more advanced control strategies 

whose design would require a control-oriented model. The approach presented in this thesis of component level 

modeling and model reduction makes the transition to more complex systems easy and straightforward, by simply 

appropriately defining the component input-output relationships to form the overall system model. 
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