Transient Tests of A/C System Performed on a Caravan 1997

N. R. Miller, P. S. Hrnjak, and E. Rodarte

ACRC CR-12

December 1997

For additional information:

Air Conditioning and Refrigeration Center
University of Illinois
Mechanical & Industrial Engineering Dept.
1206 West Green Street
Urbana, IL 61801

(217) 333-3115
The Air Conditioning and Refrigeration Center was founded in 1988 with a grant from the estate of Richard W. Kritzer, the founder of Peerless of America Inc. A State of Illinois Technology Challenge Grant helped build the laboratory facilities. The ACRC receives continuing support from the Richard W. Kritzer Endowment and the National Science Foundation. The following organizations have also become sponsors of the Center.

Amana Refrigeration, Inc.
Brazeway, Inc.
Carrier Corporation
Caterpillar, Inc.
Copeland Corporation
Dayton Thermal Products
Delphi Harrison Thermal Systems
Eaton Corporation
Ford Motor Company
Frigidaire Company
General Electric Company
Hydro Aluminum Adrian, Inc.
Indiana Tube Corporation
Lennox International, Inc.
Modine Manufacturing Co.
Peerless of America, Inc.
Redwood Microsystems, Inc.
The Trane Company
Whirlpool Corporation
York International, Inc.

For additional information:

Air Conditioning & Refrigeration Center
Mechanical & Industrial Engineering Dept.
University of Illinois
1206 West Green Street
Urbana IL 61801

217 333 3115
TRANSIENT TESTS OF A/C SYSTEM PERFORMED ON A CARAVAN 1997

Norman Miller, Predrag Hrnjak, Enrique Rodarte

November, 1997
CONTENTS

Introduction

Instrumentation

Tests Description

Results

Conclusions

Appendix A: Graphs of Tests
 Test97_1
 Test97_2
 Test97_3
 Test97_4
 Test97_5
 Test97_6
 Test97_7

Appendix B: Density Equations, Mass Flow Equations, Saturation Temperature Curve Fit and Density Error Graph.

Appendix C: Photographs
TRANSIENT TESTS OF A/C SYSTEM PERFORMED ON A 1997 CARAVAN

Introduction

This report presents results obtained during testing of a 1997 Chrysler Caravan brought to our labs from Chrysler Auburn Hills Technical Center. This report follows the same format as the one previously sent to Dayton Thermal Products and Chrysler on tests performed on a 1994 Caravan vehicle (September 97). In addition to the information presented in the previous report acceleration measurements in the plate evaporator and in the tube downstream of the evaporator were taken. Cabin temperature and humidity are now also reported.

These tests intend to determine the variation of some parameters, mainly refrigerant mass flow and velocity, on the low side of the A/C system during start up conditions.

The tests were designed to capture the rapid changes in conditions at the evaporator outlet during air conditioning system start up. In particular we were interested in finding the range of refrigerant flow rates under transient operation to determine conditions at the plate evaporator that might produce acoustic resonance.

Instrumentation

Instrumentation of the suction line hose was performed by inserting an instrumented section in the suction line after the hose was cut. The instrumented section was inserted after the expansion valve and before the compressor. Five different measurements were made at this point:

1) Differential pressure across a venturi.
2) Suction manometric pressure.
3) Suction temperature.
4) Reference temperature
5) Clutch voltage

In addition to these measurements, acceleration readings were taken by two accelerometers inserted one in the plate evaporator at the third plate from the access hole to the evaporator behind the glove compartment and the other accelerometer was placed in the suction tube downstream of the evaporator and upstream of the expansion valve.

Pressure was measured by using two Validyne Engineering differential pressure transducers model (DP15); one using a diaphragm of -20 to 20 psid. This
transducer was connected to the high and low pressure ports of a Gerand 3/4" 440 Venturi flow meter. The other pressure transducer had a diaphragm, which gave it a range from -320 to 320 psid. This transducer was connected to the high pressure port of the Venturi flow meter on one side and open to the atmosphere on the other. The pressure transducers, according to the manufacturer, have a frequency response of up to 1 kHz, but it is more likely that this response will be limited by the acoustic resonance frequency of the lines connecting the transducers, therefore these lines were as short as possible (approx. 4").

Temperature was measured using a specially ordered high speed thermocouple, which according to the manufacturer (Nanmac Co.) has a response time of 20 ms. The reference temperature for this thermocouple was obtained using a two-terminal temperature transducer chip model AD590 from Analog Devices. This transducer was calibrated in the laboratory and was used for two purposes:

1) To provide a reference temperature for the above thermocouple since it was mounted in thermal contact with the connection of the thermocouple to copper instrument cables.

2) Measure the outdoor temperature (Auto Lab temperature where car was tested).

Two PCB accelerometers one model 352B66 miniature accelerometer with a sensitivity of 100 mV/g and the other model 353B16 with a 10 mV/g sensitivity were installed as described above. The accelerometers were mounted in these positions to try to pick up any acoustic resonance or other type of noise generated and/or transmitted in the plate evaporator or in the evaporator tubes.

Voltage to the compressor clutch was measured after passing it through a voltage divider to reduce the signal sent to our data acquisition system. This signal was used as a way to determine when the compressor started to operate.

Finally all the sensors were connected to a high speed data acquisition system. The sample frequency used was 200 Hz. for temperatures, pressures and clutch voltage and 50 kHz. for acceleration. This sampling rate is sufficient to capture the transient phenomena based on results of previous tests performed on the 1994 Caravan at much higher sampling rates.

The 200 Hz. data channels were filtered with a low pass filter with a 66.7 Hz. band pass. The acceleration data filter bandwidth was 14,500 Hz. Photographs of the test apparatus are shown in appendix C.
Tests Description

After recovering the refrigerant from the system, the original suction line hose was cut and an instrumented section was inserted. Then the system was charged with refrigerant. Two different charges were used during testing; first approx. half the total charge was used (500g) then the full charge was used (1000 g).

Tests Performed

<table>
<thead>
<tr>
<th>Name:</th>
<th>Test Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test97_1</td>
<td>First the cabin was heated using the vehicle heating system with re-circulation on. Humidity was added to the cabin by spraying fine water mist into the warm air. Conditions inside the cabin for this test were 124 °F with approx. 88 %RH. Charge in the system is 500g. The car was running at idle rpm conditions i.e. approx. 800 rpm.</td>
</tr>
<tr>
<td>Test97_2</td>
<td>Similar conditions to previous test but now running at 2500 rpms.</td>
</tr>
<tr>
<td>Test97_3</td>
<td>Conditions inside the cabin: 116 °F, approx. 92%RH, charge of 1000g, running at idle rpms conditions.</td>
</tr>
<tr>
<td>Test97_4</td>
<td>Conditions inside the cabin: 122 °F, approx. 95%RH, charge of 1000g, running at 2500 rpms conditions.</td>
</tr>
<tr>
<td>Test97_5</td>
<td>During tests 1 to 4 the A/C system settings were: re-circulation on, temperature sliding controls to hot, and fans directed to feet. These settings at maximum fan speed were used to warm the cabin, then the fan speed was reduced to the minimum and the data acquisition system and compressor were turned on. Tests 5, 6 and 7 were performed differently, after the cabin was warm and ready, re-circulation was turned off, the temperature sliding controls were set to cool and then the data acquisition system and compressor were turned on. For this test: Conditions inside the cabin: 128 °F, approx. 90%RH, charge of 1000g, running at idle rpms conditions.</td>
</tr>
<tr>
<td>Test97_6</td>
<td>Conditions inside the cabin: 129 °F, approx. 82%RH, charge of 1000g, running at 2500 rpms conditions.</td>
</tr>
<tr>
<td>Test97_7</td>
<td>Conditions inside the cabin: 129 °F, approx. 68%RH, charge of 1000g, running at 4500 rpms conditions.</td>
</tr>
</tbody>
</table>
Results

Appendix A shows the measured and estimated data for each test. Clutch voltage, accelerations, suction temperature, differential pressure across the venturi, suction pressure, and reference temperature were directly plotted from data. Mass flow, density and average velocity assuming the smallest circuit area equal to 6 1/2 plates were estimated using the equations presented in appendix B.

Our examination of the data shows the following:

1) All measured data seems to be reasonable.

2) The evaporator of this vehicle did not whistle during this series of tests.

3) The acceleration measurements do not show any harmonic content in the expected acoustic resonance region.

4) Flow velocities estimated for an evaporator circuiting including a pass with 6 1/2 channels formed by the plates are shown in Appendix A. These flow velocities are in the range where acoustic resonance has been detected in the laboratory for this type of plate evaporator. Results presented in (1) could be consulted to see acceleration measurements on a single plate subject to similar flow rates.

5) Flow velocities measured for this vehicle are considerably higher than those measured for the 1994 Caravan. Average peak flow velocity for the 1994 Caravan is approx. 15 m/s for a 6 ½ pass section vs. approx. 21 m/s for these tests.

6) Acceleration power spectra obtained from the acceleration time history data taken at the side of the plate evaporator does not show conclusive signs of acoustic resonance in the evaporator.

Appendix A also shows graphs of suction and saturated temperatures of the different tests performed. Suction temperatures are measured directly as presented in appendix A (Shown as the darker line). The saturated temperatures were estimated using suction pressures and a R134a curve fit shown at the end of appendix B. The curve fit was obtained with the use of the package Engineering Equation Solver (EES).

As can be seen in these graphs for tests 1 and 2 there is always superheated vapor refrigerant during the approx. 40 seconds that the test lasts. For the rest of the tests i.e. tests 3-7 there is always a region in which saturation and suction temperature are close together which would correspond to saturated or two-
phase conditions. In this region all estimated values are not correct (i.e. mass flow, density and plate evaporator flow velocity).

Appendix B shows the set of equations used to calculate mass flow and density. Density calculations are valid only for superheated refrigerant. Density is needed to estimate mass flow and with mass flow, the velocity can be estimated once the cross sectional area of the 6 ½ refrigerant channels of the first circuit for the plate evaporator are determined.

Conclusion

These tests followed the procedures developed in (2) for measuring the high speed transient behavior occurring during A/C system start up. This vehicle has been shown to produce some hissing sounds right after A/C system start up. Tests results reported here did not indicate what is the source of this problem. Further tests with accelerometer placed at the outlet plates of the evaporator and at the inlet tube could improve the measurements. While no whistling was observed in these tests, observed refrigerant velocities are in the range of velocities that produce whistling in the laboratory. The initiation of whistling or acoustic resonance has been shown to produce some hissing sounds. Preliminary tests with an initial high pressure in the system produced by maintaining a very high temperature in the condenser were shown to emit distinctive noise each time the compressor clutch engaged. Laboratory testing of an expansion valve/plate evaporator assembly should be able to provide the information necessary to determine the cause of the hissing.

Reference

Appendix A: Graphs of Tests

Test97_1
Test97_2
Test97_3
Test97_4
Test97_5
Test97_6
Test97_7
Reference Temperature Test97_1

Mass Flow Test97_1

Suction Line Density Test97_1
Plate Evaporator Velocity (6 1/2 Plates) Test97_1

Comparison of Saturation and Suction Temperature
Plate Evaporator Velocity (6 1/2 Plates) Test97_1

Comparison of Saturation and Suction Temperature Test97_2
Plate Evaporator Velocity (6 1/2 Plates) Test97_3

Comparison of Saturation and Suction Temperature Test97_3
Plate Evaporator Velocity (6 1/2 Plates) Test97_4

Comparison of Saturation and Suction Temperature Test97_4
Plate Evaporator Velocity (6 1/2 Plates) Test97_5

m/s

Time (secs)

Comparison of Saturation and Suction Temperatures Test97_5

Tsat

Tsuct

0

8191
Reference Temperature Test 97_7

Mass Flow Test 97_7

Suction Line Density Test 97_7
Plate Evaporator Velocity (6 1/2 Plates) Test97_7

Comparison of Saturation and Suction Temperature Test97_7
Appendix B

Density Estimation Equations.

\[R = \frac{8.314}{102} \]

\[T_c = 374.2 \]

\[P_c = 4067 \]

\[a = 0.4275 \cdot R^2 \cdot \frac{T_c^{2.5}}{P_c} \]

\[b = 0.08664 \cdot R \cdot \frac{T_c}{P_c} \]

\[\rho_{\text{pred}} = c \cdot \left[0.5 \cdot \left(\sqrt{T_k} \cdot (b \cdot P_{f1} + R \cdot T_k) + \sqrt{-4 \cdot a \cdot P_{f1} \cdot \sqrt{T_k} + T_k \cdot (b \cdot P_{f1} + R \cdot T_k)^2} \right) \right]^{-1} \]

\[T_k = T_{f1} + 273.2 \]

\[T_{f1} = T_{\text{sat}} + 50 \]

\[t_{\text{sat cal}} = -38.29 + 1.163 \cdot P_{\text{psi}} - 0.00758 \cdot P_{\text{psi}}^2 + 0.00002832 \cdot P_{\text{psi}}^3 - 4.115 \times 10^{-8} \cdot P_{\text{psi}}^4 \]

\[P_{f1} = P_{\text{psi}} \cdot \left[6.895 \cdot \frac{kPa}{psia} \right] \]

\[\rho = \rho(R134a, P=P_{f1}, T=T_{f1}) \]

\[t_{\text{sat}} = T \left[R134a, P=P_{\text{psi}} \cdot \left(6.895 \cdot \frac{kPa}{psia} \right), x=0.5 \right] \]

\[\text{error} = 100 \cdot \left[\frac{|\rho - \rho_{\text{pred}}|}{\rho_{\text{pred}}} \right] \]

\[c_1 = 1.02 + 0.00006632 \cdot P_{f1} + 6.124 \times 10^{-8} \cdot P_{f1}^2 - 6.001 \times 10^{-11} \cdot P_{f1}^3 \]

\[c_2 = -0.001539 \cdot T_{f1} + 0.00002327 \cdot T_{f1}^2 - 2.645 \times 10^{-8} \cdot T_{f1}^3 - 2.201 \times 10^{-7} \cdot P_{f1} \cdot T_{f1} \]

\[c_3 = -2.714 \times 10^{-8} \cdot P_{f1} \cdot T_{f1}^2 + 2.783 \times 10^{-10} \cdot P_{f1}^2 \cdot T_{f1} + 1.173 \times 10^{-11} \cdot P_{f1}^2 \cdot T_{f1}^2 \]

\[c = c_1 + c_2 + c_3 \]
Mass Flow Estimation Equations.

\[
\dot{m} = C_k \cdot Y \cdot A_{venturi} \cdot \sqrt{\frac{2 \cdot \delta_p \cdot \rho}{1 - \left(\frac{\dot{D}}{\dot{D}_i}\right)^4}} \]

\[
Y = \left[\frac{\left(1 - \left(\frac{\dot{D}}{\dot{D}_i}\right)^4 \cdot \frac{k}{k-1}\right) \cdot \left(\frac{\rho f_2}{\rho f_1}\right)^{\frac{2}{k}} \cdot \left(1 - \left(\frac{\rho f_2}{\rho f_1}\right)^{\frac{k-1}{k}}\right)}{\left(1 - \left(\frac{\dot{D}}{\dot{D}_i}\right)^4 \cdot \left(\frac{\rho f_2}{\rho f_1}\right)^{\frac{2}{k}}\right) \cdot \left(1 - \frac{\rho f_2}{\rho f_1}\right)}\right]^{1/2}
\]

\[
\rho f_2 = \rho f_1 - \delta_p \cdot \frac{0.001 \cdot kPa}{Pa}
\]

\[
T_{sat} = T(R134a, P=\rho f_1, x=0.5)
\]

\[
T_{superheat} = T_f1 - T_{sat}
\]
Saturated Temperature Equation Fit.

\[t_{\text{sat}} = -3.8291 \times 10^1 + 1.163204 \times \text{Ppsi} - 7.5795 \times 10^{-3} \times \text{Ppsi}^2 + 2.8322 \times 10^{-5} \times \text{Ppsi}^3 - 4.1147 \times 10^{-8} \times \text{Ppsi}^4 \]

- Data from EES
- Data from Fitted Equation

Density Equation Accuracy Check.

Error in Density Equation [%]

- 1 C Superheat
- 10 C Superheat
- 20 C Superheat
- 50 C Superheat

Pressure [psia]