IDENTIFICATION AND CHARACTERIZATION OF ESTROGEN RECEPTOR-
REGULATED GENE EXPRESSION PROGRAMS

BY

DANIEL HULL BARNETT

DISSEPTION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Cell and Developmental Biology
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor David F. Clayton, Chairperson
Professor Benita S. Katzenellenbogen, Director of Research
Associate Professor Brian C. Freeman
Professor Byron W. Kemper
Professor Ann M. Nardulli
The physiological effects of natural and synthetic estrogens are mediated by estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ). Within the nucleus of target cells, ERα and ERβ serve as ligand-activated transcription factors to stimulate or repress the transcription of estrogen receptor regulated genes. ERα and ERβ may be co-expressed in estrogen-responsive cells, but may also be differentially expressed in a cell- and tissue-specific manner. In addition, within a given context these two receptors have different ligand binding and transcriptional activities. Taken together, these attributes underlie differences in target gene regulation, and overall, different physiological actions by ER subtypes. The work described here is an attempt to understand the roles of ERα and ERβ in target tissues (e.g. bone, breast, uterus) including the gene networks and cell signaling pathways under ER regulation. We have also characterized the regulation of one of the ER-regulated genes, Carbonic Anhydrase XII, and examined its regulation by ERα through use of a conserved distal enhancer.

The work described here reports the characterization of individual gene regulatory actions of ERα and ERβ. To investigate the individual actions of ERα or ERβ, we utilized Affymetrix oligonucleotide arrays to profile transcripts regulated by 17β-estradiol (E2) in U2OS-ERα and U2OS-ERβ cells. These cell lines were constructed by stable integration of ERα or ERβ into human osteoblast-like U2OS osteosarcoma cells and initially characterized for ER subtype expression, E2-binding, and cellular responses to E2, including proliferation, motility, and adhesion. Cells expressing apo-ERα or apo-ERβ did not show significant alteration in adhesion or proliferation after addition of E2,
however there was a significant stimulation of migration in E2-treated ERβ-expressing cells. U2OS-ERα, and U2OS-ERβ cells were treated with 10 nM E2 for 0, 4, 8, 24, and 48 hours and total RNA was collected and hybridized to Affymetrix U95Av2 GeneChips and subjected to a Confidence Score to determine E2-regulated RNAs. Of the ca. 100 stimulated or repressed genes identified, some were stimulated by E2 equally through ERα and ERβ, whereas others were selectively stimulated via ERα or ERβ. The E2-regulated genes showed three distinct temporal patterns of expression over the 48 hour time course studied. Among stimulated genes, ERα-containing cells exhibited a greater number of regulated transcripts, and overall magnitude of stimulation was increased as compared those regulated by ERβ. Of the functional categories of the E2-regulated genes, most numerous were those encoding cytokines and factors associated with immune response, signal transduction, and cell migration and cytoskeleton regulation, indicating that E2 can exert effects on multiple pathways in these osteoblast-like cell lines. Of note, E2 up-regulated several genes associated with cell motility selectively via ERβ, in keeping with the selective E2 enhancement of the motility of ERβ-containing cells. On genes regulated equally by E2 via ERα or ERβ, the phytoestrogen genistein preferentially stimulated gene expression via ERβ. These studies indicate both common as well as distinct target genes for these two ERs, and identify many novel genes not previously known to be under estrogen regulation.

We have examined the ER regulation of the Carbonic Anhydrase XII (CA12) gene, a gene identified as E2-regulated in the studies described above. We investigated the expression of CA12 and its and regulation of by 17β-estradiol and selective estrogen receptor modulators in breast cancer cells, and characterize the ER usage of a distal
enhancer necessary for *CA12* gene regulation. We find that *CA12* expression is highly correlated with ER\(\alpha\) expression in human breast tumors. We demonstrate that E2 and SERMS increase *CA12* mRNA and protein in multiple breast cancer cell types expressing ER\(\alpha\), and that *CA12* regulation by estrogen is a primary transcriptional response mediated by ER\(\alpha\). By genome-wide chromatin immunoprecipitation (ChIP) and ChIP scanning of the *CA12* locus, we find E2-occupied ER\(\alpha\) is recruited to a distal region 6.1 kb upstream of the CA12 transcription start site (TSS) *in vivo*. We find that E2 treatment results in recruitment of RNA polymerase II and steroid receptor coactivators SRC-2 and SRC-3 to the CA12 genomic locus and is correlated with increased histone H4 acetylation. Mutagenesis of an imperfect estrogen-responsive element within this -6.1kb distal enhancer region abolishes estrogen-dependent heterologous reporter activity. Chromosome conformation capture (3C) and chromatin immunoprecipitation assays demonstrate that this distal enhancer communicates with the transcriptional start site of the *CA12* gene via intra-chromosomal looping upon hormone treatment. This distal enhancer element is observed in the homologous mouse genomic sequence, and the expression of the mouse homolog, *Car12*, is rapidly and robustly stimulated by estradiol in the mouse uterus *in vivo*, suggesting that the ER regulation of *CA12* is mechanistically and evolutionarily conserved. Our findings highlight the crucial role of ER in regulation of the *CA12* gene, and provide insight into the transcriptional regulatory mechanism that accounts for the strong association of *CA12* and ER in human breast cancers. In addition, our findings imply that involvement of long distance enhancers in regulation of estrogen-responsive genes in breast cancer may be more frequent than previously appreciated.
For my family and my many generous teachers.
ACKNOWLEDGEMENTS

I would like to thank my graduate research advisor, Benita S. Katzenellenbogen, for being a supportive and challenging mentor throughout my studies. Dr. K, as she is known, has offered tremendous support and patience with me, and she continues to be a fierce advocate for her students. In addition, John A. Katzenellenbogen has served as an unofficial mentor over the years by virtue of his ever-insightful questions and comments on a near-weekly basis. Together, they offer valuable models for overall success.

This work was realized through generous assistance from friends and generous collaborators in the Katzenellenbogen laboratory. The K-Lab, as we call it, is rich environment of sincere inquiry that can be a wonderful place for mutual teaching of colleagues for those who choose it. Karen Weis and Paolo Martini began some of the initial studies described here, and Fabio Stossi, Jonna Frasor, and Shubin Sheng were invaluable collaborators for part of the work described here. I would like to especially thank Cory Funk, Joshua Stender, Edmund Chang, and William Harrington for sharing their scientific insights, lively discussions, and sense of humor.

In addition to the members of the Katzenellenbogen group, I have benefited from both formal and informal collaborations with Edison Liu, Edwin Cheung, and others at the Genome Institute of Singapore.

I would like to thank my thesis committee members, David Clayton, Brian Freeman, Byron Kemper, and Ann Nardulli, for sharing their support, guidance, and time throughout this process. Any professional progress I may make will be, in large part, shaped by the aforementioned teachers, as well as past mentors Wade Bushman, Ralph Bertrand-Garcia, and the late Richard Taber.
I am fortunate and grateful to have had the opportunity to interact with so many talented and dedicated people within the School of Molecular and Cellular Biology and the College of Medicine whom I admire and respect. In particular, I am thankful for all the assistance from the staff of Departments of Cell and Developmental Biology and Molecular and Integrative Physiology, as well as the Medical Scholars Program.

This work was supported by grants from the NIH, including two training grants T32ES07326 and T32HD07028, and The Breast Cancer Research Foundation.

My deepest thanks are for my family for their love and unwavering support throughout my education. I have been fortunate and surrounded by kind and amazing friends, and I have benefited from their support, advice, and laughter more than they may know.
TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION AND SIGNIFICANCE ... 1

References ... 9

CHAPTER 2 – TRANSCRIPTIONAL PROFILING OF ESTROGEN-REGULATED GENE EXPRESSION VIA ESTROGEN RECEPTOR ALPHA OR ESTROGEN RECEPTOR BETA IN HUMAN OSTEOSARCOMA CELLS: DISTINCT AND COMMON TARGET GENES FOR THESE RECEPTORS .. 17

Abstract ... 17

Introduction ... 18

Materials and Methods ... 20

Results ... 25

Discussion ... 33

Acknowledgements ... 40

Abbreviations .. 41

Tables and Figures .. 42

References ... 56

CHAPTER 3 – ESTROGEN RECEPTOR REGULATION OF CARBONIC ANHYDRASE XII THROUGH A DISTAL ENHANCER IN BREAST CANCER ... 63

Abstract ... 63

Introduction ... 64

Materials and Methods ... 65

Results ... 71

Discussion ... 79

Acknowledgements ... 83

Abbreviations .. 83

Figures ... 84

References ... 96

CURRICULUM VITAE ... 101
CHAPTER 1
INTRODUCTION AND SIGNIFICANCE

Estrogen receptors as a window into a transcriptional basis for physiology

The proper coordination of cell- and tissue-specific responses throughout development and normal homeostasis of metazoans is achieved, in part, by the dynamic control of gene expression by hormones. This understanding stems directly from the pioneering studies of estrogen action by Jensen, Gorski, and others in the 1950’s and 1960’s showed that hormonal effects could be elicited through regulation of gene expression (1-3). In mammals, the effects of estrogenic steroid hormones are largely, if not exclusively, mediated by two members of the nuclear receptor superfamily, estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ). By binding and activation of these receptors, estrogens are potent modulators of the development, homeostasis, and pathophysiology of many tissues such as the breast, male and female reproductive tracts, adipose, and skeletal, cardiovascular, immune, and central nervous systems (4-8).

Estrogen action and endocrine therapies for breast cancer

While the diverse actions of estrogens are of great interest, the pathophysiological role of estrogen receptors in breast cancer has been an area of intense interest. Breast cancer is the most common malignant diagnosis for women in the United States with approximately 190,000 diagnoses and 40,000 deaths estimated in 2009 (9). Unfortunately, the etiology of breast cancer is only partially understood, but the influence of estrogens on breast tumor growth has been known since the early 20th century.
Cumulative exposure of estrogens to the breast epithelium underlies the majority of known risk factors for breast cancer (10, 11). Estrogens stimulate proliferation of normal mammary cells, providing increased cell mass and opportunities for accrual of gross chromosomal aberrations and point mutations (12, 13). Once tumors are established, estrogens appear to stimulate breast cancer cell proliferation in most patients with primary breast tumors (11, 14). Preventive and adjuvant therapies targeting the actions of estrogens, either by lowering the available amount of endogenous estrogens or blocking estrogen receptor action, have contributed to the recent decline in breast cancer mortality (8, 15, 16). The decision to employ these therapies is clearly influenced by the relative presence or absence of ERα expression in breast tumor samples (5, 17, 18). ERα is expressed in approximately 70 percent of breast cancers, and unbiased clustering of tumor expression profiles reveals ERα expression status to be the foremost factor partitioning gene expression profiles (19-21). Patients with tumors expressing ERα generally have a more indolent disease and ERα-expressing tumors are more often well-differentiated and are associated with other favorable prognostic characteristics (18, 22). The expression of well-characterized ERα target genes such as Progesterone Receptor, pS2/Trefoil Factor1, and Cathepsin D have been used as markers of estrogen action in vivo, and thus surrogates for ERα expression, but their expression alone cannot fully predict ERα expression status or response to endocrine therapies. Regardless, the use of RNA expression profiling and next-generation sequencing of individual breast tumors continues to evolve, providing better classifications of tumor behavior, a greater number of genetic determinants and downstream effectors, thereby providing a more sophisticated understanding of treatment decisions (19, 21, 23-28).
Unlike ERα, the roles of the more recently discovered ERβ in breast cancer cells are still being uncovered, and ERβ appears to negatively modulate the actions of ERα. When co-expressed in the same cell, ERβ appears to negatively influence ERα binding in a target gene-specific manner, as well as affect global gene expression profiles and cancer cell proliferation. This is consistent with the relative decline of ERβ:ERα levels with disease progression, and is suggestive of an overall dampening effect of ERβ on ERα actions (29-35).

Mechanisms of Classical Estrogen Receptor Action in a Target Cell

ERα and ERβ are prototypic steroid hormone receptors, and like all nuclear receptor (NR) superfamily members, are intracellular ligand-regulated transcription factors which stimulate and repress expression of target genes by sensing classical hormones or other signaling mediators (36-38). ERα and ERβ share a modular domain structure with variable homologies of the respective domains between the ER subtypes. They share high homology between their DNA-binding domains which contain two zinc-finger motifs (DBD; 95% amino acid identity), and substantial homology between their ligand-binding domains (LBD; 56% amino acid identity) (39-43). The two receptor subtypes are expressed differentially in estrogen-target tissues and also differ in their abilities to bind certain ligands and activate specific responsive promoters or enhancers, suggesting that they may have widely-divergent biological actions in vivo (5, 41, 44).

In the cell, unliganded ERα largely localizes to the nucleus and is complexed with chaperone proteins (45-48). Upon binding of endogenous hormone (e.g. 17β-estradiol; E2), the ER undergoes conformational changes and exhibits protein surfaces allowing for
stable self-dimerization, as well as contact with specific regulatory regions of DNA termed estrogen-responsive elements (EREs) (39, 49). EREs were classically considered to be comprised of perfect or imperfect inverted palindromes of 5’-Pu-GGTCA-3’ with three intervening nucleotides, however considerable diversity of ER binding elements have been described (50-53). In addition, activated ER may also directly bind other DNA-bound proteins which then bind or “tether” ER to chromatin and (53-57). Like other transcriptional regulators, the chromatin-bound ERα serves to recruit other transcription factors and RNA polymerase II to target genes in a response element- and signal-specific manner to regulate gene expression (38, 58, 59).

ERα may be able to directly bind members of the general transcription machinery, but principally regulates transcription through the dynamic recruitment of coregulator protein complexes which may (1) have histone acetyltransferase, methyltransferase, or deacetylase activities, (2) act as ATP-dependent nucleosome remodeling proteins, or (3) mediate contacts with other coregulators and/or the general transcription machinery (59-64). Ligand-bound ERα recruits these regulatory complexes by presentation of two activation domains, denoted as activation function 1 (AF1) and activation function 2 (AF2) located on the N- and C-terminal portions of the receptor, respectively. AF1 is constitutively active and may act independently or synergistically with AF2 when bound with agonist. Importantly, AF1 is modulated by phosphorylation via growth factor-mediated signaling cascades (65-67) and the relative strength of AF1 transactivation ability is dependent on both the context of coregulator proteins available to partner with and the promoter context of the target gene (68-70). AF2 activity, located in the ligand binding domain, is ligand dependent and profoundly influenced by the nature of ligand
Estrogen-bound ER is able to present a binding surface for coactivators such as
the p160 family of proteins which have both acetyltransferase activity and serve as
scaffold proteins for recruitment of other transcription factors such as p300 or CBP,
DRIP/TRAP complexes, and ultimately the general transcription machinery and RNA
polymerase II. Pure anti-estrogenic ligands, often referred to as selective estrogen
receptor down-regulators (SERDS), such as the synthetic antiestrogen ICI 182,780 put
the receptor into a conformation which fail to recruit coactivators to gene sites and also
induce pronounced degradation of the receptor. Mixed agonist/antagonists like the
selective estrogen receptor modulators (SERMS) tamoxifen and raloxifene put the
receptor into a range of conformations which are akin to antiestrogen-bound ER, but
show a mixed ability to recruit coactivators and corepressors depending on the cell- and
promoter context (71-74). Thus, the estrogen receptor dynamically nucleates specific
transcriptional regulatory complexes and displays a complex pharmacology which is
influenced by the receptor itself (e.g. subtype, expression level, post-translational
modifications), the nature of the ligand (agonist, antagonist, SERM, SERD), coregulatory
effectors such as the type of DNA element bound, and coregulator proteins available for
binding (38, 68, 71, 74-77).

Estrogen Receptor Biology and Genomic Complexity

While the biology of the estrogen receptor displays a relatively complex
pharmacology involving the conformation, post-translational modification and location of
the receptor, ligand, allostERIC DNA response elements, and cofactor recruitment
described above, this understanding is based on the investigation of relatively few
examples of known ERα-target genes studied in vitro and even fewer target genes studied in vivo. The wider adoption of technological advances such as microarrays and next-generation sequencing has allowed the examination of E2-responsive RNAs and ER binding sites on a genome-wide scale and has allowed a much greater understanding of estrogen receptor actions (53, 78-83).

mRNA expression profiling of breast cancer and human osteosarcoma cell lines expressing ERα, ERβ, or both subtypes has served to greatly expand our understanding of the ‘transcriptome’ under ER control (29, 78, 84-90). Work from the Katzenellenbogen group has demonstrated that in ERα-expressing MCF-7 cells, E2 is able to regulate as many as ~1500 transcripts (5% of expressed transcripts), and the majority of regulated transcripts are actually down-regulated. Consistent with E2-induced proliferation of MCF-7 cells, bioinformatic analysis of biological processes (e.g. Gene Ontology) regulated by specific E2-regulated transcripts showed clear up-regulation of pro-proliferation genes such as growth factors and cell cycle regulators, and down-regulation of pro-apoptotic and growth inhibitory factors (78). When considering this work with other research groups, a picture of E2-regulated gene expression emerges. In general, E2-stimulated genes appear to be regulated early, within 8 hours, while down-regulated genes appear to be regulated at later times. Approximately 20% of all regulated transcripts in MCF-7 cells are considered direct targets as shown by co-administration of the translational inhibitor cycloheximide (78, 86). Not surprisingly, there is divergence of E2-targets in ERα-expressing cell lines derived from different tissues or cell lineages (e.g MCF-7, T47-D, and U2OS-ERα), suggesting that expression programs underlie the divergent phenotypes (86, 90, 91). This also underscores the necessity of different
cofactors (e.g. FOXA1) present within a given cell which influence ER activities (80, 91-95). In addition, expression profiling has uncovered the necessity of some DNA bound transcription factors such as AP-1 for ER-mediated gene regulation (89, 96). ERα and ERβ appear to regulate a widely diverse set of genes (~70% divergent) when expressed in a given cell (29, 31, 84, 85, 87). Again this highlights the differential abilities of ERα and ERβ to recruit requisite cofactors and underscores their different biological effects in tissues. Expression studies have been extended to examine the activities of SERMs, which have both agonistic and antagonistic actions within a given cell. The mixed agonist/antagonist trans-hydroxytamoxifen acted as a partial or full agonist for approximately 50% of E2-stimulated genes and 75% of down-regulated genes (79, 97). Importantly, the identification of ER-regulated genes in these cell-based assays has been used to develop an outcome predictor able to define clinically relevant subgroups within clinically defined ER+ (21).

The genome-wide identification of ER binding sites has allowed a refinement of the classical ERE, as well as additional genomic sequences associated with, and perhaps necessary for, ER binding and activity (53, 80, 81, 89, 91, 94, 95). We now know that a majority of the ER binding sites in enhancers are a considerable distance (>5 kb) from known and putative ER-target genes (53, 80, 81, 98). The concept that distant transcription factor binding sites can be physically close to their regulated promoters in ‘cis’ or ‘trans’ is well-appreciated, but still poorly understood. In fact, the three-dimensional organization of genomes has been considered to be both functionally important for gene expression and relatively plastic in response to developmental or environmental cues (99-102). The use of so called chromosome conformation capture
(‘‘3C’’) and variants of this technique have suggested mechanisms of intra- and inter-chromosomal communication between these distal ER-binding enhancers and individual ER-regulated genes such as $pS2$/Trefoil Factor1, GREB1, Progesterone Receptor, and Carbonic Anhydrase XII (80, 103-106). Coupling ChIP and chromatin conformation techniques with next-generation sequencing has further advanced the study of enhancers and their usage on a genome-wide scale (98, 107-110). Specifically, the recent development of the chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) has allowed for an unbiased, genome-wide method for detecting protein-based chromatin interactions in vivo (98). This technique has been used to examine both ERα binding sites with similar base-pair resolution as existing methods (e.g. ChIP-Seq), as well as interrogate the physical proximity of ER binding sites to one another and E2-regulated genes regardless of genomic distance or position within a chromosome. The work by Cheung and Ruan (98) found that activated ERα is recruited to multiple, often distal binding sites which physically communicate with each other in both simple duplex and complex looping of intervening chromatin. ERα-bound loops are associated with binding of additional factors (e.g. FOXA1) and RNAPII, and appear to be “anchored” at E2-target genes, with intervening non-target genes looped out. These interactions have been proposed to provide a physical partitioning of genes for differential regulation and act as centers to provide sufficient local concentrations of necessary factors for transcriptional regulation. It is easy to anticipate that the further advancement of methods such as ChIA-PET coupled with cell-based imaging will allow for continued appreciation of the ability of estrogen receptors to physically and functionally coordinate genomic actions.
References

40. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS 1997 Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613-21

57. **Cheung E, Acevedo ML, Cole PA, Kraus WL** 2005 Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci U S A 102:559-64

64. **Green KA, Carroll JS** 2007 Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 7:713-22

66. **Bunone G, Briand PA, Miksicek RJ, Picard D** 1996 Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. Embo J 15:2174-83

68. **Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP** 1994 Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8:21-30

72. **Shang Y, Brown M** 2002 Molecular determinants for the tissue specificity of SERMs. Science 295:2465-8

82. Welboren WJ, Sweep FC, Span PN, Stunnenberg HG 2009 Genomic actions of estrogen receptor alpha: what are the targets and how are they regulated? Endocr Relat Cancer 16:1073-89

CHAPTER 2

TRANSCRIPTIONAL PROFILING OF ESTROGEN-REGULATED GENE EXPRESSION VIA ESTROGEN RECEPTOR ALPHA OR ESTROGEN RECEPTOR BETA IN HUMAN OSTEOSARCOMA CELLS: DISTINCT AND COMMON TARGET GENES FOR THESE RECEPTORS

Abstract

Estrogens exert many important effects in bone, a tissue that contains both estrogen receptors alpha and beta (ERα and ERβ). To compare the actions of these receptors, we generated U2OS human osteosarcoma cells stably expressing ERα or ERβ, at levels comparable to those in osteoblasts, and we characterized their response to estradiol (E2) over time using Affymetrix GeneChip microarrays to determine the expression of approximately 12,000 genes, followed by quantitative PCR verification of the regulation of selected genes. Of the ca. 100 regulated genes we identified, some were stimulated by E2 equally through ERα and ERβ, whereas others were selectively stimulated via ERα or ERβ. The E2-regulated genes showed three distinct temporal patterns of expression over the 48 h time course studied. Of the functional categories of the E2-regulated genes, most numerous were those encoding cytokines and factors associated with immune response, signal transduction, and cell migration and cytoskeleton regulation, indicating that E2 can exert effects on multiple pathways in these osteoblast-like cell lines. Of note, E2 up-regulated several genes associated with cell motility selectively via ERβ, in keeping with the selective E2 enhancement of the

1 This work was originally published in *Endocrinology* 145(7):3473–3486, doi: 10.1210/en.2003-1682
motility of ERβ-containing cells. Of genes regulated equally by E2 via ERα or ERβ, the phytoestrogen genistein preferentially stimulated gene expression via ERβ. These studies indicate both common as well as distinct target genes for these two ERs, and identify many novel genes not previously known to be under estrogen regulation.

Introduction

Estrogen is a pleiotropic hormone with multiple actions in reproductive tissues (such as breast, uterus and ovary) and in many non-reproductive tissues including bone, the central nervous system and the cardiovascular system. In the skeleton, estrogen effects range from regulation of bone growth during puberty to bone remodeling in the adult [reviewed in (1-4)]. The pivotal role of estrogens in the maintenance of bone tissue has long been known from clinical studies where estradiol (E2) deficiency in postmenopausal or ovariectomized women caused a rapid loss of trabecular bone; moreover, in both men and women, estrogen deficiency is associated with an age-related sustained bone loss that can lead to osteoporosis. Both situations can be reversed by hormone replacement therapy (1-4).

Estrogen exerts its effects on bone and other target tissues by interacting with two different members of the nuclear receptor superfamily of hormone-regulated transcription factors, named estrogen receptor alpha (ERα) and beta (ERβ) (5-7). These two receptors are encoded by different genes, on human chromosome 6 and 14, respectively. ERα and ERβ have similar modular domain structures and very high amino acid identity in their DNA-binding domains (97%), whereas they are more divergent in their N-terminal A/B domains (only 18% amino acid identity) and in their ligand-binding domains (59% amino
acid identity). After the binding of hormone to these receptors, the hormone-receptor complexes bind to specific sequences on the DNA (EREs, Estrogen Response Elements) or interact with other transcription factors without direct ERα or ERβ binding to DNA (i.e., at AP-1, Sp1, and other sites) (8-13). In both cases, liganded-ERs recruit coregulator proteins and components of the transcriptional machinery to regulate the transcription of target genes (14-16). Recently, the importance of membrane-initiated signaling in the actions of estrogens has been highlighted by studies in vitro and in vivo, where membrane/cytoplasmic ERs as well as nuclear ERs seem to be involved in regulating E2 action and gene transcription in bone and other target cells (1, 17-19).

In bone, ERs are present in osteoblasts and chondrocytes, and at somewhat lower levels in osteoclasts, bone marrow stromal cells, osteocytes and bone cell precursors (20, 21). The levels of ERs in bone are generally about 10-fold lower than in reproductive tissues, such as uterus, and their levels can be affected by many parameters including cell differentiation state (22-24). Estrogen seems to act directly on osteoblasts and probably, as well, on osteoclasts and precursors of both cell types, and indirectly by regulating cytokine production in osteoblasts and bone marrow stromal cells, which in turn affects the actions and formation of osteoclasts (1, 25).

The aims of this study were to determine the effects of E2 on gene expression in a human osteoblastic cell line and, via transcriptional profiling, to better understand the comparative roles of ERα and ERβ in mediating the effects of this hormone. In particular, our interest was to elucidate whether the two receptors elicit the same and/or different transcriptional responses on a range of endogenous cellular genes. For this purpose we have generated U2OS human osteosarcoma cells stably expressing either
ERα or ERβ and examined several clonal cell lines containing similar, relatively low, physiological levels of functional receptor. Using Affymetrix GeneChip microarrays, which allow the examination of >12,000 genes, we observed that the hormone-regulated genes divided into three distinct temporal patterns and into several functional categories, indicating that E2 exerts effects on multiple regulatory pathways in these cells. In this study, we report the identification of genes that were commonly regulated by E2 through ERα and ERβ, as well as some that were preferentially or exclusively regulated by one or the other ER subtype, and many novel genes not previously known to be under regulation by this hormone. We discuss the relationship of some of these genes to the biological effects of E2 we observed in these cells.

Materials and Methods

Cell culture

U2OS human osteosarcoma cells were stably transfected with human ERα (encoding amino acids 1–595) or ERβ (encoding amino acids 1–530). Each ER cDNA (26) was subcloned into the pcDNA3.1+ expression vector (Invitrogen, Carlsbad, CA) which contains a neomycin resistance gene. Clones were selected with the antibiotic G418 (800 μg/ml) and 20 clones per ER subtype were screened for ER expression and for transactivation ability with an estrogen response element containing reporter gene (2ERE-tk-CAT). Four clones of each (denoted as ERα clones 1-4 and ERβ clones 1-4) were chosen for further characterization and for the gene expression studies. The U2OS-ER cells were routinely grown in Minimal Essential Medium with phenol red (Sigma Chemical Co., St. Louis, MO) supplemented with 15% fetal calf serum (Hyclone, Logan,
UT), 100 units penicillin/ml, 100 μg streptomycin/ml and 400 μg G418/ml. Before use in experiments, cells were grown in Minimal Essential Medium without phenol red and supplemented with 5% charcoal-dextran treated fetal calf serum for at least 4 days before the start of E2 treatment. MCF-7 human breast cancer cells were grown as previously described (27).

Hormone binding and Western immunoblot assays

Whole cell extracts were prepared in cell lysis buffer (20 mM Tris pH 7.4, 0.5 M NaCl, 1 mM DTT, 10% glycerol, 50 μg/ml leupeptin, 50 μg/ml aprotinin, 2.5 μg/ml pepstatin A, and 0.2 mM phenylmethylsulfonyl fluoride) using freeze/thaw procedure. Total protein concentration was determined using the BCA kit (Pierce Biotechnology, Rockford, IL). Whole cell extracts were incubated in duplicate with a range of 3H-E2 concentrations alone or with 100-fold excess unlabeled E2 for 1 h on ice. Hydroxylapatite (HAP) slurry was added and incubated for an additional 15 min on ice. The slurry was washed twice and its radioactivity then determined by scintillation counting. The amount of E2 binding in pmol was calculated per mg protein.

Western blots of whole cell extracts used the ERα specific antibody H222 and the ERβ specific antibody UCG40 (kindly provided by Geoffrey L. Greene, University of Chicago) and were done as previously described (28).

Hormone treatments, DNA microarrays, and analysis of microarray data

U2OS-ERα or ERβ containing cells were maintained in culture for 48 h prior to cell harvest and RNA collection. During this period, cells were treated with 10 nM E2 (Sigma Chemical Co., St. Louis, MO) for 4, 8, 24 or 48 h, and three separate samples were collected for each time point. Control cell samples were also treated with 0.1%
ethanol control vehicle for 48 h. In this way, cell density was similar in all samples, consistent with our observations (as discussed in Results), that E2 does not affect proliferation of these cells. Additional independent time course experiments were conducted to generate RNA samples for quantitative RT-PCR verification of gene regulation, as detailed in the next section below. Total RNA was prepared using Trizol Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. RNA was further purified using RNeasy columns (Qiagen, Valencia, CA) and treatment with RNase free-DNase I (Qiagen, Valencia, CA).

Total RNA from each sample was used to generate cRNA, which was labeled with biotin as recommended by Affymetrix (Santa Clara, CA). Each cRNA was then hybridized on an Affymetrix human Hu-U95A GeneChip, which contains oligonucleotide probe sets representing approximately 12,500 human genes and ESTs. After washing, the chips were scanned and analyzed using MicroArray Suite 5.0 software (Affymetrix, Santa Clara, CA). Average intensities for each GeneChip were globally scaled to a target intensity of 150. Data were then analyzed using GeneSpring version 5.0.1 software (Silicon Genetics, San Carlos, CA). Data were first normalized on a per chip basis by dividing each measurement by the 50th percentile of all measurements on that chip, and then E2-treated samples were normalized to the mean of the vehicle treated control samples.

We applied a confidence score (CS) to evaluate which genes were estrogen-regulated (as described in (29); adapted from (30)). The CS is based on four parameters: fold change (FC), p-value (PV), percentage of present calls (PC) and expression level (EL), (CS=FC+PV+PC+EL). For each parameter, arbitrary scores were assigned. For
fold change, a score of 5 was assigned if the fold change was greater than 1.95, 2 if the
fold change was between 1.5 and 1.95 and a penalty of −0.5 if it was under 1.5. For p
value, a score of 3 was assigned if p-value was less than 0.05, 2 if was between 0.05 and
0.1, and a penalty of −0.5 if it was greater than 0.1. If present calls were assigned to more
than 50% of the samples the score was 3, between 25-50% was 1, and if less than 25% a
penalty of −0.5 was applied. For the expression level, a score of 3 was applied if it was
greater than 30, a score of 1 if it was between 15 and 30 and a penalty of −0.5 if
expression level was less than 15. The confidence scores ranged from −2 to 14, and
genes with a CS value of 11 or higher were considered to be significantly E2-regulated
genes. To determine ERα or ERβ preference in gene regulation, the average fold change
for one of the receptors had to be 2.0 or greater, whereas fold change was less than 1.3-
fold for the other receptor at all time points.

Estrogen-regulated genes were assigned to functional categories according to
LocusLink, OMIM, PubMed (www.ncbi.nlm.nih.gov), GeneCards
(bioinfo.weizmann.ac.il/cards) and GenMAPP databases. The entire microarray data set
will be available through the Gene Expression Omnibus (GEO

Quantitative real-time PCR

Real-time PCR was carried out on ca. 25 genes to verify E2 regulation as assessed
by microarray data analysis, and to evaluate mRNA levels of ERα or ERβ in U2OS
stably transfected cells. Three independent time-course experiments using 3 separate cell
samples each for ERα or ERβ containing cells either E2 or control vehicle treated at each
time point, were conducted. The primers used are listed in Table 2.1. One μg of total
RNA from each sample was reverse transcribed in a total volume of 20 μl using 200 U reverse transcriptase, 50 pmol random hexamers and 1 mM dNTPs (New England Biolabs, Beverly, MA). The resulting cDNA was then diluted to a total volume of 100 μl. Each real-time PCR reaction consisted of 5 μl of diluted RT product, 1x SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA), and 50 nM of forward and reverse primers. Reactions were carried out in an ABI Prism 7700 Sequence Detection System (Applied Biosystems) for 40 cycles (95 °C for 15 sec, 60 °C for 1 min) following an initial 10 min incubation at 95°C. The fold change in expression was calculated using the ∆∆Ct comparative threshold cycle method (31) with the ribosomal protein 36B4 mRNA as an internal control. As described in (31), gene expression is normalized to an endogenous reference gene (36B4) and the fold change in gene expression is then determined relative to the vehicle treated control.

Cell motility and cell adhesion assays

Cell motility assays used 48-well Boyden microchemotaxis chambers according to the manufacturer’s instructions (Neuroprobe, Cabin John, MD). Briefly, the cells were grown in 5% CD-FCS MEM medium without phenol red for at least 4 days until ~70-80% confluency. Cells were treated for either 24 h or 48 h with E2 or control (0.1%) ethanol vehicle, harvested, and 50 μl of cell suspension (10^5 cells/50 μl serum-free MEM-minus phenol red and containing 0.5% BSA) were placed in the open-bottom wells of the upper compartment. Each pair of wells was separated by a poly-vinylpyrrolidone-free polycarbonate porous membrane (8 μm pores) precoated with gelatin (0.2 mg/ml in PBS). 28 μl of the chemoattractant (MEM with 5% FBS, and MEM with no FBS as control) were placed into the lower compartment wells of the chamber. The Boyden chambers
were then incubated for 5 h at 37°C. Cells were then fixed on the membrane with methanol, stained with Diff-Quick staining kit (Baxter Health Corp., McGraw Park, IL), mounted onto glass slides, and counted under a 100x microscope objective.

Cell adhesion assays were performed in 96-well plates coated for 2 h at 37°C with 20-40 μg/ml of different coating substrates (poly-L-lysine, BSA, collagen type I, fibronectin, or laminin). Cells were treated with 10 nM E2 for 24 or 48 h, and after blocking non-specific sites with 1% BSA for 2 h at 37°C, cells were harvested, resuspended in MEM minus phenol red containing 0.1% BSA at 10^5 cells/ml, and 100 μl of cell suspension was seeded per well. Cells were allowed to adhere for 30 min and then the medium was gently removed, the wells washed once with MEM minus phenol red and the cells then fixed with methanol. Cells were stained with 0.1% crystal violet for 30 min at room temperature and washed multiple times with double distilled water. Stain was then extracted from the cells with 5% TritonX-100 overnight at room temperature and absorbance monitored at 570 nm.

Results

Generation and characterization of U2OS cell lines stably expressing ERα or ERβ

U2OS human osteosarcoma cells, an ER-negative osteoblast-like cell line, were stably transfected with either ERα or ERβ using a pcDNA3.1+ plasmid containing a neomycin resistance gene as a vector for stable integration. Positive clones were selected with G418 (800 μg/ml), and after two rounds of selection, various clones were tested for the presence of ER mRNA by real time PCR and for ER protein by Western blot with ERα-specific or ERβ-specific antibodies (Fig. 2.1). The levels of ERα and ERβ mRNA
in U2OS-ER cell clones, as determined by real-time quantitative PCR using standard
curves with known amounts of ERα and ERβ cDNA (Fig. 2.1A), were compared with the
parental U2OS cells and with the ERα-containing human breast cancer cell line MCF-7.
In the eight clones (ERα 1-4, ERβ 1-4) used for most of the studies reported in this paper,
the number of copies of ERα and ERβ mRNA were similar: 8410±777 per 10 ng total
RNA for ERα and 9112±1304 for ERβ. These ERα mRNA levels are ca. 20% of that
measured in our MCF-7 breast cancer cells. In addition, as seen in Fig. 2.1A, no ERβ
mRNA was detected in the ERα-expressing U2OS cells and likewise no ERα mRNA
was present in the U2OS ERβ-expressing cells. The parental U2OS cells lacked
detectable levels of either receptor mRNA.

Hormone binding (Scatchard) assays were performed on extracts from ERα clone
1 and ERβ clone 1 cells to ensure the presence of receptor able to bind hormone. These
assays demonstrated similar levels of 3H-E2 binding in these U2OS-ERα and U2OS-ERβ
cells (~0.1 pmol/mg protein, Fig.2.1B). These levels are about 20% of that found in
MCF-7 cells. Western blots (Fig. 2.1C) with H222 monoclonal antibody for ERα and
UCG40 polyclonal antibody for ERβ showed ERα or ERβ of the correct size (ca. 65 and
56 kDa, respectively), and the presence of only ERβ in the ERβ clones (β clones 1-4
shown) and only ERα in the ERα clones (α clone 1 shown). Further characterization by
estrogen responsive ERE-tk-CAT reporter assays demonstrated that U2OS-ERα and ERβ
cells possessed E2-dependent transcriptionally functional receptors (data not shown).
The level of ERα and ERβ in these clones is consistent with previous reports indicating
the ca. 10-fold lower ER level in bone versus uterine tissue (23, 24).
We examined whether E2 affected the motility and adhesion properties of the U2OS-ERα and ERβ-containing cells. Motility was assessed using a Boyden chamber chemotactic assay and 5% FBS as a general chemotactic stimulus. With E2 treatment for 24 or 48 h, the ERβ-containing cells showed a 3-fold increase in motility; in contrast, although the ERα and ERβ-containing cells showed similar motility, E2 elicited no change in motility of the ERα-containing cells (Fig. 2.1D). We also evaluated whether E2 treatment for 24 or 48 h affected the adhesive properties of these cells, and found that it did not. An adhesion assay was employed that allows a comparison of the rapid adhesion (in 30 min) of the cells to various substrates (poly-L-lysine, BSA, collagen type I, fibronectin, or laminin). Adhesion to collagen type I is shown as an example (Fig. 2.1E), since it is a major component of bone matrix, and it is seen that E2 had no effect on the adhesion of the cells. This was the case with all of the substrates tested, indicating that this property is largely E2-independent.

Gene expression profiling and time courses of gene regulation using Affymetrix

GeneChip microarrays

To characterize changes in gene expression in response to E2 treatment, U2OS-ERα (clone 1) and U2OS-ERβ (clone 1) cells were treated with 10 nM E2 for times from 0 to 48 h, and RNA was harvested, purified, and derivatized for gene profiling. Affymetrix Hu-U95A GeneChips, which contain probes for approximately 12,000 human genes, were used. As described in *Materials and Methods*, a confidence score (CS) was applied to discriminate genes robustly and reproducibly regulated by E2. The CS takes into account several parameters for each gene and weights the fold change increase or decrease versus control, the reproducibility of the output (p-value), the expression level
related to the intensity of the signal on the chip and a fidelity score based on a decision
matrix which compares hybridization of the perfect match probes versus the mismatch for
each probe set.

We considered E2-regulated genes to be those with a confidence score equal to or
greater than 11 (out of a maximum score of 14), and we included in our further studies
only genes up- or down-regulated more than 2 fold. Using these criteria, we identified
105 genes that were E2-regulated through ERα and/or ERβ. This list of genes was
subjected to gene tree cluster analysis using a standard correlation algorithm available in
the GeneSpring software.

In the gene cluster analysis (Fig. 2.2), up-regulated genes are shown in red, down-
regulated genes in blue and unchanging genes in yellow. We observed that many more
genes were stimulated than inhibited (85 vs 20) in ERα- or ERβ-containing cells, and in
further analyses, we focused on the up-regulated genes, since these were more numerous,
were the most robustly regulated and gave good reproducibility of validation by real-time
PCR.

When the E2-regulated genes were categorized according to their time patterns of
expression, three major groupings were identified: early (stimulated only at 4-8 h), early
and late (stimulated from 4 through 48 h) and late (stimulated only at 24-48 h) (Fig. 2.3).
For ERα-containing cells, the early and late pattern was the most frequently represented
(49% of E2-stimulated genes through ERα), followed by the late (46%) and early (5%)
patterns. In U2OS-ERβ cells, the distribution was slightly different with 43%, 41% and
16%, respectively, in these three time patterns.
Of the 85 up-regulated genes, 52 were commonly regulated by ERα and ERβ (Fig. 2.4 top). These genes, their functions, and their time patterns of regulation are listed in Table 2.2. As shown in Fig. 2.4 top, 24 genes were stimulated selectively by ERα, whereas 9 genes were stimulated selectively by ERβ. Thus, the two receptors showed substantial overlap in regulated genes (61% of the genes), but both also have some different target genes. The estrogen-stimulated genes regulated selectively through one of the two ER subtypes are listed in Table 2.3, along with their temporal pattern of regulation and their function. Many new E2 target genes were also identified, as indicated in Tables 2.2 and 2.3.

Of note, our method of analysis demonstrated E2 regulation of some known E2-target genes (i.e. pS2/TFF1, PDZK1, GREB1, WISP2, keratin 19, angiotensinogen, NHERF/SLC9A3R2, BMP6, connexin 43/GJA1), suggesting the validity of our analyses. Further, regulation of several bone-related factors (BMP6, CD34, CD164, PTHLH) by E2 was observed (Tables 2.2 and 2.3).

Functional classification of E2-regulated genes

To classify E2 up-regulated genes into functional groups (Fig. 2.4) we chose eight categories: cytokines/immune response, signal transduction, cell motility/cytoskeleton regulation, growth factors/hormones, apoptosis/cell proliferation, housekeeping, nucleic acid processing, and other/unknown. We then assigned each gene to one major category representing its primary function (even though many genes encode proteins that have several physiological functions), based on mining of several databases (LocusLink, PubMed, GeneCards, OMIM, GenMapp).
Many of the genes commonly regulated through ERα and ERβ encode proteins associated with cytokine/immune response, signal transduction, and cell motility and cytoskeleton regulation (56% of all genes). Several ERα-selective genes were associated with nucleic acid processing. Very few genes regulated by the ERs were related to cell cycle, proliferation or apoptosis, supporting our observations (not shown) that E2 had no effect on the proliferation rate of these cells.

Hormone-regulated genes encoding cytokines and factors associated with immune response

Three members of the Natural Killer cell lectin-type receptors (NKG family), NKG2-C, -E and –F (KLRC2, KLRC3 and KLRC4) were robustly regulated by E2 through both receptors (Table 2.2). NKGs are activating receptors of natural killer cells that mediate HLA-E recognition (32-34). CD34 (common to both ERα and ERβ up-regulation, Table 2.2) and sialomucin/CD164 (ERα selective, Table 2.3) are cell surface antigens characteristic of human hematopoietic progenitors. CD164 is an adhesion receptor that inhibits proliferation of CD34+ hematopoietic progenitors (35, 36). Interleukin-8 (IL-8), a cytokine known for its angiogenic and chemotactic properties, is thought to be involved in bone cell function under interleukin-1β and TNFα control in bone marrow stromal cells and osteoblasts (37, 38). It was also regulated by E2 in both ERα and ERβ containing U2OS cells (Table 2.2).

Cyclooxygenase-2 (Cox-2), a key enzyme regulating the production of prostaglandins, and also regulating angiogenesis, tumor cell invasion and inflammatory responses (39), was markedly up-regulated by E2 via both ERα and ERβ (Table 2.2).
Cox-2 has been shown recently to be under estrogenic regulation mediated through the PI3K/Akt pathway (40).

Hormone regulated genes associated with cell motility and cytoskeletal function

This category is of particular interest because, using cell motility assays, we observed an increase in motility of U2OS-ERβ containing cells after E2 treatment (Fig. 2.1D). Among the ERβ selectively regulated genes, there are two candidates that might be involved in this response. The first is autotaxin (ENPP2), a known tumor autocrine motility factor that has been shown to stimulate the migration of melanoma cells via a G protein-coupled phosphoinositol 3-kinaseγ and Cdc42 and Rac1-dependent pathway. This regulation possibly involves Paxillin and FAK (focal adhesion kinase), two key players in cell adhesion and motility control (41, 42). Autotaxin has 5-nucleotide pyrophosphatase and phosphodiesterase activity, and it acts in the extracellular space as a lysophospholipase D with production of lysophosphatidic acid (LPA), which seems to be the tumor cell motility inducer (43). The experiments described in the section below demonstrate that autotaxin is very selectively regulated by ERβ. Another candidate associated with the motility increase by ERβ might be Rap1GEF (GFR), a guanine nucleotide exchange factor that constitutively activates Rap1 (44) and has been shown to be involved in cell motility by modulating integrin function (45, 46).

Quantitative real-time PCR validation and verification of gene expression regulation in multiple cell clones and using ER subtype-selective ligands

Table 2.1 shows the primers used, and Tables 2.2 and 2.3 show the ca. 25 genes that we verified for their E2 regulation by quantitative PCR (names in italics). It is of note that many of these are genes newly identified as being regulated by E2. In addition,
we verified their E2 regulation in several clones (4 each) of U2OS ERα and/or ERβ-containing cells (clones 1-4) and used ER subtype-selective ligands to confirm common regulation by both ERs or selective gene regulation by ERα or ERβ. The Tables indicate generally good correspondence in gene regulation between the microarray and the quantitative RT-PCR analyses using several ERα- or ERβ-containing cell clones. RT-PCR, however, is often more sensitive, with a greater dynamic range, such that fold changes found by RT-PCR were often greater than those obtained from microarray analysis.

Figure 5 shows real-time PCR validation of some genes that were commonly regulated by E2 through both ER subtypes. The time course of stimulation for four of these genes (GREB1, oligophrenin-1, interleukin-24 and carbonic anhydrase XII) is presented. All of these genes showed up-regulation by E2 by 4 h. There were robust, and very similar fold changes in mRNA for GREB1 mediated via ERα or ERβ over time (Fig. 2.5). Oligophrenin-1 also showed a pattern of mRNA change that was similar for ERα and ERβ in which a plateau in stimulation was achieved by 4 h for ERα and 8 h for ERβ. Interestingly, IL-24 was preferentially up-regulated by ERα, with ERβ being a much less effective mediating receptor. In contrast, the stimulation via ERβ was substantially greater for the carbonic anhydrase XII gene than was the stimulation via ERα. The ER mediation of all of these E2-induced changes is clearly suggested by the fact that the stimulation is fully reversed by an excess of the antiestrogen ICI182,780. In addition, and as expected, no stimulation was observed with this pure antiestrogen alone (Fig. 2.5).
Figure 2.6 shows the time course changes for two genes selectively regulated through ERβ, autotaxin and cystatin D. Their expression was highly stimulated via ERβ, with no significant change being elicited via ERα. The ICI antiestrogen reversal of the E2 stimulation of these genes supports the mediation by ER (Fig. 2.6).

To further examine the selectivity of gene regulation via ERα or ERβ, cells were treated with the ERα-selective ligand propylpyrazoletriol (PPT; (47-50)), the ERβ-selective ligand diarylpropionitrile (DPN; (51, 52)), or the soy phytoestrogen genistein which has a higher affinity for ERβ than ERα (53) (Fig. 2.7). The PDZK1 gene, which is equivalently stimulated by E2 via ERα or ERβ, showed stimulation by PPT in the ERα-containing cells and by DPN in the ERβ-containing cells, as expected. Interestingly, genistein, which has preferential binding affinity for ERβ (53), was considerably more effective in stimulating PDZK1 gene expression via ERβ (Fig. 2.7). At the cystatin D gene, E2 exclusively stimulated via ERβ, and the stimulation by genistein and DPN was only observed in the ERβ-containing cells, with no stimulation by PPT or genistein via ERα. These findings confirm the common regulation of PDZK1 through ERα and ERβ observed with E2, and the ERβ selectivity for E2 regulation of cystatin D expression.

Discussion

Estrogens exert profound effects on bone, a tissue that expresses ERα and ERβ. Yet the individual contributions of ERα and ERβ to gene regulation and physiological function in bone remain only partially understood. In this study, we have characterized a model system for examining the actions of the ER subtypes, ERα and ERβ, in a human
osteoblast-like cell type. These studies have enabled us to evaluate changes in the expression of ca. 12,000 genes by estradiol through ERα and/or ERβ. We have identified novel estrogen-regulated genes and genes regulated commonly as well as exclusively or preferentially through ERα or ERβ. Further, the identification of regulated genes allows some insight into the pathways and gene networks regulated by E2 through these two ERs.

Estrogen regulation of genes associated with cytokines, motility, cytoskeleton, and bone remodeling

Because estrogen plays important roles in bone remodeling and the control of osteoblast and osteoclast numbers (1), it is of note that E2 showed significant regulation of cytokines and of genes encoding proteins associated with regulation of the immune response. Our findings are consistent with the reports of estrogen regulation of genes encoding cytokines, growth factors and bone matrix proteins in wild type mouse trabecular bone and the importance of ERα and/or ERβ in the mediation of these effects, as evidenced by the use of ER knockout mice (54-56). We observed E2 up-regulation of genes encoding three members of the Natural Killer cell lectin-type receptors (NKG family, KLRC2, KLRC3 and KLRC4). These NKG family genes were all regulated by E2 at early as well as later times. Other factors associated with cytokine/immune function observed to be under estrogen regulation included CD34 antigen, defensin β1, IL13 receptor α2, interleukin 8, phospholipase A2, selenoprotein P1, and sialomucin/CD164. Many of these genes, as indicated in Tables 2.2 and 2.3, represent new E2-regulated genes not previously reported to be regulated by this hormone.
Another category of genes in which many members were regulated by E2, were those associated with regulation of cell motility and the cytoskeleton. We observed a three-fold increase in the motility of the ERβ-containing cells in response to E2 treatment. Hence, it is of note that two genes preferentially regulated by E2 via ERβ were autotaxin (ENPP2), a known tumor autocrine motility factor and phosphodiesterase, and Rap1 GEF, the guanine nucleotide exchange factor that constitutively activates Rap1 and is known to modulate integrin function (45, 46).

WISP-2, a connective tissue growth factor isolated from osteoblasts (57), was regulated by E2 via both receptor subtypes, and it might play a role in cytoskeletal regulation in these U2OS cells. Its stimulation by E2 has been reported in MCF-7 breast cancer cells (29, 58). In addition, oligophrenin-1, keratin 19, integrin α 6, cyritestin 1, connexin 43, and cadherin 19, all of which play roles in cell motility and the cytoskeleton, were for the most part not previously known to be regulated by estrogen in bone, although several are known to be under estrogen regulation in reproductive target cells (59, 60).

Bone morphogenetic protein 6 (BMP6), a potent osteogenic factor believed to play an important role in the bone-protective actions of estrogens, was observed to be up-regulated through both ERs, as was parathyroid hormone-like hormone (PTHLH/PTHrP), a homolog of PTH that functions as an autocrine growth inhibitor for osteoblast-like cells and as an anabolic agent in osteoporosis (61, 62). Neurtensin was another growth factor/hormone found to be up-regulated by E2 via ERα and ERβ. Cystatin D, an E2-responsive gene newly identified in these studies, was stimulated very preferentially via
ERβ. As this gene encodes a protein that is a secreted inhibitor of cysteine peptidases (cathepsins S and H), it might function in several roles in bone physiology.

ER regulation of other cellular functions: similarities and differences in estrogen target genes and temporal patterns of gene regulation in osteosarcoma and breast cancer cells

Estradiol up-regulated the expression of several genes encoding proteins associated with nucleic acid processing, such as the estrogen receptor coregulators RIP140 and TRAP240. However, in these U2OS cells, E2 regulated very few genes associated with apoptosis or cell proliferation, consistent with our findings that E2 had no effect on the proliferation rate of either the ERα or ERβ-containing U2OS cells (data not shown). In contrast, in a recently reported study in ER-positive human breast cancer cells, in which E2 stimulates cell proliferation, we observed that E2 stimulated the expression of positive proliferation regulators including multiple growth factors and genes involved in cell cycle progression, and E2 also down-regulated transcriptional repressors and anti-proliferative and pro-apoptotic genes (29). Hence, the categories of genes stimulated by E2 in the U2OS cells and in breast cancer cells are very different, and they reflect the quite different physiological effects of E2 on these target cells. Further, E2 down-regulated the expression of few genes in these ER-containing osteosarcoma cells, whereas E2 down-regulated the expression of more genes in ER-positive MCF-7 breast cancer cells than it up-regulated (29). Despite these marked differences in genes regulated in these two different types of estrogen target cells, some genes were stimulated by E2 in both U2OS and MCF-7 breast cancer cells. These included pS2, keratin 19, the sodium hydrogen exchanger regulatory factor (NHERF/EBP50), GREB1, PDZK1, RIP140, WISP2 and connexin 43, all previously shown to be under estrogen regulation,
as referenced in Tables 2.2 and 2.3. Some have important roles in cell cytoarchitecture and cytoskeletal regulation (e.g., NHERF/EBP50, connexin43), supporting the known effects of estrogen on the cytoskeleton of both mammary (63) and bone cells.

It is of interest that our time-course analysis in the U2OS cells (Fig. 2.3) revealed that genes regulated by E2 divided into 3 temporal patterns, denoted E, E+L, or L in Tables 2.2 and 2.3: those regulated at early times only (4 and/or 8 h), those regulated at both early and late times, and those showing increased expression only at late times (24 and/or 48h). In both MCF-7 and in ER-containing U2OS cells, approximately equal numbers of stimulated genes fell into the early and late, and late-only categories, whereas relatively few genes showed early-only regulation in the U2OS cells compared with the breast cancer cells where ca. one-third of the total stimulated genes showed the early-only expression pattern. We have used the protein synthesis inhibitor, cycloheximide, to begin to distinguish primary versus secondary effects of E2-ER complexes on regulation of some of the interesting genes we have identified in the U2OS cells. These studies reveal that some of the genes turned on early that show elevated expression over time and hence fall into the “early and late” category (such as GREB1, autotaxin, oligophrenin-1 and KLRC4) likely represent primary estrogen response genes since their increase in mRNA expression is not prevented by cycloheximide. In contrast, cycloheximide blocked the estrogenic stimulation of cystatin D and PDZK1, a late and an early and late gene, respectively, suggesting these are probably secondary response genes.

Novel estrogen-regulated genes and genes regulated selectively by ERα or ERβ

These studies have enabled us to compare the actions of ERα and ERβ. While the majority of E2-stimulated genes were regulated through both ER subtypes, we
identified a number of genes selectively regulated either by ERα or by ERβ, as well as many novel estrogen-regulated genes (64). Most of the E2-regulated genes involved in cytoskeleton regulation and motility, signal transduction, cytokine and immune response and growth factors/hormones were commonly regulated through both receptors. These included a marked up-regulation of cox-2, cyritestin 1, keratin 19, several interleukins and integrin α6. The latter factor, integrin α6, forms laminin receptors when heterodimerized with integrin β1 or β4 subunits, and it is one of the factors involved in tumor invasion through basal membranes (65-67).

Important growth factors and hormones regulated by E2 through both receptors included several that can act in either an autocrine or paracrine manner, including BMP6 and PTHLH, to effect the bone-protective actions of E2 (68). PTHLH, a homologue of PTH (parathyroid hormone), acts as an anabolic agent in osteoporosis (62), and its overproduction in breast and prostate cancers is associated with bone metastasis of these tumors (69, 70). Hence, its up-regulation by E2 via either ERα or ERβ is of interest. Of the genes we observed to be selectively regulated by one ER subtype, nearly three-fourths were ERα-selective. These ERα-regulated genes included several associated with nucleic acid processing, two zinc finger proteins, the coregulator TRAP240, and the cytochrome P450 family member 2B6 (CYP2B6). Of the genes exclusively regulated by ERβ were autotaxin and cystatin D, factors associated with motility/cytoskeleton and cytokine/immune function.

A recent report of related studies in U2OS cells identified some similar and some different gene targets for ERα and ERβ (71) as we observed in this report. There are several important methodological differences between the two studies that could account
for some of the differences in findings. First, the levels of ERα and ERβ in the U2OS cells used by Monroe et al (71) were very high, namely three times that of MCF-7 cells, whereas we chose to use cells that contained ER at levels more comparable to those in osteoblasts, about 20% that of MCF-7 cells. Also, the studies in ref. 71 examined E2 regulation only at 24 h, whereas we examined gene regulation over a time course of E2 treatment up to 48 h, so that we identified both early, early and late, and late-only responding genes; hence, some different sets of genes would likely be identified in the two studies. In addition, we used a confidence score that includes considerations of fold change, p-values, expression level and present calls in defining estrogen-regulated genes, whereas Monroe et al (71) used fold change only. Further, the studies reported in ref. 71 used an earlier version Affymetrix microarray chip that contains probes for about half of the genes on the U95A array we used, and also uses fewer and different probe sets per gene. Hence, it is not surprising that there are some differences in the observed pattern of gene regulations between our study and that presented in ref. 71.

The differences in gene targets of ERα vs. ERβ, or of progesterone receptor-A vs. progesterone receptor-B (72), may reflect differences in the activation functions of these receptors, in particular their N-terminal activation regions, as well as the complexity of gene regulation by hormone occupied-nuclear receptors. The latter involves a combination of aspects (7, 16, 73): the diverse nature of target gene promoters (with different response elements that may be simple or composite) where receptors may bind directly to the DNA or act through tethering to other DNA-bound transcription factors; the nature of the coregulators recruited to the hormone-receptor-gene promoter; and the
receptor protein conformations induced by different ligands in the context of associated coregulators and transcription factors.

These studies, which have allowed a comparison of the gene regulatory activities of ER\(\alpha\) and ER\(\beta\), should assist in the characterization of genes and cellular signaling pathways regulated by E2 through ER\(\alpha\) and/or ER\(\beta\). They highlight commonality but also significant differences in gene targets for these two ERs and have identified many novel genes not previously known to be under estrogen regulation. Several of these are likely to play significant roles in the bone maintenance and anti-osteoporosis effects of estrogens. It will be of interest in subsequent studies to use the preferentially regulated genes we have identified to explore the molecular basis for the ER subtype-selectivity in the regulation of these genes.

Acknowledgements

This work was supported by grants from the NIH, CA18119 (BSK) and T32ES07326 (DHB), and The Breast Cancer Research Foundation (BSK). Karen Weis and Paolo Martini, former members of the Katzenellenbogen laboratory, began initial work on the generation and characterization of the U2OS-ER cells. Jonna Frasor assisted in the generating the microarray studies. Fabio Stossi was a co-primary author on these studies for and assisted throughout. Mark Band, Lei Liu and Dennis Akan of the University of Illinois Biotechnology Center offered advice and assisted in original processing of microarray data.
Abbreviations

The abbreviations used are: AP-1, activation protein-1; BMP6, bone morphogenetic protein 6; BSA, bovine serum albumin; CAT, chloramphenicol acetyltransferase; CS, confidence score; CYP2B6, cytochrome P450 family 2B6; DPN, diarylpropionitrile; E2, 17β-estradiol; ERE, estrogen response element; ERα, estrogen receptor alpha; ERβ, estrogen receptor beta; FAK, focal adhesion kinase; FBS, fetal bovine serum; GFR, guanine nucleotide exchange factor for Rap1; IL-24, interleukin 24; IL-8, interleukin 8; LPA, lysophosphatidic acid; NHERF, Na+/H+ exchanger regulatory factor; NKG, natural killer cell lectin-type receptors; PCR, polymerase chain reaction; PDZK1, PDZ domain containing 1; PPT, propylpyrazoletriol; PR, progesterone receptor; PTHLH, parathyroid hormone-like hormone, also known as PTHrP, parathyroid hormone-related peptide; RIP140, receptor interacting protein 140; TFF1, trefoil factor 1, also known as pS2; TNFα, tumor necrosis factor alpha; TRAP240, thyroid hormone receptor-associated protein, 240 kDa subunit; WISP2, WNT1 inducible signaling pathway protein 2.
Table 2.1. Primers used for real-time PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Abbrev.</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyl-CoA Oxidase 2</td>
<td>ACOX2</td>
<td>5'-TTACAGACCTGACGGCAATCC</td>
<td>5'-CCCTAGCAGCTGGGTTG</td>
</tr>
<tr>
<td>Adenosine Kinase</td>
<td>ADK</td>
<td>5'-GGCTGCAAGCCTTTCTGAGAA</td>
<td>5'-AGCAATGAGGGCAGTGCTG</td>
</tr>
<tr>
<td>Angiotensinogen</td>
<td>AGT</td>
<td>5'-GCCCTTCAGTAGGGCCGC</td>
<td>5'-TGACACCTCCACCTTGG</td>
</tr>
<tr>
<td>Autotaxin</td>
<td>ENPP2</td>
<td>5'-CTCTCTCATCCTGGCTCACC</td>
<td>5'-TCAGGCACCTAGGGT</td>
</tr>
<tr>
<td>Bone Morphogenetic Protein 6</td>
<td>BMP6</td>
<td>5'-CATTACGGCCACACTAGCAATC</td>
<td>5'-CATCCCTTGTCAACAGCT</td>
</tr>
<tr>
<td>Carbonic Anhydrase XII</td>
<td>CA12</td>
<td>5'-GCAGGTTCCAGAATTCATG</td>
<td>5'-CAGACTCACTCTGCCGCA</td>
</tr>
<tr>
<td>Connexin 43</td>
<td>GJA1</td>
<td>5'-GCCAAAGACTGTTGGTCTCAA</td>
<td>5'-CCAGGAGGACATAGGCC</td>
</tr>
<tr>
<td>Cystatin D</td>
<td>CST5</td>
<td>5'-GACTTTCGCCATCAGGATACA</td>
<td>5'-TAGCGACCCATCACCTG</td>
</tr>
<tr>
<td>Estrogen Receptor α</td>
<td>ERα/ESR1</td>
<td>5'-GAATCTGGCCAAGGAGTGC</td>
<td>5'-ACTGCTTGGTGCCGGAC</td>
</tr>
<tr>
<td>Estrogen Receptor β</td>
<td>ERβ/ESR2</td>
<td>5'-TGCTTGGCAGCGATTACGCA</td>
<td>5'-GGCCGCTTTTTTATG</td>
</tr>
<tr>
<td>GREB1</td>
<td>GREB1</td>
<td>5'-CAGCTTTTTTGCCAGGAATCT</td>
<td>5'-CAAAGCTTGCTGCTCAGT</td>
</tr>
<tr>
<td>Integrin Alpha 6</td>
<td>ITGA6</td>
<td>5'-AGATCCCGGCCTGGATATAA</td>
<td>5'-CCCCACACCTGTTGTC</td>
</tr>
<tr>
<td>Interleukin 24 / MDA-7</td>
<td>IL24</td>
<td>5'-ACTGGACACTTCACGCCCTT</td>
<td>5'-TCACCTGGCGCTGCTAAAG</td>
</tr>
<tr>
<td>Interleukin 8</td>
<td>IL8</td>
<td>5'-CCAGAGGAGAACCACCGGA</td>
<td>5'-GGAAGGCTGGCAAGGAG</td>
</tr>
<tr>
<td>Neurotensin</td>
<td>NTS</td>
<td>5'-CCAGTGGGAAGACCAGGAA</td>
<td>5'-TGAAGACCCCTGCTGAC</td>
</tr>
<tr>
<td>NKG2F</td>
<td>KLRC4</td>
<td>5'-AGACAGAACATGGTGGCCATT</td>
<td>5'-GAAGCAACGGCCAGAAC</td>
</tr>
<tr>
<td>NOR1/CSMF/MINOR</td>
<td>NR4A3</td>
<td>5'-ACCGGAGAAACCCAGACGG</td>
<td>5'-TGCCCTGACCTGCACCC</td>
</tr>
<tr>
<td>Oligophrenin 1</td>
<td>OPHN1</td>
<td>5'-GTGGGCTTCTAACAGGTTG</td>
<td>5'-GTGGGCTACACCTCTG</td>
</tr>
<tr>
<td>PDZK1</td>
<td>PDZK1</td>
<td>5'-CCACTTGGCAACCCTCCAGAT</td>
<td>5'-TGACTGGTGCCGCTFTC</td>
</tr>
<tr>
<td>Phospholipase A2, IVA</td>
<td>PLA2G4A</td>
<td>5'-TGGCTTGGGAGTGATGCAG</td>
<td>5'-TCAAGGGACAGTAAAGGT</td>
</tr>
<tr>
<td>Trefoil Factor 1 / pS2</td>
<td>TFF1</td>
<td>5'-ATACACCTCGAGCTCCCTC</td>
<td>5'-AAGCTTGTCGAGGTGTTG</td>
</tr>
<tr>
<td>RIP140</td>
<td>RIP1</td>
<td>5'-AAGGGAGACCGCTTTTCA</td>
<td>5'-TTGAGGACGGCTGTAAGCTG</td>
</tr>
<tr>
<td>SKI-like</td>
<td>SKIL</td>
<td>5'-GGAACCTGGGAGCATCAGGCT</td>
<td>5'-CCAGAGCTACAGGCGAT</td>
</tr>
<tr>
<td>WISP2</td>
<td>WISP2</td>
<td>5'-GCCACACCGAAGACCACCT</td>
<td>5'-AGTACATGTTGCTGGGCA</td>
</tr>
<tr>
<td>36B4</td>
<td>36B4</td>
<td>5'-GTGTTGGCACAATGCGAGCAT</td>
<td>5'-GACACCCCTCAGGAGGCA</td>
</tr>
</tbody>
</table>
Table 2.2. Genes up-regulated by estradiol through estrogen receptor alpha and estrogen receptor beta in U2OS cells. Genes are organized alphabetically. The Table lists genes determined to be E2-regulated based on a Confidence Score ≥11 and a fold change ≥2.0 from microarray analysis, as described in Materials and Methods, in ERα- or ERβ-containing cells with the other receptor giving gene stimulation ≥1.4 fold. Gene names in bold appear to be novel and not previously reported to be regulated by E2(†). Those in italics have been verified by real-time PCR and the real-time PCR values are shown as entries in parentheses under the microarray values. All values are mean ± SEM. Under Time Pattern, E, E+L, or L denote an early only, early and late, or late only time pattern of regulation by E2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>GenBank</th>
<th>Fold ERα (mean±SEM)</th>
<th>Fold ERβ (mean±SEM)</th>
<th>Time Pattern (ERα,ERβ)</th>
<th>Function</th>
<th>E2-Reg. Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyl-CoA Oxidase 2</td>
<td>ACOX2</td>
<td>X95190</td>
<td>6.72 ± 2.73 (3.61 ± 0.03)</td>
<td>2.00 ± 0.22 (2.32 ± 0.33)</td>
<td>E+L, L</td>
<td>housekeeping</td>
<td>(40)</td>
</tr>
<tr>
<td>Adenosine Kinase</td>
<td>ADK</td>
<td>U50196</td>
<td>2.75 ± 0.59 (2.47 ± 0.33)</td>
<td>1.68 ± 0.31 (2.07 ± 0.34)</td>
<td>E+L, L</td>
<td>signal transduction</td>
<td>(74)</td>
</tr>
<tr>
<td>Angiotensinogen</td>
<td>AGT</td>
<td>K02215</td>
<td>2.00 ± 0.49 (4.41 ± 0.32)</td>
<td>2.13 ± 0.19 (4.18 ± 0.50)</td>
<td>L, L</td>
<td>growth factors/hormones</td>
<td>(74)</td>
</tr>
<tr>
<td>Baculoviral IAP-containing 3</td>
<td>BIRC3</td>
<td>U45878</td>
<td>2.47 ± 0.32</td>
<td>3.01 ± 1.17</td>
<td>L, E+L</td>
<td>apoptosis/proliferation</td>
<td>(75)</td>
</tr>
<tr>
<td>Bone Morphogenetic Protein 6</td>
<td>BMP6</td>
<td>M60315</td>
<td>2.39 ± 0.41 (2.64 ± 0.15)</td>
<td>2.17 ± 0.27 (2.82 ± 0.09)</td>
<td>L, L</td>
<td>growth factors/hormones</td>
<td>(60)</td>
</tr>
<tr>
<td>Cadherin 19, Type 2</td>
<td>CDH19</td>
<td>AF047826</td>
<td>6.49 ± 1.30</td>
<td>1.86 ± 0.48</td>
<td>E+L, E</td>
<td>cell motility/cytoskeleton</td>
<td>(40)</td>
</tr>
<tr>
<td>Carbonic Anhydrase XII</td>
<td>CA12</td>
<td>AF037335</td>
<td>2.60 ± 0.24 (5.08 ± 1.04)</td>
<td>2.40 ± 0.04 (15.42 ± 4.22)</td>
<td>E+L, E+L</td>
<td>unknown/other</td>
<td>(60)</td>
</tr>
<tr>
<td>CD34 Antigen</td>
<td>CD34</td>
<td>S53911</td>
<td>1.94 ± 0.25</td>
<td>3.12 ± 1.05</td>
<td>L, E+L</td>
<td>cytokine/immun e function</td>
<td>(40)</td>
</tr>
<tr>
<td>Clone IMAGE 446411</td>
<td></td>
<td>AJ011980</td>
<td>4.67 ± 1.34</td>
<td>6.98 ± 2.73</td>
<td>L, L</td>
<td>unknown/other</td>
<td>(40)</td>
</tr>
<tr>
<td>Coagulation Factor XIII, A1</td>
<td>F13A1</td>
<td>M14539</td>
<td>4.37 ± 1.08</td>
<td>5.54 ± 0.96</td>
<td>E+L, E+L</td>
<td>unknown/other</td>
<td>(60)</td>
</tr>
<tr>
<td>Connexin 43</td>
<td>GJA1</td>
<td>X52947</td>
<td>2.39 ± 0.30 (2.72 ± 0.13)</td>
<td>1.56 ± 0.06 (2.21 ± 0.36)</td>
<td>L, L</td>
<td>cell motility/cytoskeleton</td>
<td>(40)</td>
</tr>
<tr>
<td>Cyclooxygenase-2</td>
<td>PTGS2</td>
<td>U04636</td>
<td>31.5 ± 1.88</td>
<td>6.64 ± 2.01</td>
<td>E+L, E+L</td>
<td>cytokine/immun e function</td>
<td>(60)</td>
</tr>
<tr>
<td>Cyritestin 1</td>
<td>ADAM3A</td>
<td>X89656</td>
<td>4.73 ± 0.20</td>
<td>4.64 ± 2.33</td>
<td>E+L, E</td>
<td>cell motility/cytoskeleton</td>
<td>(40)</td>
</tr>
<tr>
<td>Defensin Beta 1</td>
<td>DEFB1</td>
<td>AI309115</td>
<td>2.01 ± 0.21</td>
<td>1.54 ± 0.40</td>
<td>L, L</td>
<td>cytokine/immun e function</td>
<td>(40)</td>
</tr>
<tr>
<td>Glycerol Kinase</td>
<td>GK</td>
<td>X78711</td>
<td>3.57 ± 1.28</td>
<td>4.72 ± 0.14</td>
<td>L, E+L</td>
<td>housekeeping</td>
<td>(40)</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Accession Number</td>
<td>Expression Value</td>
<td>Standard Deviation</td>
<td>Function</td>
<td>Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-protein Coupled Receptor Kinase 5</td>
<td>GPRK5</td>
<td>L15388</td>
<td>2.13 ± 0.03</td>
<td>2.00 ± 0.26</td>
<td>E, E signal transduction †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREB1 Protein</td>
<td>GREB1</td>
<td>AB011147</td>
<td>2.74 ± 0.27</td>
<td>(25 ± 3.65)</td>
<td>E+L, E+L unknown/other (76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hevin</td>
<td>SPARCL1</td>
<td>X86693</td>
<td>4.31 ± 2.37</td>
<td>3.22 ± 2.31</td>
<td>E+L, E+L unknown/other †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeobox HB9</td>
<td>HLXB9</td>
<td>U07664</td>
<td>2.23 ± 0.22</td>
<td>1.63 ± 0.27</td>
<td>E, E nucleic acid processing †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL13 Receptor Alpha 2</td>
<td>IL13RA2</td>
<td>U70981</td>
<td>2.64 ± 0.39</td>
<td>1.80 ± 0.14</td>
<td>E+L, L cytokine/immun.e function †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrin Alpha 6</td>
<td>ITGA6</td>
<td>S66213</td>
<td>3.77 ± 0.89</td>
<td>(3.68 ± 0.36)</td>
<td>E+L, L cell motility/cytoskeleton (77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 8</td>
<td>IL8</td>
<td>M28130</td>
<td>2.13 ± 2.21</td>
<td>(2.79 ± 0.52)</td>
<td>L, E cytokine/immun.e function (78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 24 / MDA-7</td>
<td>IL24</td>
<td>U16261</td>
<td>5.20 ± 1.25</td>
<td>(10.12 ± 1.56)</td>
<td>E+L, E apoptosis/proliferation †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin 19</td>
<td>KRT19</td>
<td>Y00503</td>
<td>8.99 ± 0.52</td>
<td>3.79 ± 1.32</td>
<td>E+L, L cell motility/cytoskeleton (59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucine-rich and Ig Domain 1</td>
<td>LRG1</td>
<td>AL039458</td>
<td>2.50 ± 0.16</td>
<td>1.47 ± 0.10</td>
<td>E+L, E signal transduction †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microseminoprotein Beta</td>
<td>MSMB</td>
<td>AA532495</td>
<td>14.0 ± 1.68</td>
<td>2.83 ± 0.74</td>
<td>E+L, L growth factors/hormones (79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurotensin</td>
<td>NTS</td>
<td>U91618</td>
<td>4.95 ± 1.44</td>
<td>(4.55 ± 0.15)</td>
<td>E+L, L growth factors/hormones (80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHERF</td>
<td>SLC9A3R1</td>
<td>AF015926</td>
<td>1.97 ± 0.08</td>
<td>2.22 ± 0.10</td>
<td>L, E+L signal transduction (27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKG2C</td>
<td>KLRC2</td>
<td>AJ001684</td>
<td>8.13 ± 1.50</td>
<td>6.74 ± 1.08</td>
<td>E+L, E cytokine/immun.e function †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKG2E</td>
<td>KLRC3</td>
<td>AJ001685</td>
<td>8.91 ± 0.54</td>
<td>7.14 ± 1.66</td>
<td>E+L, E cytokine/immun.e function †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKG2F</td>
<td>KLRC4</td>
<td>AJ001683</td>
<td>2.94 ± 1.64</td>
<td>(9.75 ± 1.62)</td>
<td>E+L, E cytokine/immun.e function †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1/CSMF/MINOR</td>
<td>NR4A3</td>
<td>X89894</td>
<td>1.38 ± 0.57</td>
<td>(2.74 ± 0.11)</td>
<td>L, E nucleic acid processing †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligophrenin 1</td>
<td>OPHN1</td>
<td>AJ001189</td>
<td>2.09 ± 0.37</td>
<td>(2.48 ± 0.44)</td>
<td>E+L, E+L cell motility/cytoskeleton †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathyroid Hormone-like Hormone</td>
<td>PTHLH/PTHrP</td>
<td>M24351</td>
<td>2.29 ± 0.01</td>
<td>2.80 ± 0.35</td>
<td>E+L, E+L growth factors/hormones (81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDZK1 Protein</td>
<td>PDZK1</td>
<td>AF012281</td>
<td>2.33 ± 0.77</td>
<td>(7.96 ± 1.35)</td>
<td>E+L, E+L signal transduction (76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphodiesterase 4B</td>
<td>PDE4B</td>
<td>L20971</td>
<td>2.10 ± 0.05</td>
<td>1.40 ± 0.06</td>
<td>E, E+L signal transduction †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospholipase A2, IVA</td>
<td>PLA2G4A</td>
<td>M72393</td>
<td>2.91 ± 1.38</td>
<td>(2.04 ± 0.12)</td>
<td>E+L, L cytokine/immun.e function †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Phosphatase 1, Subunit 12B</td>
<td>PPP1R12B</td>
<td>AB007972</td>
<td>2.97 ± 0.05</td>
<td>2.32 ± 0.11</td>
<td>E+L, E+L signal transduction (29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS2</td>
<td>TFF1</td>
<td>AA314829</td>
<td>3.38 ± 0.21</td>
<td>(20.35 ± 3.62)</td>
<td>L, L cytokine/immun.e function (82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putative Tumor Suppressor</td>
<td>FUS2</td>
<td>U73167</td>
<td>2.28 ± 0.15</td>
<td>2.17 ± 0.17</td>
<td>L, L signal transduction †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ras Protein Specific GRF 1</td>
<td>RASGRF1</td>
<td>S62053</td>
<td>2.03 ± 0.04</td>
<td>1.94 ± 0.01</td>
<td>L, L signal transduction (29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ras-like Protein A</td>
<td>RALA</td>
<td>M29893</td>
<td>2.04 ± 0.06</td>
<td>1.45 ± 0.28</td>
<td>L, L signal transduction (29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ret/Ptc2 Fusion</td>
<td>HG4677-HT5102</td>
<td>2.27 ± 0.13</td>
<td>2.03 ± 0.37</td>
<td>L, L unknown/other (29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rho-related BTB Domain Containing 3</td>
<td>RHOBTB3</td>
<td>AB020685</td>
<td>2.06 ± 0.03</td>
<td>1.62 ± 0.36</td>
<td>E+L, L signal transduction †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 2.2. (Cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIP140</td>
<td>NRIP1</td>
<td>X84373</td>
<td>2.88 ± 0.12 (3.35 ± 0.45)</td>
<td>1.54 ± 0.10 (2.45 ± 0.18)</td>
<td>E+L, L</td>
<td>nucleic acid processing (83)</td>
<td></td>
</tr>
<tr>
<td>Selenoprotein P1</td>
<td>SEPP1</td>
<td>Z11793</td>
<td>2.14 ± 0.17</td>
<td>2.18 ± 0.33</td>
<td>L, L</td>
<td>cytokine/immun e function †</td>
<td></td>
</tr>
<tr>
<td>SKI-like</td>
<td>SKIL</td>
<td>X15217</td>
<td>2.51 ± 0.22 (1.91 ± 0.20)</td>
<td>1.49 ± 0.51 (2.4 ± 0.31)</td>
<td>E+L, E</td>
<td>nucleic acid processing †</td>
<td></td>
</tr>
<tr>
<td>Transcobalamin 1</td>
<td>TCN1</td>
<td>J05068</td>
<td>5.83 ± 0.59</td>
<td>11.6 ± 1.25</td>
<td>L, L</td>
<td>housekeeping †</td>
<td></td>
</tr>
<tr>
<td>Transcortin</td>
<td>SERPINA6</td>
<td>J02943</td>
<td>6.24 ± 0.25</td>
<td>2.63 ± 0.97</td>
<td>E+L, L</td>
<td>growth factors/ hormones (84)</td>
<td></td>
</tr>
<tr>
<td>Transducin-like, Enhancer of Split 3</td>
<td>TLE3</td>
<td>M99438</td>
<td>2.36 ± 0.29</td>
<td>2.28 ± 0.01</td>
<td>E, E</td>
<td>unknown/other †</td>
<td></td>
</tr>
<tr>
<td>UDP-glycosyltransferase 2, B10</td>
<td>UGT2B10</td>
<td>X63359</td>
<td>6.80 ± 2.32</td>
<td>2.25 ± 0.77</td>
<td>E+L, E+L</td>
<td>housekeeping †</td>
<td></td>
</tr>
<tr>
<td>WISP2</td>
<td>WISP2</td>
<td>AF100780</td>
<td>3.89 ± 0.25 (42.2 ± 7.59)</td>
<td>2.81 ± 0.26 (14.19 ± 1.38)</td>
<td>L, L</td>
<td>cell motility/ cytoskeleton (58)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3. Estrogen-stimulated genes regulated selectively through one estrogen receptor subtype. E2-up-regulated genes were classified as ER-subtype selective when the Confidence Score was ≥11 and the fold change as determined by microarray analysis was 2.0 or greater whereas fold change was less than 1.3 fold for the other receptor at all time points. Gene names in bold appear to be novel and not previously reported to be regulated by E2(†). Those in italics have been verified by real-time PCR and the real-time PCR values are shown as entries in parentheses under the microarray values. All values are mean ± SEM. Under Time Pattern, E, E+L, or L denote an early only, early and late, or late only time pattern of regulation by E2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>GenBank</th>
<th>Fold (mean±SEM)</th>
<th>Time Pattern</th>
<th>Function</th>
<th>E2-Reg. Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERα-selective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytochrome P450, Family 2 B6</td>
<td>CYP2B6</td>
<td>M29874</td>
<td>6.10 ± 0.15</td>
<td>E+L</td>
<td>housekeeping</td>
<td>†</td>
</tr>
<tr>
<td>Phosphodiesterase 3B</td>
<td>PDE3B</td>
<td>D50640</td>
<td>3.50 ± 0.83</td>
<td>E+L</td>
<td>signal transduction</td>
<td>†</td>
</tr>
<tr>
<td>RIESKE Iron-Sulfur Protein</td>
<td></td>
<td>M23316</td>
<td>3.20 ± 0.72</td>
<td>E+L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>Chromosome 18, orf 1</td>
<td>C18ORF1</td>
<td>AF009426</td>
<td>2.65 ± 0.65</td>
<td>E+L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>Sodium Channel, Non-voltage Gated 1, β</td>
<td>SCN1B</td>
<td>X87159</td>
<td>2.57 ± 0.27</td>
<td>E+L</td>
<td>signal transduction</td>
<td>†</td>
</tr>
<tr>
<td>Sialomucin</td>
<td>CD164</td>
<td>D14043</td>
<td>2.50 ± 0.05</td>
<td>L</td>
<td>cytokine/immune function</td>
<td>†</td>
</tr>
<tr>
<td>Zinc Finger Protein 267</td>
<td>ZNF267</td>
<td>X78925</td>
<td>2.41 ± 0.17</td>
<td>L</td>
<td>nucleic acid processing</td>
<td>†</td>
</tr>
<tr>
<td>PCF11p Homolog</td>
<td>PCF11</td>
<td>AB020631</td>
<td>2.42 ± 0.27</td>
<td>L</td>
<td>nucleic acid processing</td>
<td>†</td>
</tr>
<tr>
<td>Zinc Finger Protein 148</td>
<td>ZNF148</td>
<td>L04282</td>
<td>2.39 ± 0.28</td>
<td>L</td>
<td>nucleic acid processing</td>
<td>†</td>
</tr>
<tr>
<td>TR-associated Protein, 240 kDa</td>
<td>TRAP240</td>
<td>AB011165</td>
<td>2.21 ± 0.23</td>
<td>L</td>
<td>nucleic acid processing</td>
<td>†</td>
</tr>
<tr>
<td>CD2-associated Protein</td>
<td>CD2AP</td>
<td>AL050105</td>
<td>2.17 ± 0.12</td>
<td>L</td>
<td>cell motility/ cytoskeleton</td>
<td>†</td>
</tr>
<tr>
<td>DKFZp586K1 Protein</td>
<td>DKFZp586K1</td>
<td>AL049382</td>
<td>2.16 ± 0.21</td>
<td>L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>KIAA0626 Gene Product</td>
<td>KIAA0626</td>
<td>AB014526</td>
<td>2.16 ± 0.35</td>
<td>L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>Bcl-2-associated Transcription Factor</td>
<td>BTF</td>
<td>D79986</td>
<td>2.13 ± 0.05</td>
<td>L</td>
<td>apoptosis/proliferation</td>
<td>†</td>
</tr>
<tr>
<td>DKFZp434D193</td>
<td></td>
<td>U79263</td>
<td>2.13 ± 0.35</td>
<td>E+L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>Hbc647 mRNA</td>
<td>hbc647</td>
<td>U68494</td>
<td>2.12 ± 0.06</td>
<td>L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>PKC Binding Protein 1</td>
<td>PRKCBP1</td>
<td>U48251</td>
<td>2.12 ± 0.37</td>
<td>L</td>
<td>signal transduction</td>
<td>(85)</td>
</tr>
<tr>
<td>ATPase, Lysosomal, V1 Subunit D</td>
<td>ATP6V1D</td>
<td>AA877795</td>
<td>2.09 ± 0.13</td>
<td>L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
<tr>
<td>KIAA0191 Protein</td>
<td>KIAA0191</td>
<td>D83776</td>
<td>2.09 ± 0.03</td>
<td>E+L</td>
<td>unknown/other</td>
<td>†</td>
</tr>
</tbody>
</table>
Table 2.3. (Cont.)

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Accession</th>
<th>Fold Change</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinesin Family Member 5B</td>
<td>KIF5B</td>
<td>X65873</td>
<td>L cell motility/cytoskeleton †</td>
</tr>
<tr>
<td>PRP4 pre-mRNA Processing Factor 4B</td>
<td>PRPF4B</td>
<td>U48736</td>
<td>E+L nucleic acid processing †</td>
</tr>
<tr>
<td>KIAA0372 Gene Product</td>
<td>KIAA0372</td>
<td>AB002370</td>
<td>L unknown/other †</td>
</tr>
<tr>
<td>PRP4 pre-mRNA Processing Factor 4B</td>
<td>PRPF4B</td>
<td>U48736</td>
<td>E+L nucleic acid processing †</td>
</tr>
<tr>
<td>KIAA1033 Protein</td>
<td>KIAA1033</td>
<td>AB028956</td>
<td>L unknown/other †</td>
</tr>
<tr>
<td>Clone wg82b12.x1</td>
<td>AI768188</td>
<td>2.00 ± 0.17</td>
<td>L unknown/other †</td>
</tr>
<tr>
<td>ERβ-selective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clone 23892</td>
<td>AF035317</td>
<td>7.24 ± 1.24</td>
<td>E+L unknown/other †</td>
</tr>
<tr>
<td>Autotaxin</td>
<td>ENPP2</td>
<td>L35594</td>
<td>E+L cell motility/cytoskeleton †</td>
</tr>
<tr>
<td>Cystatin D</td>
<td>CST5</td>
<td>X70377</td>
<td>L cytokine/immune function †</td>
</tr>
<tr>
<td>HSU43279</td>
<td>U43279</td>
<td>3.53 ± 0.79</td>
<td>E+L unknown/other †</td>
</tr>
<tr>
<td>RA-inducible Endogenous Retroviral DNA</td>
<td>M64936</td>
<td>3.37 ± 0.59</td>
<td>E+L unknown/other †</td>
</tr>
<tr>
<td>Rap1 GEF</td>
<td>GFR</td>
<td>D87467</td>
<td>E signal transduction †</td>
</tr>
<tr>
<td>Stromal Antigen 2</td>
<td>STAG2</td>
<td>Z75331</td>
<td>E+L unknown/other †</td>
</tr>
<tr>
<td>Putative Mitochondrial Space Protein</td>
<td>PSORT</td>
<td>AF050198</td>
<td>E unknown/other †</td>
</tr>
<tr>
<td>Hypothetical Protein</td>
<td>FLJ31564</td>
<td>W27600</td>
<td>E+L unknown/other †</td>
</tr>
</tbody>
</table>
Figure 2.1. Characterization of U2OS human osteosarcoma cells stably expressing ERα or ERβ.

(A) Estrogen receptor mRNA copy number/10 ng total RNA as assessed by real-time PCR in ERα clones 1-4 and in ERβ clones 1-4. (B) E2 binding sites/mg protein evaluated by E2 binding assay in parental U2OS and U2OS-ER cell lines (ERα clone 1
Figure 2.1. (Cont.)

and ERβ clone 1) in comparison with the MCF-7 breast cancer cell line. The mean of closely corresponding duplicate determinations is shown. (C) Western blot for ERα and ERβ protein in different clones of stably transfected U2OS cells. (D) Motility (Boyden chamber assay) of cells (ERα clone 1 and ERβ clone 1) was assayed with 5% FBS as a general chemoattractive factor. E2 treatment was for 48 h. Similar findings were obtained with 3 other ERα and ERβ clones. E) Adhesion assay was performed in 96-well plates coated with various substrates. Shown is 30 min adhesion on collagen type I measured as absorbance at 570 nm. E2 treatment was for 48 h. No effect of E2 on cell adhesion was also seen in repeat experiments with 3 other ERα and ERβ clones. *p<0.01 for E2-treated cells vs. cells treated with control vehicle.
Figure 2.2. Cluster analysis of E2-regulated genes in U2OS-ERα or -ERβ containing cells.

After applying normalization and confidence score analyses, all the E2-regulated genes in U2OS-ER containing cells (ERα clone 1 and ERβ clone 1) were clustered using a standard correlation algorithm (GeneSpring software). Up-regulated genes are shown in red, down-regulated genes in blue and non-changing genes in yellow. The color scale corresponding to fold change in gene expression is shown at the left. The different time points of the E2 (10nM) time-course treatment are indicated at the right. The gene expression values shown are the average fold change of independent samples, each run on a separate microarray chip, for each time point.
Figure 2.3. Time-course patterns of E2-stimulated genes in U2OS-ERα and U2OS-ERβ cells as identified from microarray analysis.

All E2 up-regulated genes were assigned to one of three categories. For “Early only” regulated genes (dotted broken line with diamonds), the fold change was 2-fold or greater at 4 and/or 8 h only. For “Early and Late” regulated genes (dashed line with triangles), the fold change was 2-fold or greater at 4 and/or 8 h and at 24 and/or 48 h. And for “Late only” regulated genes (solid line with squares), the fold change was 2-fold or greater at 24 and/or 48 h only. Once genes were assigned to one of the three time-course patterns, the mean fold-change ± SEM was calculated and plotted for all genes in that pattern. On some points, error bars are too small to be visible.
Figure 2.4. Functional classification of E2-stimulated genes.

E2 up-regulated genes were classified as ER-subtype selective when the fold change from the microarray data for one receptor was 2.0-fold or greater whereas for the other receptor it was less than 1.3-fold at all time points. All the genes identified were then categorized in functional groups according to their main known function based on LocusLink, OMIM, PubMed, GeneCards and GenMAPP databases.
Figure 2.5. Real-Time PCR validation of genes regulated commonly by both ERα and ERβ.

Estradiol (10nM) time-course and ICI 182,870 (1µM) treatments were performed in three independent experiments to confirm DNA microarray data and assess the estrogen receptor-dependent mechanism of the gene regulation through reversal by a 100-fold excess of the antiestrogen (ICI+E2). Values are mean fold change + SEM. *indicates p<0.05 for gene stimulation by E2 vs. vehicle control.
Figure 2.6. Real-Time PCR validation of genes regulated selectively through ERβ.

Estradiol (10nM) time-course and ICI 182,870 (1µM) treatments were performed in three independent experiments to confirm DNA microarray data and assess the estrogen receptor-dependent mechanism of the gene regulation through reversal by a 100-fold excess of the antiestrogen (ICI+E2). Values are mean fold change ± SEM. *indicates p<0.05 and † indicates p=0.06 for gene stimulation in ERβ- vs. ERα-containing cells.
Figure 2.7. Real-Time PCR analysis of gene regulation by estradiol, the ERα-selective ligand PPT, the ERβ-selective ligand DPN, and Genistein.

Estradiol (10nM), PPT (100nM), DPN (100nM), and Genistein (1µM) treatments were performed for 48 h in three separate experiments to examine the ability of ER-subtype selective ligands to regulate gene expression in cells containing either ERα or ERβ. Values are mean fold change ± SEM. *indicates p<0.05 and † indicates p=0.07 for gene stimulation in ERβ- vs. ERα-containing cells.
References

26. McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS 1998 Transcription activation by the human estrogen receptor subtype β (ERβ) studied with ERβ and ERα receptor chimeras. Endocrinology 139:4513-4522

38. Akoum A, Lawson C, McColl S, Villeneuve M 2001 Ectopic endometrial cells express high concentrations of interleukin (IL)-8 in vivo regardless of the menstrual cycle phase and respond to oestradiol by up-regulating IL-1-induced IL-8 expression in vitro. Mol Hum Reprod 7:859-866
50. Harris HA, Katzenellenbogen JA, Katzenellenbogen BS 2002 Characterization of the biological roles of the estrogen receptors, ERα and ERβ, in estrogen target tissues in vivo through the use of an ERα-selective ligand. Endocrinology 143:4172-4177

58. Inadera H, Dong HY, Matsushima K. 2002 WISP-2 is a secreted protein and can be a marker of estrogen exposure in MCF-7 cells. Biochem Biophys Res Commun 294:602-608

66. Isberg RR, Leong JM. 1990 Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861-871

69. Shen X, Falzon M. 2003 PTH-related protein modulates PC-3 prostate cancer cell adhesion and integrin subunit profile. Mol Cell Endocrinol 199:165-177
The parathyroid hormone-related protein receptor is expressed in breast cancer
bone metastases and promotes autocrine proliferation in breast carcinoma cells.
Br J Cancer 88:567-573
Estrogen receptor isoform-specific regulation of endogenous gene expression in
human osteoblastic cell lines expressing either ERalpha or ERbeta. J Cell
Biochem 90:315-326
72. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB
2002 Differential gene regulation by the two progesterone receptor isoforms in
73. Katzenellenbogen BS, Katzenellenbogen JA 2002 Defining the "S" in SERMs.
Science 295:2380-2381
74. Zhao YY, Sun KL, Ashok K 1998 Analysis of a cis-acting element involved in
regulation by estrogen of human angiotensinogen gene expression. Biochemistry
and Biophysics (Shanghai) 30:445-448
75. Rickard DJ, Hofbauer LC, Bonde SK, Gori F, Spelsberg TC, Riggs BL 1998
Bone morphogenetic protein-6 production in human osteoblastic cell lines.
Selective regulation by estrogen. J Clin Invest 101:413-422
76. Ghosh MG, Thompson DA, Weigel RJ 2000 PDZK1 and GREB1 are estrogen-
regulated genes expressed in hormone-responsive breast cancer. Cancer Res
60:6367-6375
by differential display of alpha 6 integrin as a candidate tumor suppressor gene.
Faseb J 7:964-970
78. Kanda N, Watanabe S 2001 17beta-estradiol, progesterone, and
dihydrotestosterone suppress the growth of human melanoma by inhibiting
organization and promoter sequence in rhesus monkey and human. Biochim
Biophys Acta 1089:247-249
80. Watters JJ, Dorsa DM 1998 Transcriptional effects of estrogen on neuronal
neurotensin gene expression involve cAMP/protein kinase A-dependent signaling
mechanisms. J Neurosci 18:6672-6680
81. Thiede MA, Harm SC, Hasson DM, Gardner RM 1991 In vivo regulation of
parathyroid hormone-related peptide messenger ribonucleic acid in the rat uterus
by 17 beta-estradiol. Endocrinology 128:2317-2323
82. Brown AM, Jeltsch JM, Roberts M, Chambon P 1984 Activation of pS2 gene
transcription is a primary response to estrogen in the human breast cancer cell line
MCF-7. Proc Natl Acad Sci U S A 81:6344-6348
83. Thenot S, Charpin M, Bonnet S, Cavailles V 1999 Estrogen receptor cofactors
expression in breast and endometrial human cancer cells. Mol Cell Endocrinol
156:85-93

CHAPTER 3

ESTROGEN RECEPTOR REGULATION OF CARBONIC ANHYDRASE XII THROUGH A DISTAL ENHANCER IN BREAST CANCER

Abstract

The expression of carbonic anhydrase XII (CA12), a gene that encodes a zinc-metalloenzyme responsible for acidification of the microenvironment of cancer cells, is highly correlated with estrogen receptor α (ERα) in human breast tumors. Here, we show that CA12 is robustly regulated by estrogen via ERα in breast cancer cells, and that this regulation involves a distal estrogen-responsive enhancer region. Upon addition of estradiol, ERα binds directly to this distal enhancer in vivo, resulting in the recruitment of RNA polymerase II and steroid receptor coactivators SRC-2 and SRC-3, and changes in histone acetylation. Mutagenesis of an imperfect estrogen-responsive element within this enhancer region abolishes estrogen-dependent activity, and chromosome conformation capture (3C) and chromatin immunoprecipitation assays demonstrate that this distal enhancer communicates with the transcriptional start site of the CA12 gene via intrachromosomal looping upon hormone treatment. This distal enhancer element is observed in the homologous mouse genomic sequence, and the expression of the mouse homolog, Car12, is rapidly and robustly stimulated by estradiol in the mouse uterus in vivo, suggesting that the ER regulation of CA12 is mechanistically and evolutionarily conserved. Our findings highlight the crucial role of ER in regulation of the CA12 gene,

1 This work was originally published in Cancer Research 68(9):3505-3515, doi:10.1158/0008-5472.CAN-07-6151
and provide insight into the transcriptional regulatory mechanism that accounts for the
strong association of CA12 and ER in human breast cancers.

Introduction

Estrogen receptor alpha (ERα), a hormone-regulated transcription factor and
member of the superfamily of nuclear receptors (1, 2), is expressed in approximately 70
percent of breast cancers (3). As the major regulator of the phenotypic properties of these
breast cancers, ERα markedly influences the pattern of breast cancer gene expression and,
perhaps more than any other protein, it defines the distinctly different gene signatures of
ER-positive and ER-negative breast cancers (4-7). In our recent breast cancer gene
expression profiling studies, we observed the carbonic anhydrase XII gene (CA12) to be
robustly stimulated by estradiol (E2) in several ER-containing breast cancer cells (8, 9).
Further, from our examination of transcriptional profiling data sets in ER-positive and
ER-negative breast tumors, we found CA12 to show one of the most highly significant
positive correlations with ER expression (10-12).

Carbonic anhydrase XII is a transmembrane, extracellular enzyme and member of
the family of zinc-metalloenzymes that catalyze the reversible hydration of CO2 to form
bicarbonate (H₂O + CO₂ ⇌ H⁺ +HCO₃⁻), thereby regulating the microenvironment
acidity and tumor malignant phenotype (13-16). CA12 was originally identified as a
protein overexpressed in renal cancer cells (13), but is now known to be also
overexpressed in some other cancers, including breast cancer (17, 18). While both CA12
and the closely related tumor-associated carbonic anhydrase IX (CA9) are thought to be
regulated by hypoxia, only CA12, and not CA9, exhibits a strong positive correlation
with ER expression in breast tumors (4, 19) suggesting that CA12 might be under ER regulation. CA12 expression in breast tumors is associated with positive ERα status, lower grade disease, lower relapse rates, and better overall patient survival (20-22).

To understand the mechanistic basis underlying this strong association between ER positivity and CA12 expression, we have in the work reported here, explored the regulation of CA12 by the ER. Our results document that the CA12 gene is under primary transcriptional up-regulation by the estrogen-occupied ER and that this regulation in breast cancer cells is mediated by ER action through a distal enhancer that we newly characterize. Upon estrogen stimulation, this enhancer binds ERα through an imperfect estrogen response element and recruits p160 coactivators. Furthermore, by chromosomal looping this ER-dependent enhancer communicates with the promoter of the CA12 gene, markedly enhancing transcription of the CA12 gene. Our findings define a mechanistic basis for the robust coexpression of CA12 and ER in breast cancer.

Materials and Methods

Cell Culture and Experimental Treatments

MCF-7 cells were maintained in Minimal Essential Medium (MEM) (Sigma Chemical Co., St Louis, MO) supplemented with 5% calf serum (HyClone, Logan, UT), 100 µg/ml penicillin/streptomycin (Invitrogen, Carlsbad, CA), and 25 µg/ml gentamicin (Invitrogen). T47D cells were routinely maintained in MEM and antibiotics supplemented with 5% fetal bovine serum (Atlanta Biologicals, Atlanta, GA) and bovine insulin (6 ng/ml; Sigma, St. Louis, MO). All cells were grown in phenol red-free MEM
supplemented with 5% charcoal-dextran-treated serum for at least five days prior to use in experiments.

Animal Care and Treatments

Eight week old ovariectomized C57BL/6 mice were obtained from Harlan Co. (Indianapolis, IN) and housed under controlled conditions of light and temperature with free access to standard chow and water. All experiments were conducted in accordance with the principles and procedures of the NIH Guide for the Care and Use of Laboratory Animals and were approved by the University of Illinois Institutional Animal Care and Use Committee. At 16 days after ovariectomy, mice were injected sc with E2 (0.5 µg/animal) dissolved in DMSO then diluted 1:10 in corn oil or with control vehicle DMSO:corn oil alone. At 4 or 24 h after hormone or vehicle injection, uteri were removed, weighed after removal of associated fat, and snap-frozen in liquid nitrogen for RNA isolation.

RNA Isolation, Reverse Transcription, and Real-Time PCR

Cell and whole uterine total RNA was prepared using TRIzol reagent (Invitrogen) according to the manufacturer’s recommendations. RNA samples were reverse transcribed in a total volume of 20 µl using 200 units of reverse transcriptase, 50 pmol random hexamer, and 1 mM deoxynucleotide triphosphates (New England Biolabs, Beverly, MA). The resulting cDNA was then diluted to a volume of 500 µl nuclease-free water. Real-time PCR was performed on an ABI Prism 7900HT instrument using SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA) according to the manufacturer’s recommendations. Briefly, each PCR contained: 1x master mix, 4 µl of the diluted cDNA reaction, and 50 nM forward and reverse primers designed to yield 80-
to 125-bp amplicons. PCR was carried out through 40 cycles (95°C for 15 sec, 60°C for 1 min) following an initial 10 min incubation at 95°C. Relative expression levels were calculated as described previously, using acidic ribosomal protein 36B4 mRNA as an internal control (9). Real-time PCR of ChIP samples was performed in a similar manner, with appropriate primers.

Small Interfering RNA Studies

siRNA duplexes targeting ERα (forward, UCAUCGCAUCCUUUGCAAAAdTdT; reverse, UUUGCAAGGAAUGCGAUGAdTdT, and control (GL3 luciferase, #D-001400-01) were obtained from Dharmacon (Lafayette, CO) and transfected into cells at a final concentration of 20 nM using DharmaFECT transfection reagent as per the manufacturer’s recommendations at 72 h prior to ligand treatment.

Immunoblotting

Whole cell lysates of MCF-7 cells were prepared using 1x Cell Lysis Buffer (Cell Signaling Technology, Beverly, MA) in the presence of Complete Mini protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN). Protein concentration of whole cell lysates was determined by BCA Protein Assay (Pierce, Rockford, IL). Proteins (20 μg) were boiled in 2x Laemllli buffer and separated by electrophoresis using 10% polyacrylamide gels containing sodium dodecyl sulfate (SDS-PAGE) at 150 volts for 50 min and were then transferred to a nitrocellulose membrane (Pall Corp., Pensacola, FL), using the wet transfer method, at 100 volts for 90 min. Membranes were blocked with 5% milk in TBS. Rabbit-anti-human CA12 primary antibody (13) was incubated with blocked membrane overnight at 4°C. The blot was then washed with TBS containing 0.1% Tween-20 prior to incubation with HRP-conjugated secondary antibody (Zymed
Antibodies, South San Francisco, CA). The blot was incubated with Super Signal West Femto ECL reagents (Pierce, Rockford, IL) and exposed to film in order to observe protein bands.

Genomic Cloning, Mutagenesis, and Luciferase Reporter Assays

The indicated genomic DNA associated with estrogen receptor binding and intervening regions was amplified by PCR from human genomic DNA (Roche Molecular Biochemicals, Indianapolis, IN) using specific primers and cloned into either pGL3-Promoter or pGL3-Basic luciferase vectors (Promega, Madison, WI) using the MluI and BglII sites. Site-directed mutagenesis was performed using QuikChange II kit (Stratagene, LaJolla, CA) as per manufacturer’s directions. All constructs were sequenced to verify their correctness. Briefly, 1000 ng pGL3 reporter vector and 25 ng pRL-SV40 were co-transfected into MCF-7 cells in 24-well plates using Lipofectamine 2000 in OptiMEM as per manufacturer’s instructions (Invitrogen, Carlsbad, CA). Cells were transfected for 6 h, washed, and treated with indicated ligands for 16 h prior to cell lysis in 1x passive lysis buffer (Promega, Madison, WI) and measurement of luciferase activity in MLX Microtiter Plate Luminometer (Dynex Technologies, Chantilly, VA).

Chromatin Immunoprecipitation (ChIP) Assays

Whole-genome ERα binding sites were mapped in MCF-7 cells treated with 10 nM E2 for 45 min using a chromatin immunoprecipitation-Paired End diTag (ChIP-PET) cloning and sequencing strategy described previously (23), from which data was obtained on ERα binding sites near the CA12 gene. Standard ChIP assays were performed essentially as previously described (24, 25) with a few noted modifications. Following the addition of ethanol vehicle or ligands for indicated times, MCF-7 cells were
crosslinked using 1% formaldehyde at 37°C for 10 min, washed twice with PBS, and harvested in ice-cold PBS plus 1x protease inhibitor cocktail (Roche) and 10 mM DTT. Cell pellets were first resuspended in nuclei isolation buffer (50 mM Tris-HCl, pH 8.0, 60 mM KCl, 0.5% NP40, protease inhibitor and 10 mM DTT), centrifuged at 1000 g for 3 min, and resuspended in lysis buffer (0.5% SDS, 10 mM EDTA, 0.5 mM EGTA, 50 mM Tris-HCl, pH 8.0, protease inhibitor and 10 mM DTT). Nuclei were sonicated (Fisher Scientific, Sonic Dismembrator Model 100) at 80% maximum power three times for 10 seconds and the sonicate was centrifuged at 14,000 g. The supernatant was 1:4 diluted by dilution buffer (1% Triton X-100, 2mM EDTA, 150mM NaCl, 20 mM Tris-HCl, pH 8, protease inhibitor and 10 mM DTT) and precleared with 15 µl preimmune IgG (Santa Cruz Inc.), 2 µg salmon sperm DNA, 50 µl 25% protein A-agarose slurry (Santa Cruz Inc.). Complexes were incubated at 4°C overnight with 2-5 µg antibody, then pulled down at 4°C for 1 h with 60 µl of 25% protein A-agarose slurry and 2 µg salmon sperm DNA. Antibodies used were: for ERα (HC-20, Santa Cruz Biotech), RNA Polymerase II (N-20, Santa Cruz Biotech), SRC-2 (M-343, Santa Cruz Biotech), SRC-3 (H-270, Santa Cruz Biotech) and acetylated histone H4 (07-329, Upstate Biotech). Precipitates were sequentially washed with 1 ml washing buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl (pH 8.0), 150 mM NaCl), 1 ml washing buffer II (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl (pH 8.0), 500 mM NaCl), 1 ml washing buffer III (0.25 mM LiCl, 1% NP40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl (pH 8.0)) and twice with 1 ml TE (1 mM EDTA, 10 mM Tris-HCl [pH 8.0]). Chromatin complexes were incubated at room temperature for 20 min with 100-300 µl elution buffer (1% SDS, 0.1 M NaHCO3). The crosslinking was reversed by...
incubating at 65°C overnight with 200 mM NaCl and 200 mg/ml proteinase K (Invitrogen Corp.). DNA was purified with QIAquick columns (Qiagen) and amplified by real-time PCR.

Chromosome Conformation Capture (3C) Assays

MCF-7 cells were grown as per protocol for ChIP assay above and treated with indicated ligands for 45 min prior to fixation in 2% formaldehyde at 37°C for 10 min. The formaldehyde was quenched with addition of 0.125 M glycine and cells were lysed in lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP-40, 1X Complete Protease Inhibitors (Roche) at 4°C for 90 min. Nuclei were resuspended in 1X New England Biolabs Buffer 2, 0.3 % SDS and incubated at 37°C for 60 min while rotating. Triton-X was added to a final concentration of 1.8 % to sequester the SDS and incubated at 37°C for 60 min while rotating. The chromatin was then digested overnight using MseI (New England Biolabs) or BtgI (New England Biolabs) at 37°C while rotating. SDS was added to a final volume of 1.6% and the samples were heated at 65°C for 20 min. Two μg aliquots of the chromatin samples were diluted in ligation buffer containing 1% Triton-X and incubated at 37°C for 1 h. The temperature was lowered to 16°C and T4 Ligase (New England Biolabs) was added and samples were incubated overnight. The ligated DNA was purified using phenol/chloroform extraction and analyzed using PCR amplification. Resulting PCR products were sequenced and mapped back to the USCS Genome Browser for verification.
Results

CA12 Regulation by Estrogen is a Primary Transcriptional Response Mediated by the Estrogen Receptor

In our prior transcriptional profiling microarray analyses of gene expression stimulation by E2 in ER-positive breast cancer and osteosarcoma cells (8, 9, 26), we observed a very marked up-regulation of CA12 gene expression by E2. To investigate CA12 regulation by estrogen in breast cancer in greater detail, and to elucidate the mechanism underlying this regulation, we first examined the time course of CA12 mRNA and protein increases in response to E2 and SERMs in ERα-positive MCF-7 and T47D breast cancer cells. CA12 RNA was significantly stimulated after 2 h of E2 exposure and continued to rise to maximal stimulation levels by 4 and 8 h in MCF-7 and T47D cells, respectively, and remained greatly elevated throughout the 48 h of treatment in both cell lines (Fig. 3.1A). Increases in CA12 protein levels were detected as early as 2-4 h, and continued to rise throughout the time course of treatment (Fig. 3.1B), consistent with the early and sustained stimulation of CA12 RNA by E2. The SERMs, trans-hydroxy-tamoxifen (Tam) and raloxifene (Ral), induced CA12 RNA 3-4 fold, approximately 40% that obtained with E2 (Fig. 3.1C), and in like manner, Tam and Ral stimulated CA12 protein to approximately one-third that of E2 (Fig. 3.1D). The ER full antagonist and Selective Estrogen Receptor Down-regulator (SERD), fulvestrant (ICI 182,780), had no stimulatory effect on CA12 RNA, and it was able to inhibit the E2-, Tam-, and Ral-mediated stimulation of CA12 (Fig. 3.1C). Of the other steroid receptor ligands examined, only dihydrotestosterone was able to mildly stimulate CA12, possibly
through androgen receptor or because of its low affinity for ER (27), whereas the glucocorticoid receptor and progesterone receptor agonists, hydrocortisone and medroxyprogesterone acetate, respectively, did not regulate CA12 expression (Fig. 3.1C).

We next examined the requirement of the estrogen receptor itself for E2-mediated stimulation of CA12 mRNA. MCF-7 cells were pre-treated for 60 min with vehicle or a two log molar excess of fulvestrant prior to treatment with E2, and CA12 mRNA, and protein levels were assessed after 2 or 8 h, respectively (Fig. 3.2A and 3.2B). Fulvestrant did not increase CA12 mRNA or protein, but it was able to fully inhibit the E2-mediated up-regulation. We also examined the requirement of ER in CA12 mRNA stimulation by siRNA-mediated depletion of ERα from MCF-7 cells. MCF-7 cells were transfected with siRNA demonstrated to deplete cells of >95% of ERα (data not shown). Loss of ER at 72 h post-transfection reduced the basal CA12 mRNA level, likely due to possible ligand-independent ER transactivation activity, and abolished the E2- and SERM-mediated stimulation of CA12 (Fig. 3.2C). These results indicate that ER is required for and SERM regulation of the CA12 gene.

In addition to the ER itself, we also determined the requirement of on-going transcription and translation for E2 stimulation of CA12. MCF-7 cells were pre-treated for 60 min with the RNA polymerase inhibitor actinomycin D or the translational inhibitor cycloheximide for 4 h prior to treatment with E2 (Fig. 3.2A). The E2-mediated stimulation of CA12 mRNA (or Tam- or Ral-mediated increase in CA12 mRNA, not shown) was inhibited by actinomycin D, but not cycloheximide, suggesting that on-going transcription, but not synthesis of new protein factors, is necessary for CA12 mRNA.
stimulation by the ER. Taken together, these results suggest that CA12 regulation by estrogen is a primary transcriptional response mediated by the ER.

Because of our observations of the requirement for ER for CA12 regulation, we examined CA12 expression in primary ER-positive breast tumors by analysis of several gene expression data sets from ER-positive breast tumors (Fig. 3.2D). These analyses reveal a very positive correlation of CA12 expression with ERα expression in primary breast tumors, shown in the scatter plots in Fig. 3.2D. Our findings highlighting the crucial role of ER in CA12 up-regulation may account for the robust coexpression of CA12 and ERα observed in human breast cancers.

E2-Bound ER is Recruited to a Distal Region Upstream of the CA12 Transcription Start Site In Vivo

The ER primarily functions as a signal-activated transcriptional transactivator through direct binding to DNA response elements or other protein transcription factors (24, 28). To examine the role of ER in regulating CA12 mRNA, we utilized a series of chromatin immunoprecipitation (ChIP) experiments to interrogate the recruitment and binding of ER to chromatin. Genome-wide chromatin immunoprecipitation paired-end ditag (ChIP-PET) experiments using an antibody against ERα to capture DNA loci bound by ER after 45 min of E2 exposure in MCF-7 cells showed a cluster of ER binding DNA fragments approximately 6 kilobases upstream from the transcriptional start site of the CA12 gene (Fig. 3.3A and 3.3B). Further examination of this ChIP-PET cluster of bound DNA fragments at ~ 6 kb revealed a cluster of five overlapping fragments, and two single upstream ChIP-PET DNA fragments considered to be experimental noise (Fig. 3.3B; (23)).
To validate and further examine the extent of ER binding within the CA12 genomic region, we performed ChIP scanning for ERα in MCF-7 cells treated for 45 min with vehicle or 10 nM E2 and amplified recovered ChIP DNA fragments using 100 bp primer sets tiled approximately every 500 bp from -6.5 kb to the transcriptional start site of the CA12 gene (Fig. 3.3C). Of note, within this region there are four predicted imperfect EREs and multiple response elements for factors to which ERα is known to tether (e.g. AP-1), suggesting multiple putative ER binding sites. ChIP scanning for ERα binding revealed robust E2-induced binding at the ~6 kb binding region previously shown to bind ERα through the genome-wide ChIP-PET experiments, and low-level binding of ERα at the proximal promoter region, but near-background level binding at intervening positions (Fig. 3.3C). These ChIP assays further define the one robust ERα binding region at a distal region approximately 6 kb upstream from CA12.

E2- and SERM-Induced Transcription Factor Recruitment and Chromatin Modifications to CA12 Genomic Regions In Vivo

To better understand the regulation of the CA12 gene, we further examined the recruitment of ER, coactivators, RNAPII, and permissive histone modifications at the enhancer, proximal promoter, and additional loci in MCF-7 cells treated with vehicle, 10 nM E2, or 100 nM trans-hydroxy-tamoxifen. ChIP experiments coupled with qRT-PCR showed specific and robust recruitment of both E2- and Tam-bound ERα at the enhancer region after 45 min, with minimal binding to a region upstream of the enhancer or to an intermediate position (denoted *Middle*) at approximately -4 kb (Fig. 3.4). The binding of ER to the enhancer region in E2- or Tam-treated cells remained elevated over vehicle at 4 and 24 h of exposure. At the proximal promoter (TSS), the largest subunit of RNA
polymerase II was bound to a certain degree in the absence of hormone, but increased seven-fold after 45 min of E2, consistent with a well-established role of E2-mediated formation of productive transcriptional complexes. Consistent with the lower potency of Tam in stimulation of CA12 gene expression, Tam-treated cells showed less RNAPII recruitment at the TSS. RNAPII was not appreciably recruited to areas upstream of the TSS with either E2 or Tam treatments.

We also examined the recruitment of both of the coregulators SRC-2 and SRC-3 to the enhancer region in the presence of E2 (Fig. 3.4), and found a large change in recruitment of both at 45 min, and also at the 4 h and 24 h times monitored. In the presence of Tam, coactivator recruitment at the enhancer was comparable with that of vehicle, suggesting that the Tam-bound ER does not efficiently recruit p160 coregulators, as others have observed (29). To determine the degree of chromatin modifications consistent with gene activation, we also examined the level of histone H4 tail acetylation (AcH4), considered to be a general marker of acetylated, “relaxed” histones permissive of transcriptional regulation. We observed a marked increase of AcH4 at the enhancer region in both E2 and Tam-treated cells (E2 > Tam), which was greatest at 45 min and decreased at later times. This E2- and SERM-mediated increase in AcH4 was noted at the TSS and also, interestingly, at the middle and particularly at the upstream regions shown not to bind ER. These are supportive of findings by others showing a high level of histone lysine acetylation, consistent with chromatin remodeling, at the active enhancer and promoter of stimulated genes (30), as well as more broadly in nearby regions.
Estrogen Regulation of the Cloned CA12 Enhancer Is Mediated By An Imperfect Estrogen-Response Element

The in vivo recruitment of agonist-bound ERα and coactivator proteins, and histone modifications associated with transactivation, suggest that the identified region ~6 kb upstream of the TSS is an enhancer for the CA12 gene. Sequence analysis of putative transcription factor binding sites revealed one imperfect ERE with a 1 bp mismatch at approximately -6047 (relative to TSS; Fig. 3.5A). To understand the cis elements involved in recruiting ERα and facilitating transactivation of CA12, we cloned the approximately 6.9 kb fragment of genomic DNA containing the putative upstream enhancer spanning a region approximating the captured DNA fragments binding ERα (ChIP-PET experiment, Fig. 3.3B) to just upstream of the CA12 TSS (-6832 – +46, Chr15:61461083-61467960). In addition, we also cloned a truncated 1.8 kb fragment approximating the overlapping ChIP-PET cluster of ERα binding fragments (-6832 – -4999), and both full-length (-6832 – +46) and truncated (-6832 – -4999) genomic fragments were then subcloned into luciferase reporter vectors to assay putative estrogen responsiveness (Fig. 3.5A). After transfection into MCF-7 cells and exposure to 10 nM E2 for 16 h, the full-length reporter was stimulated approximately 8x over vehicle-treated transfectants or empty vector (Fig. 3.5B). In addition, the truncated reporter approximating the greatest overlap of ChIP-PET fragments (-6832 – -4999) was able to stimulate reporter activity upon treatment with E2 comparable to that of the full-length reporter (-6832 – +46; Fig. 3.5B), implying that the E2-responsive region is located in the far-upstream genomic region.
As noted above, the ER-binding region at ~ -6 kb has one imperfect ERE (Fig. 3.5A), which seemed a likely putative cis-regulatory element to direct ERα-dependent transactivation. To examine this, we mutated both the single consensus half-ERE (Mut. 1.0), or both the consensus half-ERE and imperfect arm of the ERE (Mut. 1.1). As seen in Fig. 3.5A and 3.5B, mutation of either one or both arms of the ERE abolished the ability of E2 to stimulate the -6832 – -4999 reporter, strongly suggesting that ER regulation of the cloned CA12 enhancer is dependent on an imperfect (1 mismatch) ERE at -6047 relative to the TSS.

The ER-binding Distal Enhancer Communicates With the Transcriptional Start Site of the CA12 Gene via Intra-Chromosomal Looping Upon Estrogen Treatment In Vivo

The observed in vivo recruitment of E2-bound ER to a putative distal enhancer region, and the E2- and ERE-dependent activation of the cloned ER-binding enhancer in transiently-transfected MCF-7 cells together suggest that the E2-mediated stimulation of CA12 is via an ER-dependent upstream enhancer approximately 6 kb upstream from the CA12 gene. To test the in vivo utilization of this enhancer, we employed chromosome conformation capture (3C) assays to examine the putative communication of the -6 kb enhancer and the CA12 proximal promoter. Briefly, after 45 min of 10 nM E2 treatment, MCF-7 cells were fixed with formaldehyde and chromatin was isolated, digested with Mse I, and subjected to dilute intramolecular ligation before de-crosslinking, DNA isolation, and PCR amplification of DNA fragments of interest. Chromatin regions which are in close proximity with each other at the time of fixation were interrogated using PCR primers complementary to genomic DNA from the enhancer or proximal promoter regions. Specifically, primers were used in variable combinations to examine
the presence of enhancer DNA only, proximal promoter DNA only, or all possible DNA species only produced by intramolecular ligation of DNA derived from the respective enhancer and promoter regions after fixation and digestion (Fig. 3.6, top).

As shown in Figure 3.6A (middle), we observed a ligase- and E2-dependent 780 PCR product amplified using the “A” forward primer from the enhancer region and “F” reverse primer from the proximal promoter region of CA12 (Fig. 3.6A and 3.6B). Normally separated by approximately 6 kb, the DNA amplified in the resulting PCR fragment was purified, sequenced, and mapped via BLAT to the UCSC human genome browser, and resulting sequence analysis indicated the E2- and ligase-dependent product was derived from both CA12 enhancer and promoter regions (Fig. 3.6A, bottom). The estrogen-enhanced communication of the distal enhancer and proximal promoter in the 3C assay strongly suggests that this ER-binding enhancer is functionally active in vivo. Taken together with the ChIP assays in which we did not observe appreciable in vivo recruitment of ERα or RNAPII in the intervening regions between the ER-binding enhancer and RNAPII-binding promoter, these 3C data suggest that the ER-binding enhancer transactivates the CA12 gene via intrachromosomal looping.

Conservation of the CA12 Enhancer in Mammalian Genomes and of CA12 Regulation by Estrogen Receptor

Analysis of the upstream region of CA12 by Vertebrate Multiz Alignment reveals a high degree of multi-species conservation within the newly-described, ERE-containing enhancer region (Fig. 3.6B, left). Within the enhancer region (Fig. 3.6B), there is only one bp mismatch between the human and mouse 15-mer ERE. To determine whether there is estrogen regulation of Car12, the mouse ortholog of the CA12 gene,
ovariectomized female mice were treated with E2 or vehicle, and uteri were collected at 4 or 24 h post-injection (Fig. 3.6B, right). At both time points examined, Car12 gene expression was robustly stimulated by E2. These results provide strong evidence that the ER regulation of CA12 is both mechanistically and evolutionarily conserved.

Discussion

Our studies reveal that the ER robustly up-regulates CA12 gene expression in breast cancer cells and that this transcriptional regulation is mediated by a hormone-responsive enhancer located approximately 6.5 kb upstream of the start site of transcription of the CA12 gene. This marked regulation of CA12 by the ER may account for the strong coexpression of ER and CA12 that is observed in breast tumors.

Dynamic signal-specific assembly of transcription factors at enhancers is an increasingly recognized aspect of biological control of genes essential for developmental and hormonal response programs. Recent studies have suggested that the majority of estrogen-responsive genes may be under the control of ER-binding sites at a considerable distance (>5 kb) from the target RNA-coding loci (23, 31, 32), but there has been only limited evidence that they function as genomic regulatory elements for these relatively distant hormone-regulated genes. Here we describe regulation of the Carbonic Anhydrase XII (CA12) gene by agonist bound ER through a long-range distal enhancer that we have characterized through in vivo ChIP-scanning across the CA12 genomic region and ChIP-Paired End Ditag analysis, and by the ability of this element to strongly activate hormone dependent expression of a reporter. This enhancer contains an imperfect estrogen response element which we show to be essential for its ER regulation through
mutagenesis and transfection studies. Chromosome conformation capture (3C) and ChIP assays demonstrate a physical interaction between this distal enhancer and the CA12 promoter in breast cancer cells upon E2 treatment, indicating a direct role for the enhancer in CA12 expression.

Associated with the recruitment of ligand-occupied ER to hormone-dependent enhancers is the recruitment of coregulators (2, 33, 34), some with histone acetyl transferase activity, resulting in distinct changes in histone acetylation status and chromatin conformational changes. In the case of CA12 gene regulation, we observed markedly increased recruitment to the enhancer of the p160 coregulators, SRC2 and SRC3 that have HAT activity. Of note, increased histone H4 acetylation status was observed not only at the enhancer and promoter regions, but also broadly throughout the upstream 5’s-flanking region from the promoter to the enhancer and even at a more upstream region, suggesting that chromatin changes are effected over a broad region after receptor occupancy by ligand. As expected, RNA polymerase recruitment was only observed at the promoter.

Selective estrogen receptor modulators (SERMs) such as tamoxifen and raloxifene, shown to be effective in both the prevention and the treatment of breast cancer (35, 36) often have mixed agonist-antagonist activities on estrogen-regulated genes in breast cancer (26, 37, 38). Tamoxifen was a weak stimulator of CA12 RNA and protein expression compared to E2. In keeping with this, tamoxifen was less effective in increasing recruitment of ER to the enhancer, in recruiting RNA polymerase II to the CA12 promoter, and in augmenting the acetylation of histone H4. As observed previously for estrogen-regulated gene expression by SERMs (29), tamoxifen did not
recruit the SRC coregulators, suggesting that other coregulators are likely involved in eliciting the weak agonistic activity of tamoxifen on this gene.

Interestingly, the distal enhancer element displays synteny with the homologous mouse genomic sequence, and its robust stimulation by E2 in the mouse uterus highlights that ER regulation of CA12 is mechanistically and evolutionarily conserved. Other approaches, including bioinformatic coupled with genome-wide nuclear receptor binding site analyses, have suggested the likely conservation of gene regulatory mechanisms at other estrogen responsive genes across mammalian species (23, 32).

Gene regulation by long distance enhancers has been observed recently for other nuclear receptors, such as the androgen receptor in its control of the prostate-specific antigen (PSA) gene (39). Also, recent reports have documented long distance enhancer regulation of GREB1 (gene regulated in breast cancer-1), encoding a protein with an unknown function but suggested to contribute to the enhancement of proliferation of MCF-7 cells by E2 (40, 41). In the case of GREB1, its stimulation by E2 is mediated by the binding of ER to three consensus EREs spread over approximately 20 kb of upstream flanking sequences (41, 42).

CA12 is a membrane zinc metalloenzyme that is present in a variety of normal tissues but is overexpressed in some cancers (13, 20, 21, 43-47). In MCF-7 cells, we find that CA12 and CA9 are the only carbonic anhydrases that are expressed (DH Barnett and BS Katzenellenbogen, data not shown). CA12 and CA9 mRNA and protein levels are stimulated by hypoxia in a variety of cancer cell lines, and their expression is down-regulated by return to normoxia (13, 17, 47, 48). Of note, however, we find that only CA12, and not CA9, is regulated by estrogen, and likewise, only CA12, and not CA9,
exhibits a strong positive correlation with ER expression in breast tumors (4, 19). The activity of CA12 as a metalloenzyme, catalyzing the reversible hydration of carbon dioxide to form bicarbonate, is likely involved in modulating a variety of physiological processes including transport of carbon dioxide and other solutes, as well as acidification of microenvironments that can modulate the tumor malignant phenotype (16, 49, 50).

That CA12 expression in breast tumors is associated with lower grade disease, positive ERα status, and lower relapse rates and better overall patient survival (20-22), suggests that the estrogen receptor regulation of CA12 expression may be an important parameter in this more optimal breast tumor phenotype.

Gene expression microarray profiling has documented that ERα is a master transcriptional regulator of the phenotype and behavior of approximately 70 percent of human breast cancers, and that the gene expression signatures in ERα-positive and ERα-negative breast tumors are profoundly different (5-7, 19). CA12 is one of the genes whose expression is most highly correlated with ERα in breast cancer. In fact, for comparison with the correlations shown in Fig. 3.2D for CA12 and ERα, we examined the association of ERα with progesterone receptor, a well-characterized ER target gene and useful clinical marker, in the same three studies of primary breast cancer gene expression. Interestingly, the correlation of progesterone receptor with ER in the studies by van de Vijer (0.296), Miller (0.287), and Wang (0.374) is considerably less than the correlation of CA12 with ER in the same data sets (Fig. 3.2D), highlighting the robust association of CA12 and ER expression. Our findings reveal a transcriptional regulatory mechanism that likely underlies this robust coexpression of CA12 and ERα in human breast cancers. In addition, our findings imply that involvement of long distance
enhancers in regulation of estrogen-responsive genes in breast cancer may be more frequent than previously appreciated.

Acknowledgements
Edwin C-W. Cheung, Kirsten Fertuck, and Myles Brown generously shared 3C protocols. Shubin Sheng and Tze-Howe Charn assisted in generating ChIP and 3C data. Chin-Yo Lin and Edison Liu assisted in the genome-wide ERα ChIP. Thank you to members of the B. Katzenellenbogen laboratory for helpful comments. This work was supported by grants from the NIH, CA18119 (B.S. Katzenellenbogen), T32ES07326 and T32HD07028 (D.H. Barnett), The Breast Cancer Research Foundation (B.S. Katzenellenbogen), and Singapore Agency for Science, Technology, and Research (Tze-Howe Charn, Edison Liu).

Abbreviations:
E2, 17β-estradiol; ERα, estrogen receptor alpha; Ful, ICI182,780, fulvestrant; SERM, selective estrogen receptor modulator; Ral, raloxifene; Tam, trans-hydroxytamoxifen.
Figure 3.1. Various Estrogen Receptor Ligands Increase CA12 Levels in Breast Cancer Cells

(A) CA12 mRNA is induced in a time-dependent manner by estradiol (E2) in ERα-expressing MCF-7 and T47D breast cancer cells. Cells were treated with 10nM E2 for 0-48 h. RNA was isolated, reverse transcribed, and cDNA measured by quantitative PCR (qPCR) using primers for CA12 and internal control 36B4 mRNA. (B) CA12 protein levels are induced by E2 in a time dependent manner. MCF-7 cells were treated with 10 nM E2 for 0-24 h and total cellular lysates were used for CA12 immunoblotting. (C) CA12 mRNA is induced by ER agonists. MCF-7 cells were treated for 8 h with vehicle (0.1% EtOH) or with intracellular receptor ligands E2 (10 nM), fulvestrant (ICI 182,780, Ful; 1 uM), Ful + E2, trans-hydroxytamoxifen (Tam; 100 nM), Ful + Tam, raloxifene
Figure 3.1. (Cont.)

(Ral; 100 nM), Ful + Ral, dihydrotestosterone (DHT; 10nM), hydrocortisone (HC, 10 nM), or medroxyprogesterone acetate (MPA; 10 nM). Cells were then harvested and qRT-PCR performed as above. (D) E2 and the SERMs induce CA12. MCF-7 cells were treated for 8 h with 10nM E2, 100 nM Tam, or 100 nM Ral and CA12 protein levels assessed by immunoblotting as above.
Figure 3.2. E2 Stimulation of CA12 Gene Expression is Sensitive to Actinomycin D and Fulvestrant (ICI 182,780), but not Cycloheximide, and requires ERα. Strong Association of CA12 and ERα in breast tumor data sets.

(A) CA12 mRNA induction by E2 is blocked by pre-treatment with the transcriptional inhibitor actinomycin D, or the pure ER antagonist fulvestrant, but not the translational inhibitor cycloheximide. MCF-7 cells were pre-treated for 60 min. with 0.1% DMSO,
Figure 3.2. (Cont.)

1 uM Ful, 10 ug/mL cycloheximide (CHX), or 5 uM Actinomycin D (Act.D) and then 0.1% EtOH or 10 nM E2 was added for 2 h. qRT-PCR for CA12 mRNA was performed. (B) ER antagonist Fulvestrant blocks E2 stimulation of CA12. MCF-7 cells were treated for 8 h with 0.1% EtOH, 10 nM E2, 1 uM Ful, or both E2 and Ful prior to cell lysis and immunoblotting for CA12. (C) CA12 mRNA induction is ER-dependent. MCF-7 cells were transfected with 5 nM siControl or 5 nM siRNA against ERα for 72 h. Cells were then treated for 4 h with 0.1% EtOH, 10 nM E2, 100 nM Tam, or 100 nM Ral prior to RNA isolation and qRT-PCR analysis. (D) Scatter plots and correlation between CA12 and ERα RNA expression in breast tumors from the indicated studies. The plots were generated from the Oncomine Database. The x and y axes represent fold change in expression for CA12 and ERα (ESR1), respectively.
Figure 3.3. E2-Occupied ER is Recruited to a Distal Region 6.5 kb Upstream of the CA12 Transcription Start Site In Vivo.

(A) Whole-genome ERα binding sites were mapped in MCF-7 cells treated with 10 nM E2 for 45 min using ChIP-PET strategy (23) and mapped to the CA12 genomic region in the UCSC Genome Browser (Hg17). A singular ChIP-PET cluster approximately 6 kb 5’ to CA12 transcriptional start site (top) is shown, with a higher resolution map with individual fragments indicated (bottom). (B) and (C) ChIP scanning of the CA12
Figure 3.3. (Cont.)

genomic region *in vivo* validates ChIP-PET identification of putative *CA12* enhancer.

(B) A schematic representation of Chromosome 15 and primer set locations (A-L) immediately 5’ to the *CA12* transcriptional start site. **(C)** E2-occupied ERα is recruited to an upstream region ca. 6 kb 5’ to the *CA12* gene. MCF-7 cells were treated for 45 min with control 0.1% EtOH or 10 nM E2, subjected to ERα ChIP, and immunoprecipitated DNA amplified using PCR primers as denoted in **(B)** and recovered DNA represented as percent of input.
Figure 3.4.
Figure 3.4. (Cont.)

E2- and SERM-Induced Transcription Factor Recruitment and Chromatin Modifications to the CA12 Genomic Region *In Vivo*

E2- and Tam-treated MCF-7 cells were examined for recruitment of ERα, RNA Polymerase II, SRC-2, and SRC-3 binding and acetylated H4 modifications within the *CA12* genomic region using various primer sets at denoted positions (Top, schematic). Immunoprecipitated DNA, expressed as % input, from experiments using specific indicated antibodies (left) and amplified using primer sets as denoted above.
Figure 3.5. Estrogen Regulation of the Cloned CA12 Enhancer Is Mediated By An Imperfect Estrogen-Response Element

(A) A schematic representation indicates genomic regions identified as binding ERα by ChIP scanning and ChIP-PET analysis (ChIP-PET moPET5) and cloned genomic regions used for cis-element reporter assays. Indicated at the open triangle position is the wild type imperfect ERE with sequence shown above (above, left), as well as mutated sequences used (above, right; mutated nucleotides underlined and bases differing from wild type in lower case).
Figure 3.5. (Cont.)

(B) Cloned CA12 enhancer reporter activity is dependent on an imperfect ERE.

Indicated full length, truncated, mutated, and empty reporter plasmids (left, 1 μg ea.) were cotransfected with pRL-SV40 (25 ng) into MCF-7 cells in 24-well plates. At 24 h after transfection, cells were treated for 16 h with 0.1% EtOH or 10 nM E2, lysed, and assayed for Firefly and Renilla luciferase activities (right). Open triangle indicates wild type imperfect ERE ca. 6 kb upstream of CA12 TSS, grey triangle indicates mutant 1.0, and black triangle indicates mutant 1.1.
Figure 3.6.
Figure 3.6. (Cont.)

ER-binding Distal Enhancer Communicates With the Transcriptional Start Site of the *CA12* Gene via Intra-chromosomal Looping Upon Estrogen Treatment *In Vivo*, and Enhancer Shows Conservation Between Humans and Mice. (A) *Top,* Schematic of the *CA12* genomic region, *Mse I* restriction enzyme cut sites, and primer positions for chromosome conformation capture (3C). *Middle,* *CA12* enhancer and promoter show enhanced communication upon E2 treatment in MCF-7 cells *in vivo.* Cells were treated for 45 min with 0.1% EtOH or 10 nM E2, cross-linked, and subjected to 3C analysis using indicated primer pairs. *Bottom,* E2- and ligase-dependent 3C PCR product was purified, sequenced, and mapped to the human genome by UCSC BLAT indicating proximal and distal DNA communication. (B) Vertebrate Multiz Alignment shows conservation of the -6 kb *CA12* ERE-containing enhancer region. (C) *Car12* mRNA is induced by E2 in the mouse uterus. Eight week-old female mice were ovariectomized and at 16 days post-ovariectomy, they were injected with vehicle or E2. Uteri were collected 4 or 24 h later and total RNA was isolated and subjected to qRT-PCR for *Car12* mRNA.
References

50. **Breton S** 2001 The cellular physiology of carbonic anhydrases. Jop 2:159-64
CURRICULUM VITAE

Daniel Hull Barnett

Laboratory Address: 524 Burrill Hall, MC-114
407 S. Goodwin Ave., Urbana, IL 61801
217-333-7838
217-244-9906 FAX
E-mail: dbarnet@illinois.edu
Place of Birth: Urbana, IL USA

EDUCATION

Medical Scholars Program (M.D./Ph.D.) 2001 – Present
Doctor of Philosophy, Cell and Developmental Biology 1/2010
 Dr. Benita S. Katzenellenbogen, Advisor
Doctor of Medicine Expected, 5/2011
University of Illinois at Urbana-Champaign

Bachelor of Arts, Biology 5/1995
Colorado College, Colorado Springs, CO

RESEARCH AND PROFESSIONAL EXPERIENCE

University of Illinois at Urbana-Champaign Urbana, IL

Graduate Research Assistant 1/2002 – Present
Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign Urbana, IL

Health Educator 1999 – 2000
Chicago Health Corps/AmeriCorps, University of Illinois and Cook County Hospital Chicago, IL

Research Technologist 1996 – 2001
Department of Urology, Feinberg School of Medicine, Northwestern University Chicago, IL

Pharmacy Technician 1995 – 1996
University of Wisconsin Hospital and Clinics Madison, WI

Undergraduate Research Fellow 1994 – 1995
Howard Hughes Medical Institute Undergraduate Research Program Colorado Springs, CO

PUBLICATIONS AND PRESENTATIONS

ARTICLES

AWARDS and HONORS

Named to “Teachers Ranked as Excellent" for University of Illinois College of Medicine (2008)
Carle Foundation / University of Illinois at Urbana-Champaign Thomas A. Buetow Memorial Grant (2007)
The Endocrine Society Fellows and Students Workshop Award (2007)
NIH Reproductive Biology Pre-Doctoral Training Fellowship (T32HD07028, 2004-2006)
The Endocrine Society Travel Grant Award for Exceptional Research (2004)
University of Illinois at Urbana-Champaign Graduate College Travel Grant (2004)
NIH Reproductive Biology Training Grant Travel Award (2003)
NIH Toxicology Pre-Doctoral Training Fellowship (T32ES07326, 2002-2004)
Best Poster Award, 92nd Annual Meeting of the American Urological Association (1997)
Colorado College Representative to West Coast Undergraduate Research Conference in Biological Sciences (1995)
Howard Hughes Medical Institute Undergraduate Research Fellowship (Summer and Fall 1994)

PROFESSIONAL and COMMUNITY SERVICE

Member, Psychiatry Clerkship Curriculum Review Committee 2009
University of Illinois College of Medicine, Urbana-Champaign
Member, Medicine and Society Clerkship Curriculum Review Committee 2009
University of Illinois College of Medicine, Urbana-Champaign
Chairperson, American Cancer Society Man-to-Man Prostate Cancer Support Group 2008 – Present
Institutional Representative, American Physician Scientists Association 2007 – 2009
Student Member, HeRMES Student-Operated Free Clinic, Champaign-Urbana, IL 2007 – Present
Chair (2005) and Vice-Chair (2006 – Present), Physicians for Social Responsibility 2005 – Present
University of Illinois College of Medicine, Urbana-Champaign
Oral Session Chairperson, 9th Biennial Allerton Reproductive Biology Conference 2005
Trainee Liaison, NIH Reproductive Biology Training Program 2004 – 2006
University of Illinois College of Medicine, Urbana-Champaign
Chairperson, Medical Scholars Program Advisory Committee 2001 – 2003
University of Illinois College of Medicine, Urbana-Champaign

TEACHING EXPERIENCE

Medical Pharmacology, University of Illinois College of Medicine at Urbana-Champaign Fall 2008, 2009
Medical Histology, University of Illinois College of Medicine at Urbana-Champaign Fall, Spring 2008
Medical Neuroscience, University of Illinois College of Medicine at Urbana-Champaign Spring 2008

PROFESSIONAL SOCIETIES

American Physician Scientists Association 2006
The American Society for Cell Biology, Student Member 2005
The Endocrine Society, Student Associate 2003
American Association for the Advancement of Science, Student Member 2002
Physicians for Social Responsibility 2001