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Overview 

 Examples of applications that use dynamic languages at LLNL  

• Mercury 

• Kull 

 Challenges for dynamic languages in HPC 

 Performance of Python at scale in HPC environments 

 Future directions for Python in HPC 
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Mercury is a general-purpose parallel Monte Carlo particle 

transport code written in C++ 

Health physics:  a “phantom” human can be modeled (at 

right) and placed in a scenario.  The code can then 

determine neutron deposition in to the skull over the 

course of a simulation 

Lawrence Livermore National Laboratory  

At right, the National Ignition Facility 

target chamber is modeled.  This 

model was used in Mercury to 

simulate neutron deposition into the 

surrounding facility walls and 

evaluate the hazards 

correspondingly 

10 m 
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A Dynamic Language was added to the existing code to 

simplify the software development cycle 
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Mercury 

Python  

The Mercury application embeds Python to make it easier to test and validate 

the software. 

Goal: replace the majority of compiled C++ testing with Python scripts for  

shorter compile times and faster development cycle 

#Call at each cycle of Mercury execution 

energyTal = mc.tally.tal["EnergyDeposition”] 

 

if energyTal.getValue(Particle="Neutron", Cell=”Skull") > 

1e-6: 

   print "Neutron energy deposition to the skull reached 

threshold." 
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Kull is an inertial confinement fusion simulation application 

• Massively parallel 

C++/Python code for 

inertial confinement 

fusion 

• ~300,000 lines of C++ 

• Wrapped and exposed 

to Python via SWIG 

• Uses MPI and pympi 

for parallel 

communication at C++ 

and Python layers 

(respectively) 
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In Kull, the dynamic language is “front and center” and the static language 

components are compiled, then imported at runtime 
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Python / pympi 

C++ C++ C++ C++ 

>> from kull import * 

>> mesh = Mesh(aFileName) 

The Kull application extends Python to provide a “steerable” simulation code.   

… 

Cons: 

High costs (maintenance, compile time, etc.) paid for binding technology 

Ex: ~350K lines of code, 1.7 mil lines of generated wrapper code.  

Pros: 

flexibility, “it’s just Python”, “like a duck” interface compliance, easy to 

write tests 
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Challenge: automatic binding technologies (e.g. SWIG) incur 

performance penalties when calling in to other language 
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static PyObject *_wrap_Ship_getKind(PyObject *self, PyObject *args, PyObject 

*kwargs) { 

  PyObject *resultobj;    Ship *arg1 = (Ship *) 0 ;     

  int result;     

  PyObject * obj0  = 0 ;     

  char *kwnames[] = {        "self", NULL    };     

 

if(!PyArg_ParseTupleAndKeywords(args,kwargs,(char 

*)"O:Ship_getKind",kwnames,&obj0))  

  goto fail;     

if ((SWIG_ConvertPtr(obj0,(void **) &arg1,  

  SWIGTYPE_p_Ship,SWIG_POINTER_EXCEPTION | 0 )) == -1) SWIG_fail;     

  result = (int)(arg1)->getKind();     

{         

  PyObject *module = PyImport_ImportModule("demo");         

  if (module != NULL) {             

    PyObject *function = PyObject_GetAttrString(module, "enumOutConverter");             

    if (function != NULL) {                 

      PyObject *enumModule = PyImport_ImportModule("demo");                 

      if (enumModule != NULL) {                     

         resultobj = PyObject_CallFunction(function, "Osis", enumModule, 

"Ship",  

       

Example: SWIG wrapping of basic C++ member function: 
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Challenge: automatic binding technologies (e.g. SWIG) incur 

performance penalties when calling in to other language 
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static PyObject *_wrap_Ship_getKind(PyObject *self, PyObject *args, PyObject 

*kwargs) { 

  PyObject *resultobj;    Ship *arg1 = (Ship *) 0 ;     

  int result;     

  PyObject * obj0  = 0 ;     

  char *kwnames[] = {        "self", NULL    };     

 

if(!PyArg_ParseTupleAndKeywords(args,kwargs,(char 

*)"O:Ship_getKind",kwnames,&obj0))  

  goto fail;     

if ((SWIG_ConvertPtr(obj0,(void **) &arg1,  

  SWIGTYPE_p_Ship,SWIG_POINTER_EXCEPTION | 0 )) == -1) SWIG_fail;     

  result = (int)(arg1)->getKind();     

{         

  PyObject *module = PyImport_ImportModule("demo");         

  if (module != NULL) {             

    PyObject *function = PyObject_GetAttrString(module, "enumOutConverter");             

    if (function != NULL) {                 

      PyObject *enumModule = PyImport_ImportModule("demo");                 

      if (enumModule != NULL) {                     

         resultobj = PyObject_CallFunction(function, "Osis", enumModule, 

"Ship",  

       

Example: SWIG wrapping of basic C++ member function: 

Declare temporaries 

Parse input and set  

to temp variables 

Import module, call function, 

clean up, and handle any  

error conditions 
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Challenge: automatic binding technologies (e.g. SWIG) incur 

performance penalties when calling in to other language 
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For performance intensive applications,  

it is often a good idea to profile the  

performance of the wrapping technology 

in various scenarios.  

call class ctor with double 

call overloaded method 

calling function taking three doubles 
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Challenge: interfacing Python with MPI must be done 

carefully to avoid performance penalties at scale. 
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Example: pympi collective operations may cause problems at  

large proc. counts on the BG/P system 
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Challenge: interfacing Python with MPI must be done 

carefully to avoid performance penalties at scale. 
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Non-numerical work (i.e. mostly Python) takes more time 

than the tuned linear solvers!   
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Questions that we care about and don’t know the answers 

to… 

 How can we minimize the performance penalty of binding technologies for 

existing codes in static languages? 

 Which technology has the best interface to MPI? 

 Will micro-kernels for computational nodes evolve to meet the needs of 

dynamic languages? (e.g. CNK for Blue Gene)? 

 Will embracing a dynamic language for an application exclude us from 

running on certain kinds of hardware? (e.g. Roadrunner)? 

 Can Python evolve to overcome the limitations of the GIL (global 

interpreter lock)?  What kinds of concurrency solutions will be available in 

Python?  Or some other dynamic language? 

 Can we leverage the dynamic nature of Python to adapt our application to 

use emerging technologies (e.g. pyOpenCL, Theano,  etc.)? 

 Would it be better to develop in a purely dynamic language and then 

optimize on the bottlenecks (using Cython, pybindgen, BPL, etc)? 
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