The Visible Cost of Air
A Worksheet to Assist in Identifying Compressed Air Saving Opportunities

Overview
Can you see air? Not usually, but you can see the visible impact air has on your company’s “bottom-line.” Compressed air costs your company real money, usually a substantial amount of money. Compressed air is often taken for granted as a necessary cost, and is often abused and wasted. Its cost flows into the nebulous pot called, “overhead.” Because of this, it tends to get squandered and misused.

There is a wealth of handbooks and “how-to” publications available on the market. However the reader may need a PhD in engineering to decipher the mountains of calculations and constants. This Fact Sheet is different in its approach and methodology. It will provide general, practical rule-of-thumb applications and recommendations. It will provide the user a simple worksheet to assist in identifying areas of opportunity that may exist at one’s own facility. Once realizing this, the user may then seek additional assistance from a professional air management service provider who will assess the system and recommend equipment and determine costs.

Air Survey

List each compressor’s horsepower: ___ ___ ___ ___ ___ ___
(EXAMPLE 2-50HP AND 1-25HP)

Cost of Compressed Air Calculation- 2 items needed
a. Average cost per kWh
b. Calculation of total annual compressor operating hours

a. $0.___

(Example $0.06/kWh)
b. ______Total Annual Hours

(24hrs x 7days = 8,760 hours/year)

Calculation:
Qty. HP x 0.746 /0.9 x Cost per kWh x Total Annual Hours = $Annual Cost

Example from above: 125HP x 0.746 /0.9 x $0.06 x 8,760 = $54,458 per year

Work Area

________ x 0.746/0.9 x __________ x _________ = $__________
Note: If operating less than one 30HP compressor return on investment, improvements may be hard to justify. Longer return on investments is typical on small systems.

Compressed Air Survey Questionnaire

Check any conditions listed below that apply

1. Does the plant have multiple compressors with no sequencing or controls to automatically start and/or stop compressors based on the demand in the plant?

Yes No

Compressors that are sequenced, automatically turn on/off based on demand...a huge savings potential versus manual operation.

2. Does the plant have open air blowing of compressed air for parts clean up or cooling or vacuum generation?

Yes No

Besides a safety concern, open-end tubes waste large amounts of air. Recommendation: replace with high-efficient safety nozzles that reduce air consumption up to 40-50% and substantially reduce noise levels. Or utilize high-volume, low-pressure air blowers instead of compressed air.

3. Does the plant have a known Leakage/Waste problem?

Yes No

During a quiet time, turn up compressor to maximum setting and listen for leaks or use ultrasonic leak detection equipment that will identify leaks in noisy environments. Then fix those leaks!

4. Is the compressor operating at a higher pressure at the discharge of the compressor and lower pressure at the point of use?

Yes No

Work Area
Compressor Pressure Setting:_______ vs. PSI Needed:_______

(EXAMPLE: Compressor air pressure setting: 120 PSIG vs. actual needed 90 PSIG in plant)
Rule of Thumb:
Extra “just-in-case” compressed air costs an additional 5% energy for every additional 10 PSIG increment. This costs money!

5. **Is the plant experiencing a water problem** due to liquid water in the air system… creating rust, scale and maintenance problems?

 [] Yes [] No

Water rusts air tools, contaminates painting systems and rusts piping. Keep water in the water lines, not the air lines.

6. **Are air dryers** currently in use?

 [] Yes [] No Refrigerated or Regenerative (circle one)

 Not to be confused with after-coolers, which typically is part of the compressor system. Dryers remove the remaining water after-coolers pass. Regenerative systems require additional energy to “regenerate” the desiccant, but produces dryer, higher quality air.

7. **Is compressor heat reclamation** currently in use?

 [] Yes [] No

Waste heat is not always a waste, but can be reclaimed for other uses. This heat can be recovered and reused to heat water, air, etc.

8. **Compressor Operations and Maintenance:** (All strongly Recommended)

 Is there a maintenance program in place?

 [] Yes [] No

 Is the Air filter clean and regularly changed?

 [] Yes [] No

 Is the After cooler / Air Dryer Condenser clean?

 [] Yes [] No

9. **Loaded vs. Unloaded Hours- Compressor Utilization** _________%

 Calculation

 Total Loaded Hrs./Total Operating Hrs x 100 = Loading Utilization %

 Example: 6,000hrs/10,000hrs x 100 = 60%
Work Area

\[\frac{\text{Loaded Hrs}}{\text{Operating Hrs}} \times 100 = \% \]

Higher percentages equates to higher utilization. Compressors consume energy even when not making (loading) air.

10. Is the pipe size adequate for the compressor’s output?

- **Yes**
- **No**

If the compressor output is unknown, estimate compressor output as follows:

\[\text{_____ HP} \times 5 = \text{_____ Compressor CFM (not exact but close for this comparison)} \]

Work Area

\[\text{_____ HP} \times 5 = \text{_____ Compressor CFM} \quad \text{vs.} \quad \text{_____ CFM Capacity of Pipe} \]

Compressor CFM should be less than capacity of pipe; otherwise situation creates a restriction, an example, “like blowing through a straw.”

Table of Pipe Capacities

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>CFM Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” Black Iron Pipe</td>
<td>109 CFM</td>
</tr>
<tr>
<td>1.5” Black Iron Pipe</td>
<td>245 CFM</td>
</tr>
<tr>
<td>2” Black Iron Pipe</td>
<td>436 CFM</td>
</tr>
<tr>
<td>2.5” Black Iron Pipe</td>
<td>680 CFM</td>
</tr>
<tr>
<td>3” Black Iron Pipe</td>
<td>980 CFM</td>
</tr>
<tr>
<td>4” Black Iron Pipe</td>
<td>1744 CFM</td>
</tr>
</tbody>
</table>

11. Is there adequate air storage?

- **Yes**
- **No**

General Estimation

\[\text{_____ HP} \times 5 = \text{_____ Compressor CFM} \]

Then, \[\text{_____ Compressor CFM} \times 5 = \text{_____ gallons of recommended storage} \]
The Dept. of Energy recommends the above storage for load/no load energy savings. Don’t consider the “air in the pipes” as storage. It will provide only a split-second of air supply. Storage pays for itself in maximizing the efficiency of the entire air system.

12. Does the plant utilize a flow or pressure controller, stabilizing pressure at +/- 1 PSID throughout the plant?

Yes No

Equipment is available (called Intermediate Controllers) that enable a facility to run varying pressures to multiple locations, thereby eliminating one plant-wide pressure. This offers additional energy savings potential by generating only what’s needed.

CONTACT INFORMATION
Assistance with identifying compressed air savings opportunities from WMRC personnel in offices located across Illinois.

WMRC Main Office
One East Hazelwood Drive
Champaign, IL 61820-7465
(217) 333-8940

WMRC-Chicago Area
1010 Jorie Blvd.
Oak Brook, IL 60523
(630) 472-5016

WMRC- Southern Illinois
8450 Montclair Avenue
Brighton, IL 62012
(618) 466-3806

For more information related to this Fact Sheet you may also contact:
Dan Marsch
WMRC- Peoria Office
P.O. Box 697
Peoria, IL 61652
Work: 309 671-3196
Fax: 309 671-3106
dmarsch@wmrc.uiuc.edu