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ABSTRACT

This research investigates the impact of various types of cchlear hearing loss and mask-
ing noise on the perception of basic speech sounds based oretimformation of identi ed
speech cues. A psychoacoustic method, named three-dimeasal deep search (3DDS),
is developed to identify the perceptual cues of consonant smds in natural speech.
Unlike the conventional method of synthetic speech, which equires a prior hypothesis
about the acoustic cues to generate the speech stimuli, thelEIDS measures the contri-
bution of each subcomponent to speech perception as a funcin of time, frequency and
intensity, without making any tacit assumptions about the speech cues to be identi ed.
Using the 3DDS, we discovered that natural speech often coains con icting cues that
are characteristic of confusable sounds. For instance, a mmal /ka/, dominated by a
mid-frequency burst at 1{2 kHz, may also have an inaudible /ta/ burst above 3 kHz
that promotes the /ka/ ! /ta/ confusion under noisy environments. Removal of the /ka/
burst may turn the sound into a solid /ta/.

More than a dozen hearing-impaired ears were tested on consant identi cation in
noise. While the deterioration in performance for at mild- to-moderate hearing loss can
be well predicted by the loss of audibility, subjects with other types of hearing loss often
show patterns of di cult sounds that can hardly be explained by the shift of hearing
threshold. A subject with almost identical binaural hearing loss is nearly deaf to /ka/
in one ear due to a mid-frequency cochlear dead region. Amoride 18 /ka/s produced
by di erent talkers, the subject can only hear one /ka/ at an a ccuracy of 80% and three
other /ka/s at 20{40%. Most /ka/s are highly confused with /t a/ because the subject is
listening to the con icting /ta/ burst in the high-frequenc y. The /ka/ ! /ta/ confusion is
signi cantly reduced when the con icting cue is removed. NAR-L improves the average

score by 10%, but it may degrade a few consonants under certaicircumstances.
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Al-gram of /na/ from talker f103. Removing the downward F 2 tran-

sition turns the /na/ into a /ma/. (Example: na2ma. . ........

Manipulation of words extracted from continuous speech (a) A word
/take/ morphs into /kate/ when the high-frequency /t/ cue is  switched
with the mid-frequency /k/ cue. (Example: take2kate .) (b) A word
/peach/ turns into /beach/ when the duration between the /p/  burst
and the onset of sonorance is reduced from 60 ms to 0 ms. (Exarg

peach2beach) . ... ... .. ... .. .. .. ..

Manipulation of speech cues converts a TIMIT sentenceshe had your
dark suit/ into a meaningful new sentence /he has your dart shoot.
Step 1. convert /she/ into /he/ by removing the fricative par t of
/she/ (delete block 1 and 2). Step 2: to convert /had/ into /ha s/,
a /s/ feature is created after /had/ by shifting the upper hal f of / 3
feature (block 1) to t =55 cs. Step 3: convert /dark/ into /dart/ by
shifting the mid-frequency burst (block 3) upward. Step 4. onvert
/suit/ into a /shoot/ by shifting the /s/ cue (block 4) downwa rd to

2{4 kHz. (Example: she_had_your dark suit .) .. ... ........

Xiv
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Enhanced /ka/s and /ga/s were created by removing the high-frequency
interfering cues (dashed boxes) to promote /ta! /ka/ responses and
/ga/ ! [/da/ confusions, and then boosting the mid-frequency bursts,
critical for /ka/ and /ga/ identi cation. . . . . .. ... ... ...

A schematic drawing of the perceptual cues for initial casonants
preceding vowel /a/, in terms of time-frequency allocation. . .. .. ..
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CHAPTER 1

INTRODUCTION

Approximately 15% of the general population (33% of individuals over the age of 65 and
50% over 75) have a hearing impairment (HI) that negatively impacts their speech com-
munication skills [1,2]. Once they stop hearing, they stop alking, feelings of isolation
develop, and depression becomes common. Thus it is a medilyakigni cant concern

for the elderly who are hearing impaired to remain verbal.

1.1 Problem Statement

HI listeners may have di culty understanding noisy speech because they cannot hear
certain sounds for which the characteristic speech cues amissing, due to their hearing
loss and the masking e ect introduced by noise [3]. During tte past three years, we have
tested over 40 HI ears for their recognition performances omonsonants using 16 initial
consonants Ip, t, k, f, s, T, S, b, d, g, v, z, D, Z, m,/rpreceding vowel /a/ as the test
stimuli. In [4,5], 16 HI subjects with mild to moderate hearing loss (30 dB HL< PTA
< 50 dB HL), a hearing loss believed to involve no cochlear deacegions, participated
in the experiment. Most listeners showed good performancero/ d, g, k, m, p/ but had
diculty with/ Db, s, Z, z, V. Recently we repeated the same test on an elderly subject
(AS) with moderate hearing loss. Due to acochlear dead region(an extreme case of
IHC loss [6]) from 2 to 3 kHz, AS cannot hear /ka/ and /ga/ with h er left ear. In
contrast, her right ear can identify /ka/ and /ga/ (with low a ccuracy), despite the fact
that the two ears have almost identical hearing thresholds. Confusion analysis reveals
that more than 80% of the /ka/s perceived by the left ear are misinterpreted as /ta/,
while about 60% of the /ga/s are reported as /da/.

In addition, hearing loss may reduce the HI listeners' abilty to focus on one talker

in a noisy environment. The human auditory system groups to@ther acoustic elements
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related to a target speaker, allowing the listener to hear a mgle voice. The cocktail-
party e ect [7] is de ned as a normal hearing listener's ability to isolate target speech
from the noisy background. For the HI listeners, the acoustc signals are corrupted with
babble and then distorted by their hearing loss, which makest di cult to group the
acoustic elements and identify the speech source [8]. The jpact of noise on speech
perception is tremendous. Most of our HI subjects showed diculty hearing speech
at 12 or 6 dB SNR in speech-shaped noise, a noise level that cses little trouble for
normal hearing people [9].

State-of-the-art hearing aids have low functionality in noisy speech because they am-
plify the entire signal without taking into account the specic features of the speech
sounds. Over the past years, various single-channel noiseduction techniques have
been proposed to increase the SNR [10, 11]. For example, Tirfgequency Gain Ma-
nipulation [12] improves the total SNR by assigning larger @ins to the time-frequency
components with less noise and lower gains to those with moreoise. Since the ma-
nipulation is based on the distribution of random noise rather than on prior knowledge
about speech spectra, none of these methods have been showactive in improving
speech intelligibility [13]. As a consequence, many HI ligners can hear the ampli ed
noisy speech, but still cannot understand it. To help those pople, it is necessary to

know more about speech perception.

1.2 Human Speech Perception

Speech perception is a complex process that involves multie stages of signal processing.
Once the acoustic signal reaches the human cochlear, it is demposed into many critical
bands on the basilar membrane. The cochlear nucleus then eades the temporal and
frequency information in a way that is meaningful to the central auditory system.

A major goal of speech perception research is to determine kothe speech informa-
tion is represented across the various stages. The researchethods can be classied
into three major types: psychophysical, computational and neurophysiological. The
psychophysical approach [14{16], initiated by Harvey Flether and his colleagues in
the 1920s, involves presenting subjects with speech stimuhnd measuring their con-

scious responses, without touching the intermediate spebcdecoding process within
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the auditory system. The computational models [17] are creted for the simulation
of speech perception behavior observed in psychoacoustiedts. The neurophysiologi-
cal approach [18{21] measures the detailed information ofisgle-unit neuron response
to trace the representation of speech signal through the sutequent stages of auditory
processing.

After about 100 years of work, very little is known about how the ear decodes basic
speech sounds. This is, in part, because it is not ethical toecord in the human auditory

nerve, and its not practical to do extensive speech psychoptsics in non-human animals.

1.2.1 Theory and models

Speech perception depends on the analysis of the continuouscoustic signal into a
sequence of discrete phonetic segments [22]. How is the diste phonetic percept related
to the continuous signal? A widely accepted argument is thatperception of phonetic
segments is based on the context-dependent cues, which amerpreted phonetically in
di erent ways depending on the nature of the context [23]. Other people believe that
the properties of speech can be uniquely and invariantly spa ed from the acoustic
signal itself and that these properties are closely relatedto the distinctive features.
Speech perception is a process of decoding the sound into goresentation of distinctive
features [16, 24, 25]. In order to account for the transform fom the variable speech
signal to the linguistic units, a lot of theory and models of gpeech perception have been
proposed in the literature.

Auditory Scene Analysis: In a cocktail party [7], a normal hearing listener must
isolate the target speech from the noisy background in ordeto communicate with his
conversation partner. Since the acoustic signals are corpied with babble speech and
various nonvocal party sounds, what makes the human auditoy system group together
the acoustic elements related to the target speech so that th listener hears a single
voice? Based on the fundamental principle of Gestalt percefon that the human brain
tends to order our experience in a manner that is regular, orérly, symmetric, and
simple, Bregman proposed a theory of auditory scene analysi[26{28], according to
which speech organization consists of two stages: primitiy grouping and schematic

grouping. The rst stage groups speech sound by the fundameal principles of Gestalt



perception, such as proximity in frequency, similarity in change, common fate, etc. The
second stage applies learned knowledge to correct the midtas made in the rst stage.
The combination of the two mechanisms allows the primitive grinciples to err without
harm to the nal output.

Motor Theory: Due to the e ect of coarticulation, which greatly a ects the muscle
contractions of articulators (e.g., tongue, lips, and vocé folds), the mapping between
the phonemes and the acoustic signals is quite complex. In atrast, the perceived
phonemes and features seem to have a simpler (i.e., more ngaone-to-one) relationship
to articulation than to acoustics. In the 1960s Liberman [29 30] formulated the motor
theory (MT), which soon became the dominant account of humanspeech perception in
the following decades. The motor theory claims that the objetive of speech perception is
articulatory events rather than acoustic or auditory events. Speech perception depends
on a special speech module unigue to humans and innately orgized that recovers the
neuromotor commands to the articulators, also referred to a intended gestures, from
the speech signal. It follows from the motor theory that mammals and birds, without
the special speech module, should not be able to recognizegpeech. However, results
on speech perception in nonhumans demonstrate that speechepception is not special.
Birds and animals [31{33] exhibit aspects of speech percepal performance that cannot
be explained by the motor theory.

Direct Realist Theory: Fowler [34], a colleague of Liberman at the Haskins Labs,
modi ed the MT and developed the direct realist theory (DRT) . Unlike the MT, which
requires a special module for the recovery of intended geste from the acoustic signal,
DRT claims that speech perception is based on the actual geste that structures the
acoustic signal, which helps in addressing why birds and amals can recognize speech.
However, it does not explain how the mapping from speech sigas onto the vocal tract
shape that produced them can be realized. On the other hand,here are researches
indicating that the inverse problem is intractable without prior knowledge about the
shape of the vocal tract.

COHORT Theory: In the 1970s, Marslen-Wilson and Tyler conducted a series of
studies on word identi cation. The psychological data shows that words in context are

recognized within 200 ms, on average, from the onset of the wds. At that time the



sensory information is usually insu cient by itself to iden tify the word being heard.
Contextual constraints such as phonological, morphologial, syntactic, and semantic
information must also play a role in the process of word percgtion. The fact that
the sensory and contextual constraints converge on their teget in such a short time
rules out the possibility of a strict serial processing of tre information. Based on the
observations, they proposed a COHORT [35] theory of spoken @rd recognition, in which
the process of spoken word recognition breaks down into thehree basic functions of
access, selection and integration. Access concerns the n@pg of the speech input
onto the representations of lexical form, selection concers the discrimination of the
best- tting match to this input, and integration covers the mapping of syntactic and
semantic information at the lexical level onto higher levek of processing. Early in the
auditory presentation of a word, those words known to the ligener that conform to the
sensory information received so far become active and form kst of candidates called
\word-initial cohort.” As more sensory and contextual info rmation becomes available,
some of the words belonging to the \word-initial cohort" are eliminated because they are
inconsistent with the new information. The process of elimhation continues until at one
point only one word is left, which is called the \recognition point.” In the rst version
of COHORT theory, contextual information was allowed to int eract with the sensory
information very early in the process of candidate eliminaton. This was changed in the
revised version [36], in which the e ect of context is very Imited until the recognition
point, which basically converted the COHORT theory from a both bottom-up and top-
down structure into a bottom-up only structure.

TRACE model: McClelland and Elman [17] simulated the process of human speeh
perception by applying an arti cial neural network, named t he TRACE model. The
model consists of a large number of units organized into thre levels: the feature,
phoneme, and word levels. The input to the model was a seriesf @ectors representing
the features of the mock utterance, speci cally, consonardl, vocalic, di useness, acute-
ness, voicing, power, and amplitude of noise. Information ppcessing takes place through
the excitatory and inhibitory interactions between the simple processing units. Connec-
tions between levels operate in both directions. Connectios between units and nodes

in the same level are inhibitory. The TRACE model shares manycommon arguments



with the old version of COHORT theory. For example, it assumes both bottom-up and
top-down processing in speech perception. Additionally, ti allows contextual informa-
tion to interact with the information coming by the presente d word itself to achieve
a word identi cation. Using the TRACE model, McClelland and Elman successfully
imitated some phenomena of human speech perception, for itence, categorical speech
perception.

Fuzzy-Logical model: Motivated by the various new ndings that greatly challenged
the MT and DRT, a number of speech researchers proposed sewrlternative accounts
of speech perception, among which the fuzzy-logic theory afpeech perception developed
by Massaro [37, 38] is the most in uential. Unlike the MT, which claims that speech
perception is a special process, the fuzzy-logic theory sggsts that speech perception is
based on the general ability of the perceiver to make use of nitiple imperfect acoustic
cues to categorize complex stimuli. It is a part of the same mehanisms of audition
and perceptual learning that have evolved in humans or humanancestors to handle
other classes of environmental sounds. No special speechcdéder is required for the
explanation of speech perception. In particular, it is assmed that speech sounds are
stored in the human brain as various prototypes (sequence gferceptual units). Speech
recognition involves comparison of the sensory represertian of the input sound to
the exemplary representations of speech sounds in the mempor To demonstrate how

the fuzzy logic theory works, Massaro actually built a compuer model, named Fuzzy-

Logical Model of Perception (FLMP), in which speech percepion is modeled as a three
stage (evaluation, integration, and decision) categorizdon process. The rst stage
analyzes the features of the input signal; the second stagategrates the features from
multiple sources and compares the sensory representatiom tthe various prototypes; the
third stage chooses the best tting prototype for the sound being heard.
Fletcher-Allen model: During the 1920s to 1940s, Fletcher and his colleagues
at the Bell Labs conducted a series of speech perception exp@ents using nonsense
syllables as the stimuli, and they discovered some statistial relationships between the
articulation scores of phonemes and syllables. Speci call the phone error rate of full-
band signal is equal, on average, to the product of the errorates from the subband

signals. The articulation score of a nonsense syllable is agl to the product of the scores



of the individual phonemes that constitute the syllables. Based on the psychological
data, Allen proposed a hypothetical cascade model of speegerception as depicted in
Fig. 1.1. As a data-driven structure, the Fletcher-Allen model takes a bottom-up form.

No feedback is assumed between layers in this over-simplice model of human speech

perception.

Figure 1.1: Fletcher-Allen model of speech perception. Thaevords along the top
describe the physical correlate of the measure. The rst lagr, the cochlea, determines
the signal-to-noise ratio in about 2800 overlapping criti@al band channels. The next
layer extracts perceptual cues (events) from the speech in #bcal manner. The events
are integrated across the entire tonotopic axis, and then siables and words are

identi ed. From [71].

Distinctive Feature model: Motivated by the theory of inherent distinctive fea-
tures detected from the languages of the worldK. Stevens [39] believes that distinctive
features can be used as the kernel for the analysis of speecbnemunication, including
production and perception. Since the properties of speechan be uniquely and in-
variantly speci ed from the acoustic signal itself, and since these properties are closely
related to the distinctive features, speech perception is grocess of decoding the sound
into a representation of distinctive features [16, 25]. Jusbefore he retired, K. Stevens
further extended this idea and created a model for lexical acess based on acoustic land-
marks and distinctive features [39]. The lexical-access nuel he proposed consists of
three layers: acoustic cues (called landmarks) distinctive feature! words. Accordingly,
speech perception follows three steps. First, the acousticues that provide information
about relevant articulatory states and movements are extrated from the input signal.
Then the acoustic cues are integrated by the human brain to ugover the distinctive
features intended by the speaker. Last, the representationf features is matched against

the word, which is also speci ed in features.



1.2.2 Speech cues and features

Acoustic Cue: Speech sounds are encoded by some time-frequency energytpats
called acoustic cues. Given a speech sound, the human audijosystem rst detects the
events from the speech signal, and then nds the closest malcto the patterns. Failure
in detecting the cues may cause serious errors in speech peption. As a matter of fact,
many di cult problems of speech processing are more or less ssociated with the lack
of information about speech cues. Finding the cues for spekgerception is crucial for
speech study.

The rst search for acoustic cues dates back to 1940s, when Rwer, Kopp, and Green
at Bell Labs started a project called visible speech [40], wiih an aim of helping the
hearing-impaired people understand speech through eyes tteer than ears. For the rst
time the spectrograph was used for the analysis of speech suds, with the frequency
range being limited to 3.2 kHz, the upper limit of telephony [41]. Five normal hearing
and one hearing-impaired listeners participated in the prgect. After taking a series of
lectures on the spectrographs of isolated syllables and ctinuous speech, all the subjects
were successfully trained to read speech by simply lookingtahe spectrographs. A
shortcoming of this pioneering work is that the acoustic cus are identi ed from the
spectrographs by visual inspection. Sophisticated analyis of speech cues requires a
guantitative method in which the acoustic properties of a speech sound can be measured
accurately.

In the early 1950s, Liberman, Delattre, Cooper, and other rsearchers at the Haskins
Laboratories initiated a series of landmark studies on the aoustic cues of stop con-
sonants using synthetic speech.Playback a system that can synthesize speech from
spectrographs, was created for the purpose. Based on the spieographs of real speech,
it was postulated that burst and consonant-vowel transition, which correspond to the
\movement" from the locus to the steady state of the vowel, are the two critical vari-
ables for the percept of stop consonants. Two experiments we carried out to verify
the hypothesis. In the rst experiment [42], the e ects of th e burst and transition fre-
guencies on the percept of unvoiced stop consonants were istigated by a set of CVs
synthesized from 12 burst 7 F2 frequencies (refer to Fig. 1.2). Results showed that

most listeners heard /t/ when the burst frequency was greate than F2 in the vowel;



when the burst frequency was close to the F2 frequency, mosisteners reported /k/;

the rest were identi ed as /p/.

Figure 1.2: Stimulus patterns used in determining the e ect of burst position and
consonant-vowel transition frequency on the percept of theunvoiced stop consonants.
(A) Frequency positions of the twelve bursts of noise. (B) Frequency positions of the
formants of the two-formant vowels with which the bursts were paired. (C) An
example of the 84 \syllables" formed by pairing a burst of nose and a two-formant
vowel. From [42].

In a following experiment [43], they dropped the burst and examined the e ect of
transition only. The speech sounds were synthesized from twformants, a xed F1 and
an F2 of various transition types, including rising, constant, and falling, as depicted in
Fig. 1.3. Results indicated that stimuli with rising transi tion were identi ed as /b/,
those with F2 emanating from 1.8 kHz were associated with /d/, and those with a
falling transition were reported as /g/.

The work of Liberman et al. has had a big impact on speech study Ever since
then, speech synthesis has become a standard method for fea¢ analysis. The same
technigue was applied in the search for acoustic correlateof stops [44], fricatives [45,46],
and nasals [47{49].

Coarticulation: In conversational speech, the position of the articulator br one
sound is often assimilated with the movement of articulators for neighboring sounds.
As a consequence, the speech cussuccessive units of speech may overlap in timeThis
phenomenon is called coarticulation. In his 1952 study of amustic cues [42], Liberman

discovered that the burst frequency of the stop sound is dep®lent on the place of the



Figure 1.3: Synthetic two-formant speech stimuli used in déermining the relationship
between the pattern of F2 transition and the percept of placeof stop articulation.
From [43].

following vowel. Take the alveolar /g/ for example: the burst frequency of /ga/ is about
1kHz. In contrast, the burst frequency of /gi/ is around 4 kHz . Other studies on CVCs
indicate that the formant motion into and out of the stops mai ntains a symmetry. Most
of the time, the transitions into the stops mirror the transi tions out of them [50]. The
variability of the formants immediately after the burst sug gests articulatory movement
during the closure in anticipation of the next vowel. Because of the overlap of successive
phonemes, some people believe that it is counterproductivéo try to divide the speech
stream up into separate phoneme units in advance of identifing the units [34,51].
Context E ect: Speech perception is a complex process in that the integratn of
acoustic cues is governed by the high-level language compents, such as lexical, mor-
phological, syntactic, and semantic constraints. In a clasical experiment [52], Miller
investigated the e ect of grammatical restriction on word i ntelligibility. Sentences con-
taining ve key words were presented under the conditions ofvarious signal-to-noise
ratios. To measure the e ect of syntactic constraints, the key words from the sentences
were shu ed in sequence and compared to the normal cases. Rels indicated that
the removal of coherent sentential context signi cantly reduced the number of words
perceived correctly.

In another study [53], Warren played three sentences:
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It was found that the (h)eel was on the shoe

It was found that the (p)eel was on the orange

It was found that the (m)eel was on the table
with the phoneme in the brackets being replaced by a cough#e sound. Although the
listeners noticed the prominent intrusion of the sound rephcing the speech, they were
unable to detect that the phoneme was missing. The sentencesere perceived as if they
were perfectly intact. This is known as the phonemic restoréion e ect.

Savin and Bever [54] presented a sequence of nonsense sygbto the subjects
and asked them to respond as soon as they heard the target, a wke syllable (e.g.,
/ baeh’) or a phoneme (e.g., /a€) in a syllable. The listeners responded more slowly to
phonemes than to syllables, indicating that the bottom-up dructure (phonetic segments,
phonemes, syllables) is not always correct.

In a recent study, the in uence of linguistic background on speech perception was
investigated by Kazanina et al. [55], who compared the pergetual spaces, as re ected
in early auditory brain responses, of Russian and Korean spkers by using magne-
toencephalographic brain recordings. Results demonstr&d that a speaker's perceptual
space is shaped not only by bottom-up analysis of the distrilntion of the sounds in
his language but also by more abstract analysis of the functinal signi cance of those
sounds.

Temporal Cue: Apart from the aforementioned acoustic cues, which act as tk
primary source of information, there exist other types of speech cues as revealed by the
following studies. In 1981 Remez showed that traditional aoustic cues for phonetic
segments such as burst and transitions are not required forpeech perception [56]. A
three-tone sinusoidal replica, called Sine-Wave speechf a naturally produced utterance
that simulates the time-varying properties of the three formants is su cient to support
perception of the linguistic message.

To assess the contribution of temporal cues on speech recagon, Drullman et al.
[57,58] investigated the extent to which speech intelligiliity depends on the details in
the temporal envelope using Vocoder speech [59]. The speestgnal was decomposed
into several bands with the ne structure of frequency detai being destroyed. Only

the temporal envelope in each band was preserved. Results @l that listeners can
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only partially understand speech in quiet when the amplitude uctuations are limited
to 2 Hz; the performance improves as broader frequency bandse used. For envelope
cuto frequencies above 4 Hz, speech intelligibility is independent of the processing
bandwidth. Phoneme identi cation with nonsense syllablesshows that consonants are
more a ected by temporal smearing than vowels. Stops appeato su er most, due to
their short duration. Using a similar technique, Shannon etal. [60] showed that high
speech recognition performance can be achieved with only tee time-varying bands of
noise representing the complex spectral patterns of speech

In a recent study, Zeng investigated the relative contribution of amplitude modulation
(AM) and frequency modulation (FM) on three speech percepton tasks [61]: (1) speech
recognition with a competing voice; (2) speaker identi cation; (3) Mandarin tone recog-
nition. Comparison of the results of AM and FM processed stinuli with the original
unprocessed stimuli suggests that AM and FM provide indepedent yet complementary
contributions to support robust speech recognition under ealistic listening situations.
Visual Cue: Not only audio input, but also visual input contributes to sp eech
perception. In a classical study, McGurk et al. conducted a peech perception test with
audio-visual information [62]. It was observed that most listeners heard /da/ when the
sound /ba/ was presented with a synchronous video clip showig the lip movement of
/gal. Clearly the visual information also plays a role in the speech perception.
Articulatory Feature: In articulatory phonetics, a sub eld of linguistics, the ar tic-
ulatory features are created to characterize how humans prduce speech sounds, such
as vowels and consonants [63]. Place and manner form the two ajor types of articu-
latory features. The place of articulation|labial, dental , palatal, velar, for instance|
describes the position where the obstruction occurs in the @cal tract, while the manner
of articulation|stops, fricatives, approximant, aricat ive, for instance|describes how
the speech organs (lips, teeth, tongue) get involved in the geech production.
Distinctive Feature: In linguistics, distinctive features are the most basic unts
of phonological structure. The inherent distinctive features detected in the languages
of the world amount to twelve binary oppositions [22]: (1) vocalic/non-vocalic, (2)
consonantal/non-consonantal, (3) interrupted/continuant, (4) checked/unchecked, (5)

strident/mellow, (6) voiced/unvoiced, (7) compact/di us e, (8) grave/acute, (9) at/plain,
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(10) sharp/plain, (11) tense/lax, (12) nasal/oral. The mai n advantage of the distinc-
tive features is that they are su cient for de ning any phone me of most language.
Speech sounds of the same feature should have quantitativelthe same articulatory,
acoustic, and perceptive correlates independent of contéX41]. It must be noted that
the distinctive features are formulated for the distinction of phonemes rather than the
representation of speech sound.

Encouraged by the discovery of acoustic cues for stop consants, Jakobson proposed
an extensive use of distinctive features as the basis of spakeanalysis, such as production
and perception [22]. This work has had a big impact on the res@rch of speech percep-
tion. In the following decades, distinctive features, tog¢her with articulatory features
(motivated by the Motor Theory of speech perception), becane the basis for the anal-
ysis of perceptual data. Typical research questions inclue: Which feature carries the
most information? Which feature systems best represent thgerceptual space [64{68]?
Extensive e ort has been spent in the search for articulatory, acoustic, and perceptual
correlates of the universal distinctive features [16], wih little success. Most important
of all, without the addition of linguistically redundant informat ion the distinctive fea-
tures are too abstract to be the basis for the quantitative operations needed for speech
processing. As Fant, one of the three people who started thedea, puts it (page 18
in [41]): \The limitations of the preliminary study of Jakob son, Fant and Halle are that
the formulations are made for the bene t of linguistic theory rather than for engineering
or phonetic applications. Statements of the acoustic corriates to distinctive features
have been condensed to an extent where they retain merely a geralized abstraction
insu cient as a basis for the quantitative operations needed for practical applications.
It should also be remembered that most of the features are rational in character and

thus imply comparisons rather than absolute identi cation s."

1.2.3 Cochlear speech processing

The cochlea plays a vital role in speech perception. Once theochlea is damaged, our
ability to process speech in noise is seriously degraded. Ehmain functionalities of
the cochlea are to separate the input acoustic signal into aerlapping frequency bands,

and to compress the large acoustic intensity range into the mch smaller mechanical
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and electrical dynamic range of the inner hair cell. The audiory neurons then convert

the signal into neural spikes and send them to the central audory system. This is

a basic question of information processing by the ear. The &y plays a similar role
as a peripheral organ. It breaks the light image into rod and one sized pixels, as it
compresses the dynamic range of the visual signal. Based oihé intensity JND, the

corresponding visual dynamic range is about 9 to 10 orders ahagnitude of intensity,

while the ear has about 11 to 12 [69]. Neurons are low bandwititneural channels. The
stimulus has a relatively high information rate. The eye andthe ear must cope with
the bandwidth problem by reducing the stimulus to a large number of low bandwidth

signals. It is then the job of the cortex to piece these pixel gnals back together, to
reconstruct the world as we see and hear it.

Most sensorineural hearing loss can be attributed to the mdlnction of cochlear outer
hair cells (OHCs) and inner hair cells (IHCs). Damage to OHCsreduces the vibration
of the cell's cilia at the stimulus frequency, resulting in an elevated detection threshold.
Damage to the IHCs reduces the e ciency of mechanical-to-edctrical transduction, also
resulting in an elevated detection threshold. The audiomety con guration is not a good
indicator of the physiological nature of the hearing loss [§ speci cally, subjects with
OHC and IHC loss may show the same amount of shifting in hearig threshold, yet the
in uence of the two types of hearing loss on speech perceptiocan be very di erent.

It is well known that damage to \nerve cells" (i.e., OHCs) leads to a reduction of
dynamic range, a disorder clinically namedloudness recruitment Recruitment, the
most common form of neurosensory hearing loss, is best chart@rized as the reduction in
dynamic range. Recruitment results from outer hair cell damage. To successfully design
hearing aids that deal with the problem of recruitment, we need models to improve our
understanding of how the cochlea achieves its dynamic range. Given the observatns
shown here on speech events, we need to extend our primitivenderstanding of wide-
dynamic range compressioninto the time domain.

The loss of IHCs also has a serious impact on speech perceptjaas indicated by the
results of an elderly subject (AS) with moderate hearing los, who volunteered in our
pilot study of hearing-impaired speech perception. Due to acochlear dead region(an

extreme case of IHC loss [6]) from 2 to 3 kHz, where the percepal cues for /ka/ and
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/ga/ are located, AS cannot hear these two sounds with her lef ear. In contrast, her
right ear can hear /ka/ and /ga/ (with low accuracy), despite the fact that the two ears
have an almost identical hearing threshold. A consonant cofusion analysis shows that
more than 80% of the /ka/s are misinterpreted as /ta/, while a bout 60% of the /ga/s

are reported as /da/.

1.3 Thesis Outline

The goal of this thesis is to gain more insight into hearing-mpaired speech perception
and understand why people with hearing loss cannot understad noisy speech, so that
more advanced speech enhancing algorithms can be develop&ml compensate for it.
Based on the analysis of a large amount of speech perceptioratd, it is hypothesized
that HI listeners may have di culty with noisy speech because they cannot hear certain
sounds, for which the characteristic features are lost dued both noise and the hearing
loss. The distorted speech cues may reduce the HI listenerbinaural processing ability
and make it di cult to attend to one talker in the case of a cock tail party environment.
Thus the corrupted speech can be enhanced by selectively bsting the acoustic features.
To explore the hypothesis, the following tasks are addresskesequentially.

Chapter 2  evaluates the validity of the multi-band product rule of fre quency inte-
gration for consonant recognition, a basic assumption of Aticulation Index (Al) theory
and its extension, the Speech Intelligibility Index (SIl). A speech perception test us-
ing high-pass and low-pass Itered nonsense syllables as ¢hstimuli was conducted to
investigate the validity of the band-independence assumgbn for individual consonant
sounds. The cuto frequencies were chosen such that the bdar membrane was evenly
divided into 12 segments from 250 Hz to 8000 Hz with the high-pss and low-pass lters
sharing the same six cuto frequencies, in the middle frequacy range.

Chapter 3  determines the perceptual cues of consonant sounds by usimpsychoa-
coustic methods. To measure the time-frequency importancéunction of the consonant
sounds, speech stimuli (16 nonsense CVs from the LDC-200538atabase) are high-pass
or low-pass ltered and time-truncated before being preseted to normal hearing (NH)
listeners. Databases of speech perception under various &\tonditions are constructed

to investigate the e ect of noise on speech recognition. TheAl-gram, a visualization
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tool that simulates the auditory peripheral processing, isused for the audible part of
the speech events under various SNR conditions.

Chapter 4 investigates the impact of sensorineural hearing loss on ogonant iden-
ti cation. A perception test of noisy speech is applied to identify the di cult speech
sounds for the hearing impaired listeners. Pure tone audiomtry (PTA), threshold
equalized noise (TEN) and psychoacoustic tuning curve (PTQ tests are used to char-
acterize the sensorineural hearing loss. An extended spdetanana that accounts for
the e ect of steady-state masking noise is developed to nd at the correlation between
the hearing loss and the intelligibility of individual consonants.

Chapter 5 explores the potential use of prior knowledge about speechues, as
identi ed in Chapter 3, in speech processing. It was found that natural speech sounds
contain con icting speech cues that are characteristic of onfusable sounds. Through
the manipulation of these acoustic cues, one phone (a consant or vowel) can be
morphed into another; a weak sound, easily masked by noisean be converted into a
strong one. The fact that the percept of nonsense syllablesyords and sentences can be
convincingly changed by playing with the perceptual cues imdicates that the identi ed
speech cues are indeed the basic units for speech perceptioh small speech perception
experiment using feature-enhanced speech sounds as themstili is conducted on a few
normal hearing and hearing impaired listeners.

Chapter 6 summarizes the problems encountered, their solutions, andhe contri-

butions of the thesis.
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CHAPTER 2

MULTIBAND PRODUCT RULE OF FEATURE
INTEGRATION AND CONSONANT IDENTIFICATION

The multiband product rule, also known as band-independene, is a basic assumption
of the Articulation Index (Al) and its extension, the Speech Intelligibility Index (SII).
Previously Fletcher showed its validity for a balanced mix d CV (20%), VC (20%) and
CVC (60%) sounds. This study repeats Miller and Nicely's vesion of the hi/lo-pass
experiment with minor changes to study band-independencedr the 16 Miller-Nicely
consonants. The cuto frequencies are chosen such that thedsilar membrane is evenly
divided into 12 segments from 250 Hz to 8000 Hz with the highpss and lowpass lters
sharing the same six cuto frequencies in the middle. Resuls show that the multiband
product rule is statistically true for consonants on averag. It also applies to subgroups
of consonants, such as stops and fricatives, which are chasterized by a at distribution

of speech cues along the frequency. It fails for individual @nsonants.

2.1 Introduction

A fundamental problem of human speech perception is how the liman auditory system
integrates speech cues across frequency. The most relevattdy on this topic dates back
to the 1920s, when Fletcher and his colleagues at Bell Labs we investigating speech
articulation over voice communication systems [70]. Lowpas and highpass Itered
nonsense syllables were used for the study of phone recogoit. They found that the

average phone error of the full-band stimulie is equal to the product of the error of the
lowpass ltered stimuli ¢ and the error of the complimentary highpass Itered stimuli

eq, that is,

e=-e ey (2.1)
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In other words, the lowpass band and the highpass band are caistent with the assump-
tion that the low band and high band are independent. Equation (2.1) was generalized

into a multiple band form [14,70, 71]

ez el (2.2)

The number of independent articulation bands is generally aiken to be K = 20, which
makes each band correspond to about 1 mm along the basilar méirane [71].

Let s denote the average phone articulation (i.e., the probabiliy of the nonsense
phones being correctly recognized); then the articulationerror e = 1 s, and the

articulation band error e =1 s;...etc. Given Eq. (2.2),

X
log(l s)= log(1 sk): (2.3)
k=1

Notice that log(l si) is similar to the de nition of entropy [72], and thus may
be interpreted as the information carried by the kth band [14, 71]. Equation (2.3)
strongly suggests that the human speech recognition systenconsists of at leastK
parallel channels and that the total information is equal to the sum over the information
in the K articulation bands. This relation may also be called the additivity law of
frequency integration. It is the foundation of the two ANSI standards, Articulatio n
Index (Al) [73] and more recently Speech Intelligibility In dex (SlI) [74].

Based on the assumption of independent articulation bandsfrench and Steinberg
developed a method for calculation of Al based on the intensgy of the long-term aver-
age speech and noise [15]. Following the veri cation by Benaek [75] and Kryter [76],
French and Steinberg's method became an ANSI standard in 1% Then in 1970-1980
Steeneken and Houtgast extended the Al to the Speech Transresion Index (STI) by
introducing a modulation transfer function (MTF) to account for reverberation and
peak clipping [77]. The original Al was developed for the useof normal hearing lis-
teners. Later it was extended to estimate speech intelligibity for hearing-impaired
listener [78{81], resulting in a new ANSI standard named theSpeech Intelligibility In-
dex (SlI). All the three models|Al, STI, and Sll|are based on  the same Fletcher-Galt

assumption that the total articulation is the sum of the cont ribution from multiple in-
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dependent narrow bands.

Despite its importance to the widely used articulation modds, the validity of the
multiband product rule (Eq. (2.2)) has actually been a key open question [82]. For
example, Kryter [83] showed that Al was a valid predictor of the intelligibility of speech
under a wide variety of conditions of noise masking and speécdistortion except for
the cases of three non-contiguous pass bands at 0{600 Hz, X¥@400 Hz, and 4800{
9600 Hz. Grant and Braida [84] found that the predicted Al based on the sum of the
Als from individual bands was greater than the observed Al by approximately 18% for
adjacent 1/3-oct bands, while the Al predicted for combinations of non-adjacent bands
was less than the observed Al by approximately 41%. Lippmann85] also found that
the stop-band data did not agree with Al calculation. In 2001 Masch and Buus coined
two new terms| synergistic and redundant interaction between neighboring bands to
explain why the Al under- or overestimate the wideband error, compared to the product
of the errors associated with the narrow bands [86,87]. It ha been conjectured that a
revised model that accounts for the mutual dependency betwen adjacent bands might
give a better prediction [88]. In a recent study, Ronan et al.[89] compared several
frequency integration models for the prediction of individual consonant articulation
score, for narrow-band cases. Results indicated that Fletrer's product rule (Eq. (2.2))
made satisfactory predictions under various combinationsof adjacent and non-adjacent
narrow-band speech, except for the case of multiple high-équency narrow bands, for
which none of the evaluated methods are satisfactory. Invaggation of Sll [90] also
found that it greatly over-predicted performance at high sensation levels, and under-
predicted performance at low sensation levels for many hearg-impaired listeners. The
information contained in each frequency band is not strictly additive.

In 1955, Miller and Nicely (MN55) repeated Fletcher and Galt's highpass and lowpass
Itering experiment [64] for the analysis of perceptual corfusion. The speech stimuli
include 16 consonant sounds,p, t, k, f, T, s, S, b, d, g, v, D, z, Z, m,/nspoken initially
before the vowel /a/. Using the data from experiment MN55, we checked the validity
of Fletcher's product rule (Eq. (2.1)). Results show that the model applies to the
consonants on average, despite that it over-predicts the filtband error by 10%. We

then plotted the product of e and ey against the full-band error e for each of the 16
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consonant sounds. To our surprise, more than half of the cormmant sounds, speci cally,
/p, k, f, S, b, d, g, Z, m, h show only small discrepancy.

Designed for the purpose of confusion analysis, the MN55 datis unsuitable for the
study of the multiband product rule, for several reasons. Fist, the frequency samples are
limited. Only six lowpass and ve highpass conditions are ircluded; in contrast, Fletcher
and French and Steinberg suggestedK = 20 frequency points. Second, the cuto
frequencies are not evenly distributed along the e ective ange of speech communication.
Four out of six lowpass samples are below 1.5 kHz, with only amhighpass sample within
the same frequency range. Interpolation between data poirg introduces signi cant
error.

In the present study we investigate the validity of the multi band product rule for
consonant sounds. The product rule is evaluated on three lels: (1) 16 consonants
on average; (2) subgroups such as stops and fricatives; (3hdividual consonants. A
computer-based highpass and lowpass experiment, named HEZQis designed for this
purpose. The new experiment utilizes the same 16 consonanibgnds as experiment
MN55. To address the problems listed above, the cut-o freqeencies were chosen such
that the basilar membrane is evenly divided into 12 bands ove the frequency range of
[250 Hz, 8000 Hz], with the lowpass and highpass lters sharng the same six cut-o

frequencies in the mid-frequency range.

2.2 Methods

2.2.1 Subjects

Nineteen normal hearing subjects were enrolled in the exp@nent, of which 6 male and
12 female listeners completed. Except for one subject in het0s, all the subjects were
college students in their 20s. The subjects were born in the LS. with English being
their rst language. All subjects were paid for their partic ipation. Approval by the
University of lllinois Institutional Review Board was obta ined for the experiment. In
order to make sure that all the data are of high quality, the performances of the listeners
were assessed by their average recognition score. Those whed abnormally low scores

will be excluded for further analysis. In experiment HLO7, no subject has been removed
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for that reason.

2.2.2 Speech stimuli

The same 16 nonsense CVs used by Miller Nicely (1955) were cen. A subset of
wide-band syllables sampled at 16,000 Hz were taken from theDC-2005S22 corpus.
Each CV was spoken by 20 talkers, among which only 6 utterancg half male and half
female, were nally chosen for the test, to reduce the total duration of the experiment.

The 6 utterances were selected such that they were represeitve of the speech material
in terms of confusion patterns and articulation score basedn the results of a similar
speech perception experiment [91]. The speech sounds wereepented to both ears of
the subjects at the listener's most comfortable level (MCL), but always less than 80 dB

SPL.

2.2.3 Conditions

The subjects were tested under 19 Itering conditions, incuding one full-band (250{
8000 Hz), nine highpass and nine lowpass conditions. The cwd frequencies were
calculated from Greenwood inverse cochlear map function B such that the full-band
frequency range from 0.25 kHz to 8 kHz was divided into 12 bansl corresponding to
equal length along the basilar membrane. Figure 2.1 illustates the frequency samples
and the corresponding distances from the base on the human lsdar membrane. The
cut-o frequencies of the highpass Itering were 6185, 47753678, 2826, 2164, 1649,
1250, 939, and 697 Hz, with the upper limit at 8000 Hz. The cute frequencies of the
lowpass Iter were 3678, 2826, 2164, 1649, 1250, 939, 69795@nd 363 Hz, with a lower
limit at 250 Hz. The highpass and lowpass ltering shared thesame cut-o frequencies
over the middle frequency range that contains most of the spech information. The
lters were 6™ order elliptical Iters with 0.02 dB of peak-to-peak ripple and a stop-
band attenuation of -60 dB. To make the Itered speech sound nore natural and to
mask the stop bands, white noise was used to mask the stimulitahe signal-to-noise

ratio of 12 dB, based on the average speech spectra of the 96 maense syllables.
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Figure 2.1: Highpass and lowpass cuto frequencies of expenent HLO7.

2.2.4 Procedure

The speech perception experiment was conducted in a sound-gof booth. A Matlab

code was developed for the collection of the data. Speech stuli were presented to the
listeners through Sennheisser HD 280-pro headphones. Swujs responded by clicking
on the button labeled with the CV that they heard. In case the speech was completely
masked by the noise, or the processed token did not sound likeny of the 16 consonants,
the subjects were instructed to click on a \Noise Only" button. A total of 2208 tokens

were randomized and divided into 16 sessions, each of whichdted for about 15 min. A
mandatory practice session of 60 tokens was given at the begiing of the experiment.

To prevent fatigue, the subjects were instructed to take frequent breaks. The subjects
were allowed to play each token up to 3 times. At the end of eaclsession, the subject's
test score, together with the average score of all listenersvas shown to the listener to

provide feedback on their relative progress, as motivation

2.2.5 Dierence between HLO7 and MN55

Although experiment HLO7 can be regarded as a repeat of the MB5 study, the two
experiments are distinguished in several important aspe&. First, the subjects dier
in gender and pro ciency. In MN55, ve extensively trained female subjects served
as both talkers and listening crew. This introduced a \couping" e ect between the
talkers and the listeners, as well as an awareness of the ré¢iee di culty of the sounds.

In HLO7 we use recorded speech prepared by 10 male and 8 femaéddkers from the
LDC database. All the 18 subjects (6 male and 12 female) are rige listeners without

any experience in speech perception tests. Second, the neitevels are di erent. Both
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experiments use white noise at 12 dB SNR. However, in experient MN55 the speech
level was controlled by a VU meter [93] which measures the speh peaks, while in
experiment HLO7 the noisy speech was created by setting the RS level of the speech
and noise. Thus 12 dB SNR in MN55 is about the same as 14 dB SNR iRILO7 [93].
As a consequence, the fullband error of MN55 is about 12% lowehan that of HLO7.
Third, the Itering conditions are di erent. In MN55 the ful |band speech was created by
a wide-band lIter of 0.2{6.5 kHz, and then the distorted speech was created by ltering
the fullband speech with a lowpass cuto frequency of 0.3, &4, 0.6, 1.2, 2.5, 5 kHz and
a highpass cuto frequency of 0.2, 1.0, 2.0, 2.5, 3.0, 4.5 kHzln contrast, the fullband
speech in HLO7 goes to 8 kHz. The loss of information from 6.5Hz to 8 kHz accounts
well for the over-prediction of MN55 in the high frequency. Fourth, the test platforms
are dierent. Data collection in MN55 was paper-based. The Isteners were told to
choose a response from the 16 nonsense CVs and write it down dine answer sheet
within seconds following the presentation. The HLO7 expennent is computer-based.
No limit is applied for the responding time. Subjects were alowed to play each sound
up to three times. In case the subjects could not tell which sand is presented, a \Noise

Only" button was added.

2.2.6 Data analysis

The validity of the Fletcher's product rule (Eq. (2.1)) is in vestigated for average speech
and individual consonants. The probability of error of a token (an utterance Itered
at a frequency) is de ned as the number of mislabeled respors divided by the total
number of presentations. The mean error of a consonant is th@verage over the six
tokens pronounced by di erent talkers. Similarly, the tota | error of average speech can
be calculated by averaging the errors of the 16 consonants. of both average speech
and individual consonants, the tness of the model to the da@l is evaluated in terms
of average biasB (fc) and ?(f.) computed from the error of all listeners. The average

bias is given by

B(f)=e e ey (2.4)
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wheree. ey and e are the model error and observed error at a cuto frequencyf .

The chi-square statistic is

(A e e) (@1 e)]2+N[e e eyl?

205\ —
fo)= N
(fo 1 e ey e ey

(2.5)

whereN is the total number of presentations for the particular condition. The quantities
(1 e ey)and (1l e arethe predicted and observed scores. A signi cance levdthe
probability of this result not being due to chance) of 0.05 ischosen as the threshold
of the chi-square test. A value of 2 greater than the threshold indicates that the
measurements do not satisfy Eq. (2.1) at that condition, wheeas when 2 is less than
the threshold of signi cance, the Fletcher's product rule can be regarded as true.

The above analysis is carried out by treating the 18 listenes as an average normal
listener. In order to determine if the same conclusion appks to any individual listener,
a one-way ANOVA test is applied to the e e ey of dierent listeners following
each 2 test. Due to the small number of responses, the 16 sessionseacombined into
4 repeats, 4 sessions each. Lé&; denote the bias ofeg. ey against e for subject i,
and Bj; denote the bias of repeat] from subjecti. Assuming that B; has a Gaussian
distribution N (by; ), where iy is the mean of B;, we can compare the mean of the
various listeners by testing the hypothesis that they all have the same bias, against the
general alternative that they are not all the same. If no two listeners are signi cantly
di erent, we may conclude that the conclusion based on the agerage normal listener is

applicable to any individual listener.

2.3 Results

2.3.1 Multiband product rule for 16 consonants on average

Results indicate that the multiband product rule closely t s the recognition scores
averaged over the 16 consonants. Figure 2.2(b) depicts theWwpass errore_, the highpass
error ey, and their product as a function of cuto frequency. The full band error e is
equal to the lowpass errore. at 8000 Hz and the highpass errorey at 250 Hz. The

intermediate points of lowpass and highpass error are linedy interpolated from the
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nearest neighboring points. The average bia® = e e ey is depicted by the shaded
area. Supposing that the product rule is true, the shaded ara would be zero. It is
shown in Fig. 2.2(a) that the di erence between e ey and the fullband error e is
typically less than 3%, which is very close to zero.

Figure 2.2(b) depicts the results of experiment MN55 [64]. Fetcher's product rule
over-predicts the fullband error over most frequencies forMN55, but still the mea-
surements t the model with reasonable accuracy. Since thedwpass and the highpass
conditions do not use the same set of cuto frequencies, theowpass errore. and high-
pass errorey are linearly interpolated along the frequency to create thee, ey curve,

which introduces extra error in the prediction.
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Figure 2.2: Grand probability of error and the average biasB = e ¢ ey for 16
consonants as a function of cuto frequency. Figure (a) show the average lowpass
error e_ (circles), the average highpass erroey (squares), and the product of the two
e ey (thick dashed) for experiment HLO7. The fullband error e is de ned as e_
(fc=8000 Hz) or ey (f.=250 Hz). The average biasB is depicted by the shaded area.
Figure (b) shows the same data from experiment MN55, in whichthe fullband error e
is de ned as e_ (f.=6500 Hz) or ey (f.=200 Hz). Note the log ordinate scale, which
makes the gures easily read, actually magni es the bias visially.

For both experiments, the intersection points of the lowpas and highpass curves that
divide the full band into two parts of equal information are about the same (1.5 kHz
or 18 mm). The log lowpass errore. and highpass errorey have been tted by two

straight lines that are symmetrical at the intersection point. This means the speech
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information is evenly distributed across frequency. A sigmcant di erence between the
results of MN55 and HLO7 lies in that the former has a maximum aerage biasB of
8.02%, which is considerably smaller than that of HLO7 (21.8%). This might be due
to the aforementioned coupling e ect between the talkers aml the listeners in experi-
ment MN55, which makes the task relatively easy. Apart from that, the results of the
two experiments are generally consistent. Due to the expemental design, experiment
HLO7 has better precision (smaller bias) than experiment MNb5, as we seen in Fig. 2.2.
Therefore, in the following sections, we will focus on analging the perceptual data of

our experiment HLO7.

Table 2.1: The average bias of 16 consonants on average in eqgment HLO7 for
various cuto frequencies.

Frequency (Hz) 363 509 697 939 1250 1649 2164 2826 3678 4775 6185
B=e e e |-19 -26 -18 13 -31 -12 25 13 0.8 1.7 0.3

Table 2.1 lists the average bias of the predicted score (theasne data is depicted in
Fig. 2.2(a) as the shaded area). The results of the 2 tests indicate that e , ey and
e are consistent with the Fletcher's product rule at all frequencies. An ANOVA test
indicates that the di erences between the 18 listeners are do small to be statistically
signi cant at the level of 0.05. The discrepancy between thebiases of any individual
listeners and the overall average bias is generally less théb%. Therefore the 18 listeners
of normal hearing can be regarded as having the same bias e ey independent
of cuto frequencies. Thus Fletcher's product rule may be applied to any individual

normal hearing listener.

2.3.2 Multiband product rule for stops and fricatives

Analysis of the perceptual data indicates that the multiband product rule applies to the
stops and fricatives as well. Figure 2.3(a) depicts the aveage lowpass error,_, average
highpass errorey and the product of the two . ey for the six stop consonants (fpa,
ka, ta, ba, ga, da). The average biasB = e e ey, as depicted by the shaded area,
is rather small. The highpass error and the lowpass error cres each other at about 1.5
kHz, which is about the same position (18 mm) as the weight of he 16 consonants on

average. The logarithms ofe. and ey are well approximated by straight lines having
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complementary but identical slopes.

The results for the eight fricative consonants (/fa, Ta, sa, Sa, va, Da, za, /Yare
depicted in Fig. 2.3(b). The average biasB is almost at with the maximum prediction
error being less than 3%. Like the case of average consonangs (f¢) and ey (f¢) have
near constant equal slopes of opposite sign when the two cueg are plotted on log scales,

suggesting that the fricative information is evenly distributed across the frequency range.
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Figure 2.3: Average probability of error and the average biaB = e ¢ ey for
stops (/pa, ka, ta, ba, ga, dd) and fricatives (/ fa, Ta, sa, Sa, va, Da, za,/fas a
function of cuto frequency. Figure (a) shows the average lovpass errore_ (circles),
the grand highpass errorey (squares), and the product of the twoe. ey (thick
dashed) for stops. The average biaB = e e ey is the shaded area. Figure (b)
shows the same results for the fricatives.

Table 2.2 lists the average biasB for the two sound groups at various cuto frequen-
cies. All values satisfy the 2 test at a signi cance level of 0.05. An ANOVA test shows

no signi cant di erence between the results of the 18 listerers.

Table 2.2: The average bias of stops and fricatives in expament HLO7 for various
cuto frequencies.

Frequency (Hz)

subgroup | 363 509 697 939 1250 1649 2164 2826 3678 4775 6185
stops -1.1 -20 -20 20 -15 -01 6.6 35 0.1 0.9 0.5

fricatives | -21 -15 -02 29 15 -04 -16 -20 03 0.8 -1.5
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2.3.3 Multiband product rule for individual consonants

Analysis of our HLO7 data reveals that Fletcher's product rule applies to the 16 conso-
nants over limited frequencies for about 80% of the cases (C¥ Frequencies). Figure 2.4
depicts the lowpass errore_, highpass errorey and the product of the two ¢ ey for

the 16 consonants. Based on the shape & ey, the 16 consonants can be roughly
classi ed into at and non- at groups. The at group include s /pa, ka/ and / Sa, da,
ma, na, za, ga, sa, fa, v for which the prediction error ¢  eq e s less than 5%
over all frequencies, or less than 5% for most of the cuto frguencies. The rest of the

consonant sounds, ta, ba, Za, Ta, Diaform the biased (non- at) group.
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Figure 2.4: Probability of error for 16 consonants as a fundbn of cuto frequency.
The lowpass errore, (f ) and the highpass errorey (f ) are marked by circles and
squares respectively. The dashed curve depicts the produdif the two e, eq. The
fullband error eis equal toe_ (f. =8000 Hz) or ey (f. =250 Hz). The bias
B(fc)= e e ey isillustrated by the shaded area. The IPA symbols for Ta, Sa,
Da, Za are /Ta, Sa, Da, Zaespectively.

Table 2.3 lists the average bias of the predicted score (theasne data is depicted in
Fig. 2.4 as the shaded area). A ? test of signi cance level 0.05 was applied to each of
the 16 consonants. A total of 136 out of 176 cases (16 CVsl1l Frequencies) statistically

satisfy Fletcher's product rule at a signi cance level of 005. Only two consonants /pa,
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ka/ passed the 2 test over all frequencies. Most of the unsatis ed cases comiom the

biased group, such as ta, ba, Da, Z§ for which the fall rate is 50%.

Table 2.3: The average biases of 16 consonant sounds in exjmeent HLO7 for various
cuto frequencies. Cases for which the ? test was statistically signi cant at the 0.05
level are marked with an asterisk.

Frequency (Hz)

Ccv 363 509 697 939 1250 1649 2164 2826 3678 4775 6185
pa 0.3 1.0 0.2 -0.1 -0.1 25 0.9 1.0 -1.0 -0.7  -04
ka 0.2 0.2 0.5 2.1 3.1 0.1 3.1 -0.2 1.5 1.2 0.7
Sa 0.7 1.7 3.0 0.9 6.8* 5.6* 2.8 -0.3 1.2 14 0.8
da -0.3 -1.1 -1.3 25 15 0.3 7.5* 2.8 -2.3 -1.7  -0.9
ma 0.2 -1.8 -3.3* 52 -5.1 -1.0 1.4 -0.7 -0.5 0.0 0.0
na 2.4 4.8* 8.0* 4.0* 1.6 0.0 0.6 0.0 0.0 0.0 0.0
za -1.4 -1.7 -35 -4.3* -35 -1.4 7.0* 7.7* 2.0 22 -2.6
ga 2.8 4.7 8.6* 11.8* -2.6 -3.0 1.9 -2.2 55 4.9 3.4
sa 0.1 -0.4 0.8 0.1 -0.4 0.2 2.8 5.4 -5.7 -7.9*  -7.0%
fa 0.8 0.4 -3.6 -1.0 1.0 -2.6 -7.9* 0.7 6.7 4.8 2.4
va -5.1 -1.5 33 -104* -98* -23 -0.9 -3.7 4.9 5.2 3.6
ta 0.2 04 0.8 0.9 7.8* 8.3* 16.1* 15.1* 6.5+ 6.5+ 3.9*
ba | -10.5* -11.9* -13.6* -81 -16.0r -0.4 55 2.6 -1.4 -0.7 -04
Za -5.3 -5.2 -6.5 0.7 -84  -129* -17.3* -22.0* -132* -36 -21
Ta | -15.5* -8.0 6.5 14.2* 55 1.8 3.7 5.5 -4.9 -0.7 0.0
Da| -1.7 -108* -1.1 11.8* 9.9* 3.8 10.5* 7.6 14.7* 10.6* 5.5

An ANOVA test was used to investigate the listener's dependace. Since the number
of tokens per CV Frequency for each listener is only six, a number too small foa useful
statistical test, the 18 listeners are ranked according to heir speech recognition scores
and arti cially divided into three groups. The top six are at tributed to the H group.
The middle six are attributed to the M group. The lower six are classi ed as the L
group. For 173 out of 176 combinations (16 CV 11 Frequency) ANOVA tests produce
the same result that the H, M, and L groups are not signi cantly di erent in terms of
the average bias per CV Frequency. In other words, the three groups of listeners are
close to each other in terms of the tness to the multiband product rule.

The perceptual data provide important information on the perceptual cues for the
initial consonants. Usually the primary cue of a consonant $ located around the in-
tersection point of e and ey, which divides the full band into two parts having equal
information (e.g., score). When the primary speech cue is maoved, the error climbs

dramatically [94].
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2.4 General Discussion

In Section 2.3.1, we demonstrated that Fletcher's product ule (Eq. (2.1)) is true for
the average consonants at all cuto frequencies. This can beegarded as a signi cant
veri cation of the multiband product rule of frequency inte gration (Eq. (2.2)). Suppose
that Eqg. (2.2) is a consequence of the fact that the frequencyands by, associated with
e, are independent in terms of speech perception. A strict prof would require a speech
perception test that actually measures the 20 narrow-band ecognition scores. This is
totally impractical for K = 20, as it would require 20! = 2:5 10'® tests.

If we look at the real perceptual data (Fig. 2.2(a)), it actually provides much more
information. The logarithms of both e and ey can be closely tted by two lines
symmetrical across the intersection point of the two curves This clearly indicates that:
(1) The speech information is evenly distributed across therequency, as independently
measured by both lowpass and highpass tests. (2) The artication bands are additive
in log error in speech perception. Similar results are obseed for the two groups of
stops and fricatives (Fig. 2.3(a) and (b))

Based on the observation, it is conjectured that the multiband product rule is a com-
bined property of the peripheral auditory system that has multiple independent parallel
channels, and that the input speech stimuli are characteried by a at distribution of
speech cues along the basilar membrane. It does not apply tadividual consonants be-
cause the distribution of speech cues is not at. Due to the a piori dependence between
the speech cues, sometimes the highpass and lowpass erros bt t the model. For
example, when the primary cue of a sound covers more than oneahd, the product of
the lowpass and highpass erroe. ey may be lower or higher than fullband error e, due
to the fact that the bands neighboring the cuto frequency are not really independent.
To fully understand the interactions between the speech cug and to explain why the

multiband product rule fails at certain points require know ledge of the speech features.

2.5 Conclusion

The multiband product rule of frequency integration is an empirical formula justi ed

by the two properties about speech and hearing, speci cally(1) the speech information
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is evenly distributed across the frequency, and (2) the audbory critical bands are inde-
pendent in terms of speech perception. Results of our expeanient HLO7 show that the
multiband product rule is statistically true for consonant s on average. It may also apply
to subgroups of consonant sounds, such as stops and fricaéig, that are characterized by
a at distribution of speech cues along the frequency. It fals for individual consonants,

as expected.
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CHAPTER 3

PERCEPTUAL CUES OF CONSONANT SOUNDS IN
NATURAL SPEECH

Synthetic speech has been widely used in the study of speecheas. A disadvantage of this
method is that it requires prior knowledge about the cues to ke identi ed. Incomplete
or inaccurate hypotheses about the cues often lead to speedounds of low quality. In
this research, a 3D Deep Search (3DDS) is developed to expkthe perceptual cues of
stop consonants from naturally produced speech. For a giversound, it measures the
contribution of each sub-component to perception by time truncating, highpass/lowpass
Itering, or masking the speech with white noise. Al-gram, a visualization tool that
simulates the auditory peripheral processing, is used to mdict the audible components
of the speech sound. Results show that the stop consonants erde ned by a short
duration burst characterized by its center frequency and tre delay to the onset of voicing.
Further analysis reveals that the robustness of a consonansound is determined by the

strength of its dominant cue.

3.1 Introduction

Speech sounds are characterized by time-varying spectralgtterns called acoustic cues.
When a speech wave propagates on the basilar membrane (BM)t creates perceptual
cues, namecdevents which de ne the basic units for speech perception. The reldonship
between the acoustic cues and perceptual units has been a kegsearch problem for
speech perception [14, 95, 96].

Bell Labs (1940): The rst search for acoustic cues dates back to the 1940s at
Bell Labs, when [40] began theirvisible speechproject, with the goal of training the
hearing-impaired to read spectrograms. Five normal hearig (NH) and one hearing-
impaired (HI) listeners participated in the study. Followi ng a series of lectures on the

spectrograph and its use on isolated syllables and continug speech, the subjects were
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successfully trained to \read" speech spectrographs. Everthough the acoustic cues
identi ed by visual inspection were not very accurate, this pioneering work laid a solid
foundation for subsequent quantitative analysis.

Haskins Laboratories (1950): In the 1950s researchers at the Haskins Laborato-
ries conducted a series of landmark studies on the acoustiaues of consonant sounds.
A speech synthesis system called th@attern Playback was created to convert a spec-
trograph into (low quality) speech sound. Based on the speabgraphs of real speech,
it was postulated that stop consonants are characterized byan initial burst, followed
by a consonant-vowel transition. In [42], the authors invesigated the e ect of center
frequencies of the burst and the second formant (k) transition on the percept of un-
voiced stop consonants by using a set of \nonsense" syntheticonsonant-vowel (CV)
speech sounds synthesized from 12 bursts followed by sevepn t6ermant frequencies. The
subjects were instructed to identify the stimulus as /p/, /t / or /k/ (a closed-set task).
Results show that most people hear /t/ when the burst-frequency is higher than the F;
frequency; when the two frequencies are close, most listereereport /k/; otherwise they
hear /p/. In a following study [43], the authors dropped the burst and examined the
e ect of F, transition only on the percept of stop consonants. It was found that stimuli
with rising F » transition were identi ed as /b/; those with F , emanating from 1.8 kHz
were associated with /d/; and those with a falling transitio n were reported as /g/.

Follow-up studies (1960-90): The study of Liberman et al. has had a major
impact on the research of speech perception. Since their stly, speech synthesis has
become a standard method for feature analysis. It was used ithe search for acoustic
correlates for stops [44], fricatives [45, 46], nasals [449], as well as distinctive and
articulatory features [16, 25, 97]. A similar approach was &ken by [56] to generate
highly unintelligible \sine-wave" speech; the study concluded that the traditional cues,
such as bursts and transitions, are not required for speech grception. More recently,
Alwan applied the same method in modeling speech perceptiom noise [98].

The argument in favor of this method is that the features can ke carefully controlled.
However, the major disadvantage of synthetic speech is thait requires prior knowledge
of the cues being sought. Thus, incomplete and inaccurate kswledge about the acous-

tic cues has often led to synthetic speech of low quality, andsuch speech sounds are
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commonly unnatural and barely intelligible, which by itself is strong evidence that the
critical cues for the perception of target speech sound areqorly represented. For those
cases, a fair question is:How close are the synthetic speech cues to those of natural
speech? Another key issue is thevariability of natural speech, which depends on the
talker [99], accent, masking noise, etc., most of which are &l beyond the reach of the
state-of-the-art speech synthesis technology. To answerugstions such as why /ba/s
from some of the talkers are confused with /va/, while othersare confused with /ga/,

or what makes one speech sound more robust to noise than anah it is critical to
study the acoustic cues of naturally produced speech, rathrethan those of arti cially
synthesized speech.

This chapter describes a psychoacoustic method for isolaig speech cues from natural
consonant-vowel (CV) speech. Rather than making assumptios about the cues to
be identi ed, natural speech is modi ed by (1) adding noise d variable degrees, (2)
truncation of the speech from the onset, and (3) high and lowpss Itering the speech
with variable cuto frequencies. For each modi cation of th e speech, the identi cation
of the sound is judged by a large panel of listeners. We then alyze the results to
determine where in time and frequency, and at what signal-tenoise ratio (SNR), the
speech identity has been masked. In this way we triangulate o the location of the

speech cues and the events, along the three dimensions.

3.2 Event Identi cation

The cochlea is a nonlinear spectrum analyzer. Once a speechund reaches the cochlea,
it is represented by time-varying energy patterns across tle basilar membrane (BM).
A small subset of the patterns contribute to speech recognibn. The purpose of event

identi cation is to isolate this small speci c feature subset.

3.2.1 Modeling speech reception

The cochlea decomposes each sound through an array of ovesfging nonlinear (com-
pressive), narrow-band critical Iters, splayed out along the BM, with the base and the

apex of BM being tuned to the high frequency (20 kHz) and low fequency (20 Hz),
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respectively [69]. Once a speech sound reaches the inner giiis represented by a time-
varying response pattern along the BM, of which some of the so-components contribute
to speech recognition, while others do not. Many componentare masked by the highly
nonlinear forward-spread [18, 19] and upward-spread of m&sg [69]. The purpose of
event identi cation is to isolate the speci ¢ parts of the psychoacoustic representation
that are required for each consonant's identi cation [94].

To better understand how speech sounds are represented ondlBM, the Al-gram is
used. This construction is awhat-you-see-is-what-you-hear(WYSIWYH, IPA: / wAsi-
WALN) signal processing auditory model tool, to visualize audble speech components
[94,100]. TheAl-gram is thus called due to its estimation of the speech audibilityvia
Fletcher's Articulation Index (Al) model of speech perception [71,95]. The Al-gram
tool, rst published by [94], crudely simulates audibility using an auditory peripheral

processing (a linear Fletcher-like critical band Iter-bank).

The Al Model

Fletcher's Al model is an objective appraisal criterion of peech audibility. The basic
concept of Al is that any narrow band of speech frequencies cees a contribution to
the total index, which is independent of the other bands with which it is associated and
that the total contribution of all bands is the sum of the cont ribution of the separate
bands.

Based on the work of speech articulation over communicatiorsystems [14,70], French
and Steinberg developed a method for the calculation of Al [B].

X

1
Al (SNR)= = Al (3.1)
k=1

where Al i is the speci ¢ Al for the kth articulation band [76,96], and
1 5
Al , = min( §Ioglo(l + ?snrd); 1) (3.2)
where snry is the speech-to-noise root-mean-squared (RMS) ratio in te k™" frequency

band andc 2 is the critical band speech-peakio noise-rms ratio [15].
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Given Al (SNR) for the noisy speech, the predicted average speech error g1, 96]
&(Al') = eﬁ]lin €chance (3.3)

where enin is the maximum full-band error when Al = 1, and €chance IS the probability

of error due to uniform guessing [96].

The Al-gram

The Al-gram is the integration of the Fletcher's Al model and a simple linear audi-
tory model Iter-bank (i.e., Fletcher's SNR model of detection [95]). Figure 3.1 depicts
the block diagram of the Al-gram. Once the speech sound reads the cochlea, it is
decomposed into multiple auditory Iter bands, followed by an \envelope" detector.
Fletcher-audibility of the narrow-band speech is predictal by the formula of specic
Al (Eg. (3.2)). A time-frequency pixel of the Al-gram (a two- dimensional image) is
denotedAl (t;f ), wheret and f are the time and frequency respectively. The implemen-
tation used here quantizes time to 2.5 ms, and uses 200 frequey channels, uniformly
distributed in place according to the Greenwood frequencyplace map of the cochlea,

with bandwidths according to the critical bandwidth of [70].

ii
Auditory Filteri, | (i) el o0 | Scaling (iit)
with BF > nvelope 1
' Detecton s logy (@2, /o))
2, o (t) 3 ’
s(t)+n(0) . l/
L]
. o (f) isthe MS speech + noise
s+n
1
Auditory Filter N, o‘f(t) is the MS noise alone _@)
with BF f,
Hy(f) v ()
Display Al-gram

Figure 3.1: Block diagram of Al-gram (modi ed from [100], with permission).

The average of the Al-gram over time and frequency, and thenzeraged over a phonet-
ically balanced corpus, yields a quantity numerically clo to the Al as described by [96].
An average across frequency at the output of the Al-gram yialls the instantaneous Al

X

a(tn) Al (tn;fk) (3.4)
Kk

at time t,.
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Given a speech sound, the Al-gram model provides an approxiate \visual detection
threshold" of the audible speech components available to th central auditory system. It
is silent on which components are relevant to the speech evenTo determine the relevant
cues, it is necessary to directly relate the results of spebcperception experiments
(events) with the Al-grams (or perhaps some future nonlinea extensions of the Al-

gram).

3.2.2 3D Deep Search (3DDS)

Speech sounds are characterized by three properties: timdrequency and intensity.
Event identi cation involves isolating the speech cues almg the three dimensions. In
the past studies, confusion test on nonsense syllables hasnlg been used for the ex-
ploration of speech features. For example, Fletcher and hisolleagues investigated the
contribution of di erent frequency bands to speech intelligibility using highpass and
lowpass ltered CV syllables [14, 15], resulting in the Articulation Index (Al) model.
The study in [101] examined the relationship between dynant features and the iden-
ti cation of Japanese syllables modied by initial and nal truncation. More often,
noise masking was used to study consonant [64,67] and voweé1]] recognition. The
study in [94] successfully combined the results of time trucation and noise masking
experiments, for the identi cation of /ta/ event. However, it has remained unclear how
many speech cues could be extracted from real speech by thesethods. In fact there is
high skepticism within the speech research community as tohlie general utility of such
methods.

In the present investigation, we have integrated the three ypes of tests; thus, we have
developed a \3DDS" for exploring the events of consonants sm natural speech. To
evaluate the acoustic cues along the three dimensions, spagesounds are truncated in
time, high/lowpass Itered, or masked with white noise, as illustrated by Fig. 3.2, and
then presented to normal hearing (NH) listeners.

Imagine that an acoustic cue, critical for speech perceptin, has been removed or
masked. Would this degrade the speech sound and reduce thecagnition score signif-
icantly? For the sound /t/, [94] has answered this question: The /t/ event is entirely

due to a short 20 ms burst of energy, between 4 and 8 kHz. To estimate the im-
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Figure 3.2: The 3DDS for the identi cation of acoustic cues: (1) To isolate the cue
along the time axis, speech sounds are truncated in time fronthe onset with a
step-size of 5, 10, or 20 ms, depending on the duration and tyg of consonant. (2) To
locate the cue along the frequency axis, speech sounds aregghpass and lowpass
Itered before being presented to normal hearing listeners (3) To measure the
strength of the cue, speech sounds are masked by white noisévarious signal-to-noise
ratio. The three plots on the top row illustrate how the speed sound is processed.
Typical correspondent recognition scores are depicted intte plots on the bottom row.

portance of individual speech perception events for soundsther than /t/, the 3DDS
requires three independent experiments for each CV utteraoe. The rst experiment
determines the contribution of various time intervals by tr uncating the consonant into
multiple segments of 5, 10 or 20 ms per frame, depending on treound and its duration.
The second experiment divides the fullband into multiple bands of equd length along
the BM, and measures the score in di erent frequency bands byising highpass/lowpass
Itered speech as the stimuli. Once the time-frequency coadinate of the event have
been identi ed, a third experiment assesses the strength of the speech event by masik
the speech at various signal-to-noise ratios. To reduce théength of the experiments,
the three dimensions, i.e., time, frequency and intensityare assumed to be independent.
This is not always true, though; therefore, the identi ed events are veri ed by a special
software designed for the manipulation of acoustic cues, [sd on the short-time Fourier
transform [102, 103].

In order to understand continuous speech, it is necessary tast identify the acoustic
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correlates of the individual phonemes, for which the movemet of the articulators are
more easily interpretable [41]. For this reason, we will r& look at the normal events of
individual consonants as they occur in isolated syllablesn which their acoustic proper-
ties are well formed. The interaction between the events in ontinuous speech must be
addressed in future studies. Finally, the 3D method has beesuccessfully applied to the
remainder of the 16 Miller-Nicely consonants [104], but forboth space and pedagogical

reasons, the discuss will be limited to the six stop consonads.

3.3 Methods

The details of the time-truncation (TRO7), high/lowpass | tering (HLO7) and noise
masking \Miller-Nicely (2005)" (MNO5) experiments are described below. Each abbre-
viation gives the experiment type followed by the year the eyeriment was executed.

An analysis of the MNO5 experiment has since been publishe®].

Subjects:  Sixty-two listeners were enrolled in the study, of which 19 sibjects partici-
pated in HLO7, and 19 subjects participated in TRO7. One subgct participated in both
experiments. The remaining 25 subjects were assigned to eggment MNO5 [9]. The
large majority of the listeners were undergraduate studens, while the rest were mothers
of teenagers. No subject was older than 40 years, and all sakported no history of
speech or hearing disorder. All listeners spoke uent Engkh, with only slight regional
accents. Except for two listeners, all the subjects were bar in the U.S. with their rst
language (L1) being English. The subjects were paid for theiparticipation. University

of Illinois's Institutional Review Board approval was atta ined.

Speech Stimuli: A signi cant characteristic of natural speech is the variability of
the acoustic cues. Thus we designed the experiment by manuglselecting six di erent
utterances per CV consonant, based on the criterion that thesamples be representative
of the corpus.

The 16 [64] (MN55) CVs /pa, ta, ka, fa, Ta, sa, Sa, ba, da, ga, va, Da, za, Za, ma,
na/ were chosen from the University of Pennsylvania's Linguigic Data Consortium

(LDC) LDC2005S22 \Articulation Index Corpus,” which were u sed as the common test
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material for the three experiments. The speech sounds wereampled at 16 kHz using a
16 bit analog-to-digital converter. Each CV was spoken by 18alkers of both genders.
Experiment MNO5 uses all 18 talkers 16 consonants. For the other two experiments
(TRO7 and HLO7), 6 talkers, half male and half female, each sang each of the 16 MN55
consonants, were manually chosen for the test. These 96 (6li@rs 16 consonants)
utterances were selected such that they were representatvof the speech material in
terms of confusion patterns and articulation score based otthe results of earlier speech
perception experiment [9,91]. The speech sounds were presged diotically (same sounds
to both ears) through a Sennheisser HD 280 Pro headphone, ataeh listener's most
comfortable level (MCL) (i.e., between 75 to 80 dB SPL, basedn a continuous 1 kHz
tone in a homemade 3 cc coupler, as measured with a Radio Shaskund level meter.

All experiments were conducted in a single-walled IAC souneproof booth.

Conditions: Three experiments were performed, denoted TR0O7, HLO7 and MR5.
All three experiments included a common condition of fullband speech at 12 dB SNR,
as a control.

Experiment TRO7 evaluates the temporal property of the events. Truncation garts
from the beginning of the utterance and stops at the end of theconsonant. These times
were all determined by hand. The truncation times were also nanually chosen, such that
the duration of the consonant was divided into non-overlappng consecutive intervals
of 5, 10, or 20 ms. An adaptive scheme was applied for the caltation of the sample
points. The basic idea was to assign more points where the speh changed rapidly, and
fewer points where the speech was in a steady condition, in a amner consistent with
the ndings of [101]. Starting from the end of the consonant, near the consonant-vowel
transition, eight frames of 5 ms were allocated, followed bytwelve frames of 10 ms, and
as many 20 ms frames, as needed, until the entire interval ofite consonant was covered.
To make the truncated speech sounds more natural, and to rem@& an possible onset
truncation artifacts, white noise was used to mask the spedtstimuli, at an SNR of 12
dB.

Experiment HLO7 investigated the frequency properties of the events. Nineten lter-
ing conditions, including one full-band (250-8000 Hz), nire highpass and nine lowpass

conditions, were included. The cuto frequencies were calglated using the Greenwood
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function, so that the full-band frequency range was dividedinto 12 bands, each hav-
ing an equal length along the basilar membrane. The highpassuto frequencies were
6185, 4775, 3678, 2826, 2164, 1649, 1250, 939, and 697 Hzhwaih upper-limit of 8000
Hz. The lowpass cuto frequencies were 3678, 2826, 2164, 19541250, 939, 697, 509,
and 363 Hz, with the lower-limit being xed at 250 Hz. Note that the highpass and
lowpass ltering share the same cuto frequencies over the nddle range. The lters
were implemented in Matlab (The Mathworks Inc.) via a 6" order elliptical lter, with

a stop band of 60 dB. White noise having a 12 dB SNR was again add, to make the
modi ed speech sounds more natural sounding.

Experiment MNO5 assesses the strength of the event in terms of noise robust epch
cues, under adverse conditions of high noise. Besides theigticondition, speech sounds
were masked at eight di erent SNRs: -21, -18, -15, -12, -6, 06, 12 dB, using white
noise. The details of MNO5 may be found in [91].

Procedures:  The three experiments employed similar procedures. A mandary prac-
tice session was given to each subject at the beginning of thexperiment. In each exper-
iment, the general methods were to randomize across all vaables when presenting the
stimuli to the subjects. There was one important exception 1 this rule, being MNO5,
where e ort was taken to match the experimental conditions d [64] as closely as possi-
ble, as discussed in [9]. Following each presentation, suégts responded to the stimuli
by clicking on the button labeled with the CV that they heard. In case the speech was
completely masked by the noise, the subject was instructedd click a \Noise Only"
button. If the presented token did not sound like any of the 16 consonants, the subject
had the option to either guess one of the 16 sounds, or click #\Noise Only" button.
To prevent fatigue, listeners were asked to take frequent beaks, or break whenever they
feel tired. Subjects were allowed to play each token for up ta3 times before making
their decision, after which the sample was placed in the listat the end. A Matlab pro-
gram was created for the control of the three procedures. Thaudio was played using
a SoundBlaster 24 bit sound card in a standard PC Intel compuér, running Ubuntu

Linux.
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A preliminary analysis of the raw data

The experimental results of TRO7, HLO7 and MNO5 take the formof confusion patterns
(CP), which display the probabilities of all possible respmses (the target and compet-
ing sounds), as a function of the experimental conditions, .e., truncation time, cuto
frequency and signal-to-noise ratio.

Notation:  Let c,;, denote the probability of hearing consonant /x/ given consaant

lyl. When the speech is truncated to time t, the score is denotedc!. (t,). The score

Xjy
of the lowpass and highpass experiment at cuto frequency  is indicated asc)';j:yH (fx).
Finally the score of the masking experiment as a function of ignal-to-noise ratio is

denoted cM (SNRy).
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Figure 3.3: Various CPs of /ka/ spoken by talker m118, under \arious experimental
conditions: (a) The temporal truncation CP as a function of truncation time t, [cs],
from experiment TRO7. (b) Instantaneous Al a, a(t,) at truncation time t,. (c)
Al-gram at 12 [dB] SNR. The left and right vertical lines denote the start and end
time for truncation. The middle (green) line denotes the time of voice (sonorant)
onset. (d) CP as a function of SNR for experiment MNO5. Finally, the (e) high and (f)
low CPs as a function of cuto frequency for HLO7. The text provides further details.

A specic example is helpful to explain the 3D method, and to show how speech

perception is aected by the events. Figure 3.3 depicts the ®s of /ka/ produced
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by talker m118 (utterance m118ka). The results of experiment TRO7 are given in
Fig. 3.3(a), HLO7-lowpass in Fig. 3.3(e), HLO7-highpass inFig. 3.3(f) and MNO5 in
Fig. 3.3(d). The instantaneous Al (Eg. 3.4) is shown in panel(b), and the Al-gram in
(c). To facilitate the integration of the three experiments, the Al-gram and the three
scores are aligned in time {, in centiseconds [cs]) and frequency (along the cochlear
place axis, but labeled in frequency), and thus depicted in acompact manner.

The CP of TRO7 [Fig. 3.3(a)] shows that the probability of hearing /ka/ is 100% for
thn 26 cs, while no speech component is removed. However, at amodi 29 cs when the
/ka/ burst has been completely truncated, the score for /ka/ drops sharply to 0% within
a span of 1 cs. At this time (32{35 cs) only the transition region is heard, and 100%
of the listeners report hearing a /pa/. Once even the transition region is truncated,
listeners report hearing only the vowel /a/.

A related conversion occurs in the lowpass and highpass expgment HLO7 for /ka/
[Fig. 3.3(e,f)], in which both the lowpass scorecl';jk and highpass scora:lt'jk plunge from
100% to less than 10% at a cuto frequency offy = 1:4 kHz, thereby de ning the
frequency location of the /ka/ cue. For the lowpass case, ligeners reported a morphing
from /ka/ to /pa/ with score cgjk reaching 70% at 0.7 kHz, and for the highpass case,
/ka/ morphed to /ta/, but only at the ct'?k = 0:4 (40%) level. To reduce the clutter, the
remaining confusions are not shown.

The MNO5 masking data [Fig. 3.3(d)] shows a somewhat relatecCP. When the noise
level increases from quiet to 0 dB SNR, the recognition scoref /ka/ is close to 1 (i.e.,
100%), which usually signi es the presence of a robust event

It is satisfying (and signi cant) that the [42] nding, that the acoustic cue for /ka/ is
a mid-frequency burst at the beginning of the sound, is diredy con rmed by the above

experimental results.

3.4 Results

In this section we demonstrate how the events of stop consomés are identi ed by
applying the 3DDS. Again the results from the three experimats are arranged in a
compact form for convenience. Take Fig. 3.4 for example; pa#l (a) shows the Al-gram

of the speech sound at 18 dB SNR, upon which each event hypotbkes is highlighted by a
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rectangular box. The middle vertical dashed line denotes tle voice-onset time, while the
two blue vertical solid lines on either side of the green daskd line denote the starting
and ending points for the time truncation experiment (TR07). Above the Al-gram (a),
panel (b) shows the scores from TRO7, while to the right, pank(d) shows the scores
from HLO7. Panel (c) depicts the scores from experiment MNO5 The CP functions
are plotted as solid (lowpass) or dashed (highpass) curvesyith competing sound scores
with a single letter identi er next to each curve. The in panel (c) indicates the SNR
at which the listeners just begin to confuse the sound in MNO5 while the ? in panel (d)
indicates the intersection point of the highpass and lowpas scores, measured in HLO7.
The six small gures (e) along the bottom show partial Al-grams of the consonant
region, delimited in panel (a) by the solid lines, at -12, -6,0, 6, 12, 18 dB SNR. A
box in any of the seven Al-grams of panels (a) or (e) indicatesa hypothetical event
region, and for (e), indicates its visual threshold, accorihg to the Al-gram model. The

methods presented in these gures are signi cant extensioa of the work of [94].

3.4.1 Stops

In the following sections we shall study the stop consonantsp/, /t/, /k/, /b/, /d/
and /g/ followed by vowel /a/ as in \father." For each consona nt, six utterances were
analyzed, discussed by the research group, and the most reggentative example was

subjectively chosen to be presented.

/pa/

Figure 3.4 for /pa/ spoken by female talker f103 (LDC le s_f103 _pa.wav) reveals that
there may be two di erent events: (1) a formant transition at 1{1.4 kHz, which appears
to be the dominant cue, maskable by white noise at 0 dB SNR; and2) a wide band
click running from 0.3{7.4 kHz, maskable by white noise at 12dB SNR.

Stop consonant /pa/ is traditionally characterized as having a wide-band click which
is seen in this /pa/ example, but not in the ve others we have studied. For most /pa’/s,
the wide-band click diminishes into a low frequency burst. The click does appear to
contribute to the overall quality of /pa/ when it is present.

Time: Figure 3.4(b) shows the truncated /p/ score cgjp(tn). It starts at 100% from
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Figure 3.4: Hypothetical events for /pa/ from talker f103: (a) Al-gram. A dashed
vertical line labels the onset of voicing (sonorance), indiating the start of the vowel.
The solid boxes indicate hypothetical sources of events. (bCPs as a function of
truncation time t,. (c) CPs as a function of SNRy. (d) CPs as a function of cuto
frequencyf . (e) Al-grams of the consonant region [de ned by the solid vetical lines
on panel (a)], at -12, -6, 0, 6, 12, 18 dB SNR. While the wide-bad click becomes
barely intelligible when SNR< 12 dB, the F, transition remains audible at 0 dB SNR.

the beginning. When the wide band click, which includes the éw frequency burst, is
truncated at around 23 cs, the score is seen to drop, but not gni cantly. It is only
when the transition is removed at 27 cs that the score suddenl drops to the chance
level (1=16). At this time subjects begin to report hearing the vowel /a/ alone. Thus,
even though the wide-band click contributes slightly to the perception of /pa/, the F»
transition appears to play the main role.

Frequency: The lowpass and highpass scores, as depicted in Fig. 3.4(btart at 100%
at each end of the spectrum, and only begin to drop near the inérsection point, close
to 1.3 kHz. This intersection (indicated by a ?) appears to be a clear indicator of the
center frequency of the dominant perceptual cue, which is tk F, region running from
22 cs to 26 cs, as labeled by the truncation data in panel (b).

Amplitude:  The recognition scorecg’j'p as a function of SNR [Fig. 3.4(c)] drops to 90%
at 0 dB SNR (SNRgp denoted by ), at the same time the /pa/! /ka/ confusion c{l"jp

starts a slow but steady increase. In the 6 aigrams of panel ewe can see that the
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audible threshold for the F, transition is at 0 dB SNR, the same as theSNRg point in
panel (c) where the listeners begin to lose the sound, givingredence to the energy of
F, sticking out in front of the sonorant portion of the vowel, as the main cue for /pa/
event.

Summary and other /pa/ data: The 3D displays of the other ve /pa/s (not
shown) are in basic agreement with that of Fig. 3.4, with the main di erence being the
existence of the wideband burst at 22 cs for 103, and slighgl di erent highpass and
lowpass intersection frequency, ranging from 0.7 to 1.4 kHzfor the other ve sounds.
The required duration of the F, energy before the onset of voicing was seen around 3
cs before the onset of voicing and this timing, too, is very ditical to the perception of
/pal. The existence of excitation of F3 is evident in the Al-grams, but it does not appear
to interfere with the identi cation of /pa/, unless F, has been removed by lItering (a
minor e ect for f103). Also /ta/ was identi ed in a few exampl es, as high as 40% when

F> was masked.

Ia/

From Fig. 3.5, the /ta/ event for talker f105 is a short high fr equency burst above 4
kHz, 1.5 cs in duration and 5-7 cs prior to the vowel.

Time: In panel (b), the score for the truncated /t/ drops dramatica lly at 28 cs, and
remains at chance level for later truncations, suggestinghat the high frequency burst
is critical for /ta/ perception. It is interesting to see tha t at around 29 cs, when the
burst has been completely truncated and the listeners can dg listen to the transition
region, listeners start reporting a /pa/. By 32 cs, the /pa/ s core climbs to 85%. This
is in total agreement with the results of /pa/ events in the pr evious section. Once the
transition region is also truncated (as indicated in Fig. 35(a) by the dashed line at 36
cs) subjects report hearing only the vowel, with the transition from 50% /pa/ ! /a/
occurring at 37 cs.

Frequency: In panel (d), the intersection of the highpass and the lowpas perceptual
scores (indicated by the?) is at around 5 kHz, showing the dominant cue to be the
high frequency burst. From the lowpass CPs (solid curve) we ee that once the high

frequency burst has been removed, the /ta/ scor(—:‘c't-jt drops dramatically. From the
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o -diagonal lowpass CP data C;'?jt (solid curve labeled \p" at 1 kHz), confusion with
/pal is very high once all the high frequency information is removed. This can be easily
explained by referring to our results of Fig. 3.4, which show the signi cance of the
F» transition around 1 kHz for /pa/ identi cation. Given only | ow frequency bands,
while /ta/ cannot be perceived, it can be guessed (chance musplay an important
role when the set-size is small). The best alternative in sut cases seems to be a low
frequency /pa/, as found from our previous results of Fig. 34. The highpass results are
in agreement with the view that /ta/ results from the high fre quency burst.

Amplitude:  The /ta/ burst has an audible threshold of -1 dB SNR in white noise,
de ned as the SNR where the score drops to 90%, namelNRgg [labeled by a in
panel (c)]. Once the /ta/ burst is masked at -6 dB SNR, subjects report /ka/ and
[/ta/ equally, with a reduced score around 30%. From the Al-grams in (e) we see that

the high frequency burst is lost between 0 dB and -6 dB, constent with the results of
Fig. 3.5(c) that SNRgp=-1 dB SNR.
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Figure 3.5: Hypothetical event for /ta/ from talker f105. (a ) Al-gram with identi ed
event highlighted by a rectangular box. (b, ¢, d) CPs of TR07,HLO7 and MNO5. (e)
Al-grams of the consonant part at -12, -6, 0, 6, 12, 18 dB SNR. Tie event becomes
masked at 0 dB SNR.

Summary and other /ta/ data: In summary, the event of /ta/ is veried to be a

high frequency burst above 4 kHz. The perception of /ta/ is highly dependent on the
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identi ed event, which explains the sharp drop in scores wha the high frequency burst
is masked. These results are therefore in complete agreentemith the earlier analysis
of /t/ by [94], as well as many of the conclusions from the 1958 Haskins Laboratories
research.

Of the six /ta/ sounds, ve morphed to /pa/ once the /ta/ burst was truncated
(e.g., Fig. 3.5(b)), while one morphed to /ka/ (m112ta), wit h an impressive 90% score.
This same sound also became /ka/ rather than /pa/ following lowpass Itering below
2.8 kHz, with a 100% score. For this particular sound, it is sen that the /ta/ burst
precedes the vowel only by around 2 cs as opposed to 5{7 cs whigs the case for a
normally articulated /ta/. This timing cue is especially im portant for the perception of
/pa/ since the transition region and relative timing of this transition region are critical

to /pal perception.

Ika/

Analysis of Fig. 3.6 reveals that the event of /ka/ is a mid-frequency burst around 1.6
kHz, articulated 5 7cs before the vowel, as highlighted by the rectangular boxein
panels (a) and (e). The following /ka/ event analysis is relatively straightforward.
Time: Figure 3.6(b) shows that once the mid-frequency burst is trincated at 16.5
cs, the recognition scorec{jk jumps from 100% to chance level within 1{2 cs. At the
same time, most listeners begin to hear /pa/ with the score (:gjk) rising to 100% at
22 cs, which is in excellent agreement with previous concliesn about the /pa/ feature.
Frequently [as seen in panel (a)] there are high frequency (g., 3-8 kHz) bursts of energy,
but usually not of su cient amplitude to trigger /t/ respons es. Since these /ta/-like
bursts occur around the same time as the mid-frequency /ka/ €ature, time truncation
of the /ka/ burst results in the simultaneous truncation of t hese potential /t/ cues.
Thus truncation beyond 16.5 cs results in confusions with /p, not /t/. Beyond 24 cs,
subjects report only the vowel.

Frequency: According to Fig. 3.6(d) the highpass scorect'jk and the lowpass score:l';jk
cross each other at 1.4 kHz. Both curves have a sharp dive arod the intersection
point, suggesting that the perception of /ka/ is dominated by the mid-frequency burst

as highlighted in panel (a). The highpassc{?k [dashed curve of panel (d)] shows minor
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confusions with /ta/ (e.g., 40%) for f. > 2 kHz. This is in agreement with the conclusion
about the /ta/ feature being a high frequency burst. Similarly, the lowpass CP around
1 kHz shows strong confusions with /pa/ (Clﬁjk = 90%), when the /ka/ burst is absent.
Amplitude: From the Al-grams [panel (e)], the burst is just above its detection thresh-
old at 0 dB SNR; accordingly, the recognition score of /ka/ cf(’}k [panel (c)] drops rapidly
at 0 dB SNR. At -6 dB SNR the burst has been fully masked, and moslisteners report
/Ipal instead of /ka/.
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Figure 3.6: Hypothetical event for /ka/ from talker f103. (a ) Al-gram with identi ed
events highlighted by rectangular boxes. (b, ¢, d) CPs of TRG, HLO7 and MNO5. (e)
Al-grams of the consonant part at -12, -6, 0, 6, 12, 18 dB SNR. Tie event remains
audible at 0 dB SNR.

Summary and other /ka/ data: Not all of the six sounds strongly morphed to /pa/
once the /ka/ burst was truncated, as is seen in Fig. 3.3(a) amd 3.6(b). Two out of six
had no morphs, and just remained a very weak /ka/ once the onsteburst was removed
(mll4ka, f119ka). Again, these scores are consistent withugssing.

In casual experiments (not reported on here) we have tried sifting the burst along
the frequency axis, reliably morphing /ta/ into /ka/ or /pa ( or vice versg. When the
burst of /ka/ or /ta/ is masked or removed, the auditory syste m can pick up residual
transitions in the low frequency, which would cause the soud to morph to /pa/.

In all the speech perception tests, /pa, ta, ka/ commonly form a confusion group.
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This can be explained by the fact that the three sounds share lte same type of event
patterns, i.e., burst and F, transition. The relative timing for these three unvoiced
sounds is nearly the same. The major di erence lies in the ceer frequencies of the
bursts, with /pa/ cue in the low frequency, /ka/ cue in the mid -frequency, and /ta/ cue

in the high frequency.

/ba/

The perceptual events for /ba/ are perhaps the most di cult o f the six stops. For the
3D method to work well, high scores in quiet are essential. Armang the six /ba/ sounds,
only the one shown (f111) had 100% scores at 12 dB SNR and above

Based on the analysis of Fig. 3.7, the hypothetical featuredor /ba/ include: (1) a
wide-band click in the range of 0.3 to 4.5 kHz; (2) a low frequecy burst around 0.4
kHz; and (3) a F, transition around 1.2 kHz.
Time: When the wide-band click is completely truncated att, =28 cs, the /ba/ score
C-tl;jb [Fig. 3.7(b)] drops dramatically from 80% to chance level, & the same time the

/ba/ ! Ival confusion C\ij

for and /ba/ ! /fa/ confusion Cijb increase quickly, indicating
that the wide-band click is important for distinguishing /b a/ from the two fricatives

/val and /fal. However, since the three events overlap on the time axis, it is hard to

tell which event plays the major role.

Frequency: Figure 3.7(d) shows that the highpass scorecgb and lowpass scorect';’.b
cross each other at 1.3 kHz, both change fast within 1{2 kHz, ndicating that the F,

transition, centered around 1.3 kHz, is very important. Wit hout the F, transition, as

we see in the lowpass data whild . <1 kHz, most listeners guess /da/ instead of /ba/.

Besides, the small jump in the lowpass scorebb around 0.4 kHz suggests that the low
frequency burst may also play a role in /ba/ perception.

Amplitude:  From the Al-grams in Fig. 3.7(e), the F, transition and wide-band click

become masked by the noise somewhere below 0 dB SNR. Accordin the listeners
begin to lose /ba/ in the masking experiment around the same 8IR, as represented by
SNRgg () in panel (c). Once the wideband click has been masked, the odusions with

Ival increase, and become equal to /ba/ at -12 dB SNR with a scae of 40%.
Summary and other /ba/ data: There are only two LDC /ba/ sounds out of 18
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Figure 3.7: Hypothetical events for /ba/ from talker f101. (a) Al-gram with identi ed
events highlighted by rectangular boxes. (b, ¢, d) CPs of TRG, HLO7 and MNO5. (e)
Al-grams of the consonant part at -12, -6, 0, 6, 12, 18 dB SNR. Tie F, transition and
wide-band click become masked around 0 dB SNR, while the lowéquency burst
remains audible at -6 dB SNR.

with 100% scores at and above 12 dB SNR, i.e., /ba/ from f101/ iown here and /ba/
from f109, which has a 20% /va/ error rate for SNR 10 dB SNR. The remaining 16
/ba/ utterances have /va/ confusions between 5 and 20%, in quet. We do not know if
the recordings in the LDC database are responsible for thesw scores, or if /ba/ is
inherently di cult. Low quality consonants with error rate s greater than 20% were also
observed in the LDC study by [91]. These very low starting (quet) scores are part of
our di culty in identifying the /ba/ event with certainty, s  ince the 3D method requires
high scores in quiet for its proper operation.

From unpublished research that is not fully described here,we have found that in
order to achieve a high quality /ba/ (de ned as 100% identi ¢ ation in quiet), the wide-
band burst must exist over a wide frequency range. For examm@, a well de ned 3 cs
burst from 0.3 to 8 kHz will give a strong percept of /ba/, whic h, if missing or removed,

may likely be heard as /va/ or /fa/.
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/da/

Consonant /da/ (Fig. 3.8) is the voiced counterpart of /ta/. It is characterized by a

high frequency burst above 4 kHz and arf; transition near 1.5 kHz, as shown in panels
(a) and (e).

Time: Truncation of the high frequency burst [panel (b)] leads to an immediate drop in

the score ofcgjd from 100% at 27 cs to about 70% at 27.5 cs. The recognition soekeeps
decreasing until the F, transition is removed completely at 30 cs, when subjects reprt

only hearing vowel /a/. The truncation data indicate that bo th the high frequency

burst and F» transition are important for /da/ identi cation.

. L i H
Frequency: The lowpass SCOrecy; and highpass SCOrecy;

4 Cross at 1.7 kHz. Notice
that subjects need to hear both theF, transition and the high frequency burst to get a
full score of 100%, meaning that both events are critical fora high quality /da/. Lack of
the burst usually leads to the /da/! /ga/ confusion, as shown by the lowpass confusion
of Cgq
Amplitude: From the Al-grams [panel (e)] the F, transition becomes masked by noise

=30% at f.=2 kHz [solid curve labeled \g" in panel (d)].

at 0 dB SNR; accordingly the /da/ score cg’j'd in panel (c) drops quickly at the same
SNR. When the remnant of the high frequency burst is nally gone at -6 dB SNR, the
/da/ score cg’j'd
/d/ and /m/ scores are equal.

Summary and other /da/ data: Two other /da/ sounds (103, f119 ) showed a dip

decreases even faster, untid:g’j'd = cmjd at -10 dB SNR, namely, until the

where the lowpass score decreases abnormally as the cuto efquency increases, similar
to that seen for /da/ of m118 (i.e., 1.2-2.8 kHz). Two showed hrger gaps between
the lowpass scorec'ajd and highpass scorec('j*jd. The 6™ /da/ had a very wide-band
burst going down to 1.4 kHz. In this case the lowpass Iter did not reduce the score
until it reached this frequency. For this example the cuto frequencies for the high- and
lowpass Itering were such that there was a clear crossoveré&quency having both scores
at 100%, at 1.4 kHz. Some of the /da/s are much more robust to nse than others. For
example, the SNRgg, de ned as the SNR where the listeners begin to lose the sound
(P¢=0.90), is -6 dB for /da/-m104, and +12 dB for /da/-m111. The v ariability over the
Six utterances is impressive, yet the story seems totally aasistent with the requirement

that both the burst and the F, transition need to be heard.
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Figure 3.8: Hypothetical events for /da/ from talker m118. (a) Al-gram with identi ed
events highlighted by rectangular boxes. (b, ¢, d) CPs of TRG, HLO7 and MNO5. (e)
Al-grams of the consonant part at -12, -6, 0, 6, 12, 18 dB SNR. Tie F, transition and
the high frequency burst remain audible at 0 and -6 dBSNR respctively.

lgal

The events of /ga/ include a mid-frequency burst from 1.4 to 2 kHz, followed by an F»
transition between 1 and 2 kHz, as highlighted with boxes in Fg. 3.9(a).

Time: According to Fig. 3.9(b), the recognition score of /ga/ ng—jg starts to drop when
the mid-frequency burst is truncated beyond 22 cs. At the sane time the /ga/! /da/
confusion appears, withcgjg=40% at 23 cs. From 23 to 25 cs the probabilities of hearing
/ba/ and /da/ are equal. And the reason for this low-grade confusion is that the two
sounds have similar patterns ofF, transitions. Beyond 26 cs, where both events have
been removed, subjects only hear the vowel /a/.

Frequency: From Fig. 3.9(d) the highpass (dashed) score and lowpass (kd) score
fully overlap at the frequency of 1.6 kHz, where both show a sarp decrease of more
than 60%, which is consistent with the statements about /ga/ events. There is minor
Ibal confusion ¢, =20% at 0.8 kHz and /da/ confusion cfj, =25% at 2 kHz. This can
be explained by the fact that /ba/, /da/ and /ga/ all have the s ame types of events,
i.e., bursts and transitions, allowing for guessing withinthe confusion group, given a

burst onset coincident with voicing.
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Amplitude: Based on the Al-grams in panel (e), theF, transition is masked by 0 dB

SNR, corresponding to the turning point of nglg

mid-frequency burst gets masked at -6 dB SNR, /ga/ becomes adfused with /da/.

labeled by a in panel (c). As the

TRO7 MNO5

d

20 25 30 35 -18 -12 -6 0 6 12 18 Q

nResp/nPresents

: cooo
ONDO®E
%

o

[o]

[o]

«Q

Nw o N

® © > b
=]
[=]
7
’
7

Frequency [kHz]
kPN
»
.

0.5 b LP |1
o0z 20 25 30 35 -0.2 0 0.2 04 06 08 1
Time [cs] HLO7
-12dB -6dB 0de 6dB 12dB 18 dB
7.4
5.4 @
3.9
2.8
2 i
P - 1]

Frequency [kHz]

20 25 20 25 20 25 20 25 20 25 20 25

Figure 3.9: Hypothetical events for /ga/ from talker m111. (a) Al-gram with

identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR0O7, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR. The F,
transition is barely intelligible at 0 dB SNR, while the mid- frequency burst remains
audible at -6 dBSNR.

Summary and other /ga/ data: All six /ga/ sounds have well de ned bursts between
1.4 and 2 kHz with well correlated event detection threshold[predicted by Al-grams
in panel (e)] versusSNRgg [denoted by in panel (c)], the turning point of recog-
nition score where the listeners begin to lose the sound. Moof the /ga/s ( m111,
f119, m104, m112) have a perfect score ofcg’j'g =100% at O dB SNR. The other two
/ga/s (109, f108 ) are relatively weaker; their SNRgg are close to 6 dB and 12 dB

respectively.

3.4.2 Fricatives

Fricatives are sounds produced by an incoherent noise exetion of the vocal tract.
This noise is generated by turbulent air ow at some point of constriction. In order to

produce a fricative, a talker must position the tongue or lips to create a constriction
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width of 2{3 mm and allow air pressure to build behind the condriction so that the
turbulence needed is created. Fricatives may be voiced likthe consonants /v, D z, Z

or unvoiced like the consonants /f, T, s, S.

Ifal

The dominant perceptual cue is between 0.8 and 2.8kHz and lés for about 80 cs in
duration, as shown in Fig. 3.10.

Time: According to Fig. 3.10(b) the recognition score of the targé sound decreases
gradually from 1 at t = 26 cs to chance level att = 34 cs, where the probability of
reporting /ba/ equals that of /fa/. After that the recogniti on score of /fa/ goes to zero
and the confusion of /ba/ increases dramatically, suggestig that the /fa/ cue of is from
25 to 34 cs.

Frequency: Refering to Fig. 3.10(d), the high frequency score (dashedand low fre-
guency score (solid) cross at 1.6 kHz. Both curves change fawithin the mid-frequency
range. The recognition accuracy saturates once the high-gs and low-pass cuto fre-
guencies reach around 700 Hz and 2.8 kHz respectively, thusewcan conclude that the
dominant cue is in the range of 0.8{2.8 kHz.

Amplitude: Figure 3.10(c) depicts the confusion pattern of noise maskig data. The
recognition score of /fa/ drops dramatically at 0 dB SNR, where the mid-frequency
cue (Fig. 3.10(e)) becomes inaudible. Below that, the probhility of correctness goes to
chance level.

Summary and other /fa/ data: For talkers m111 and f101, the high-pass curve and
low-pass curve cross around 1.4 kHz. For the other four talkes, the two curves cross
at 1 kHz or slightly below. The event strength of other /fa/s shows a large amount of
variance. Except for m111 and f101, the fricative cues are tatively weak for the other
four talkers m112, f103, m117, and f105. As a result, their reognition scores begin to

drop at 12 dB SNR.

| Tal

The perceptual data indicates that / Ta/ does not have a dominant cue. Figure 3.11

depicts the Al-grams and perceptual scores of speech soundd/. The truncation score
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Figure 3.10: Hypothetical events for /fa/ from talker f101. (a) Al-gram with identi ed
events highlighted by rectangular boxes. (b, ¢, d) CPs of TRG, HLO7 and MNO5. (e)
Al-grams of the consonant part at -12, -6, 0, 6, 12, 18 dB SNR.

(Fig. 3.11(b)) starts at a low level (less than 0.8), indicating that the perceptual cues
are weak. The same is true for the high/low-pass data (Fig. 3L1(d)) and noise-masking
data (Fig. 3.11(c)). Looking at the confusion plots embedde in the upper left panel, it
can be seen that /T/ does not have a xed confusion group. It is confused with a lage
number of speech sounds and there is no xed pattern for theseonfusions. Based on
all of this information, it is safe to say that / Td does not have a compact dominant

cue; therefore, it is confused with many sounds.

[sa/

The dominant perceptual cue of /sa/ is seen to be between 4 an® kHz and spans for
around 100 ms just before the vowel is articulated (refer to kg. 3.12). This cue is seen
to be robust to white noise of around 0 dB SNR.

Time: As depicted in Fig. 3.12(b), the truncation score starts fram 1 at t=26 cs. It
begins to decrease quickly at=32 cs, and then reaches the same level as /ta/ at=34
CS.

Frequency: According to Fig. 3.12(d), the lowpass experiment data show that it is
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Figure 3.11: Hypothetical events for /Ta/ from talker f113. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

only after the cuto frequency goes above around 3 kHz that the score steadily rises till
a score of 0.9 is reached at 7.4 kHz. For the highpass Iteringthere is a steady rise in
score as the cuto frequency goes below 7.4 kHz and it goes atvst to 0.9 at around 4
kHz. In both cases, the change in score is pretty abrupt, sigifying that the feature is

well de ned in frequency.

Amplitude: Based on Fig. 3.12(c), the recognition score remains 100% tihthe signal-

to-noise ratio reaches 0 dB SNR, suggesting that the dominarcue is masked so that the
normal hearing listeners begin to lose the sound. The Al-grms in Fig. 3.12(e) con rm

the conjecture. At -6 dB SNR, the high frequency cue is totally inaudible.

Summary and other /sa/ data: The identi ed /sa/ cues are consistent across di er-
ent talkers. Except for a /sa/ from talker m117, which has a low recognition accuracy
of less than 0.6 even in quiet, the other ve /sa/s all have a sdient high frequency cue
on the Al-gram. For m112, f108, f109, the /sa/ cues are still aidible at 0 dB SNR. It

is relatively weaker for the other two utterances.
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Figure 3.12: Hypothetical events for /sa/ from talker m112. (a) Al-gram with
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1S/

For consonant /3, the dominant perceptual cue is from 2 to 4 kHz and lasts morethan
160 ms before the vowel starts, as shown in Fig. 3.13.

Time: Refering to Fig. 3.13(b), the probability of hearing / &/ decreases fromt = 22
cs tot = 37 cs continuously, suggesting that the duration is a key paameter for the
perception of /&/. Due to the long duration, the sound is confused with no other sounds
until t =36 cs, where the target sound morphs into /Za/.

Frequency: Based on Fig. 3.13(d), the lowpass score shows a sharp incesawhen
lowpass cuto frequency equals 2 kHz. The highpass score reains at chance levels,
but once the cuto frequency is above 4 kHz. The score increass signi cantly and
reaches the peak value when the cuto frequency goes below 2Hz. These scores
clearly suggest that the /3 perceptual feature lies in the range of 2{4 kHz.

Amplitude: The noise-masking data (Fig. 3.13(c)) shows a sharp decreasat -6

dB SNR, meaning that the perceptual cue of /3 is strong enough to resist white
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noise at that level. The perceptual data is consistent with the prediction of Al-grams
(Fig. 3.13(e)) which shows that the dominant cue of /&/ is barely intelligible at -6 dB
SNR.
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Figure 3.13: Hypothetical events for /&/ from talker m118. (a) Al-gram with

identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR. The speech
cue is strong enough to resist white noise at -6 dB SNR.

Summary and other / S/ data: The perceptual cue of /&/ is consistent across six
male and female talkers in that the feature has about the saméong duration and covers
the same frequency range. One of the cues (m118) is still addle at -6 dB SNR, others
are at 0 or 6 dB SNR.

The unvoiced fricatives all have the feature regions aroundand above 2 kHz and span
a considerable duration before the vowel. For the case of /daand / S/, the events of
both sounds come on at the same time, with the only di erence leing that the burst for
[ &/ is slightly lower in frequency than /sa/. Eliminating the burst at that frequency
in the case of /3 should give rise to the sound /sa/. Even though the / T/ feature is not
unknown, when the masking is applied these four sounds are ntused with each other,

as shown by the Miller-Nicely experiments and veri ed by this study. Masking by white

59



noise in particular can cause these confusions increasinyglas the white noise would
act as a lowpass lter on these sounds that have relatively hjh frequency cues, and
this would considerably alter the cues of the masked soundshus leading to confusions

between /f/, | T/, /sl and / S.

/ Do/

Much like / T/, / O (see Fig. 3.14) has a large number of confusions with sevefdi erent
sounds, indicating that it does not have a strong compact peceptual cue. For the
highpass, lowpass and truncation experiments especiallghe highest scores are around
0.4-0.5 on average. It is very di cult to make any sort of conjecture with / T/ and / I)

as far as feature regions are concerned.
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Figure 3.14: Hypothetical events for /Da/ from talker f119. (a) Al-gram with

identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.
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val

The /val cue is from 0.5 to 1.4 kHz, highlighted in the mid-left panel of Fig. 3.15. Due
to the similarity between /va/ and /ba/, the fricative sound is often confused with the
bilabial stop.

Time: According to Fig. 3.15(b) the truncation score drops quickly from close to 1 at
t=25 cs to chance level att=29 cs. Beyond that, most listeners report /ba/ or vowel
/al only, suggesting that the highlighted area is critical f or /va/ identi cation.
Frequency: Based on Fig. 3.15(d) the highpass and lowpass scores crossfa= 0:7
kHz. Both curves change fast from 0.5 to 1.4 kHz, which isolas the feature area.
Amplitude:  Figure 3.15(c) depicts the confusion patterns of /va/ when the sound is
masked by white noise. It is confused with /ba/ even in quiet. The recognition score
decreases gradually as the noise level increases and turnsasply at 0 dB SNR, when

the perceptual cue is completely wiped out (refer to the Al-gams at Fig. 3.15(e)).
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Figure 3.15: Hypothetical events for /va/ from talker m111. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TRO7, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

Summary and other /va/ data: The perceptual cue of /va/ is consistent across
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di erent talkers. However, the fricative shows a big variance in terms of the intensity
of the cue. Two of the talkers, f103 and f105, have low scoresuggesting that the
perceptual cues are weak, or barely audible. The /va/ from tdker m104 has a much

longer duration.

/zal

The /za/ feature is seen to lie between 3 and 7.5 kHz and spansraund 50-70 ms before
the vowel is articulated as highlighted in the mid-left panel of Fig. 3.16. This feature is
seen to be robust to white noise of -6 dB SNR.

Time: According to Fig. 3.16(b), the truncation score drops dramdically at t=36 cs,
then the fricative morphs into /da/. Combining the perceptu al data of /sa/, it is easy
to tell that the perceptual cue of /za/ is within the highligh ted box.

Frequency: Refering to Fig. 3.16(d), the lowpass score climbs only wherthe cuto
frequencies reach around 2.8kHz. The highpass score remaimonstant above 4 kHz.
There is a brief dip in the score which is an indication of an iterfering cue of /Za/. The
perceptual cue is in the same frequency range as /sal.

Amplitude:  The perceptual cue of /za/ is strong enough to be audible at -6dB SNR
in white noise, as suggested by the sharp turning point in Fig 3.16(c) and the Al-grams
depicted in Fig. 3.16(e).

Summary and other /za/ data: Except for /za/ from talker 109, which has a low
recognition score of less than 0.8 in quiet, the /za/s produed by the other ve talkers
all have a salient cue in the high-frequency. Most of them camesist white noise at 0 or

even -6 dB SNR.

I Zal

The / Zal perceptual cue (see Fig. 3.17) is present at around 2{4 kHzpanning around
50{70 ms before the vowel is articulated. This cue is robustd white noise of 0 dB SNR.
Time: Fig. 3.17(b) depicts the confusion patterns of /Za/ when the sound is truncated
in time. The recognition score changes gradually from=14 to 25 cs, then drops quickly
to chance level, at the same time the fricative morphs into a da/. The / Za/ sound is

similar to / &/ in that both have a long duration.
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Figure 3.16: Hypothetical events for /za/ from talker m104. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

Frequency: The lowpass score and the highpass score (Refer to Fig. 3.1j} cross at
f =2.8 kHz. The lowpass score (dashed) saturates when the cutdrequency reaches 4
kHz. The highpass score drops quickly when the cuto frequeny goes below 2 kHz.
Combining the high/low-pass data, it is easy to tell that the perceptual cue is from 2
to 4 kHz.

Amplitude: Based on Fig. 3.17(c) the masked recognition score remainsogstant
until the signal-to-noise level drops to 0 dB SNR, suggestig that the / Za/ cue is barely
audible at that noise level. The Al-grams (Fig. 3.17(e)) shav that the / Za/ cue is
missing at -6 dB SNR. Due to the imperfection of the Al-gram, which over predicts the
cue audibility, the perceptual data and the Al prediction mi smatch by a few dB.
Summary and other / Za/ data: The identied / Za/ cues are consistent across all
six talkers. The intersection points fall within the same frequency range, i.e., from 2 to
4 kHz. Without exception, the feature shows a long duration br all cases. Most of the
| Zal cues are still audible at 0 dB SNR in white noise.

In the case of the voiced fricatives, it is noticed that /f/ and / T/ are not prominent
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Figure 3.17: Hypothetical events for /Za/ from talker m118. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

in the confusion group of /f/, / T/, /sl and / 3 primarily as /f/ has stronger confusions
with the voiced consonant /b/ and unvoiced fricative /v/ and /T has no consistent
patterns as far as confusions with other consonants are coetned. Similarly for the
unvoiced fricatives, /v/ and / 0 are not prominent in the confusion group as /v/, too,

is often confused with /b/ and /f/, and / O shows no consistent confusions.

3.4.3 Nasals

As the name suggests, nasal sounds are those for which the m@édract provides the
main sound transmission channel. A complete closure is mad®ward the front of the
vocal tract, either by the lips, by the tongue at the gum ridge or by tongue at the hard
or soft palate, and the velum is opened wide. As may be expeate most of the sound
radiation takes place at the nostrils. The nasal consonantaused in this study include

/m/ and /n/.

64



/ma/

The perceptual cues of /ma/ include the nasal murmur around 100 ms before the vowel
is articulated and the F2 region between 0.5 and 1.2 kHz as higighted in Fig. 3.18(a).
Time: The recognition score of truncated /ma/ (Fig. 3.18(b)) remains constant until t
hits 24 cs, indicating that the onset of the F2 formant is critical for /ma/ distinction.
Notice that the /ma/ sound is confused with no other sound beause of the nasal
murmur. The truncation score does not change with the nasal mrmur, suggesting that
it is a feature for both /ma/ and /na/.

Frequency: The highpass and lowpass scores cross at 1 kHz (refer to Fig.18(d)),
suggesting that the F2 region is important. The lowpass sca changes dramatically as
the cuto frequency increases from 50% at 0.3 kHz to 100% at ® kHz when the cuto
frequency hit the feature area. With the highpass experimety a sudden decrease in
score is seen when the cuto frequency changes from 1.4 to 2 k& A further decrease
in the cuto frequency leads to increasing scores again, with reach 1 at around 1 kHz.
The above information clearly isolates the /ma/ feature in the frequency domain.
Amplitude: Based on the confusion patterns of /ma/ in white noise, as defcted in
(Fig. 3.18(c)), the /ma/ sound is very robust. It has no other confusions until the
signal-to-noise ratio drops to -12 dB SNR.

Summary and other /ma/ data: The /ma/ cues are consistent across di erent
talkers in that all the identi ed cues are within the beginni ng area of F,. Most /ma/s

are still highly intelligible at -12 dB SNR.

/na/

The perceptual cue of /na/ (see Fig. 3.19) includes a low fregency nasal murmur about
80{100 ms before the vowel and arF, transition around 1.5 kHz, as indicated by the
clear peak on the frequency importance function.

Time: Like /m/, the time importance function for /n/ is also seen to have a peak till
around the transition region. The truncation score (Fig. 3.19(b)) decreases as the cuto
frequency cuts into the F2 transition, the perceptual cue that distinguishes /na/ from
/mal/.

Frequency: Based on the high/low-pass data (Fig. 3.19(d)), the two curnes cross each
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Figure 3.18: Hypothetical events for /ma/ from talker m118. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

other at 1.3 kHz, which pinpoints the weight of the speech sond. The low-pass score
is seen to be at chance until the cuto frequency goes above 8.kHz, then it steadily

increases. An intermittent peak is observed in the low-pasgurve at around 0.5{1 kHz.

For the case of the high pass data, the score is high when the tw frequency goes

below 1.4 kHz.

Amplitude:  According to the noise masking data (Fig. 3.19(c)), the pereptual score
of /na/ remains 100% until the signal-to-noise ratio drops to -6 dB SNR, suggesting
that the /na/ is strong enough to resist white noise at -6 dB SNR, which is consistent
with the Al-grams in (Fig. 3.19(e)).

Summary and other /na/ data: The perceptual cue of /na/ is consistent across
multiple talkers. The high- and lowpass scores crosse at thE2 area without exception

for the /na/s from all six talkers. Most of the /na/ cues are st ill audible at -6 dB SNR.
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Figure 3.19: Hypothetical events for /na/ from talker m112. (a) Al-gram with
identi ed events highlighted by rectangular boxes. (b, ¢, d) CPs of TR07, HLO7 and
MNO5. (e) Al-grams of the consonant part at -12, -6, 0, 6, 12, 8 dB SNR.

3.4.4 Robustness

The robustness of consonant sounds is determined mainly byhe strength of the domi-
nant cue. In our experiment it is common to see that the recogition score of a speech
sound remains unchanged as the masking noise increases fr@riow intensity; it then
drops when the noise reaches a certain level, at which pointie dominant cue becomes
barely intelligible. The study in [94] found that the threshold of speech perception
with the probability of correctness being equal to 90% SNRgg) is proportional to the
threshold of the /t/ burst, using a Fletcher critical band me asure (the Al-gram). In the
present study a related rule is identi ed for the remaining ve stop consonants. Figure
3.20 depicts the scatter-plot of SNRgg versus the threshold of audibility for the dominant
cue. For a particular sound (each point on the plot), the SNRgq is interpolated from the
PI1 function, while the threshold of audibility for the domin ant cue is estimated from the
36 Al-gram plots [panel (e)] of Figs. 3.5{3.9. The two threslolds are nicely correlated in

this chart, indicating that the recognition of each stop consonant is mainly dependent
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on the audibility of the dominant cues. Speech sounds with gbnger cues are easier
to hear in noise than weaker cues because it takes more noise mask them. When
the dominant cue (typically the burst) becomes masked by nase, the target sounds are
easily confused with other consonants. The masking of an indidual cue is typically
over about a 6 dB range, and never more. It is an all-or-nothirg detection task. It is

the spread of the event threshold that is large, not the maskig of a single cue.
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Figure 3.20: Correlation between the threshold of consondridenti cation and the
audible threshold of dominant cues.

3.4.5 Event distributions

A signi cant characteristic of natural speech is the large \ariability of the acoustic cues
across the speakers. Typically this variability is characerized by using the spectrogram.
It was for exactly this reason that we designed the experimenhas we did, by manually
selecting six di erent utterances per consonant based on aucriterion that the samples
have the natural variability representative of the corpus. Since we did not, at the time,
know the exact acoustic features, this was a guess at best.

We now know that the key parameters are the timing of the stop turst, relative to
the sonorant onset of the vowel (i.e., the center frequency fothe burst peak and the
time di erence between the burst and voicing onset). These wriables are depicted in
Fig. 3.21 for the 36 utterances. The gure shows that the burd times and frequencies
for stop consonants are well separated across the di erentalkers. The utterance groups

seem to nicely separate in this space, but placing a statistial value, given only 6 in each
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Figure 3.21: Variability of the bursts for stop consonants preceding vowel /a/.

class, while not impossible, seems a stretch not worth the truble.

3.4.6 Speculations on the source of events

The following is a summary of the acoustic features that de re stop consonant events,

for all of the 6 examples for the 6 stop consonants that we stui@éd in this report.

Unvoiced stops: /pa/: As the lips abruptly release, they are used to excite primarly
the F, formant relative to the others (e.g., F3). This resonance is allowed to ring for
approximately 5{20 cs before the onset of voicing (sonorarg) with a typical value of
10 cs. For the vowel /a/, this resonance is between 0.7{1.4 k4. A poor excitation of
F, leads to a weak perception of /pa/. Truncation of the resonarce does not totally
destroy the /p/ event until it is very short in duration (e.g. , 2 cs).

A wideband burst is sometimes associated with the excitatio of F,, but is not nec-
essarily audible (or visual in the Al-grams). Of the six exanple /pa/ sounds, only
f103 showed this wideband burst. When the wideband burst wadruncated, the score
dropped from 100% to just above 90%.

ftal:  The release of the tongue from its starting place behind the ¢eth mainly
excites a short duration (1-2 cs) burst of energy at high fregencies ( 4 kHz). This
burst typically is followed by the sonorance of the vowel abat 5 cs later. The case
of /ta/ has been well studied by [94], and the results of the present study are in good

agreement.
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All but one of the /ta/ examples morphed to /pa/, with that one morphing to /ka/,
following lowpass ltering below 2 kHz, with a maximum /pa/ m orph of close to 100%,
when the Iter cuto was near 1 kHz.

/kal:  The release for /k/ comes from the soft-pallet, but like that of /t/, is repre-
sented with a very short duration, high energy burst nearF», typically 10 cs before the
onset of sonorance (vowel). In our six examples there is alnst no variability in this
duration. In many examples the F, resonance could be seen following the burst, but
at reduced energy relative to the actual burst. In some of thee cases, the frequency of
F» could be seen to change following the initial burst. This sems to be a random and
unimportant variation, since several /ka/ examples showedno trace of F, excitation. A
proper test of this question remains an open question.

Five of the six /ka/ sounds morphed into /pa/ when lowpass It ered to 1 kHz. The

sixth morphed into /fa/, with a score around 80%.

\oiced stops: /bal: Since the sounds we chose to analyze have weak events, it is
di cult to generalize the source. Only two of the six /ba/ sou nds had scores above 90%
in quiet (f101 and f111). Based on our 3D analysis of these twfba/ sounds, it appears
that the main source of the event is the wide-band burst releae itself rather than the
F, formant excitation as in the case of /pa/. This burst can excite all the formants, but
since the sonorance starts within a few cs, it seems di cult to separate the excitation
due to the lip excitation from that due to the glottis.

The four sounds with low scores had no visible onset burst, ahall have scores below
90% in quiet. Consonant /ba-f111/ has 20% confusion with /va in quiet, and had only
a weak burst, with a 90% score above 12 dB SNR. Consonant /batD1/ has a 100%
score in quiet and is the only /b/ with a well developed burst, as shown in Fig. 3.7.

/da/:  This consonant shares many properties in common with /ta/ other than its
onset timing since it comes on with the sonorance of the vowelThe range of the burst
frequencies tends to be lower than with /ta/, and in one exampde (m103, the lower
frequency went down to 1.4 kHz. The low burst frequency was usd by the subjects in
identifying /da/ in this one example, in the lowpass Iterin g experiment. However, in all
cases the energy of the burst always included 4 kHz. The largeange seems signi cant,

going from 1.4 to 8 kHz. Thus, while release of air o the roof & the mouth may be
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used to excite theF, or F3 formants, to produce the burst, several examples showed a
wide-band burst seemingly una ected by the formant frequercies.

/gal: In the six examples studied here, the /ga/ consonant was de red by a burst
that is compact in both frequency and time, and very well contolled in frequency,
always being between 1.4 and 2 kHz. In 5 out of 6 cases, the burs associated with
both F» and F3, which can clearly be seen to ring following the burst. Such esonance

was not seen with /da/, which seems notable.

3.5 General Discussion

The speech events are the information bearing aspects of thgpeech code. From what
we have found, the acoustic cues that support the events hava low density in time-
frequency space.

It was shown by Shannon [105] that the performance of a communation system
is dependent on the code of the symbols to be transmitted. Thdarger the \distance"
between two symbols, the less likely the two will be confusedThis principle also applies
to the case of human speech perception. For example, the /paa, ka/ have common
perceptual cues, i.e., a burst followed by a transition. One the burst is removed or
masked by noise, the three sounds are highly confusable.

Itis interesting to see that many speech sounds contain acatic cues that con ict with
each other. Take f103ka (Fig. 3.6) for example. In addition b the mid-frequency /ka/
burst, it also contains two burst in the high and low frequency ranges that greatly in-
crease the probability of perceiving the sound as /ta/ and /pa/ respectively [Fig. 3.6(d)].
We call this type of misleading onset acon icting cue.

An especially interesting case is the confusions between A and /va/. Traditionally
these two consonants were attributed to two dierent cothnfusion groups based on
their articulatory and distinctive features. However, in our experiments, we nd that
consonants with similar events tend to form a confusion grop. Thus /ba/ and /va/ are
highly confusable with each other because they share the camon F, transition. This
is strong evidence that events are the basic units for speedherception.

Summary: The stop consonants are de ned by a short duration burst (e.g, 2 cs),

characterized by its center frequency (high, medium and wi@-band), and the delay to
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the onset of voicing. This delay, between the burst and the oset of sonorance, is a
second parameter called \voiced/unvoiced.”

There is an important question about the relevance of the wig-band click at the onset
of the bilabial consonants /p/ and /b/. For /pa/ this click appearsto be an option that
adds salience to the sound. For /ba/ our data is clearly insu cient, but it appearsthat
the click is the key to the /ba/ event.

In contrast, /ta/ and /ka/ are dominated by the burst frequen cy and delay to the
sonorant onset. The voiced and unvoiced stops dier in the duation between the
burst and the voicing onset. Confusion is much more common keeen /g/ and /d/
than between /t/ and /k/. The unvoiced bilabial /b/ is most of ten confused with the
fricatives /v/ and /f/, seen in many CPs.

The fricatives (/v/ being an exception) are characterized by an onset of wide-band
noise created by the turbulent air ow through lips and teeth. Duration and frequency
range are the two critical parameters of the events. A voicedfricative usually has
a considerably shorter duration than its unvoiced counterpart. / T/ and / O are not
included in the schematic drawing because no stable eventsalie been found for these
two sounds.

The two nasals /m/ and /n/ share a common feature of nasal murmur in the low
frequency. As a bilabial consonant, /m/ has a formant transition similar to /b/, while
/n/ has a formant transition close to /g/ and /d/. Recall that for each consonant,
we selected six utterances based on the criterion that the saples are representative
of the corpus. The events of the consonants are very consisie across the di erent
talkers, despite the fact that the parameters, such as timirg, frequency and strength,

may change to a certain degree within the given range.

3.5.1 Limitations of the method

It is important to point out that the Al-gram is highly imperf ect, in that it is based
on a linear model which does not account for cochlear compre®n, forward masking,
upward masking and other neural nonlinear responses. Suchmiportant nonlinearities
are discussed at length in many places, e.g., [18, 19,69, J06A major extension of the

Al-gram is in order, but not easily obtained. Given the extent of such a project, we
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have continued to use the linear version of the Al-gram untila fully tested time-domain
nonlinear cochlear model becomes available. The model ofQZ] may presently be the
only candidate for such testing.

Nevertheless, based on our many listening tests, we beliewdat the linear Al-gram
generates a useful approximation under many circumstancef®4,100]. Itis easy (trivial)
to nd cases where time-frequency regions in the speech sigis are predicted to be
audible by the Al-gram, but when removed, result in a signal with inaudible di erences.
In this sense, the Al-gram contains a great deal of \irrelevant" information. Thus it is
a gross \over-predictor” of audibility. There are rare cases where the Al-gram \under-
predicts" audibility, namely where it fails to show an audible response; yet when that
region is removed, the modi ed signal is audibly di erent. Such cases, to our knowledge,
are rare, but when discovered, are examples of a serious faik of the Al-gram. Finally,
and perhaps most important, the relative strengths of cues Wl be misrepresented. For
example, it is well known that onsets are strongly represergd in neural responses due to
adaptation [19]. Such cues are not properly present in the Algram, and this weakness

might be relatively easily xed, using existing hair-cell and neural models.
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CHAPTER 4

IMPACT OF SENSORINEURAL HEARING LOSS ON
CONSONANT IDENTIFICATION

This paper investigates the impact of sensorineural hearig loss on the perception of
consonant sounds. In addition to pure tone audiometry (PTA), threshold equalized
noise (TEN) test [108] and psychoacoustic tuning curve (PTQ tests [109] are utilized
to diagnose possible cochlear dead regions. A speech pertiep test is conducted to
measure the hearing impaired listeners' performance on 16oasonants /p, t, k, f, T, s, S,
b,d, g,v, D,z Z, m, hin speech-weighted noise. To determine the correlation bveen
the shift in hearing threshold and speech intelligibility, an extended speech banana that
accounts for the steady-state masking noise is developed faredict the audibility of the
dominant cue for individual consonants, given the pure toneaudiogram and the signal-
to-noise ratio of speech stimuli. Five subjects with bilateal sensorineural hearing loss
volunteered for the study. Results show that audibility successfully accounts for the
disability of speech perception for subjects with mild- at hearing loss, but fails for the
cases of cochlear dead region and extremely unbalanced (ge.gevere high-frequency)

loss.

4.1 Introduction

People with hearing loss often complain about the di culty o f hearing speech in cocktalil
party environments [7]. Depending on the con guration of hearing loss, a HI listener
may easily hear certain sounds and have serious problems witsome others. To explain
why, the following two questions need to be addressed: (1) Wét are the perceptual
cues making up speech sounds? (2) What is the impact of sensoeural hearing loss
(SNHL) on speech perception? In [110], a systematic psychoaustic method has been
developed to identify the perceptual cues of consonant soufs. With that information,

this chapter investigates the e ect of SNHL on the perceptian of individual consonants.
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A key research question is:Does audibility, as characterized by the pure tone audiogra,
fully account for the loss of intelligibility for individual consonants?

Most sensorineural hearing loss can be attributed to the mdlinctioning of cochlear
outer hair cells (OHCs) and inner hair cells (IHCs) within the cochlea. Damage to
the OHCs reduces the active vibration of the cell body that ocurs at the frequency
of the incoming signal, resulting in an elevated detection hreshold. Damage to the
IHCs reduces the e ciency of mechanical-to-electrical transduction, and also results
in an elevated detection threshold. It is generally assumedhat a mild-to-moderate
elevation in threshold primarily re ects OHC loss, while a moderate-to-severe hearing
loss indicates an additional IHC loss. In the past decade Mo® and his colleagues
coined the concept of cochlear dead regions (CDR), an extreencase of IHC loss, and
developed the threshold equalized noise (TEN) test [6,108nd a psychoacoustic tuning
curve (PTC) test [109] for the detection of CDR. An important implication of those
studies is that a pure tone audiogram is not a good indicator 6the physiological nature
of the hearing loss [6]; speci cally, subjects with OHC lossand IHC loss may show the
same amount of shift in hearing threshold.

Due to the lack of means for the quantization of OHC and IHC heaing loss, most
studies on hearing impaired speech perception have been foged on the correlation be-
tween the disability in speech perception and the shift in haring threshold. Bilger and
Wang investigated the e ect of hearing loss on articulatory features using INDSCAL
and claimed that there is generally a relationship between he audiometric con guration
and consonant confusions [111,112]. In [113{115] the coddr hearing loss was simu-
lated by frequency-speci ¢ attenuation ( Itering) or mask ing normal hearing listeners
with spectrally shaped broadband noise; no consistent di eence was observed between
hearing-impaired listeners and masked normal hearing ligners. On the other hand, the
Speech Intelligibility Index (SII), which uses audiometric con guration to compensate
for the hearing loss, has been found inaccurate in predictig the performance of speech
perception for hearing impaired listeners [90]. To Il the gap between the detection
of pure tone and complex speech signals, Plomp and his collgaes proposed a test of
speech intelligibility named speech-reception thresholdSRT), de ned as the level of

speech for a xed 50% score under uctuating noise and steadytate noise [2,116{118].
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The impact of hearing loss on the perception of individual sonds is basically unknown.

The speech banana is a pure tone audiogram labeled with commosounds. It has
long been used for the qualitative assessment of general s perception ability for
HI listeners. The speech cues are based on the formant data @bwels and consonants
measured by Fant [119] during the 1940s. When all the speeclosnds are plotted on the
audiogram, they can be contained by the shape of banana. Twaattors limit the wide
use of the speech banana in audiological clinics. First, it des not account for noise,
which by itself is a much more important factor than intensity (loudness) in terms of
speech perception. Second, most consonants are not de ned lthe formants. During
the last several years, the relevant speech cues have beenaddished for normal hearing
listeners [110,120,121]. Based on the accurate informatioof speech cues and Fletcher's
method of calculating e ective hearing loss in masking noige [70], the speech banana
can be extended and used for the analysis of hearing impairedpeech perception in
speech-weighted noise.

In this chapter we investigate the impact of SNHL on consonah identi cation by
integrating the accurate information about speech cues andcon guration of hearing
loss. In addition to PTA, the TEN test and PTC test are applied to diagnose possible
cochlear dead regions. Based on the analysis of a large amduwf data, it is hypothesized
that HI listeners have di culty understanding noisy speech because they cannot hear
the weak sounds for which the characteristic acoustic cuesra missing due to their

hearing loss and the masking e ect introduced by the noise.

4.2 Extended Speech Banana

The extended speech banana is aimed for the prediction of iefligibility of individual
sounds in steady-state noise for the hearing impaired listeers. It requires two compo-
nents: accurate information about speech cues and e ectivénearing loss in the presence
of masking noise.

Since the stop consonants are characterized by a compact bsirthat falls within a
single auditory lter, while the fricatives all have a wide- band noise-like cue that covers
multiple critical bands, it is easier to study the stop consmants than the fricatives. In

the rest of this chapter we will focus on stop consonants andelave the fricatives and
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nasals for future study.

4.2.1 Acoustic cues of stop consonants

Letting D¢ denote the peak intensity density of a speech cue, the RMS lel can be
approximated by D¢ 6 dB SPL. Assuming that the speech cue only covers the band-
width of a single auditory lIter, the intensity of speech cue I can be estimated by

integrating the RMS level along the critical bandwidth,

lc = D¢ 6+10log;, ERB (4.1)

where ERB is the Equivalent Rectangular Bandwidthof the auditory Iter described by
the following equation [122]:

ERB =24:7(4:37F +1) (4.2)

where ERB is in Hz and F is the center frequency in kHz.

Table 4.1 lists the peak intensity density and center frequacy (CF) of the dominant
cue, the burst, for 36 stop consonants. The center frequencys measured by using
the 3D deep search method as described in Chapter 3. The peaktensity density is
estimated by comparing the amplitude of the short-time Fourier transform coe cients
to that of a pure tone with given intensity.

Notice that the speech sounds have been normalized to 80 dB $Pbefore the mea-
surement. For speech sounds at other levels the actud) ¢ needs to be corrected by the

di erence in intensity.

4.2.2 E ective hearing loss in masking noise

Hearing loss and noise masking are equivalent in the senseahboth cause a shift in the
hearing threshold. Past studies demonstrated that hearingoss can be closely simulated

by introducing a steady-state masking noise with a certain pectral shape [113{115].
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Table 4.1: Peak intensity density and center frequency of dminant cue for stop
consonants (speech intensity normalized to 80 dB SPL).

| Utter | D¢ (dB SPL/Hz) CF (Hz) | Utter | D¢ (dB SPL/Hz) CF (Hz) |
m115-ta 69.5 4141 f103-da 47.3 5145
f105-ta 70.4 5043 f119-da 71.0 4848
m112-ta 62.7 4238 | ml118-da 67.0 2727
f108-ta 68.2 5219 | m104-da 53.0 2543
m104-ta 42.3 3855 | mlll-da 46.0 4027
f106-ta 48.1 3602 | ml1ll5-da 50.2 3320
m1ll-ka 76.0 1695 | mlll-ga 52.0 1769
f103-ka 70.8 1641 f119-ga 66.5 1965
m118-ka 70.5 1273 m104-ga 51.6 1449
f105-ka 53.0 1617 f108-ga 51.6 1918
m114-ka 57.9 1301 | mll2-ga 69.3 1652
f119-ka 47.6 1637 f109-ga 56.9 1699
m118-pa 64.5 859 m118-ba 37.9 527
f103-pa 63.3 844 f119-ba 28.3 441
m114-pa 52.6 820 m107-ba 57.4 426
f106-pa 66.2 1117 f105-ba 41.4 457
m2104-pa 59.5 758 mlll-ba 57.7 387
f109-pa 60.1 727 f101-ba 45.1 1102

Given the signal-to-noise ratio of the noisy speech stimuliand the audiogram of the
hearing-impaired listener, what is the e ective hearing loss? Fletcher provided a method
of adding up the impact of hearing loss and the e ect of maskig noise [70]. The idea is
to treat the hearing loss as the consequence of a masking neifrom the inner ear; then
the e ective hearing lossHy, is the sum of the masking e ect from the internal noise

and the external noise:

(H+Hp)

Hu = 10l0ogyo[101 +10© ] Ho (4.3)

where the rstitem M in the log function is the masking level introduced by the external
noise; H is the hearing loss in dB HL; andHg is the standard hearing threshold for
normal hearing people.H + Hg can be regarded as the equivalent internal noise.
Next we show how the masking level of external noiseM can be calculated from
the signal-to-noise ratio. Assuming that the speech stimul are presented at the most

comfortable level (MCL) for the HI listener, the total energy of the noisy speech is equal
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to the sum of the clean speech and the masking noise

101l0g 0105710 + 10N=19) = mcL (4.4)

where S and N are the intensities of speech and noise, respectively. Giwethe signal-
to-noise ratio SNR =S N of the noisy speech stimuli, the intensity of masking noise
is

N = 10logo(1OMC- =101 + 10 %16 )): (4.5)

Notice that the intensity of noise N is the integration of the energy across the
frequency. For white noise (WN), the intensity density is relatively simple Dy =
N 10logFBW , where FBW s the full bandwidth of the white noise.

Depending on the spectral shape, the masking noise may havased intensity density
over di erent frequency ranges. To give a brief comparison letween white noise (WN),
speech-weighted noise (SWN) and threshold equalized noig@EN), Fig. 4.1(a) depicts
the intensity density Dy of the three types of masking noise when the intensity of nois
N is equal to 68 dB SPL. The full bandwidth FBW is 8000 Hz. The masking levels
M of the three types of noises are plotted in Fig. 4.1(b). As we se, TEN provides
an equal amount of masking over all frequencies, while WN and&WN tend to produce

more masking in the high-frequency and low-frequency rangerespectively.
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Figure 4.1: Comparison of WN, SWN and TEN at 68 dB SPL.

Letting denote the di erence between the intensity densit y per frequencyDy and
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the overall intensity N, the intensity density of the masking noise can be calculaté by
Dn(f)= N+ ( ) (4.6)

The values of ( f) for WN, SWN and TEN are listed in Table 4.2.

Table 4.2: Intensity density increase of WN, SWN and TEN at various frequencies.

[(f)(Hz) [ 125 250 500 1000 2000 3000 4000 6000 8GO0

WN -39.0 -39.0 -39.0 -39.0 -39.0 -39.0 -39.0 -39.0 -39.0
SWN -31.5 -315 -315 -315 -40.6 -458 -49.6 -549 -58.6
TEN -31.0 -32.3 -341 -36.4 -39.0 -40.6 -41.8 -43.4 -447

Given the noise intensity density Dy, the masking level within an auditory Iter can

be calculated by integrating the noise energy over the crittal band
M = Dy +10log,o ERB 4.7)

It is well known that the masking e ect of noise is much greate for hearing impaired
people than for normal hearing people; therefore, we introdced a correction factor
K (f) to account for the widening of critical bandwidth. Replacing the masking level

M with KM , Eq. (4.3) can now be rewritten as

(H+Hp)

Hu =10logo[10% +10 ©°] Ho (4.8)

Thus the correction factor K (f ) can be estimated by

10
R = —logyl(10#  1085)107] (4.9)

where the masking levelM , hearing lossH and e ective hearing lossHy are available
from the TEN test.

Given the presentation level of noisy speech MCL and the sigal-to-noise ratio SNR,
we derived the formulas for the calculation of speech cue imnsity I and the e ective

hearing lossH), . A consonant sound is intelligible if [c  Hg>H .
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4.2.3 Prediction of recognition score

Assuming that a listener can hear a speech sound if and only ithe dominant cue
is audible, the information about speech cue audibility canbe used to predict the
recognition score.

Letting P. denote the probability of correctness in recognizing a south, we have

8

<1 dominant cue audible
P = (4.10)
Pchance dominant cue inaudible

where Pchance 1S the probability of reporting the right sound by random guessing.

For the case of multiple talkers, the probability of correctness of a particular nonsense
syllable is the average over all talkers. Thus we derived a siple way of estimating the
recognition score of stop consonants based on the informath of speech cue audibility.

To give an example, Fig. 4.2(a) shows the extended speech bana in SWN for average
normal hearing (ANH) people. Using the above method, we corert the information
of speech cue audibility into P; functions and compare them to the real perceptual
data measured in [91]. The results are depicted in Fig. 4.2(b The predicted scores
t the real data closely for ve stop consonants except for /ba/, suggesting that the
information of speech cue audibility, as predicted by the exended speech banana, is
pretty accurate for ANH listeners. Meanwhile it is still unc ertain why the extended
speech banana under-predicts the audibility of the /ba/ cue A possible explanation is

that the /ba/ cue covers more than one auditory band.

4.3 Methods

A speech perception test (SL0O7), using 16 nonsense CVs as tlsemuli, is employed to

collect the confusion patterns. The detail of experiment SI07 is given below.

4.3.1 Subjects

Five subjects (10 ears) with bilateral SNHL participated the study. All subjects spoke

uent English. Tympanometry, DPOAE and MEPA (a wide-band ac oustic re ectance
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system for the diagnosis of middle ear problems) were used tdecide the HL listeners'
type of hearing loss. The shift of hearing threshold was meased by PTA. TEN test
[6,108, 123] and PTC test [6, 109] were combined for the diagsis of cochlear dead
regions. The rst two subjects, AS and DC, were tested with a Matlab version of TEN
test created by the author. The other subjects were tested ugsg the TEN CD provided
by the inventor from Cambridge University. The speech studyand the hearing tests were
conducted ear by ear. All subjects were paid for their partigpation. Approval by the

University of lllinois Institutional Review Board was obta ined before the experiment.

4.3.2 Speech stimuli

Sixteen nonsense CV: /p, t, k, f, T, s, S, b, d, g, v, D, z, Z, m, n/ + /al/, chosen from
the LDC-2005S22 corpus, were used as the test material for ¢hHI listeners. Each CV
has only 6 talkers, half male and half female. The speech sods were sampled at 16,000
Hz. The speech sounds were presented at the listener's mosbmfortable level (MCL)

through an ER-2 earphone. All experiments were conducted ira sound-proof booth.
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4.3.3 Conditions

Speech sound were masked at six di erent signal-to-noise tes [-12, -6, 0, 6, 12] and

quiet conditions using speech-weighted noise.

4.3.4 Procedure

To save the subjects' time and reduce the total length of the peech perception exper-
iment, the speech stimuli were presented to the HI listenerdoy an adaptive procedure
which starts from high SNR and stops at a certain condition when the recognition ac-
curacy falls below a given threshold. A mandatory practice gssion was given to each
subject at the beginning of the experiment. Speech tokens we randomized across the
talkers, conditions, and consonants. Following each presgation, subjects responded to
the stimuli by clicking on the button labeled with the CV that he/she heard. In case the
speech was completely masked by the noise, or the processeaakén did not sound like
any of the 16 consonants, the subject was instructed to clicka \Noise Only" button.
To prevent fatigue the subjects were asked to take a break wheever they felt tired.
Subjects were allowed to play each token up to 3 times. A PC-bsed Matlab program

was created for the control of the procedure.

4.4 Results

Two male and three female subjects with bilateral sensorineral hearing loss partici-
pated in this study. Table 4.3 provides an overview of the demagraphic information of
the participants. Except for the case of subject MC who has geetic hearing loss, all
the subjects report having acquired hearing loss such as pseycusis, noise-induced or
other. The hearing loss con guration ranges from mildly at to severely sloping. In the
rest of this section we will summarize the results of the hedng-impaired study case by

case.

83



Table 4.3: Demographic information for the hearing-impaired subjects. AS-L and
AS-R represent the left ear and right ear of subject AS, respetively.

Ear ID | Sex | Age | PTA (dB HL) | Hearing Loss Con guration
AS-L F 81 45 moderate SNHL

AS-R F 81 46.7 moderate SNHL

DC-L M 78 21.7 mild ski-slope SNHL

DC-R M 78 25 mild-to-moderate ski-slope SNHL
BD-L M 49 38.3 mild at SNHL

BD-R M 49 35 mild at SNHL

MJ-L F 43 41.7 mild SNHL

MJ-R F 43 41.7 mild SNHL

MC-L F 21 58.3 moderate-to-severe SNHL
MC-R F 21 90 severe SNHL

4.4.1 Subject: AS

Hearing Con guration

The result of pure tone audiometry (Fig. 4.3) shows that subgct AS has a bilateral
moderate sloping hearing loss with the pure tone average (PA) values being equal to
40 dB HL and 42 dB HL for the left ear and right ear, respectively. Based on the results
of MEPA (middle ear power re ectance) and DPOAE tests (both provided by Mimosa

Inc.), subject AS does not have any problem in the middle ear.
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Figure 4.3: Pure tone audiogram of subject AS.

Hearing Level(dB HL)

Subject AS may have a big cochlear dead region around 2{3 kHaithe left ear and
another cochlear dead region above 8 kHz in the right ear. ThEEN test for the left ear
(Fig. 4.4(a)) shows a gap of more than 10 dB between the absole hearing loss (marked

with circles) and the e ective hearing loss in TEN noise (marked with diamonds) from
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Figure 4.4: Results of TEN and PTC tests. (a) TEN of AS-L: a gap of more than 10
dB between the absolute HL (lled circles) and the TEN-masked HL (open diamonds)
suggests a big CDR around 2{3 kHz. (b) TEN of AS-R: no CDR identi ed. (c) PTC
of AS-L: shallow PTC curves at 2 and 3 kHz indicate poor ability of frequency
selectivity, CDR possible. (d) PTC of AS-R: the tuning curves are shallow but no tip
shifts along the frequency.
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2{3 kHz, suggesting a possible cochlear dead region aroundhat frequency range. We
then measured the PTC curves at the two frequencies of intergt, 2 and 3 kHz, as
depicted in Fig. 4.4(c). Both curves have very shallow (clos to at) tips, meaning that

the frequency selectivity ability is extremely poor at those frequencies. The situation
for the right ear is much better in that the mid-frequency range, which is important for
speech perception, has no dead region. The subject may havecachlear dead region

around 8 kHz in the right ear because of the severe hearing lesf 110 dB.

Speech Perception

Results of the speech perception experiment indicate that achlear dead regions may
have a signi cant impact on the perception of speech soundsFigure 4.5(c) depicts the
recognition scores of subject AS for six stop consonants /pdaa, ka, ba, da, ga/. Due to
the cochlear dead region in the mid-frequency range, whereéhe perceptual cues for /ka/
and /ga/ are located, the subject cannot hear these two sound completely with her left
ear even in quiet conditions. In contrast, her right ear can rear these two sounds with
low accuracy, despite the fact that the two ears have close cogurations of hearing loss
in terms of pure tone audiometry.

The predictions of the extended speech banana are poorly calated with the real
perceptual data (refer to Fig. 4.5(c) and 4.5(c)), suggestig that pure tone audiometry
alone is not a good predictor for speech perception. Accordg to the extended speech
banana, subject AS should not have much di culty hearing the mid-frequency sounds
/ka, ga/ in either ear. The real data show the opposite results. The existence of the
cochlear dead region and loss of frequency selectivity, wtth cannot be characterized by

the pure-tone audiogram, may account for the failure of the @tended speech banana.
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Figure 4.5: Extended speech banana (upper panels) and the pbability of correctness
(Pc) (lower panels) for stop consonants. (a, b) The absolute hedng loss and e ective
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hearing loss in SWN are depicted by solid curve and dashed cues respectively.
Speech cues above the curve of (e ective) hearing loss areandible. (c, d) Real

perceptual data (solid) versus estimated scores (dashed)dsed on the extended speech

banana.
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4.4.2 Subject: DC

Hearing Con guration

Subject DC has a severe sloping high-frequency hearing losa both ears (refer to
Fig. 4.6). The pure tone average (PTA) for the left ear and right ear are 21.7 and 25
dB HL, respectively. Based on the results of MEPA (middle earpower re ectance) and
DPOAE tests (both provided by Mimosa Inc.), subject DC does not have any problems
in the middle ear.
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Figure 4.6: Pure tone audiogram of subject DC.

Hearing Level(dB HL)

The results of the TEN and PTC tests suggest that the left ear may have a cochlear
dead region above 4 kHz, associated with the severe hearingsss (Fig. 4.7(a)), and a
small cochlear dead region around 2kHz, as revealed by the 14B gap between the
absolute hearing loss and the TEN masked hearing loss (Fig..4(a)) and the tip shift of
the 2 kHz tuning curve (Fig. 4.7(c)). Despite the large increase of masked hearing loss
below 1 kHz, the possibility of a cochlear dead region is nemgjible because the absolute
hearing loss is close to normal hearing. For the right ear, tke TEN test (Fig. 4.7(b))
and the PTC test (Fig. 4.7(d)) generate con icting results, which makes them di cult
to interpret. However, considering the fact that the two PTC curves have normal shape
and the absolute hearing loss is lower than 30 dB below 2 kHzt iseems that subject

DC has no cochlear dead region in the right ear below 8 kHz.
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Speech Perception

Due to the time limit imposed by the participant, we only test ed subject DC at 6
dB SNR and quiet conditions. Despite the subject having faity good low-frequency
residual hearing and severe high-frequency loss above 4 kHkoth the left and right
ears show high performance, in quiet, on the two high-frequecy sounds /ta, da/ and
poor performance on the two low-frequency sounds /pa, ba/ (kgure 4.8(c)), suggesting
that the subject may learn to use a new set of perceptual cuesof the two sounds as a
consequence of long-term high-frequency hearing loss. Thamall cochlear dead region
around 2 kHz in the left ear, if it exists, has little e ect on t he perception of mid-
frequency sounds. Subject DC can still hear /ka, ga/ under quet conditions.

Figure 4.8(c) and 4.8(c) compare the prediction of the exteded speech banana to the
actual perceptual data. Again, the estimated recognition €ores are poorly correlated
to the actual perceptual data. For example, it fails to explain why subject DC can hear
the high-frequency sounds /ta, da/ better than the mid-frequency sounds /ka, ga/. It is
conjectured that the severely unbalanced hearing loss alanthe frequency has changed
the mapping of perceptual cues in the auditory cortex; in other words, the HI listener

may have tuned to a new set of perceptual cues dierent from tlose used by normal

hearing listeners.
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Figure 4.8: Extended speech banana (upper panels) and the pbability of correctness
(Pc) (lower panels) for stop consonants. (a, b) The absolute hedng loss and e ective
hearing loss in SWN are depicted by the solid curve and dashedurves respectively.
Speech cues above the curve of (e ective) hearing loss areandible. (c, d) Real
perceptual data (solid) versus estimated scores based on texded speech banana.
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4.4.3 Subject: BD

Hearing Con guration

Subject BD has mild at sensorineural hearing loss in both eas (Fig. 4.9) with the
right ear (PTA = 35 dB HL) being slightly better than the left e ar (PTA = 38.3 dB
HL). Both ears have normal middle ear functions based on the @sults of tympanometry

(type A) and DPOAE tests.
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Figure 4.9: Pure tone audiogram of Subject BD.

Based on the PTA, TEN and PTC results, it is di cult to tell whe ther subject BD has
any cochlear dead regions. The TEN test (Fig. 4.10(b) ) and PTC test (Fig. 4.10(d))
suggest that BD-R may have a cochlear dead region in the rightear around 2 kHz.
There is a big gap between the absolute hearing loss and TEN-asked hearing loss over
all frequencies, but only the one at 2 kHz is veri ed by the PTC curve (Fig. 4.10(b)),
which has a tip shifted toward upper frequency. Similar resuis are observed for BD-L,
for which the TEN test (Fig. 4.10(a)) and the PTC test (Fig. 4. 10(c)) are consistent
only at 1 kHz, other than that the PTC curves have normal shape On the other
hand, the PTA test shows a bilateral mild at hearing loss lower than 40 dB, and it is
hard to believe that a subject who demonstrates near perfecfunctionality of frequency
selectivity, as implied by the close to normal shape of the PT curves, would have any

cochlear dead regions at all.
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Figure 4.10: Results of TEN and PTC tests. (a) TEN of BD-L: a gap of more than 10
dB between the absolute HL (lled circles) and the TEN-masked HL (open diamonds)
suggests a possible CDR below 1 kHz. (b) TEN of BD-R: TEN test &ils. (c) PTC of
BD-L: tip shift at 1 kHz suggests a possible CDR. (d) PTC of BD-R: tip shift suggests
a possible CDR at 2 kHz.
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Speech Perception

Figure 4.11(c) depicts the perceptual results of BD-L on thestop consonants. The
subject can hear most of the stop consonants with an accuracyf over 90% at 6 dB
SNR. Compared to the left ear, his right ear has similar and sightly better recognition
scores for all the stop consonants, which is consistent witthe symmetrical hearing
loss con guration. The results of speech perception do not @n rm the existence of a
cochlear dead region. It is uncertain why the recognition sore of /ga/ increases when
the SNR decreases from 4 to 12 for the left and right ears.

The prediction of the extended speech banana closely matckethe actual percep-
tual score for the stop consonants. According to the extende speech banana (Figure
4.11(a)), subject BD should have little di culty with stop ¢ onsonants in quiet or slightly
noisy conditions because most of the speech cues are stilldible at 6 dB SNR. This is
con rmed by the comparison between the real recognition scee and the predicted scores
based on the extended speech banana, as depicted by Fig. 4(@L Except for /ba/, for
which the burst is not necessarily the dominant cue, most otlker stop consonants show
small discrepancy between the two curves. Similar resultsr@ observed in the right ear,
suggesting that the principle of audibility does apply to hearing-impaired people when

the subject has mild hearing loss.

4.4.4 Subject: MC

Hearing Con guration

Pure tone audiometry (Fig. 4.12) shows that subject MC has malerate hearing loss in
the left ear (PTA average = 58 dB HL) and a severe hearing lossri the right ear (PTA
average = 90 dB HL). Based on the results of tympanometry and DPOAE, the subject
has no middle ear problems in either side.

Results of TEN tests (Fig. 4.13(a) 4.13(a)) indicate no signof a cochlear dead region

in either ear; therefore, we skipped the time-consuming PTCtests for the subject.
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Figure 4.11: Extended speech banana (upper panels) and thergbability of correctness
(Pc) (lower panels) for stop consonants. (a, b) The absolute hedng loss and e ective
hearing loss in SWN are depicted by the solid curve and dashedurves respectively.
Speech cues above the curve of (e ective) hearing loss areandible. (c, d) Real
perceptual data (solid) versus estimated scores based on texded speech banana.
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Speech Perception

MC-R has a rare case of severe-to-moderate up-sloping heag loss; the associated
results of speech perception are depicted in Fig. 4.14(d). &ause of the severe hearing
loss in the low frequency, subject MC cannot hear /ba/ complagely (Pc = 0) in the
right ear. The recognition accuracy increases as the centefrequency of the speech
cue increases; i.e., the two low-frequency sounds /pa, ba/ &ve lower scores than the
two mid-frequency sounds /ka, ga/, which again are lower than the two high-frequency
sounds /ta, da/. All the recognition scores saturate early & a P much lower than 1.
The results of speech perception match the con guration of learing loss. The predicted
scores of the extended speech banana (Fig. 4.14(b)) t the ra perceptual data fairly
well when the signal-to-noise ratio is greater than 6 dB SNR.

MC-L has moderate at hearing loss. The extended speech bama (Fig. 4.14(a))
predicts that the subject cannot hear /ta, da/ produced by some of the talkers even in
quiet conditions, and the existence of masking noise, no métr whether SNR equals 6,
0, or -6 dB, makes little di erence for the perception of the two high-frequency sounds.
The actual perceptual data (Fig. 4.14(d)) con rms the prediction of the extended speech
banana, which also applies to the two mid-frequency soundska, ga/, but it fails for the
two low-frequency sounds /pa, ba/. It is uncertain whether the low-frequency hearing
loss in the right ear has any impact on the auditory cortex andtherefore interferes with

the speech perception in the other ear.
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Figure 4.14: Extended speech banana (upper panels) and thergbability of correctness
(Pc) (lower panels) for stop consonants. (a, b) The absolute hedng loss and e ective
hearing loss in SWN are depicted by the solid curve and dashedurves respectively.
Speech cues above the curve of (e ective) hearing loss areandible. (c, d) Real
perceptual data (solid) versus estimated scores based on texded speech banana.
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4.45 Subject: MJ

Hearing Con guration

Pure tone audiometry (Fig. 4.15) shows that subject MJ has a gmmetric bilateral mild
hearing loss that is identical for the left and right ears. The PTA average is 41.7 dB HL.
Results of MEPA (middle ear power re ectance) and DPOAE tests (both provided by
Mimosa Inc.) indicate that subject MJ has normal middle ear functioning. The subject
does not participate in the TEN and PTC tests. Considering the fact that the hearing
loss is a mild, we assume that subject MJ does not have any colgar dead regions.
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Figure 4.15:; Pure tone audiogram of subject MJ.

Speech Perception

Results of the speech perception test indicate that subjecMJ has no signi cant problem
with any stop consonants. Figure 4.16(c) depicts the recogition scores for her left ear.
The subject can still achieve a score of nearly perfect accacy (close to 100%) for most
sounds at 6 dB SNR. Her right ear mirrors the performance of te left ear, consistent
with the identical con guration of hearing loss between the two ears.

Similar to the other case of mild hearing loss (subject BD), he prediction of the
extended speech banana ts accurately to the actual perceptal data. Figure 4.16(c)
compares the estimatedP. based on the extended speech banana and the reBl from
experiment MN64, which also uses SWN as the masking noise. Eiwo curves are close
to each other. Similar results (Fig. 4.16(d)) are observed dr the other ear, meaning

that audibility of speech cue fully accounts for the intelligibility of consonant sounds.
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Figure 4.16: Extended speech banana (upper panels) and thergbability of correctness
(Pc) (lower panels) for stop consonants. (a, b) The absolute hedng loss and e ective
hearing loss in SWN are depicted by the solid curve and dashedurves respectively.
Speech cues above the curve of (e ective) hearing loss areandible. (c, d) Real
perceptual data (solid) versus estimated scores based on texded speech banana.

100



4.5 Discussion and Conclusion

The goal of this study is to investigate the impact of sensomeural hearing loss on the
perception of consonant sounds. Previous studies [113{1]l%oncluded that audibility,
as characterized by the pure-tone audiogram, is the only faor that accounts for the
disability in speech perception. The conclusion is reachedased on the comparison
of average perceptual score between the hearing-impairedsteners and normal hearing
listeners with equal amount of noise-simulated hearing los. The detailed information
about individual sounds is ignored.

Based on the identi ed perceptual cues and the theory of simitaneous masking, the
traditional idea of the speech banana is developed into a quditative tool, named the
extended speech banana, for the evaluation of speech intgjibility. Given the intensity
of the speech sound and the pure-tone audiogram of a particat HI listener, it can
predict the audibility of speech cues for the subject under arious noise conditions. If
the prediction matches the actual perceptual data, it must be true that audibility, as
characterized by the shift in pure-tone hearing threshold,is the only factor critical for
speech perception. If the two mismatch, there might be sometber factors that override
the factor of audibility.

Five hearing-impaired subjects with bilateral sensorinewal hearing loss participated
the study. The prediction of the extended speech banana clady ts the perceptual
data of two subjects (BD and MJ) with mild at hearing loss, an d matches fairly
well for a subject (MC) with moderate hearing loss. It fails on two other subjects,
one (AS) with a big cochlear dead region in one ear, the otherC) with a steep
sloping high-frequency loss. For both cases the PTC tests slw abnormal shallow
tuning curves, suggesting that frequency selectivity is animportant factor for speech
perception. Besides, plasticity may also play a role in spes perception for the long-
term hearing-impaired listeners. For example, the left earof subject DC can hear
/ta/ and /da/ with a probability of 100% under quiet conditio ns despite the fact that
most of the speech cues are inaudible. The subject may learrotuse a set of minor
perceptual cues that are ignored by normal hearing listenes because of the existence of
the dominant cue. The results generally support our hypotheis that the HI listeners

have problems understanding speech because they cannot heeertain sounds whose
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events are missing due to their hearing impairment or the making e ect introduced by
the noise. How the speech cues are a ected by the cochlear dgaegions or attening

auditory lters requires further study.
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CHAPTER 5

MANIPULATION OF CONSONANT SOUNDS IN
NATURAL SPEECH

This chapter explores the potential use of knowledge about prceptual cues of consonant
sounds in speech processing. Analysis of nonsense consdnawel syllables from the
LDC database reveals that natural speech, especially stopansonants, often contains
con icting cues that are characteristic of confusable sounds. Through the ranipulation
of these acoustic cues, one phone (a consonant or vowel soyrchn be morphed into
another; a weak sound, easily masked by noise, can be conved into a strong one.
Results of speech perception experiments on feature-enheed /ka/ and /ga/ show that
ampli cation of speech cues signi cantly improves the periormances in noise for both

normal and hearing-impaired listeners.

5.1 Introduction

After more than 50 years of study, many speech processing teniques, such as commu-
nication, synthesis, noise reduction, as well as automatispeech recognition (ASR), have
reached a plateau in performance. A widely held view is that Io-inspired speech pro-
cessing schemes that take advantage of prior knowledge abblmuman speech perception
(HSP) could potentially lead to better solutions for those gpeech applications [124{126].
Take speech recognition, for example: the performance of thstate-of-the-art ASR sys-
tems is still far below that of humans, despite more than 40 yars of research e ort [125].
The phone classi cation accuracy in ASR systems varies from82% in quiet [127] to
chance performance at 0 dB SNR. Human performance is quite dirent. The aver-
age phone classi cation accuracy in quiet is near 98-98.5%1(5-2% error) [95,96]. The
SNR required for chance performance is below -20 dB SNR [91For many sounds, the
performance in humans is unchanged from quiet to 0 dB SNR [9].

A fundamental problem of human speech perception is:How is the speech coded
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in the auditory system? In order to nd out the basic spectrum patterns for di erent
speech sounds, Liberman and his colleagues built a machinalted pattern playbackthat
generates arti cial speech from a spectrogram and conductta series of psychoacoustic
studies on the perception of synthetic stop consonants [4213]. Later, this method
was applied in the search for acoustic correlates for stopsif, 128], fricatives [45, 46],
nasals [47{49], and distinctive or articulatory features ([16,25,97]). To understand how
speech sounds are represented in the auditory system, a srhaumber of researchers
have studied the recordings of single auditory neurons in rgponse to speech and speech-
like stimuli [19{21, 129]. Since it is unethical to record in the human auditory nerve,
and it is dicult to do extensive speech psychophysics in northuman animals, it was
impossible to correlate those neurophysiological studiewith psychophysical data. We
have skirted this problem by creating a computational modelof speech reception, called
the Al-gram, which crudely predicts the audibility of speech components to the central
auditory system [94,100]. In [110], this method is extendedo include a psychophysical
test, named 3D Deep Search (3DDS), to measure the contributin of dierent time-
frequency components to speech perception.

This chapter explores the potential uses of our new knowledg of perceptual cues in
speech processing. It is frequently said that speech contas redundant cues. To the
contrary, it was discovered that natural speech often conténs con icting cues that are
representative of competing speech sounds. Through the maulation of these cues,
usually a tiny spot on the Al-gram, we can convert one phone ito another phone, or
turn a weak speech sound into a strong one, so that hearing imgired listeners can

detect them with higher probability in noisy situations.

5.2 Perceptual Cues of Consonant Sounds

In natural speech, due to the physical constraints on the artculators (mouth, tongue,
lips, etc.), it is widely accepted that their ideal position is often compromised due to
neighboring sounds (e.g., a V on a C). Namely, speech cues aiczessivef C,Vg units
frequently interact, which is an e ect called coarticulation [34]. Since coarticulation
does not extend beyond the syllable, it is common to separateontinuous speech into

syllable segments, such as CV or CVC [64].
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Using the aforementioned 3DDS method, we have identi ed theperceptual cues of

initial consonants preceding vowel /a/ [110, 120, 121].

5.2.1 Overview of consonant cues

Figure 5.1 depicts the Al-grams of 16 consonants precedingowel /a/ with the dominant
perceptual cues highlighted by the rectangular frames. Thestop consonants p, t, k, b,
d, g/ are characterized by a compact burst of short duration (less than 15 ms) caused
by the sudden release of pressure in the oral cavity. Within he same group, the stop
consonants distinguish themselves by the center frequenayf the burst; speci cally, /ta/
and /da/ are labeled by a high-frequency burst above 4 kHz, /ka/ and /ga/ are de ned
by a mid-frequency burst from 1.4 to 2 kHz, and /pa/ and /ba/ ar e represented by a
soft wide-band click, which often degenerates into a low-fequency burst from 0.7 to
1 kHz due to the masking e ect of surrounding noise. The voicd and unvoiced stops
di er mainly in the duration of the gap between the burst and t he start of sonorance.
The fricatives /f, s, S, U, v, z, Z, Aare characterized by a salient noise-like cue caused
by the turbulent air ow through lips and teeth. Duration and bandwidth are the
two key parameters for the discrimination of these sounds. @eci cally, the /fa/ cue
is within 1-2.8 kHz and lasts for about 80 ms; the sa cue falls within 4-8 kHz and
lasts for about 160 ms; /Séis also labeled by a cue of long duration, but it has a lower
frequency (2-4 kHz); and the /Ua/ cue ranges from 2 to 8 kHz and lasts for more than
100 ms. These results are summarized from [121]. The voiceddatives have similar
patterns of perceptual cues, except that the durations are onsiderably shorter than
their unvoiced counterparts. The two nasals /m/ and /n/ shar e a common feature of
nasal murmur at low frequency and di er from each other in the mid/low-frequency
(below 2.4 kHz). These consonant events have been found to beonsistent across
di erent talkers. Similar data for the two other vowels /i/ a nd /u/ is currently being
analyzed. In running speech, the acoustic cues are expectdd change, depending on
the preceding and following vowels, or other factors [42]. Tis variation is governed by

the physical principles of speech production [41, 130].
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Figure 5.1: Al-grams for the 16 Miller-Nicely consonants at12 dB SNR in white noise:
(a) stops, (b) fricatives and (c) nasals. All sounds are prowounced by a female talker
f103 except for /fa/, which is produced by talker f101. A rectangular frame highlights
the perceptual cue that distinguishes each sound from its ampeting sounds, as
determined by the 3DDS procedure [105, 120]. A dashed frame @ans that the
perceptual cue is often masked by noise. The con icting cueare labeled by ellipses.
These plots form a baseline starting point for speech modi ations of the boxed
regions.
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5.2.2 Conicting cues

Due to the physical limitations of the human speech articuldion system, it seems to
be di cult to produce ideal speech sounds, as generated by apeech synthesizer, and
it is interesting to see that many natural sounds contain conicting cues that are char-
acteristic of competing sounds. Analysis of the LinguisticData Consortium (LDC)
LDC2005S22 \Articulation Index Corpus” from University of Pennsylvania indicates
that most stop consonants contain con icting cues that may lead to confusions in speech
perception under adverse circumstances. As an example, théka/ from talker f103 is
shown in Fig. 5.1(a). The talker (f103) intended to make a /ka/ sound, and the lis-
teners all reported hearing /ka/ 100% of the time at O dB in both white noise (WN)
and speech-weighted noise (SWN), and even 98% of the time al® dB in SWN. Yet,
the produced speech contains a high-frequency burst arounfl kHz and a low-frequency
burst from 0.4 to 0.7 kHz (highlighted by ellipses), indicative of /ta/ and /pa/ produc-
tions, respectively. When such con icting cues are removedthe speech is perceptually
indistinguishable. The listeners report a robust /ka/ because the mid-frequency /ka/
burst (highlighted by the box) perceptually dominates the interfering cues. Another ex-
ample is /ga/. In addition to the typical /ga/ burst in the mid -frequency (highlighted
by the box), it also contains a high-frequency burst above 4 Kz and a low-frequency
burst below 1 kHz (labelled by ellipses) that could lead to the perception of /da/ and
/bal, respectively. The same situation applies to /ta/, /da / and /pa/.

Con icting cues also exist for fricative consonants. For example, the fricative part of
/ S& also contains a /sa/ cue at high frequency above 4 kHz (labded by an ellipse).
Within the fricative part of /sa/ there is also the perceptua | cue of /za/. Apart from
that, /sa, Sa Ua, za, Zd all have a high frequency burst above the head of the F3
transition (labelled by ellipses) that could lead to the perception of /D4d.

All the example speech sounds, displayed in Fig. 5.1, are pouced by a female talker
f103, other than /fa/, which is produced by talker f101. According to our speech per-
ceptual data, talker f103 is ranked as one of the best talkerén the LDC database. The
problem of producing con icting cues in a single speech souhis a common observation
across all talkers. Because of the con icting cues, the pespt of the sound will predica-

bly change, if the dominant cue is removed or masked. Here weistuss the manipulation
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of speech cues in natural speech to: (1) show how the percept consonant sounds can
be controlled, and (2) explore the potential use of perceptal cues in speech processing

applications.

5.3 Manipulation of Speech Cues

Speech perception is a complex process where the integratioof events is governed
by high-level language, such as lexical, morphological, syactic, and semantic con-
text. In order to understand this process of event integraton, it is necessary to
start from nonsense syllables, for which the high-level costraints on speech percep-
tion are maximally controlled [82]. For this reason, we rst look at the manipu-

lation of initial consonants as they occur in isolated nonsase CV syllables. Fol-
lowing that, we show that the speech cues may be modied in islated meaning-
ful syllables (words) and sentences. The examples discuskén this report can be

found at http://hear.ai.uiuc.edu/wiki/Files/VideoDemos . For example, the sample

\ka! ka! ta! pa"in Fig. 5.2 is listed as \ka2ka2ta2pa" on the web site.

Our speech modi cation procedure begins by analyzing the spech sounds using the
short-time Fourier transform (STFT). The boxed regions of Fig. 5.1 are then modi ed,
as described below. Finally, the modi ed speech is returnedo the time domain via an

overlap-add synthesis [102].

5.3.1 Speech analysis and synthesis

Letting x[n] denote the sampled speech signal at sample times. For analysis, the
original signal x[n] is divided into N point overlapping framesx[m;n] w(n)x[mR n]
of 20 ms duration with a step sizeR  N=4 samples of 5 ms total duration. A Kaiser
window w[n] having -91 dB attenuation (i.e., rst side lobe is 91 dB smaler than the
main lobe) is used. Note that the speech is time-reversed andhifted across the xed
window prior to being Fourier transformed:

g 1

X [m; k] = x[m;nle 12kn=N . (5.1)
n=0
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The resulting STFT X [m;Kk] is a two-dimensional complex signal matrix, indexed in
time m and frequencyk.

The region of a speech cue is modi ed by multiplyingX [m; k] with a two-dimensional
mask M [m; k] that speci es the gain g within the feature area. Specically, g =0 is
feature removal, a gain 0< g < 1 corresponds to a feature attenuation, and a gairg > 1

is feature enhancement, resulting in the modi ed speech sperum
Y[m; k] = X[m; k] M[m;K]: (5.2)

The gain is expressed in dB a$5 = 20 log;(g) dB. Following modi cations, the single
frame signal can be recovered by applying an inverse Fourigransform
1 X! e
yimn]= & YIm; k]e 2kn=N (5.3)
k=0
followed by the overlap add (OLA) synthesis, resulting in the modi ed speech signal
R[n]

x0
R[n] = y[mR;n] (5.4)

m= My

over all past samples [102]. In practice this series truncas on the lower side (the mod-
i cations have nite memory), as determined by Mg = N=R, which is typically taken

to be 4. Due to the modi cations, zero-padding of the windowel speech is necessary.

5.3.2 Nonsense syllable

Plosives

To demonstrate that the unvoiced stop consonants /pa/, /ka/ and /ta/ are sensitive
to the conicting cues, we selected /ka/ from talker 103 as an example. Using the
signal processing method described in the previous sectipmwe have modi ed the speech
by varying the relative levels of three speech cues (highlisted by the three blocks in
Fig. 5.2). When the mid-frequency /ka/ burst in block 1 is rem oved (lower-left panel of
Fig. 5.2), the percept of /ka/ is dramatically changed and listeners report either /pa/
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Figure 5.2: Three-way manipulation of unvoiced stop consoant /ka/: In the

upper-left, the Al-gram shows the original /ka/ from talker 103 at 12 dB SNR. When
the two con icting cues (blocks 2 and 3) are removed (upper-ight panel), the sound is
heard as unmodi ed. When block 1, containing the /k/ cue, is removed (lower-left)
and the /t/ cue (block 2) is enhanced by 6 dB, a /t/ is robustly r eported. Finally,
when both the /k/ and /t/ cues are removed (blocks 1 and 2) (low er-right), /pa/ is
robustly reported. (Example: \ka! ka! ta! pa".)
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or /ta/. This ambiguous situation is called priming, and de ned as the auditory illusion
where prior expectation of the perceived sound a ects the sond reported. When both
short bursts for /ta/ and /ka/ (blocks 1, 2) are removed, the s ound is robustly perceived
as /pal/. Boosting the low-frequency burst within 0.5 and 0.7 kHz (block 3) strengthens
the initial aspiration and makes the sound a clearly articulated /pa/ (lower-right panel
of Fig. 5.2).

We conjecture that the presence of the 1.4 kHz burst both triggers the /ka/ report
and renders the /ta/ and /pa/ bursts either inaudible, via th e upward spread of masking
(USM, de ned as happening when a low frequency sound reducethe magnitude of a
higher frequency sound), or irrelevant, via some neural sigal processing mechanism.
The existence of the USM e ect makes high frequency sounds $s signi cant when
present with certain low frequency sounds. The auditory sytem, having learned this,
could be programmed to ignore these higher frequency soundsnder these uncertain
conditions.

An important implication of this example (Fig. 5.2) is thatt he F2 transition for /ka/
is unnecessary for the discrimination of unvoiced stop cormants, contradictory to a
widely accepted argument that the F2 transition is critical for the recognition of stop
consonants [43,97].

The group of voiced stop consonants /ba, da, ga/ and the unvaied stop consonants
/pa, ta, ga/ have similar feature patterns with the main die rence being the delay
between thevoicing (i.e., the burst release) and the start of the sonorant porton of the
speech sound. We shall next show how the voiced stops /ba, d@ga/ can be modi ed,
again through speech cue manipulations. Figure 5.3(a) depts the Al-gram of /ba/
from talker m111 at 12 dB SNR of white noise, which was perceird robustly by the
listeners as a /ba/. After removing the perceptual cue of /ba/ (block 1) and boosting
the mid-frequency burst (block 2) by a factor of 4 (12 dB), it turns into a noise-robust
/gal. Figure 5.3(b) shows the Al-gram of /da/ from talker {10 3 at 14 dB SNR, which
contains a typical high-frequency /da/ burst (block 1) and an interfering mid-frequency
/gal burst (block 2). Just as in Fig. 5.2 where /ka/ was conver ted to /ta/ or /pa/, the
/da/ sound may be converted into a /ga/ by removing the high-f requency burst (block 1)

and scaling up the lower frequency burst (block 2) to create dully audible mid-frequency
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/da/

consonants /ba, da,ga/. (a) /ba/ from talker

f103 morphs into /ga/ when the /ba/ cue in block 1 is replaced by a /ga/ cue in block

2. (Example: ba2ga) (b) /da/ from talke

r f103 is heard as a natural /ga/, after

removing the high-frequency burst (block 1) and boosting the mid-frequency burst
(block 1) by a factor of 5 (14 dB). (Example: da2ga) (c) Removal of the
mid-frequency burst (block 1) causes the original sound /gafrom talker f103 to
morph into a /da/. Boosting the high-frequency burst (block 2) makes the sound a

clear /da/. (Example: ga2da)
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burst. The reverse conversion (from /ga/ to /da/) is illustr ated in Fig. 5.3(c). After

removing the mid-frequency /ga/ cue (block 1), as highlighted by the blue rectangular

box, the listeners robustly report /da/. Under some SNR conditions (when the mid-

frequency boost is removed and there is insu cient high-frequency residual energy for

the labeling of a /da/), a 12 dB boost of the 4 kHz region is requred to robustly convert
the sound to /da/.
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Figure 5.4: Manipulation of fricatives / Sa, f& (a) The original sound / S& from talker
f103 is converted into a /sa/ when the bandwidth of the noiselike cue is cut from 2{4
kHz (removing block 1). The sound is universally reported as Ua/ when the duration
is shortened from its natural duration of 15 cs (from 13-28 csdown to 6 cs (from
22-28 c¢s) (removing block 2). Combining the two processes émoving block 1 and 2)
turns the sound into a /za/. Finally, when all three blocks ar e taken out, the sound is
heard as a /Dd, and boosting the high-frequency residual (block 4) makesthe / Dd
clearer. (Example: Sa2cha2sa2za2Dg (b) The original sound /fa/ from talker 103
turns into a /ba/ when the whole fricative cue (highlighted b y the blue box) is
deleted. (Example: fa2ba.)

Fricatives

Unlike the stop consonants, represented by a compact initiaburst, the fricatives are
characterized by a noise-like cue with varied duration and fandwidth. Cutting the
speech cues in bandwidth and duration, we can also convert #fricatives from one into
the other. Starting with / Sd from talker f103 (Fig. 5.4(a)), the original sound is heard
by all listeners as a solid /S& The perceptual cue ranges from 13 to 28 cs in time and
about 2 to 8 kHz in frequency. For example, cutting the bandwdth in half (remove

block 1) morphs the sound into a robust /sa/. Shrinking the duration by 2/3 (remove
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block 2) transforms the sound into a /Ua/. Combining both modi cations (remove block
1 and 2) causes most listeners to report /za/. Removing the wiole noise patch (remove
block 1, 2 and 3) results in /Dd, which can be made robust by amplifying the residual
high-frequency burst (highlighted in block 4).

Consonants /fa/ and /va/ are highly confused with /ba/ when t he fricative parts of
the two sounds are masked. Figure 5.4(b) shows an example offa/ ! /ba/ conversion.
The original sound is a /fa/ from talker f103. When the whole fricative part is removed,
it morphs into a robust /ba/.

Al-gram of f103na at 12 dB SNR
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Figure 5.5: Al-gram of /na/ from talker f103. Removing the downward F2 transition
turns the /na/ into a /ma/. (Example: na2ma).

Nasals

The two nasals /ma/ and /na/ share the common feature of a nasal murmur and
di er from each other in the shape of F2 transition; speci cally, /na/ has a prominent

downward F2 transition while /ma/ does not. This is because the length of the vocal
tract increases with /na/ as the tongue comes o the roof of the mouth, but stays the
same length as the lips part, while for /ma/ the tongue remains on the oor of the
mouth. Figure 5.5 shows an example of /nal /ma/ conversion. The original sound
is a /na/ from talker f103; when the salient F2 transition is r emoved, it turns into a
/ma/ for which some people can still prime /na/. We have found that it is generally
di cult to manipulate the speech cue and turn a /ma/ into a con vincing /na/, or vice

versa, because the spectral patterns of the two sounds are de dierent. The very

low-frequency \nasal murmur" does not seem to be critical tothe perception of the
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nasal class, but is simply characteristic. Namely, it does ot seem to be a noise-robust

cue used by listeners to label a sound as \nasal.”
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Figure 5.6: Manipulation of words extracted from continuous speech. (a) A word
/take/ morphs into /kate/ when the high-frequency /t/ cue is  switched with the
mid-frequency /k/ cue. (Example: take2kate .) (b) A word /peach/ turns into
/beach/ when the duration between the /p/ burst and the onset of sonorance is
reduced from 60 ms to 0 ms. (Example:peach2beach)

5.3.3 Words

A major di erence between words and nonsense syllables is #t words are meaningful.
This semantic constraint can have a major impact on the percptual integration of
speech cues. In the previous section, we showed that the pet of nonsense CV
syllables can be changed through the manipulation of speeckues. A key question
is: Does the same technique apply to words or sentences contaigi coarticulation and
context?

To explore this question, we chose several words from our speh database and applied
our speech-feature modi cation method. Figure 5.6 shows tw such examples, the words
/take/ and /peach/, extracted from a sentence. As we see in Fg. 5.6(a), /t/ and /k/ are
characterized by a high-frequency burst at the beginning ad a mid-frequency burst in
the end, respectively. Switching the two cues turns the verbtake/ into the noun /kate/.

In Fig. 5.6(b), once the duration between the /p/ burst and th e onset of sonorance is

removed, /peach/ is reported as /beach/.
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Figure 5.7: Manipulation of speech cues converts a TIMIT setence /she had your
dark suit/ into a meaningful new sentence /he has your dart shoot. Step 1: convert
/she/ into /he/ by removing the fricative part of /she/ (dele te block 1 and 2). Step 2:
to convert /had/ into /has/, a /s/ feature is created after /n ad/ by shifting the upper
half of / 3 feature (block 1) to t =55 cs. Step 3: convert /dark/ into /dart/ by

shifting the mid-frequency burst (block 3) upward. Step 4: cnvert /suit/ into a
/shoot/ by shifting the /s/ cue (block 4) downward to 2{4 kHz. (Example:
she_had_your _dark _suit .)

5.3.4 Sentences

The same technique of feature-based speech modi cation whks for natural meaningful
sentences, as illustrated in Fig. 5.7 which shows the Al-gna of the sentence she had
your dark suit/ at 14 dB SNR (the phones are labeled at the top). Removing the
fricative cue aroundt = 20 cs (delete block 1 and 2) morphs the word /she/ into a
/he/. Notice that the upper part of the / 3 at 4-8 kHz (block 1) can be used as the
perceptual cue of /s/; shifting it from t = 20 cs to t = 55 cs causes the word /had/
to morph to /has/. Next, we move the mid-frequency /k/ burst i n the word /dark/
upward to 4 kHz, which converts the word /dark/ into /dart/. F inally, we changed the
/sl cue in the word /suit/ to be a / 3 cue by shifting it downward from 4-8 kHz to
2-4 kHz, which morphs /suit/ to /shoot/. Thus, the modi ed se ntence becomes lhe
has your dart shoot. It is relatively easy to change the percept of most sounds ace
the consonant cues are identi ed. Interestingly, meaningtil sentences may easily be
morphed into nonsense by modifying a single event. For examnip, we can turn the /d/
in /dark/ to a /b/ by zeroing out the frequency component abov e 1.4 kHz from 75 to
85 cs; then the whole sentence becomesiie has your bark suit, which does not make
any sense.

The above examples of sentence modi cation clearly indicag that speech perception
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is dependent on the speech cues. Context information is usg@fonce the listeners can
hear the speech cues. A sentence may have key words and acoegsvords. Similarly,
the acoustic cues of continuous speech may be classi ed inttwo types: critical and
accessorycues. The critical cues are the irreplaceable units that arecritical for percep-
tion of the sentence, while the accessory cues are the reduandt units recoverable from
the critical cues and the associated context information.

Given a priori knowledge of speci c speech cues, we can change the percepnatural
speech through the manipulation of speech cues in CV syllabk, words and sentences.

A potential use of this technique is in speech enhancement.nlthe next section, we
will show that speech sounds can be made more robust to noisg/ lenhancing the speech

cues.

5.4 Feature-Based Speech Enhancement

People with hearing loss always complain about the di culty of hearing speech in noisy
environments. Depending on the type and degree of hearing $s, it is commonly re-
ported that a hearing-impaired (HI) listener may require a more favorable signal-to-noise
ratio (SNR) than normal-hearing (NH) listeners to achieve the same level of performance
for speech perception. An alternative hypothesis is that tre audibility of speech cues
is the key issue. State-of-the-art hearing aids have low fuctionality in noisy speech
because they amplify the entire signal without taking into account the speci ¢ features
of the speech sounds. If they could automatically detect theonset of the speech cues
and selectively enhance them to bring them into the HI's audbility range, they might
work better in noise.

Over the past years, various single-channel noise-reducin techniques have been
proposed to increase the SNR [10, 11]. For example, Time-Fgeiency Gain Manip-
ulation [12] improves the total SNR by assigning larger gairs to the time-frequency
components with less noise and lower gains to those with moreoise.

Since the manipulation is based on the distribution of randan noise rather than on
prior knowledge about the speech cues, none of these metholdave been shown e ective
in improving speech intelligibility [13]. As a consequencemany Hl listeners can hear the

ampli ed noisy speech, but still cannot understand it. To im prove HI speech perception,
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it is necessary to know the basic elements of speech percemti, and according to the Al,
it is the SNR in critical bands that counts; while the SNR in a critical band cannot be
enhanced, it might be possible to improve the onset dynamics Furthermore, detailed
understanding of the exact sounds causing diculty to the HI ear has proven to be
valuable.

Recently we conducted a hearing-impaired speech perceptioexperiment. One sub-
ject (AS) with moderate to severe sloping hearing loss, traied in linguistics, volunteered
for the pilot study. Results show that AS cannot hear /ka/ and /ga/ with her left ear,
due to a cochlear dead region [6] from 2 to 3.5 kHz, which totdy blocks the percep-
tual cues of /ka/ and /ga/. In contrast, her right ear has no id enti ed cochlear dead
regions, and AS can hear these two sounds, but with low accury. Confusion analysis
indicates that more than 80% of the /ka/s in the left ear were misinterpreted as /ta/,
while about 60% of the /ga/s were reported as /da/. A plausible explanation is that
the left ear picks up the interfering high-frequency cues, Wich promote the /ka/ ! /ta/
and /ga/! /da/ confusions.

To test the idea of feature-base speech enhancement, we carded a small speech
perception experiment on stop consonants to determine the ptential bene t of speech
cues for speech enhancement. To reduce the \bias" toward /thand /da/, the utterances
were modi ed so that the high-frequency interfering cue wasremoved, while the mid-

frequency perceptual cue was ampli ed, as depicted in Fig. 5.
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Figure 5.8: Enhanced /ka/s and /ga/s were created by removirg the high-frequency
interfering cues (dashed boxes) to promote /ta!! /ka/ responses and /ga/! /da/
confusions, and then boosting the mid-frequency bursts, dtical for /ka/ and /ga/

identi cation.
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5.4.1 Methods

The speech stimuli include /pa, ta, ka, ba, da, ga/ and severhenhanced super /ka/s
and super /ga/s having the mid-frequency /ka/ and /ga/ cue am pli ed by 1 (no gain),

2 (6 dB gain) and 4 (12 dB gain) respectively. The speech stimliwere chosen from the
University of Pennsylvania's Linguistic Data Consortium (LDC) LDC2005S22 \Articu-

lation Index Corpus" such that each nonsense CV syllable ha$ talkers, half male and
half female. The speech tokens were fully randomized acrogalkers, conditions and
consonants. A Matlab program was created to control of the pocedure. Following each
presentation, the subject responded to the stimulus by cliking on the button labeled
with the CV. In case the speech is totally unintelligible due to the noise, the subject
was instructed to click a \Noise Only" button. The speech stimuli were played at the
most comfortable level (MCL) of the listener with no spectral modi cation for the NH

listeners and \NAL-R" enhancement for the HlI listener.

5.4.2 Results

To obtain a baseline performance, the speech perception egpiment was given to three
normal hearing listeners before we tested HI subject AS. Fothe normal hearing lis-
teners, the speech stimuli were presented to both ears simiaineously under two SNR

conditions, -9 and -3 dB SNR, using speech-weighted noise {&N).

Normal Hearing

Results of the speech perception experiment indicate that bosting the mid-frequency
/ka/ and /ga/ cue signi cantly increases the recognition sc ores for normal hearing lis-
teners. Table 5.1 shows the confusion matrix of the normal haring listeners. Each row
of the table represents the number of responses made by thesteners when the sound
on the left-most column is presented. At -9 dB SNR, removing he interfering high
frequency cue from /ka/ reduces the /ta/ confusion from 8 (row 3, col 2) to 5 (row 4,
col 2). Enhancing the mid-frequency cue for the target soundby 12 dB increases the
number of correct responses from 13 (row 3, col 3) for the origal sound /ka/ to 27 (row

6, col 3) for the modied sound ka; ok 4. Similar results are observed for /ga/, for
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Table 5.1: Normal hearing (NH) listeners.

-9 dB SNR (SWN) -3 dB SNR (SWN)

pa ta ka ba da ga|pa ta ka ba da ga

pa 19 7 1 6 5 1146 1 2 5
ta 3 42 2 2 1 51 2 1
ka 12 8 13 3 5 316 3 39 14 1
ka: o 22 5 4 5 3122 4 16 4 1 5
kat ok 2| 7 2 14 2 1 6 | 6 1 42 1 4
kai ook 4| 3 1 27 1 2 9 | 4 2 42 1 4
ba 4 1 3 8 7 5|8 1 31 6 1
da 5 11 2 3 25 1|1 1 1 1 44 3
ga 4 2 3 7 16 12 2 3 2 1 16 26
gaq o 4 3 2 8 4 16 1 8 8 33
gagog2| 1 1 11 3 10 20 1 5 42
gaq og 4| 1 9 4 3 26 1 5 48

t;d 0 means removing the interfering /ta/ or /da/ cue;
k;g N means amplifying /ka/ or /ga/ cue by a gain factor of N.

which the number of correct responses is 12 (row 9, col 6) fothie original sound versus
27 (row 12, col 6) for the enhanced soundjag o;g 4. When the SNR increases from
-9 to -3, the advantage of feature manipulation is still large for /ga/ with the number

of correct responses being 26 (row 9, col 12) for the originadound versus 48 (row 12,
col 12) for the enhanced sound /ga/ @aq o;g 4); the benet of speech enhancement

becomes minimal for /ka/ as the performance saturates.

Hearing Impaired

Results of the speech perception experiment indicate thatdature manipulation sig-
ni cantly changes the nature of speech communication for Hisubject AS in quiet, as
shown in Table 5.2. Each row contains the number of responseshen the CV in the
left-most column is presented. It is shown that for the left ear AS can hardly hear the
/ka/ sound, with 20 out of 30 /ka/s being reported as /ta/, and 8 out of 30 /ka/s are
misinterpreted as /pa/ (row 3). After removing the interfer ing high-frequency /ta/ cue
from /ka/, the /ta/ confusion (column 2) drops dramatically from 20 to 8 (row 3 vs.
row 4), while the /pa/ confusion increases from 8 to 16 (row 3 \s. row 4). Due to the
impact of the cochlear dead region in the left ear, which bloks the mid-frequency /ka/

cue, feature boosting has a minor e ect on /ka/ perception asthe number of correct
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Table 5.2: Hearing-impaired listener AS in quiet.

Left Ear Right Ear
pa ta ka ba da ga|pa ta ka ba da ga
pa 29 1 30
ta 30 30
ka 8 20 2 3 7 17 1 1
ka: o 16 8 1 1 1 4 19 1 3
ka;i ok 2 |16 11 3 10 18 2
kai ok 4 {18 6 5 1 5 25
ba 19 1 2 19 3 1
da 6 21 2 30
ga 3 7 16 1 26 3
gaqg o 4 2 4 14 1 21 8
gad o,g 2 4 6 16 2 19 9
gag oga| 1 5 4 20 3 1 21 5

t;d 0 means removing the interfering /ta/ or /da/ cue;
k;g N means amplifying /ka/ or /ga/ cue by a factor of N.

responses increases from 2 to 5, i.e., 10% when the acoustigecof /ka/ is ampli ed by
a factor of 4 or 12 dB (ka; ok 4). Similar results were observed for /ga/ except that
the percent correctness is much higher than that of /ka/.

Unlike the left ear, the right ear of AS has more diculty in id entifying /ga/ as
compared to /ka/. Of the 30 /ga/s, 26 were misinterpreted as /da/. Removing the
interfering /da/ cue in the high-frequency region and boosting the mid-frequency burst
reduces the /da/ given /ga/ ( djg) confusion from 26 to 19 and increases the correct re-
sponses@jg) from 3 to 9, when the acoustic cue of /ga/ is enhanced by 6 dB@ay o.¢ 2)-
In addition, this feature manipulation increases the kjk responses from 17 to 25. Since
the right ear does not have atjk confusion, removing the interfering cue has little e ect.

To investigate the e ect of noise on the perception of the feture-enhanced speech, we
also tested subject AS with noisy speech sounds. To generatke noisy speech stimulus,
the original clean speech was enhanced in the feature registand then mixed with white
noise at 12 dB SNR. Table 5.3 lists the results of the test. Agim the feature-enhanced
/ka/s and /ga/s have a signi cantly higher number of correct responses, usually 5 or 6
out of 30 presentations, than the unmodi ed sounds. However due to the existence of
white noise, removing interfering cues only has a minor e etin reducing the abnormal

/ka/ ! Nta/ confusion in the left ear and the /ga/ ! /da/ confusion in the right ear. A
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Table 5.3: Hearing-impaired listener AS at 12 dB SNR.

Left Ear Right Ear
pa ta ka ba da ga|pa ta ka ba da ga
pa 6 8 14 2 1
ta 26 29 1
ka 5 23 1 1 21 6 1
ka: o 1 20 2 1 1 1 10 12 5
kai ok 2| 3 17 6 1 3 16 11 1 1 1
kai ok 4| 6 19 4 3 19 8
ba 7 14 1 13 8
da 26 2 30
ga 5 10 13 1 28 1
gaqg o 1 8 18 27 1
gad o,g 2 3 14 10 23 7
gaq og 4 7 16 7 2 25 3

t;d 0 means removing the interfering /ta/ or /da/ cue;
k;g N means amplifying /ka/ or /ga/ cue by N times.

possible explanation is that subject AS has picked up some dhe high-frequency noise

onsets ampli ed by the NAL-R and used them as the speech cues.

5.5 Summary and Discussion

Speech perception critically depends on the reception of thse speech cues. To process
natural speech, it is necessary to have a direct way of determing the cues from natural
speech sounds. Using the combined approach of the Al-gram #t predicts speech
audibility and the 3DDS that measures the contribution of sub-speech components to
perception [110], we have identi ed the speech cues for manjnitial consonants and

manipulated them in natural speech. The following are our mgor ndings:

Many natural speech sounds, especially stop consonants, @@in con icting cues
that are characteristic of competing speech sounds, whichauld complicate the

training of automatic speech recognition software.

Through the manipulation of the con icting cues, most often a tiny spot on the
spectrogram, the target sound can be convincingly convert into its competing

sounds, as demonstrated by the selected examples in this cpeer.
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When a hearing-impaired listener confuses a speech sound tiits competing

sounds, it is because the perceptual cue of the target soundets masked by the

shift of hearing threshold.

Speech cue manipulation has potential in speech enhancenterA speech sound
can be made more robust to noise by boosting the de ning speéccue, or the

perceptual confusions can be reduced by removing the integfing cue.

The success of feature-based speech processing is largegpendent on the accuracy
of identi ed speech cues. A small change in speech feature mdead to a big di erence
in perception. For example, the speech stimuli generated bygpeech synthesizers, such
as pattern playback, are generally low quality and barely intelligible, becau® the as-
sumptions about the spectrum patterns are either incompleg or inaccurate. To be more
accurate, we need a more realistic cochlear model having uawd spread of masking and
forward masking.

Automating the detection of the onsets and sorting out multiple talkers, for example,
will be a challenge. Presently, there is no way of solving tts problem. That humans
are naturally good at this task should give us some respite. W would like to approach
human performance, based on learning more about the statigtal distributions of these

critical cues.
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CHAPTER 6

CONCLUSION

6.1 Summary

This project aims to gain more insight into the nature of human speech perception
and understand why hearing-impaired people have di culty with noisy speech, so that
more advanced signal processing techniques can be develdp® help those people.
The working hypothesis is that speech sounds are encoded bynte-varying spectral
patterns called acoustic cues; the processing and detechoof these acoustic cues leads
to events the psychological correlates of the acoustic cues on the bdar membrane;
a hearing-impaired listener may have problems understandig speech simply because
he/she cannot hear certain sounds, since the events are migg, due to either the
hearing loss, or the masking e ect introduced by the noise.

A systematic psychoacoustics method, the 3D Deep Search (3D5), was developed
to identify the perceptual cues of basic speech sounds. Thaeléa is to assess the im-
portance of various speech components from the change of thhecognition score due to
masking and temporal truncations. For a particular consonait sound, the 3D approach
uses three independent experiments to measure these key feees of speech perception.
Speech sounds are truncated in time, high/low-pass ltered and masked with white
noise, before being presented to a group of normal hearingslieners. When an acoustic
cue is essential for speech perception, masking it critichl modi es the speech sound
and dramatically reduces the recognition score. The rst experiment determines the
contribution of various time intervals by truncating the co nsonant into multiple seg-
ments of 5, 10 or 20 ms per frame, depending on the duration ohie sound. The second
experiment divides the full band into multiple bands of equd length along the BM of

di erent frequency bands. The third experiment assesses th event strength by masking
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the speech at various signal-to-noise ratios.

Based on the results of psychophysical studies on isolated\Cspeech sounds, supple-
mented by a computational model (Al-gram) that visualizes the audibility of acoustic
cues as they propagate on the basilar membrane (BM), we haveuscessfully identi ed
the perceptual cues (events) that are the basic perceptual nits for speech recognition.
Figure 6.1 provides a summary of the time-frequency map of te perceptual cues for
plosives and fricatives preceding vowel /a/. Due to the fundamentally di erent types of
speech cues, the stops are rarely confused with the fricates. The stop consonants are
characterized by a compact burst, caused by the sudden relsa of pressure in the oral
cavity. The voiced and unvoiced stops di er mainly in the duration between the burst
and the start of sonorance. Among the sub-group of unvoicedtsp consonants, /ta/ is
labeled by a high-frequency burst above 4 kHz, /ka/ is de ned as a mid-frequency burst
from 1.4{2 kHz, whereas /pa/ is represented by a low-frequery burst from 0.7{1 kHz.
The three voiced stop consonants /da/, /ga/ and /ba/ have sim ilar frequency patterns.
The fricatives are characterized by a patch of wide-band naie created by the turbulent
air ow through lips and teeth. Duration and frequency range are critical parameters
for fricatives. A voiced fricative usually has a considerally shorter duration than its un-
voiced counterpart. The consonant events are consistent aioss di erent talkers, even
though the parameters, such as timing, frequency and strerty, may slightly change

within a given range.

Plosives: p, t, k, b, d, g Fricatives: [, s, z, 0, tJ, d3
EN = 60mb 5\] [
~ = N =
- 3| -
& N & :il
&5 | = & | 3
> S g_ &
g - 3
= N Y= -
§, g §) ~ 160ms
N VOWel " vowel -
o !
o
Time [ms] Time [ms]

Figure 6.1: A schematic drawing of the perceptual cues for iitial consonants
preceding vowel /a/, in terms of time-frequency allocation.
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Despite its success in feature identi cation, the 3DDS metlod is imperfect in several
aspects. A major limitation comes from the Al-gram, the what-you-see-is-what-you-
hear model that simulates auditory peripheral processing.lt is based on a linear model
which does not account for cochlear compression, forward ns&king, upward masking and
other neural nonlinear responses. As a consequence, it ovpredicts the audibility of
speech sounds under certain circumstances. The question islow do we know that the
identi ed speech cues are accurate and reliable? A softwareaamed Beren is developed
for the veri cation of perceptual cues, which usually involves zeroing out the feature
area and listening to the modi ed speech.

In the speech community, it is widely believed that speech cotains redundant cues.
However, in our study we found that natural speech often conains con icting cues that
are characteristic of competing speech sounds. Through thenanipulation of these
cues, usually a tiny spot on the Al-gram, we can convert one phbne into another
phone, or turn a weak speech sound into a strong one. A speechadi cation soft-
ware, named KunLun, is developed for the manipulation of spech cues in words and
sentences. Plenty of examples have been created and uploati® the following web site

http://hear.ai.uiuc.edu/wiki/Files/VideoDemos . These speech modi cation examples

clearly indicate that speech perception is critically depe&dent on the speech cues. Con-
text information is useful once the listeners can hear the spech cues. Given a priori
knowledge of speci ¢ speech cues, we can change the percepinatural speech through

the manipulation of speech cues in nonsense syllables, wadnd sentences.

Next we investigated the impact of sensorineural hearing les on consonant identi -
cation by combining the information about speech cues and haring loss. In addition
to conventional pure tone audiometry (PTA) test, threshold equalized noise (TEN) test
and psychoacoustic tuning curve (PTC) test are applied to dagnose possible cochlear
dead regions. Two elderly subjects, AS with a moderate lossrel DC with a mild-to-
severe sloping high-frequency loss, volunteered for the Ipt study. Results of speech
perception test reveal that AS has no problem with /ta/, and h as little di culty with
Ipa, sa, da, zal/, but never reports /ka/ and /ga/ due to a big co chlear dead region
from 2{3 kHz in the left year, which blocks the perceptual cues for /ka/ and /ga/. In

contrast, her right ear hears these sounds. Although NAL-R improves the average per-
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ception score from 0.42 to 0.53 under quiet conditions, it povides little help for noisy
speech (a 3 percent increase at 12 dB SNR); /ka/ and /ga/ reman unintelligible with
NAL-R. The other subject, DC, can hear all 16 consonants testd in both ears with the
assistance of NAL-R. However, it only improves the recognibn scores of low and mid-
frequency sounds such as /pa, ba/ and /ka, ga/. It degrades tre high-frequency sounds
such as /ta/ and /da/. The investigation was extended to many more hearing-impaired
subjects during the past half year, and it is still going on at the moment.

A major problem with the hearing impaired study is how to analyze the data, specif-
ically, how to quantify the e ect of hearing loss and masking noise on the perception
of speech cues, assuming that a speech sound is intelligibifeand only if the dominant
cue is audible. The only tool available is the speech bananayhich is a qualitative tool
supposed to work only under quiet conditions. The information of speech cues is based
on the formant data of Swedish vowels and consonants measuteby Fant during the
1940s. Due to the lack of accurate information about speechues, most studies can
only look at the perceptual score of speech on average, or dsasome general conclu-
sions about the correlation between the con guration of heaing loss and the confusion
patterns in speech perception without touching the detail. Based on the theory of si-
multaneous masking and a method proposed by Fletcher for thealculation of e ective
hearing threshold in noise, we derived the extended speechahana, which integrates
the information of speech cues, the con guration of hearingloss, and masking noise.
Given the speech intensity, signal-to-noise ratio and puretone audiogram, it predicts
the audibility of speech cues, which can be used to estimatehe probability of correct-
ness @) in perceiving a sound. The accuracy of the extended speechabana can be
evaluated by comparing the predicted Pc to the actual percefual scores. Experimental
results show that the extended speech banana works well for ild at hearing loss. For
subject AS, who has a big cochlear dead region in the left eagnd for subject DC, who
has a severely unbalanced high-frequency loss, the predioh of the extended speech
banana is nowhere close to the actual data, suggesting thatuaibility may not be the
only factor that accounts for the disability in speech perception.

Motivated by the success of manipulating speech cues in natal speech, we con-

ducted a small speech perception experiment on subject AS tdetermine the potential
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bene t of feature-based speech enhancement. Confusion alyais indicates that more
than 80% of the /ka/s in the left ear were misinterpreted as /t a/, while about 60% of
the /ga/s were reported as /da/, because of the interfering high-frequency cues. To
reduce the /ka/! /ta/ and /ga/ ! /da/ confusions, we created some super /ka/s and
/ga/s for which the high-frequency interfering cues have be&n removed. Experimental
results indicate that feature manipulation signi cantly i ncreases the e ciency of speech
communication. The /ka/! /ta/ and /ga/ ! /da/ confusions are much lower for the

super /ka/s and /ga/s, as compared to the ordinary ones.

6.2 Contributions, Limitations and Implications

The main contributions and limitations of this study can be summarized as follows:

A novel psychoacoustic method, named 3D Deep Search (3DDSis developed to
explore the perceptual cues of consonant sounds from natukrapeech. Compared
to the conventional method of synthetic speech, which requies prior knowledge
about the speech cues to be identi ed, the 3DDS method is morgractical and

reliable. It takes into consideration the natural variance of speech sounds that are

beyond the reach of synthetic speech.

Many natural speech sounds, especially stop consonants, m@ain con icting cues
that are characteristic of competing sounds. The productian of these is likely
due to the physical limit of the articulatory organs. Through the manipulation
of con icting cues, most often a tiny spot on the spectrogram the target sound
can be convincingly converted into its competing sounds, aslemonstrated by the
selected examples. A speech sound can be made more robust toise by boosting
the de ning speech cue, or the perceptual confusions can beeduced by removing

the interfering cue.

A quantitative tool named the extended speech banana is deved for the evalu-
ation of hearing-impaired speech perception. Given the spaeh intensity, signal-
to-noise ratio and pure tone audiogram, it predicts the audbility of speech cues.
Assuming that a speech sound is intelligible if and only the @minant cue is au-

dible, the extended speech banana can be used to predict theepceptual score
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of individual sounds. Results show that it works well for mild at hearing loss
and fails for listeners with cochlear dead region and extrerely unbalanced hearing
loss, suggesting that audibility, as characterized by the pire tone audiogram, may

not be the only signi cant factor for hearing impaired speed perception.

Results of hearing impaired speech perception tests indita that di erent types
of hearing loss, such as at, sloping and cochlear dead regip have a distinct
impact on consonant identi cation. It is generally true tha t a hearing-impaired
listener cannot hear a sound because the dominant cue that dees the sound is
distorted or inaudible due to the hearing loss or masking na@e. Under certain
circumstances, the hearing impaired listener may learn to gse a set of minor cues
that are ignored by the average normal hearing listeners beause of the existence

of the dominant cue.

Using the high/low-pass data for feature identi cation, we veri ed that the multi-
band product rule of frequency integration, an empirical famula justi ed by the
two properties about speech and hearing| at distribution o f speech information
across the frequency and the independence of critical bands terms of speech
perception|is statistically true for consonants on averag e. It may also apply to
subgroups of consonant sounds, such as stops and fricativebat are characterized
by a at distribution of speech cues along the frequency. It fails for individual

consonants, as expected.
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