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A SIMPLE APPROXIMATION FOR THE FUNDAMENTAL FREQUENCIES OF

TWO-SPAN AND THREE-SPAN CONTINUOUS BEAMS
by
A. S. Veletsos and N. M. Newmark
SYNOPSIS

A rapid approximate method is presented for calculating the
fundameﬁtal frequencies of flexural vibration of two-span beams and of
particular arrangements of three-span beams which are continuous over
non~deflecting supports and are elastically restrained against rotation
at their end supports. The end restraints may be provided by actual
coil springs or they may represent the effect of adjoining members, but
in all cases the stiffnesses of these restraints are assumed to be posi-
tive. The mass per unit of length and the flexural rigidity of the beams
may vary from one span to the next, but in any one span these gquantities.
are considered constant. Two numerical examples are included to illustrate

the gpplication of the method.
SIGN CONVENTION
The following sign convention is used. Clockwise rotations are

taken as positive. Bending moments at the ends of a span are considered

positive when acting in a clockwise direction on the bean.
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BASIS AND GENERAL DESCRIPTION OF METHOD

When a continuous beam is in a state of free oscillations, each
of the spans is elastically restrained against rotation at its ends by
the rigidity of the contiguous spans and vibrates with the same frequency
as that of the contimuous system. Therefore, the problem of determining
the naturel frequencies of a continuous beam is basically the same as that
of determining the corresponding frequencies of one of its spans only,
with proper consideration of the actual restraints existing at its ends.
The stiffnesses of these restraints depend on the properties of all the
spans and on the order of the desired natural frequency.

Consider a continuous beam oscillating in its fundamental mode
of free vibration. Let the supports be numbered consecutively starting
with 1 at one end and terminating with z at the other end. Let 6 3 be
the rotation of the beam at an interior support j, and Mj, 3-1 and M,j, 41
be the internal bending moments at end j of the span between (j-1) and
j, and that between j and (j+1), respectively. The relationship between

these quantities may be expressed by the equations

M, . = ~K. . .6, and M, . = =K., . .6. 1

J,d-1 Jsd-17J Jsd+l J,3+173’ )

in which K. . and X, . are the stiffnesses of the internal restraints
Jad-1 Jrd+l

at support j. For a hinged condition K = O, whereas for a fixed con-
dition K = infinity. The negative signs in the foregoing expressions
denote that for a positive restraint (positive value of K), the moment
exerted by the restraint on the span acts in a direction opposite to

the direction of rotation of the span. The end moments Ml’2 and Mz,z-l

are related to the end rotations 61 and GZ by expressions similar to
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those given in Eq. (1). It will be assumed that the stiffnesses of the

3,

end restraints, K and XK s are positive and kmown.
1,2 Z,2=1

For a natural mode of free vibration, no external moment acts

on the system; therefore,

Mj:j“l * Mj:j+l =03 (2)

whence

K =0. (3)

K501+ 50m
Expressed in words, Eq. (3) states that the sum of the stiffnesses at a
Jjoint is equal to zero. It should be pointed out that this relationship
holds true not only for the fundamental mode, but for the»higher natural
modes as well.

The procedure to be presented comnsists of: (a) isolating from
the contimious beam the span from j to (j+l1) subjected to positive end
restraints: (b) determining the stiffnesses of these restraints, Kﬁ,j+&

and K ; and (¢) evaluating the fundsmental frequency of the contimuocus

J+l,Jd
beam from the sgproximationl

B. . B.
o~ 1 +1 1 +1,J
£z [ 1+= ——ng————-J [ 14 = (1)
25+B;, 54 25 +Bsm,3

in which Lj’ EjIj’ and mj are, respectively, the length, the flexural

rigidity of the cross section, and the mass per unit of length of the

and . are dimensionless
Pye1, 3

quantities related to the stiffnesses of the end restraints by the

span between j and (j+1), and Bj,j+l

equations

1. ™A Simple Approximation for the Natural Frequencies of Partly
Restrained Bars,” by N. M. Newmark and A. S. Veletsos, Journal
of Applied Mechanics, Vol. 19, 1952, p. 563.
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The freguency f is expressed in cycles per secomd. Egq. (4) is applicsble
to positive restrgints only; it is for this reason that the isolated span

must be positively restrained.
TWO-~SPAN BEAMS

For a two-span beam, such &s that shown in Fig. 1, it is only
necessary to determine the stiffness of the restraint exerted by one

span upon the other. Let f, and f2 be the fundsmental frequencies of

1
spens (1,2) emd (2,3), assuming that the beam is hinged at support 2
(62 1 = 52 3 = 0). These frequencies may readily be evaluated from
J 2

Eg. (4).

If the supports sre numbered so that f S-fl, the stiffness

2
Ké 3 of the restraint exerted by the dynamically stiffer span (1,2) on

5
the dynamically weaker span (2,5) will be greater than or equal to zero,
and the fundamental frequency T of the continuous beam will lie between

f2 and fl

From the results of numerical calculations based on exact

solutions, the following empirical approximation has been found for K 0,57
J

: f
K = (K [ 1 - (=B ] 6
ENCES) (ff , (6)
in which (K2 5)S is the stiffness of the restraint provided by span

J

(1,2) under static conditions. It can readily be shown® that

2. See for example "A Direct Method of Moment Distribution,” by T. Y.
Iin, Transactions A.S.C.E., Vol. 102, 1937, p. 565.
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EI [ 1 J
(Kz,s)&?:lL il [l_E+Bl (7)

TR e

2,3

may now be treated as a bar subjected to positive end restraints, and

With 1% 5 known and K determined from Eq. (6), span (2,3)
7

its fundamental frequency, which is also the desired frequency of the
contimious beam, may be evaluated from Eq. (4) In this case j = 2 and
J+l = z = 3.

The accuracy of Eq. (6) and that of the natural fregquencies
determined by the foregoing procedure have been checked for over three
hundred representative beams having end restraints in the range between
hinged and fixed conditions and spans.with ratios of lengths, ratios of
flexural rigidities of cross section, and ratios of masses per unit of
length in the range between zero and one. The greatest error was found
to occur in the case of beams which have a ratio of flexural rigidities
of cross section from about 0.2 to 0.4 and have the extreme end of the
dynamically stiffer span hinged or practicglly unrestrained and the end
of the other span clamped or very ngarly fixed

As an indication of the accuracy of Eq. (6) some representative
results, including those for which the error is maximum, are given in
Fig. 2 In this figure, the sbscissas K2 3/ (x 3)5 were determined

J 2
from the exact solution, whereas the quantities f. and f_, for the ordin-

1 2
ates were computed from Eq. (4). The vertical distances between the
various points in this figure and the diagonal line represent the error
involved in Eq. (6). These particular results are applicable to two-

span beams simply supported at one end and elastically restrained at the

other. It should be noted that for the limiting values of f2/fl = 0 and
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f‘g/fl = 1.00 Eq. (6) 1is exact.

Figure 2 indicates that, when the ratio of the flexural
rigidities is the variable, the error in Eq. (6) is appreciable. How-
ever, because the natural frequencies of elastically restrained bars
are not very sensitive to the stiffnesses of the end restraints, the
error in the natural frequencies determined by using Eq. (6) is for all
practical purposes insignificant. By comparing the exact natural fre-
quencies of the more than three hundred beams referred to previously
with those determined by the foregoing procedure, it was found that the
meaximum error in the freguencies determined by the approximate method
is within f 5 percent.

Example. - As an illustration, consider a beam having the

following characteristics:

]

EI , m
22 1

L = O-8OL 3 E I 0-81111 3
1l 2 11 2

K =1.CEI /L and K

5.0E I /L .
i,2 11 1 3,2 22 =2

The frequencies f2 and T, determined from Eq. (4), are
f =1.00x1.25f =1.25¢%,
2 o o

£ =1.085 x 1.00 x ﬁ% £ =1.88 ¢,

t =2 [EI/m.
o o, \ 22 2
2

The static stiffness of the restraint exerted by span (1,2)

where

on span (2,3) is

K =080x4k0EI /L =3.2E1I/L
( 2,3)8 1 1/ 1 > 1 1/ 1’
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and the corresponding dynamic stiffness, computed from Eq. (6), is

K =0.58x32EI/L =1.79E I /L.

2,3 111 111
Then,

B =1.79 x = = 2.24 B = 5.0

2,5 ) 0.80 B 5,2 I
and

f=1.155x 1.25 £ = 1.4k £ .

The exact value of ?} neglecting the effects of damping,

rotatory inertia, and shearing deformation, is 1.43 fo.

THREE-SPAN BEAMS

Consider the three-span beam shown in Fig. 3. Let fO, fq,
17 2

and f; be, respectively, the fundamental frequencies of spans (1,2),
(2,3), and (3,4), assuming that the beam is hinged over its interior
supports (52’1 = 52’3 = 53,2 = 53,4 = 0). These frequencies are de~ - =
termined from Eq. (4) Only those cases will here be considered for
which f: and f;’ are sufficiently larger than fz so that, when the beam
vibrates in its fundamental mode, the restraints exerted on the central
span are positive.

The stiffnesses K and K are determined by successive

2,3 5,2

approximations as follows: One assumes a value for, say, K.3 o and, by
J

treating the portion of the beam between supports 1 and 3 as a two-span

continuous beam in the manner described previously, calculates an

approximate value for K . Using this value of K 5 and working with
?3 27

the portion of the beam between supports 2 and 4,.one then computes a

new value for K . From this revised value of K , one then obtains
3,2 3,2
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8 new value of K2 5 This procedure is repegted until the values of both
b4
K and K converge. Reasonable convergence is generally obtained in

2,3 3,2
two or three cycles.

Having KZ’B, and Ks.,a’ the fundamental frequency T of the con-
tinuous beam may be calculated from Eq. (4) by considering the central
span as an elastically restrained bar. As before, by comparing the exact
and the gpproximate natural fi'equencies for a number of representative
beams covering the possible range of varisbles, it has been concluded

| that the maximum error in the vglue of T determined by the foregoing pro-
:cedure is of the order of I 5 percent.

Example. - As an illustration, consider a beam having the

following characteristics.

EI =08EI, L =08L, m =0.8m,
11 2 2 1 2 1 2
EI =08EI, L =090L, m =0.70m,
3> 2 2 > 2 = 2
K =4LOEI/L &ad K _=1.6E1I /L.
1,2 11 1 4,3 33 3

o pid
The frequency £f = —gx EI /m =1 .
Teq i QLZ‘\/zz/z o

The frequencies f° and f; , evaluated from Eq. (4), are
1

£ =1.22%x1.00x 1.384 ¢ = 1.69 ¢,
1 Q Q
€ =-1.00x1.12x1.320f =1.487f .
x e} o]

In this particular case, the successive approximation pro-

cedure is started by taking for the dynamic stiffness K3 2,a value

b4

equal to one-half the corresponding static stiffness (K3 2)s. The
,2’s

value of the latter is determined from Eq. (7) by replacing the
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<K3.,,z>s = 0.8214% x 4.0 E313/L3 = 3.286 EzIB/L._j = 2.92 EZIZ/La.

Hence;,
: K =05x2.92EI/L =1.4ET/L.
22 2 22 2

13,2

In this expression K = denotes the first spproximation to K . In
1 3,2 3,2
at the beginning of

genersal, will designate the value of K

53,341
the n-th cycle of the procedure.

s+l

The portion of the heam between supports 1 and 3 is now treated
as a two-span contimious beam with K3 . equal to l.lL6E212/L2. The fre-
5

quencies fl and fz of the individual spans (assuming the beam hinged at

support 2) are

o
£ =1 = 1.69 £ s

and f =1.11°F .
2 o

The static stiffness of the restraint provided by span (1,2) on span

(2,3) is determined from Eq. (7) as

(€, ),

=0875x 40 EI /L =350ETI/L=329ET1I/L.

11 11" 1 22 2
The first gpproximstion to. the corresponding dynamic stiffness is
obtained from Eg. (6) as

K =0.569x329EI/L =1.87ET1I/L.
12,3' 22 2 22 2

Next, the portion of the beam between supports 2 and 4 is

considered, with K2 = taken equal to lK ’3. On the assumption that the
y 2

beam is hinged at support 3, the fundamental frequencies of the individual
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f =1.13%36 f and £ =f°=1.487¢.
2 o} 3 = o

spans are

The dynamic stiffness K3 . is obtained from Eq. (6) by substituting
J

K for (K and £ for f

( 3,2)5 ( 2,3)8 = 1’

K =0M1x292EI/L =1.20E1I/L.
22 2 22 2

2 3,2

This newly computed value of K leads to K =1.91E I /L
3.2 ‘ 22 22 2

b 53

which, in turn, leads to K =119 E I /L . It should be observed
3 3,2 22 2

J

that, for a&ll practical purposes, 2K2 is equal to lK and K

s 2,3 3 3,2

is equal to K . Therefore, the B values for the central span may be
2 3,

taken as
B = 1.91 and B = 1.19.
2,3 3,2
The fundamentsl freguency T of the continuous beam is finally

evaluated from Eq. (4), where j = 2, as follows:
F=1.138 x 1.096 £, = 1.25 £_.

The exact value of f, neglecting the effects of damping, rotatory inertia,

and shearing distortion, is also equal to 1.25 fo.
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