
Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344

Dynamic Languages for HPC at LLNL
VEESC Workshop

September 3-4, 2010

T.J. Alumbaugh

Thanks to: Doug Miller, Mike Owen,

Tom Brunner, Patrick Brantley

(LLNL)

Forrest Iandola (UIUC)

2

Overview

 Examples of applications that use dynamic languages at LLNL

• Mercury

• Kull

 Challenges for dynamic languages in HPC

 Performance of Python at scale in HPC environments

 Future directions for Python in HPC

Lawrence Livermore National Laboratory

3

Mercury is a general-purpose parallel Monte Carlo particle

transport code written in C++

Health physics: a “phantom” human can be modeled (at

right) and placed in a scenario. The code can then

determine neutron deposition in to the skull over the

course of a simulation

Lawrence Livermore National Laboratory

At right, the National Ignition Facility

target chamber is modeled. This

model was used in Mercury to

simulate neutron deposition into the

surrounding facility walls and

evaluate the hazards

correspondingly

10 m

4

A Dynamic Language was added to the existing code to

simplify the software development cycle

Lawrence Livermore National Laboratory

Mercury

Python

The Mercury application embeds Python to make it easier to test and validate

the software.

Goal: replace the majority of compiled C++ testing with Python scripts for

shorter compile times and faster development cycle

#Call at each cycle of Mercury execution

energyTal = mc.tally.tal["EnergyDeposition”]

if energyTal.getValue(Particle="Neutron", Cell=”Skull") >

1e-6:

 print "Neutron energy deposition to the skull reached

threshold."

5

Kull is an inertial confinement fusion simulation application

• Massively parallel

C++/Python code for

inertial confinement

fusion

• ~300,000 lines of C++

• Wrapped and exposed

to Python via SWIG

• Uses MPI and pympi

for parallel

communication at C++

and Python layers

(respectively)

Lawrence Livermore National Laboratory

6

In Kull, the dynamic language is “front and center” and the static language

components are compiled, then imported at runtime

Lawrence Livermore National Laboratory

Python / pympi

C++ C++ C++ C++

>> from kull import *

>> mesh = Mesh(aFileName)

The Kull application extends Python to provide a “steerable” simulation code.

…

Cons:

High costs (maintenance, compile time, etc.) paid for binding technology

Ex: ~350K lines of code, 1.7 mil lines of generated wrapper code.

Pros:

flexibility, “it’s just Python”, “like a duck” interface compliance, easy to

write tests

7

Challenge: automatic binding technologies (e.g. SWIG) incur

performance penalties when calling in to other language

Lawrence Livermore National Laboratory

static PyObject *_wrap_Ship_getKind(PyObject *self, PyObject *args, PyObject

*kwargs) {

 PyObject *resultobj; Ship *arg1 = (Ship *) 0 ;

 int result;

 PyObject * obj0 = 0 ;

 char *kwnames[] = { "self", NULL };

if(!PyArg_ParseTupleAndKeywords(args,kwargs,(char

*)"O:Ship_getKind",kwnames,&obj0))

 goto fail;

if ((SWIG_ConvertPtr(obj0,(void **) &arg1,

 SWIGTYPE_p_Ship,SWIG_POINTER_EXCEPTION | 0)) == -1) SWIG_fail;

 result = (int)(arg1)->getKind();

{

 PyObject *module = PyImport_ImportModule("demo");

 if (module != NULL) {

 PyObject *function = PyObject_GetAttrString(module, "enumOutConverter");

 if (function != NULL) {

 PyObject *enumModule = PyImport_ImportModule("demo");

 if (enumModule != NULL) {

 resultobj = PyObject_CallFunction(function, "Osis", enumModule,

"Ship",

Example: SWIG wrapping of basic C++ member function:

8

Challenge: automatic binding technologies (e.g. SWIG) incur

performance penalties when calling in to other language

Lawrence Livermore National Laboratory

static PyObject *_wrap_Ship_getKind(PyObject *self, PyObject *args, PyObject

*kwargs) {

 PyObject *resultobj; Ship *arg1 = (Ship *) 0 ;

 int result;

 PyObject * obj0 = 0 ;

 char *kwnames[] = { "self", NULL };

if(!PyArg_ParseTupleAndKeywords(args,kwargs,(char

*)"O:Ship_getKind",kwnames,&obj0))

 goto fail;

if ((SWIG_ConvertPtr(obj0,(void **) &arg1,

 SWIGTYPE_p_Ship,SWIG_POINTER_EXCEPTION | 0)) == -1) SWIG_fail;

 result = (int)(arg1)->getKind();

{

 PyObject *module = PyImport_ImportModule("demo");

 if (module != NULL) {

 PyObject *function = PyObject_GetAttrString(module, "enumOutConverter");

 if (function != NULL) {

 PyObject *enumModule = PyImport_ImportModule("demo");

 if (enumModule != NULL) {

 resultobj = PyObject_CallFunction(function, "Osis", enumModule,

"Ship",

Example: SWIG wrapping of basic C++ member function:

Declare temporaries

Parse input and set

to temp variables

Import module, call function,

clean up, and handle any

error conditions

9

Challenge: automatic binding technologies (e.g. SWIG) incur

performance penalties when calling in to other language

Lawrence Livermore National Laboratory

For performance intensive applications,

it is often a good idea to profile the

performance of the wrapping technology

in various scenarios.

call class ctor with double

call overloaded method

calling function taking three doubles

10

Challenge: interfacing Python with MPI must be done

carefully to avoid performance penalties at scale.

Lawrence Livermore National Laboratory

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

Ti
m

e
 (

s/
cy

cl
e

)

No. of Processor (x 1024)

Dawn Scaling Study

CycleTime(new hypre)

Hypre(new)

Difference

CycleTime(default hypre)

Hypre(default)

Difference (default)

Example: pympi collective operations may cause problems at

large proc. counts on the BG/P system

11

Challenge: interfacing Python with MPI must be done

carefully to avoid performance penalties at scale.

Lawrence Livermore National Laboratory

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

Ti
m

e
 (

s/
cy

cl
e

)

No. of Processor (x 1024)

Dawn Scaling Study

CycleTime(new hypre)

Hypre(new)

Difference

CycleTime(default hypre)

Hypre(default)

Difference (default)

Example: pympi collective operations may cause problems at

large proc. counts on the BG/P system

Non-numerical work (i.e. mostly Python) takes more time

than the tuned linear solvers! 

12

Questions that we care about and don’t know the answers

to…

 How can we minimize the performance penalty of binding technologies for

existing codes in static languages?

 Which technology has the best interface to MPI?

 Will micro-kernels for computational nodes evolve to meet the needs of

dynamic languages? (e.g. CNK for Blue Gene)?

 Will embracing a dynamic language for an application exclude us from

running on certain kinds of hardware? (e.g. Roadrunner)?

 Can Python evolve to overcome the limitations of the GIL (global

interpreter lock)? What kinds of concurrency solutions will be available in

Python? Or some other dynamic language?

 Can we leverage the dynamic nature of Python to adapt our application to

use emerging technologies (e.g. pyOpenCL, Theano, etc.)?

 Would it be better to develop in a purely dynamic language and then

optimize on the bottlenecks (using Cython, pybindgen, BPL, etc)?

Lawrence Livermore National Laboratory

13

References

 Richard Procassini, Janine Taylor, Scott McKinley, Gregory

Greenman, Dermott Cullen, Matthew O’Brien, Bret Beck, Christine

Hagmann, “Update on the Development and Validation of

MERCURY: A modern, Monte Carlo particle transport code”,

Mathematics and Computation, Supercomputing, Reactor Physics

and Nuclear Biological Applications, Sept. 12-15, 2005. UCRL-

PROC-212727

 Hans Petter Langtangen, “Python Scripting for Computational

Science.” Third Edition. Springer Publishing. 2009.

 Cython users group on Google Groups for wrapping technology

benchmark results:

 http://groups.google.com/group/cython-

users/browse_thread/thread/9503bd9468f92447

Lawrence Livermore National Laboratory

