
Cloud Resource Allocation Games

Virajith Jalaparti, Giang Nguyen, Indranil Gupta, Matthew Caesar

University of Illinois, Urbana-Champaign

{jalapar1, nguyen59, indy, caesar}@illinois.edu

Abstract—Cloud computing is a newly emerging paradigm
in which a client pays as it uses computing resources owned
by a cloud provider. Since multiple clients share the cloud’s
resources, they could potentially interfere with each others’ tasks.
Current pricing and resource allocation mechanisms are quite
preliminary (e.g., fixed pricing in Amazon EC2/S3) and do not
take into account the conflict of interests between multiple clients
using the cloud simultaneously. This can lead to clients being
overpriced, depending upon their allocated resources. Further,
these mechanisms do not allow the provider to optimize its
resource utilization.

In this paper, we take the first step towards modeling the
complex client-client and client-provider interactions in a cloud
by using game theory. We define a new class of games called
Cloud Resource Allocation Games (CRAGs). CRAGs solve the
resource allocation problem in clouds using game-theoretic mech-
anisms, ensuring that clients are charged (near) optimal prices
for their resource usage and that resources of the cloud are
used near their optimal capacity. We present the conditions
for reaching various stable equilibria in CRAGs and provide
algorithms that ensure close to optimal performance. We further
provide results of several experiments performed using traces
from PlanetLab and the Parallel Workload Archives which show
that the new mechanisms result in as much as 15% to 88%
increase in performance compared to existing resource allocation
mechanisms like Round-Robin.

I. Introduction

Cloud computing has recently been experiencing high rates

of growth as evident from the deployment of several cloud

infrastructures [1], [3]. It is based on the paradigm that

clients pay only for the resources they use, on demand. Cloud

providers rent their resources to multiple clients concurrently

and typically charge their customers based on the amount

of resources used by them. For example, Amazon EC2 [1]

charges its clients per CPU-hour consumed.

However current pricing strategies are quite preliminary.

They do not take into account the complex interactions be-

tween clients sharing the cloud’s resources. Such interactions

can occur despite the isolation guarantees provided by the

use of virtualization techniques. As a result, a client’s job

can take longer to execute when the cloud is heavily loaded

as opposed to when it is lightly loaded. If a per CPU-hour

consumed pricing scheme is used (like in Amazon EC2), it

could cause the client to pay more under heavy load since the

presence of too many VMs can lead to interference between

the clients’ jobs and thus prolong job completion times. Hence,

allocation mechanisms (e.g. FIFO, Round-Robin etc) used in

This work was supported in part by NSF grants CCF-0964471 and IIS-
0841765.

current cloud computing environments can lead to the clients

being charged unfair prices by the cloud.

Resource allocation in clouds is thus an important issue

affecting not only the performance of the cloud but also the

turnaround time experienced by its clients and the prices paid

by them. Existing pricing and scheduling schemes provide no

price-to-performance guarantees to the clients as they cannot

capture the inherent conflict of interests between different

clients. Clients are interested in completing their jobs in the

least possible time with the least possible total cost which is

the amount of money they pay the cloud for the resources

used. The cloud provider, on the other hand, is interested in

maximizing the resource utilization of the cloud and thus its

revenue, which could contradict with the interests of its clients.

These result in unintended client-client and client-provider

interactions which are not captured by existing pricing and

resource allocation mechanisms.

Economic-based approaches are useful to capture the com-

plex interactions between the users of a system. They provide

a socially optimal method to deal with consumer demand.

They can be used to capture the intricacies of problems in

complex, shared systems [23]. In this paper, we take the first

step towards investigating market-based resource allocation

mechanisms that can capture the complex interactions between

multiple clients using the cloud simultaneously. In particular,

we adopt a game-theoretic approach to model the resource

allocation problem in clouds. This allows us to account for

the inherently contradicting interests of the clients and the

provider of the cloud. Economic approaches have earlier been

successfully adopted in shared computing systems [7], [12],

[14], [22].

In this paper, we consider a model that takes into account the

interactions between the clients of a cloud and the performance

seen by them when using the cloud. These important properties

of real cloud environments are not accounted for in [15],

the only work to have applied economic approaches in cloud

computing.. We build upon existing game theoretic models for

practical computing systems [8], [21] and develop a model that

captures the various aspects of cloud computing, i.e., pricing,

resource requests from clients, interactions between clients’

jobs and the interactions between the clients and the cloud

provider.

We introduce and define a new class of games called Cloud

Resource Allocation Games (CRAGs). A CRAG models the

resource allocation problem in clouds as a classical non-

cooperative game [17] in which the clients of a cloud (modeled

as the players of the CRAG) selfishly try to maximize their

utility. We model the utility of a client as the negative of the

cost incurred by the client which captures the total amount

of money the client has to pay the cloud for the resources

used. The cost also captures the turnaround time that a client

experiences if the amount of money paid by it is directly

proportional to its turnaround time (given a desired number of

CPUs). Thus, the cost incurred by a client is also a measure of

the performance obtained by it. Finally, we model the cost of

the system as the sum of the costs incurred by all the clients.

The selfish nature of a client in a CRAG affects the

performance seen by the other clients and can potentially

decrease the overall performance of the cloud. On the other

hand, the cloud provider wishes to maximize its resource

utilization which can in turn allow it to increase its revenue by

accommodating an increased number of clients. However, the

latter may not result in achieving the least possible cost for

each client, incentivizing the clients to change their resource

allocation. Thus, we look at a variant of CRAGs called

Stackelberg CRAGs (SCRAGs) in which we consider how the

cloud provider can ensure that the system reaches a global

optimum.

We determine various conditions to achieve a Nash equi-

librium in a CRAG. Such an equilibrium represents a stable

resource allocation to which a CRAG will converge. In a Nash

equilibrium, a client cannot increase its utility (i.e., decrease

its cost) by unilaterally changing its resource allocation. We

show that if linear cost functions are used then the cost to the

system at Nash equilibrium is at most a constant factor over the

optimal. This is the Price of Anarchy [16] in clouds. However,

in the general case, the cost of the system at Nash equilibrium

can be arbitrarily worse compared to the optimal. Thus, we

further investigate the Stackelberg equilibrium achievable in a

CRAG which ensures that the cost of the system at equilibrium

is atmost a constant times the optimal.

In summary, the main contributions of our paper are:

(a) CRAGs, which capture the conflict of interests between

clients of a cloud,

(b) SCRAGs, which capture the client-provider interactions,

(c) Conditions for equilibrium and Price of Anarchy results

in both CRAGs and SCRAGs and

(d) Algorithms to ensure close to optimal performance in

both CRAGs and SCRAGs.

II. Motivation

In this section, we provide results of an experiment that

corroborate our main hypothesis: existing resource allocation

policies can cause a client using a heavily loaded cloud to incur

unnecessarily higher costs as compared to when the cloud is

lightly loaded. The results in this section show the interactions

between multiple clients and the suboptimal performance seen

by them when simultaneously using the cloud.

We demonstrate the effect of resource contention in a cloud

environment by performing various experiments on the Illinois

Cloud Computing Testbed (CCT) [2] using Hadoop. We run

computationally intensive Hadoop Sort jobs [6] using data

generated by Hadoop’s RandomWriter [5]. We perform three

types of experiments using different input data sizes (50GB,

100GB, and 200GB): (a) No Contention: In this experiment,

a single Sort job runs without any contention from other jobs,

(b) Concurrent Jobs: In this experiment, three Sort jobs run

concurrently and we measure the effect of contention from two

of them on the third and (c) File transfer: In this experiment, a

single Sort job runs simultaneously with a HTTP file transfer

for a 3.7GB remote file. This helps us understand the effect

of contention in the network.

Figure 1 shows the time for completion of the Sort job in

each of the three scenarios discussed above, averaged over

five runs. It allows us to make two important observations.

First, the effect of network contention (File transfer) is low

for small input size; however, it causes a significant increase

in the completion time (by 25%) of the Sort job when 200GB

of input data is used. The impact of job contention on the

other hand (3 identical concurrent jobs) is much more severe; it

causes a 136% and a 173% increase in the turnaround time of a

single Sort job for 50GB and 200GB of input data respectively.

These results show that the allocation of resources to various

jobs can have a profound effect on the completion time of a

single job. Thus resource allocation is an important issue in

the cloud.

Second, with a per-CPU hour based Amazon EC2’s pricing

model, a client running a Sort job in parallel with two others

would be charged around 136% to 173% more (depending

upon the input size) as opposed to when it has exclusive access

to the cloud. This shows that pricing of cloud resources is an

important issue which needs to be addressed. In this paper, we

address the problem of resource allocation via pricing models

using game theory.

III. Cloud Resource Allocation Games

In this section, we define and present Cloud Resource

Allocation Games (CRAGs). CRAGs model the resource al-

location in a cloud and capture the provider-client and client-

client interactions. We show that a Nash equilibrium always

exists for CRAGs and derive Price of Anarchy results for it

by reducing an instance of CRAG to an instance of Selfish

Routing in a network [21]. Next, we introduce the concept of

Stackelberg CRAGs and propose mechanisms which ensure

that the cost incurred by the system at Stackelberg equilibrium

is close to the global optimum. In this paper, we only consider

a static scenario in which a set of clients submit their jobs to

a cloud as a batch. We leave modeling of the dynamics that

can exist in practice to future work.

A. Modeling resource allocation in clouds

In our model, the clients of a cloud are modeled as the play-

ers in a CRAG. A client’s strategy is represented by the client’s

resource allocation. We make the following assumptions about

the various entities involved in a cloud:

(a) The cloud hosts only one type of resource (e.g., CPU)

and all clients are concerned with the usage of this type

of resource only. The more general case with multiple

types of resources is an extension of the model described

Fig. 1. Motivation: Average (over five runs) job turnaround time of a Hadoop Sort job under various situations

below if there are no dependencies between different

types of resources. Inter resource-type dependencies

(e.g., a Hadoop job might be required to be scheduled

on a machine close to its data) are outside the scope of

this paper.

(b) Each client acts selfishly and the cloud provider tries

to optimize the total utility of the clients while ensuring

efficient resource usage. Although cloud providers would

be interested in maximizing their revenue, they would

not want to charge their clients unnecessarily high prices

in order to retain them. This follows from the fact that

cloud computing is a competitive market with a choice

of multiple providers for clients.

(c) Clients are charged based on per CPU-hour consumed.

This implies that the amount of money a client has to

pay the cloud is directly proportional to the amount of

time the requested amount of resources are used by the

client. This of course assumes a fixed number of CPUs

requested by a client at a time.

(d) The cloud has sufficient amount of resources to accom-

modate the resources requested by all the clients.

Suppose a cloud provider C consists of a set M =

{1, 2, . . . ,m} of m physical resources (called machines from

here on). Each machine i ∈ M is associated with a cost

function li(·) (li : �+ → �+) and a capacity ci. ci represents

the amount of resource available at machine i. li(x) is the

cost of using x resources at machine i. We assume that li is a

monotonic non-decreasing function such that x · li(x) is weakly

convex for every i. The set L = {l1, l2, . . . , lm} represents the

cost functions of all the machines in the cloud.

We use the function li as an abstraction for the cost incurred

by the clients who are using machine i. In practice, the cost

function associated with a machine represents the amount

of money the clients need to pay to use the machine for a

particular amount of time. It captures the interactions between

the jobs of the various clients using machine i. Since the

amount of money paid by a client for a job is directly

proportional to the time taken to finish the job, li also models

the turnaround time seen by the client.

We further assume that a set U = {U1,U2, . . . ,Un} of

n clients simultaneously use the cloud C, with client U j

requesting a total of a j resources from C. a j represents the

total amount of resource-hours that are requested by client U j.

For example, a j can be the number of CPU-hours requested

by U j. The vector A = (a1, a2, . . . , an) represents the demands

of all the clients. A global resource allocation vector Φ defines

the resources allocated by the cloud to the clients at various

machines. Φ is given by a n-dimensional vector (φ1, φ2, . . . , φn)

where each φ j maps client U j’s resource requirements to the

m machines available. φ j is the strategy adopted by client U j

in the CRAG and is given by the vector (r j(1), r j(2), . . . , r j(m))

for j ∈ 1 . . .n. r j(k) ∈ �+ indicates the resources allocated by

Φ to client U j at machine k. The allocation vector Φ is feasible

if it satisfies the following properties: (1)
∑m

k=1 r j(k) = a j, (2)

r j(k) ≥ 0 ∀ j, k and (3) the total resource utilization Rk at

machine k is within its capacity ck i.e. Rk =
∑n

i=1 ri(k) ≤ ck.

The 3-tuple (M,L,A) defines a Cloud Resource Allocation

Game (CRAG) where player (client) U j’s strategy is given by

its resource allocation φ j. Client U j wishes to minimize its

cost which is given by

LΦ(j) =

m∑

i=1

ψ(i, j) · li(Ri)

where ψ(i, j) = 1, if machine i is used by U j in the allocation

Φ and ψ(i, j) = 0, otherwise. Thus, the cost incurred by a client

is the sum of the costs incurred by it at all the machines that

are used by it. U j tries to maximize its utility which is given

by −LΦ(j). The performance of the system is measured by the

overall cost CΦ incurred by the system due to the allocation

Φ i.e.

CΦ =

n∑

j=1

m∑

i=1

r j(i) · li(Ri)

The cloud provider is concerned about minimizing the cost CΦ
of the system which maximizes the total resource utilization

of the cloud. CΦ is a measure of the total amount of money

all the clients pay to the cloud.

Since cloud providers typically have many available ma-

chines, we do not focus on feasibility of schedules in this

paper. Rather, given a sufficiently large C, we focus on the

game theoretic issues.

B. Achieving Nash Equilibria in CRAGs

The formulation considered in Section III-A provides the

basic model for CRAGs, an instance of which is described by

the 3-tuple (M,L,A). Client Ui selfishly tries to modify its

strategy φi, in order to decrease its cost LΦ(i). However, this

could increase the cost LΦ(j) of another client U j. Here-in

lies the inherent conflict between the requirements of different

clients: each client tries to minimize the incurred cost and

changes its resource allocation (strategy) until it is unable

to decrease its cost further. Such a dynamism would persist

unless the system reaches a state in which no client can

strictly decrease its cost further. Such a state represents a Nash

equilibrium [17] and it can be formally defined for our model

as follows:

Definition 1: A feasible global resource allocation Φ =

(φ1, φ2, . . . , φn) is said to be at Nash equilibrium (and called a

Nash assignment) if ∀Ui ∈ U, LΦ(i) ≤ LΦ′ (i), for any feasible

allocation Φ′ = (φ′
1
, φ′

2
, . . . , φ′n) with φ

′
j
= φ j for j , i and φ′

i
=

(r′
i
(1), r′

i
(2), . . . , r′

i
(m)) such that

∑m
k=1 ri(k) =

∑m
k=1 r

′
i
(k) = ai.

In other words, a resource allocation is at Nash equilibrium

if no client can decrease its cost by unilaterally changing its

resource allocation, i.e., no client has any incentive to change

its current strategy.

Sub-optimality of Nash: While a Nash equilibrium rep-

resents a stable state of the system, the cost CΦ incurred

by the system due to a Nash assignment Φ need not be

globally optimal [9]. Thus, in order to investigate the optimal

performance that can be achieved in a CRAG, we formulate

the following cost optimization problem:

Minimize CΦ =

n∑

i=1

m∑

k=1

ri(k) · lk(Rk) (1)

with the following constraints:
m∑

k=1

ri(k) = ai

Rk =

n∑

i=1

ri(k) ≤ ci

ri(k) ≥ 0 ∀ 1 ≤ i ≤ n , 1 ≤ k ≤ m

Equation 1 can be rewritten as

CΦ =

m∑

k=1

Rklk(Rk)

If x ·lk(x) is convex for all k, the above non-linear optimization

problem is a convex program for which the local optimal

coincides with the global optimal [19]. Denoting x · lk(x) by

Ck(x) we have CΦ =
∑m

k=1Ck(Rk). Using this representation of

CΦ and the above constraints, this optimization formulation

becomes similar to the NLP formulation for Selfish Routing

[21] with the following change in terminology: (a) “client”

in a CRAG is to be replaced with “path” in an instance of

Selfish routing and (b) “physical resource” in a CRAG is to be

replaced with “edge” in an instance of Selfish routing. Further,

the concept of flow in Selfish routing [21] is equivalent to that

of global resource allocation in CRAGs.

Thus, the equivalence of CRAGs and Selfish routing [21]

can be derived from the formulation of the optimization prob-

lems in each of them. Using this equivalence, the following

results can be shown to be true (the actual proofs parallel those

in [21]):

Theorem 1: The CRAG (M,L,A) with continuous non-

decreasing cost functions admits a feasible Nash assignment.

Further, a Nash assignment of (M,L,A) is the solution of the

following optimization problem:

Minimize CΦ =

m∑

k=1

l′k(Rk) (2)

with the following constraints:
m∑

k=1

ri(k) = ai

Rk =

n∑

i=1

ri(k) ≤ ci

ri(k) ≥ 0 ∀ 1 ≤ i ≤ n , 1 ≤ k ≤ m

where l′
i
(x) =

∫ x
0
li(t)dt.

Theorem 2: If the CRAG (M,L,A) has linear cost func-

tions then any Nash assignment would incur a cost that is at

most 4/3 times that of the optimal assignment for it.

Theorem 1 shows that the Nash equilibrium for any CRAG

satisfying our assumptions exists, is achievable and is same as

the solution of the optimization problem given by Equation 2.

Theorem 2 gives the Price of Anarchy result in clouds in which

all cost functions are linear.

C. Stackelberg Equilibria in CRAGs

To overcome the sub-optimality of the Nash equilibrium for

arbitrary cost functions, we consider the Stackelberg variant

of CRAGs. Here the cloud provider imposes restrictions such

that the cost of the resulting Nash assignment is close to the

optimal. In this section, we first formulate a formal definition

for a Stackelberg equilibrium in a CRAG and then provide two

strategies, Aloof and Least Cost First, that attempt to ensure

that the cost of the equilibrium reached in the Stackelberg

game is close to the optimal.

Stackelberg games are a special category of games consist-

ing of two types of players: the leader, who tries to optimize

the system performance and the followers who are selfish

players, trying to optimize their own utility. While the leader

has no direct control on the followers’ strategies, they are

constrained by the strategy adopted by the leader. Thus the

leader can use his strategy to drive the system to a near-optimal

point of operation. CRAGs can be modified as Stackelberg

games in which the cloud provider acts as the leader trying

to optimize performance of the system and the clients act as

followers, selfishly trying to decrease their individual costs.

A Stackelberg CRAG (SCRAG) is characterized by a 4-

tuple (M,L,A, φL), where (M,L,A) represents a CRAG (as

defined in Section III-B) and φL = (rL(1), rL(2), . . . , rL(m)

denotes the resource allocation of the cloud provider i.e.

the strategy of the leader of the SCRAG. rL(k) denotes the

amount of resources used by the leader at machine k. The

total resource usage of the leader is given by aL =
∑m

k=1 rL(k).

The Stackelberg global resource allocation ΦS is given by the

vector (φ1, φ2, . . . , φn, φL) where φi for i = 1 . . . n is as defined

earlier. The total resource utilization at machine k is given by

RS
k
= rL(k) +

∑n
i=1 ri(k) ≤ ck. Thus, each client sees that the

resources at machine k are decreased by rL(k), which affects

the equilibrium reached by them. The provider’s resource

usage aL can be due to any set of jobs that are under its control.

In practice, cloud providers themselves need to run various

jobs on the cloud infrastructure that are responsible for various

tasks e.g, client job scheduling, monitoring, infrastructure

management protocols etc. Such jobs could account for the

resources aL of the leader allocated by φL.

Similar to the Nash equilibrium in simple non-cooperative

games, Stackelberg games also reach an equilibrium in which,

for a fixed strategy of the leader, no player can strictly decrease

its cost by altering its strategy alone. This represents a stable

state in which there is no incentive for any client to change

its resource allocation. We formally define the Stackelberg

equilibrium achieved in a SCRAG as follows:

Definition 2: For the SCRAG (M,L,A, φL), the Stackel-

berg global resource allocation ΦS = (φ1, φ2, . . . , φn, φL) is

said to be at Stackelberg Equilibrium (and called a Stackelberg

assignment) if Φ = (φ1, φ2, . . . , φn) is a Nash assignment for

the CRAG (M,LN ,A) where LN = {lN
k
| lN

k
(x) = lk(x+ rL(k)),

k = 1, 2, . . . ,m}.

Definition 2 shows the relation between a SCRAG and a

CRAG with a modified set of cost functions that depend on

the resources used by the leader. A Stackelberg assignment is

optimal if the cost function CΦS induced by it is the global

minimum.

The optimality of the Stackelberg equilibrium depends on

the leader’s strategy and thus is important in determining the

performance of the system. We consider two leader strategies

for SCRAGs: Aloof and Largest Cost First (LCF). These

strategies are inspired by [20].

Aloof strategy: In the Aloof strategy, the cloud provider

is indifferent to the strategies of the clients and tries to find

φL such that it is the optimal assignment for the CRAG

(M,L,AL), where M and L are as defined earlier and

AL = {aL}. A leader following the aloof strategy does not

take into account the strategies adopted by the followers and

decides upon its strategy independent of them.

Least Cost First strategy: On the other hand, in the LCF

strategy the leader uses the resources that other clients tend to

avoid, i.e., the leader uses resources that incur higher costs.

The LCF strategy is obtained using the following algorithm:

1) The leader first computes the optimal assignment Φ∗ for

the CRAG (M,L,A∗), where (M and L are as defined

earlier and A∗ = (a1, a2, . . . , an, aL). Note that such an

assignment need not be at equilibrium for the clients of

the cloud i.e., some client Ui could potentially decrease

its cost by changing φ∗
i
. Φ∗ can be calculated by solving

the convex program given by Equation 1 (Section III-B).

2) Order the resources such that l1(Φ
∗(1)) ≤ l2(Φ

∗(2)) ≤

. . . ≤ lm(Φ
∗(m)) and find the minimum k∗ such that k∗ ≤

m and
∑m

k=k∗ Φ
∗(k) ≤ aL. Φ

∗(k) is the total amount of

resources allocated by Φ∗ at machine k.

3) The strategy of the leader φ∗
S L
= (rL(1), rL(2), . . . , rL(m))

is given by rL(k) = Φ
∗(k) for k > k∗, rL(k

∗) = aL −∑m
k=k∗ Φ

∗(k) and rL(k) = 0 for k < k∗.

Thus, in the LCF strategy the leader occupies the (m − k∗)

most expensive machines and then allows the followers to

converge to a Nash Equilibrium. The following theorem shows

that the cost incurred by adopting the LCF strategy is at most
1
α
times worse compared to the optimal assignment for the

CRAG under consideration, where α indicates the fraction

of jobs that belong to the leader. The proof of this theorem

parallels that in [20].

Theorem 3: If φS
L
is the LCF strategy for the leader in the

SCRAG (M,L,A, φL) inducing a Nash assignment ΦS
F
for

the followers and Φ∗ is the optimal assignment for the CRAG

(M,L,A), then C(ΦS
F
,ΦS

L
) ≤

1
α
CΦ∗ where α =

aL∑n
i=1 ai

.

D. CRAGs in Practice

In the earlier subsection we have shown how the resource

allocation in clouds can be modeled using CRAGs. We have

derived several results which determine the relationship of

the Nash and Stackelberg equilibria achievable in a CRAG

with the optimal solution. In this section, we show how these

mechanisms can be adopted in practice.

The resource allocation based on the equilibria takes place

in rounds as the model given in Section III-A is applicable

only to a static scenario. At the start of each round, all the

clients submit the jobs that have to be run in that round, to the

cloud. The actual set of clients can vary across rounds. If the

Stackelberg mechanism is used, the provider first calculates

his resource allocation vector φL using either the Aloof or

LCF strategy of Section III-C. The provider then advertises the

amount of resources left at each of the machines in the cloud to

the clients. Each client then chooses the machines that would

satisfy its resource requirement and minimize its total cost.

Next, the clients will actively change their resource allocation

as long as they can decrease their costs. They can follow any

of the standard update mechanisms in the literature [16] to

determine how they change their strategy. All the clients must

follow the same update mechanism.

When no client can decrease its cost by changing its strategy

alone, the system has achieved a stable equilibrium. Since

such a equilibrium state exists (Theorem 1 in Section III-B),

it will be reached with the convergence time depending on

the type of update mechanism used by the clients [16]. This

equilibrium state corresponds to one of the equilibria (Nash or

Stackelberg depending upon the mechanism adopted) defined

earlier. Such a state satisfies all the conditions outlined earlier

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 0 40 80 120 160 200

C
o
s
t
to

 S
y
s
te

m

No. of Users

Nash
Opt

Stackelberg
Round-Robin

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 40 80 120 160 200

M
a
x
im

u
m

 c
o
s
t
o
f
a
 m

a
c
h
in

e

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(a) (b)

 0

 50000

 100000

 150000

 200000

 250000

 0 40 80 120 160 200

M
a
x
im

u
m

 t
u
rn

a
ro

u
n
d
 t
im

e

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(c)

Fig. 2. Results of simulations with linear cost functions and synthetic workloads: (a) Total Cost to the System, (b) Maximum cost incurred
by a client for using a machine and (c) Maximum turnaround time experienced by a client. The lines corresponding to Nash, Stackelberg
and Optimal are quite close to each other.

and the results regarding the bounds on the cost to the system

at equilibrium hold.

IV. Experimental Evaluation

In this section, we present experimental results from trace-

driven simulations performed to verify how the various equi-

libria introduced in Section III perform in practice and

how they compare to non-game theoretic resource allocation

schemes. We use both synthetic and real-world traces for

client resource requirements in these simulations. While the

former provide us the flexibility to verify how the equilibria of

Section III perform in a variety of scenarios, the latter allows

us to evaluate them in more practical scenarios.

Metrics: We use the following metrics to determine the

efficiency of resource allocation mechanisms:

(a) total cost incurred by the system,

(b) maximum cost of a machine: this measures the maxi-

mum cost that can be incurred by any client when it

uses any machine in the cloud and

(c) maximum turnaround time experienced by any client

of the cloud: this is the time between when the client

submits a job to when it is completed.

The cost incurred by a client is the total amount of money paid

by the client to the cloud. The total cost incurred by the system

is the total amount of money all the clients pay to the cloud

provider. While (a) and (b) help us measure the amount of

money clients pay to the cloud, (c) deals with the performance

obtained by the clients. These metrics measure how efficiently

a cloud is used and the performance experienced by the clients

of the cloud. In the ideal case, the total cost incurred by

the cloud should be equal to the optimal and the maximum

cost incurred by a client should be equal to the average cost

incurred by any client. Using trace-driven simulations, we

measure how various resource allocation strategies affect each

of these metrics.

Trace details: We use two different real-world traces which

represent two types of workloads that are typically encoun-

tered on clouds:

1) the PlanetLab traces [18] which contain long running

network intensive jobs and

2) the Parallel Workloads Archives [4] which typically

contain batch jobs that are relatively short-lived.

The PlanetLab trace we use is collected from a total of 69

physical PlanetLab machines. These traces provide us the

details of the slices requested by different users using the ma-

chines which we use for the values of a j’s in our model. From

the Parallel Workload Archives, we use the reduced LLNL-

ATLAS-2006, LLNL-uBGL-2006, LLNL-Thunder-2007 and

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 40 80 120 160 200

C
o
s
t
to

 S
y
s
te

m

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(a)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 40 80 120 160 200

M
a
x
im

u
m

 c
o
s
t
o
f
a
 m

a
c
h
in

e

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(b)

Fig. 3. Results of simulations with exponential cost functions and synthetic workloads: (a) Total cost to the system, (b) Maximum cost
experienced by a client. The lines corresponding to Nash, Stackelberg and Optimal are quite close to each other.

LCG-2005 traces. From these, we use the number of proces-

sors and time requested by various users.

The synthetic traces in our experiments were generated as

follows: the resource requirements of a client Ui are drawn

uniformly at random between 0 and 1000 and normalized

(divided by) to the total amount of resources available in

the cloud in order to ensure that the cloud contains sufficient

amount of resources for all the clients. The total number of

physical machines in the cloud for these workloads is fixed

at 50. We vary the number of clients using the cloud and

measure the change in the various metrics we are concerned

with. This in turn measures the effect of variation of load on

the performance of the equilibrium based mechanisms in the

cloud.

Evaluation Approach: We compare the performance of

the Nash, Optimal and Stackelberg equilibria with a non-

game theoretic method, “Round-Robin”, that has been believed

to work well in systems like Hadoop. In the Round-Robin

method, the n machines in the cloud are arbitrarily numbered

from 1 . . .n. When a client schedules a job which requests

a resources at k machines each, it is scheduled on the next

k machines, chosen in a Round-Robin manner, that have the

required amount of resources left. If the required number of

machines is unavailable, the job is paused until the required

resources are freed.

We perform all the simulations using a trace-driven simula-

tor that solves the convex optimization problems formulated in

Section III using the Linear approximation method, an iterative

method for solving convex programs. The Nash equilibrium

is found by solving the optimization problem (Equation 2)

formulated in Theorem 1. The LCF strategy (with α = 0.01)

described in Section III-C is used to find the Stackelberg

equilibrium.

We use two types of functions to model the costs associated

with the machines of the cloud:

1) linear cost functions, represented as li(x) = ci · x and

2) exponential cost functions, represented as li(x) = ci·e
(kix).

These functions model the time for completion of a job

using the corresponding machines and depend on the total

resource consumption at the machine. For example, the job

completion time for a client using a machine i with 50%

resource usage is proportional to li(50). The constants ci in

these functions are proportional to the money the client has to

pay for using the corresponding resources in the cloud.

Microbenchmarks: Figure 2 compares the performance of

the various equilibria with that of the Round-Robin method in

terms of the various metrics of interest by varying the number

of clients. We use linear cost functions for these simulations

along with synthetic traces. While the total costs incurred by

the system at the equilibria closely overlap those at the optimal

(Figure 2(a)), the Round-Robin procedure performs about 15%

worse on average. The difference is more evident when the

other two metrics are taken into account. The maximum cost

incurred by using a machine (Figure 2(b)) in the Round-

Robin method is about 5 times more than that incurred while

using the equilibrium mechanisms. Similarly, the maximum

turnaround time experienced by a client in the Round-Robin

method (Figure 2(c)) is about twice compared to that seen

in the case of the equilibrium based mechanisms. Thus, we

can conclude that existing schemes like Round-Robin result

in low performance compared to resource allocation based on

CRAGs.

Figure 3 provides a comparison between the performance

of the Round-Robin mechanism and the various equilibria

for exponential cost functions. This is similar to the case of

linear cost functions and the conclusions are similar to those

for Figure 2. This shows that the effect of exponential cost

functions is similar to that of linear cost functions.

PlanetLab Experiments: The results of the simulations

performed with real-world PlanetLab based traces are shown

in Figure 4. In these simulations, we use linear cost functions.

The results with exponential cost functions are similar and

not shown. These results help us understand how the various

equilibria discussed in Section III perform in practice and how

they compare to existing scheduling strategies like Round-

Robin.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 10 20 30 40 50 60

C
o
s
t
to

 S
y
s
te

m

No. of Users

Nash
Opt

Stackelberg
Round-Robin

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 10 20 30 40 50 60

M
a
x
im

u
m

 c
o
s
t
o
f
a
 m

a
c
h
in

e

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(a) (b)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 10 20 30 40 50 60

M
a
x
im

u
m

 t
u
rn

a
ro

u
n
d
 t
im

e

No. of Users

Nash
Opt

Stackelberg
Round-Robin

(c)

Fig. 4. Results of simulations with linear cost functions and workloads from PlanetLab: (a) Total cost to the system, (b) Maximum cost
incurred by a client for using a machine and (c) Maximum turnaround time experienced by a client. The lines corresponding to Nash,
Stackelberg and Optimal are quite close to each other.

Figure 4(a) compares the total cost incurred by the system

while using the Round-Robin mechanism with that while using

the various equilibria of Section III. It shows that the Round-

Robin mechanism can incur around 6 times more cost than

any of the equilibrium mechanisms. Figures 4(b), (c) compare

the Round-Robin method with the equilibria in terms of the

maximum cost of a machine and maximum turnaround time

of a client and show that it can perform much worse. Further,

these figures illustrate that the worst case bounds of the

Nash and Stackelberg equilibria shown in Section III do not

necessarily arise in practice. In particular, Figure 4 shows that

the cost incurred at the equilibria is quite close to that of the

optimal.

Parallel Workload Experiments Next we provide results

of the experiments performed using traces from the Parallel

Workload archives [4]. These provide a real-world example

of batch processing jobs. Figure 5 shows the results of

these experiments using four different types of workloads:

LCG-2005(LCG), LLNL-ATLAS-2006 (LLNL-AT), LLNL-

Thunder-2007 (LLNL-Th) and LLNL-uBGL-2006 (LLNL-uB)

from [4]. Figure 5(a) shows the maximum cost that can

be incurred by a client relative to the optimal. While the

relative cost incurred at the Nash and the Stackelberg equilibria

are quite close to 1, the cost incurred by the Round-Robin

mechanism is worse by several orders of magnitude compared

to the optimal. Figure 5(b) gives the average turnaround time

experienced by the clients relative to the optimal. It shows

that the Nash and Stackelberg equilibria perform close to the

optimal while the Round-Robin is around 5% to 15% greater

than the optimal.

Summary: The simulations in this section provide us with

the following general conclusions: while Nash and Stackel-

berg equilibria result in costs close to the optimal, methods

like Round-Robin can perform much worse compared to it,

sometimes by several orders of magnitude. Performance-based

metrics like turnaround time in Round-Robin mechanism can

be several times worse (15% to 500% depending upon the sce-

nario) compared to that in the Nash and Stackelberg equilibria.

Further, the Nash and Stackelberg equilibria show similar

performance and incur costs that do not differ significantly

from the optimal for the real-world based workloads.

V. RelatedWork

In this paper, we consider the use of game theoretic ap-

proaches for resource allocation in cloud computing environ-

ments. Our goals are related to works in three areas:

Resource allocation in shared-computing environments:

Several recent works (e.g., [7], [11]) try to ensure efficient

 0.1

 1

 10

 100

 1000

 10000

 100000

LCG LLNL-AT LLNL-Th LLNL-uB

M
a
x
im

u
m

 C
o
s
t
(r

e
la

ti
v
e
 t
o
 o

p
ti
m

a
l)

Workload Type

Nash
Stackelberg

Round-Robin

(a)

 1

 1.05

 1.1

 1.15

 1.2

LCG LLNL-AT LLNL-Th LLNL-uBA
v
e
ra

g
e
 T

u
rn

a
ro

u
n
d
 t
im

e
 (

re
la

ti
v
e
 t
o
 o

p
ti
m

a
l)

Workload Type

Nash
Stackelberg

Round-Robin

(b)

Fig. 5. Results of simulations with linear cost functions and workloads from Parallel Workload Archives: (a) Maximum cost incurred by a
client for using a machine and (b) Average turnaround time experienced by a client.

usage of shared resources. However, they generally adopt a

global optimization approach which does not work [15] for

cloud computing in which the resources are made public and

multiple clients share the same physical infrastructure. Unlike

earlier works, we take a comprehensive approach in this paper:

irrespective of the type of resource, our algorithms can be used

to ensure optimal allocation of that resource among the clients.

Economic approaches in shared systems: Simple reser-

vation mechanisms try to cater to the clients’ needs but do

not provide bounds on the system performance compared to

optimal solutions. On the other hand, economic approaches

can be used to ensure that clients can achieve near optimal

system performance. These approaches [10] have been used

to model and solve problems related to the supply-demand

economics of complex systems where multiple clients and

multiple providers exist. Sharp [12], Tycoon [14] and grid mar-

kets [22] are examples of such approaches in grid computing

where economic approaches have been successfully adopted to

deal with efficient resource allocation. More recently, Google

introduced an auction-based mechanism [24] for reserving

resources on their internal systems.

Game theoretic approaches in practical computing sys-

tems: In this paper, we take a game-theoretic approach

that has been widely used as a tool to achieve optimal

resource usage and to design optimal scheduling mechanisms.

Game theory [16] has been used to model several aspects of

computing systems including routing, resource allocation and

scheduling. Several works related to selfish routing [8], [21]

present game-theoretic models for routing traffic in networks

in order to optimize the latency experienced by the end users

under congestion. We draw upon these works to derive several

properties of CRAGs. Further, Stackelberg scheduling has

been used in several practical systems [13], [20] to achieve

optimal system usage by using leader strategies which ensure

that followers achieve a Nash Equilibrium whose cost (nearly)

coincides with the optimum. We exploit this property of

Stackelberg games and ensure that SCRAGs achieve a close

to optimal allocation of resources in the cloud.

Game-theoretic concepts have been applied to cloud com-

puting in [15], which introduces the concept of collocation

games. While this is most closely related to our current work,

it differs from our model of the cloud in the following ways:

(a) it assumes that there is no interaction between clients,

i.e. each client can be allocated resources without affect-

ing the performance of others,

(b) it assumes that the cloud provider’s prices for different

resources are fixed, and

(c) there is no concept of time; the price each client pays

is modeled as a constant fraction, proportional to the

amount of resource requested by it but does not depend

on the time for which it uses the resource (which implic-

itly assumes that different clients use all the resources

for the same amount of time).

Further, it only finds solutions for simple collocation games

(which capture a small subset of practical scenarios) where

clients request for a single slice on a single resource. Our

work on the other hand takes such issues into account and

deals with a more general problem by modeling the cloud

closer to reality.

VI. Conclusion and FutureWork

In this paper, we argued that fixed pricing and resource al-

location mechanisms followed by today’s cloud providers can

lead to suboptimal performance. We adopted a game-theoretic

approach to capture the subtleties of interactions between

multiple clients and the cloud provider and modeled them

as Cloud Resource Allocation Games (CRAGs). We derived

conditions for various equilibria in CRAGs, provided worst

case bounds (price of anarchy results) and gave algorithms

which ensure that the cost to the system is nearly optimal.

We further showed using extensive trace-based simulations,

that the performance of the cloud using heuristics like Round-

Robin can be about 5 times worse as compared to that

using resource allocation according to the Nash, Optimal and

Stackelberg equilibria. We also showed that, in practice, the

costs at the Nash and Stackelberg equilibria are quite close to

the optimal.

Our paper opens up several exciting avenues for future

work. Although we have taken several aspects of a real

cloud computing environment into account, our model can be

extended to capture more of the complexities of today’s clouds

such as:

(a) the dependencies across multiple types of resources in

a cloud,

(b) the interactions between multiple cloud providers, and

(c) various privacy and security constraints that a user might

require, e.g, Client X may not want to be collocated with

Client Y.

We also assumed that resources are infinitely divisible which is

not true in reality. Accounting for these factors could affect the

optimality of the Nash and Stackelberg Equilibria in CRAGs.

Quantifying the effects of such factors is necessary to develop

and analyze a comprehensive model of the cloud. Further,

investigating how a market of multiple cloud providers can

be used by a set of clients efficiently (i.e., minimize the costs

incurred by them) is also a part of our future work.

References

[1] “Amazon elastic compute cloud (EC2),” http://aws.amazon.com/ec2/.
[2] “Cloud computing testbed,” http://cloud.cs.illinois.edu/.
[3] “Google app engine,” http://appengine.google.com/.
[4] “Parallel workload archives,” http://www.cs.huji.ac.il/labs/parallel/workload/.
[5] “RandomWriter - Hadoop Wiki,” http://wiki.apache.org/hadoop/RandomWriter.
[6] “Sort - Hadoop Wiki,” http://wiki.apache.org/hadoop/Sort.
[7] A. Batsakis, J. Lentini, R. Burns, T. Talpey, and A. Kanevsky, “CA-NFS:

A congestion-aware network file system,” in FAST, 2009.
[8] A. Czumaj, P. Krysta, and B. Vong, “Selfish traffic allocation for server

farms,” in Proceedings of the 34th Annual Symposium on Theory of

Computing (STOC), 2002, pp. 287–296.
[9] P. Dubey, “Inefficiency of nash equilibria,” Math. Oper. Res., vol. 11,

no. 1, pp. 1–8, 1986.
[10] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, “Economic

models for allocating resources in computer systems,” in Market Based

Control of Distributed Systems. World Scientific. Press, 1996, pp. 156–
183.

[11] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. New York, NY, USA: ACM, 2009, pp. 261–276.

[12] Y. F. Jeffrey, J. Chase, B. Chun, S. Schwab, and A. Vahdat, “Sharp:
An architecture for secure resource peering,” in Proceedings of the 19th
ACM Symposium on Operating System Principles, pp. 133–148.

[13] Y. A. Korilis, A. A. Lazar, and A. Orda, “Achieving network optima
using stackelberg routing strategies,” 1997.

[14] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman,
“Tycoon: An implementation of a distributed, market-based resource
allocation system,” Multiagent Grid Syst., vol. 1, no. 3, pp. 169–182,
2005.

[15] J. Londono, A. Bestavros, and S.-H. Teng, “Collocation games and their
application to distributed resource management,” in HotCloud, 2009.

[16] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[17] G. Owen, Game Theory, 3rd ed. Academic Press, 1995.
[18] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system

for planetlab,” SIGOPS Oper. Syst. Rev., vol. 40, no. 1, pp. 65–74, 2006.
[19] A. L. Peressini, F. E. Sullivan, and J. J. Jerry Uhl, The Mathematics of

Nonlinear Programming. Springer-Verlag, 1988.
[20] T. Roughgarden, “Stackelberg scheduling strategies,” in Proceedings of

the 33rd Annual ACM Symposium on the Theory of Computing, 2001,
pp. 104–113.

[21] T. Roughgarden and E. Tardos, “How bad is selfish routing?” J. ACM,
vol. 49, no. 2, pp. 236–259, 2002.

[22] T. Sandholm, J. A. O. J. Odeberg, and K. Lai, “Market-based resource al-
location using price prediction in a high performance computing grid for
scientific applications,” in Proceedings of the 15th IEEE International

Symposium on High Performance Distributed Computing. IEEE, 2006,
pp. 132–143.

[23] J. Shneidman, C. Ng, D. C. Parkes, A. Auyoung, A. C. Snoeren,
A. Vahdat, and B. Chun, “Why markets could (but don’t currently) solve
resource allocation problems in systems,” in Proceedings of the 10th
USENIX Workshop on Hot Topics in Operating Systems, 2005, p. 7.

[24] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using
a market economy to provision compute resources across planet-wide
clusters,” in Proceedings of the 2009 IEEE International Symposium
on Parallel&Distributed Processing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–8.

