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HYPOTHESIS TESTING W H E N A NUISANCE 
P A R A M E T E R IS IDENTIFIED ONLY U N D E R 

T H E ALTERNATIVE HYPOTHESIS 

Abstract 

When a nuisance parameter is unidentified under the null hypothesis, 

standard testing procedures can not be applied due to the singularity of 

the information matrix. Probably best known examples are the problems 

of unknown change points and the mixtures of distributions in econometrics 

and statistics. Davies (1977, 1987) proposes a general solution to this type 

of problems. 

In this dissertation, we study three applications: tests for parameter con

stancy, white noise against the autoregressive moving average [ARMA(1,1)] 

alternative, and autoregressive conditional heteroskedasticity in mean (ARCH-

M) model. Davies' procedure and the conventional Lagrange multiplier (LM) 

test are applied, and find that Davies' test outperforms the LM test. How

ever, despite of its generality, Davies' approach has several deficiencies to be 

implemented for more general cases and it is quite expensive computationally. 

For testing for parameter constancy, a joint LM test for autocorrelation 

and heteroskedasticity is suggested as a simple alternative test to Davies 

procedure. For testing white noise against ARMA(1,1), we implement a 

more exact and simplified version of Davies approach. Monte Carlo results 

indicate that both the joint LM test and the simplified version of Davies have 

good finite sample power properties. 
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Chapter I 

INTRODUCTION 

1.1 Introduction 

Suppose that f{y,0,<f>) is a probability density function of the random 

variable Y where 9 is the parameter of interest, 9 G 0 C %", and <j> is an 

unknown parameter which lies in a set $ C %*". Suppose that under the null 

hypothesis of H0: 9 = 90, f(y,0o, 4>) = f{y,90). Then the parameter <j> is not 

identified under the null hypothesis. In this case, the information matrix is 

singular, and hence the standard test procedures break down. 

The problem of unidentified nuisance parameter is surprisingly rather 

pervasive in economic literature. Davies (1977) was the first to consider this 

problem in the general context and proposed the test procedure where the 

test statistics have the normal distribution at any fixed value of an uniden

tified parameter. Davies (1987) extended his results to the case where the 

test statistics follow the chi-square and provided quick methods to approx

imate the upper bound of the significance level. Davies' test deserves more 

attention since it is applicable to many testing problems. However the con

tinuity conditions for the first and second derivatives of correlation are not 

satisfied in such cases as threshold models (Chan and Tong, 1991), testing a 
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constancy of hazard rate (Mattews, Farewell and Pyke, 1985) and etc. Also, 

the computational costs of Davies' test is quite expensive since it is computed 

by a grid search over the range of unidentified nuisance parameters. 

Watson and Engle modified the Davies (1977)' result and proposed an 

approximated Davies (AD) test. Bera and Higgins (1992) applied Davies 

(1987) test procedures in NARCH model and found Davies test procedure 

has reasonable finite sample power properties. Hansen (1991) proposed a 

generalized version of Davies (1987) which can be obtained under the gen

eral conditions, allowing stochastic regressors, heteroskedasticity, and weak 

dependence. He also suggested a simulation method based on empirical pro

cess to get rid of the dependence of the null distribution on the covariance 

function of chi-square process. Andrews and Ploberger (1992) developed 

optimal tests based on a weighted average power criterion. Andrews, Lee 

and Ploberger (1992) took an example from a change point problem in a 

normal linear multiple regression model and applied Andrews-Ploberger op

timal test. Andrews (1992) studied bracketing functional limit results and 

provides sufficient conditions to obtain the asymptotic null distribution of 

Andrews-Ploberger's optimal tests. These Hansen and Andrews' results may 

be regarded as extensions or modifications of the work of Davies. 

King and Shively (1991) proposed locally mean most powerful testing pro

cedure and applied the procedure to testing for various stochastic coefficient 

models. Chan (1990) and Chan and Tong (1991) studied a testing problem 

for non-linear threshold models, developed a test based on the supremum of 

the likelihood ratio statistics, and computed the significance probability by 

implementing Ornstein-Uhlenbeck process. Jandhyala and MacNeill (1991) 
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developed a Bayesian-type test for change point problems which originate 

from Chenoff and Zacks (1964). 

1.2 Examples 

In this section, we introduce examples of the unidentified nuisance pa

rameter problem. 

Suppose the hypotheses of our interest are 

H0 : 9 = 0 

Hi : 9 ^ 0 

and the nuisance parameter <f> presents only under the alternative hypothesis. 

In this situation, the distribution under the alternative hypothesis depend 

on (9, <j>) while the null distribution does not depend on a nuisance parameter 

<f>. Hence standard methods to derive the test statistics are not directly 

applicable. 

Here we present some examples where a nuisance parameter is present 

only under the alternative hypothesis. Throughout the most following exam

ples, 9 represents the parameter to be tested and (f> is the parameter which 

is not identified under the null hypothesis. 

3 



Example 1 (Mixtures of Distribution and Switching Regressions) 

Consider the simplest one for the example. Suppose the hypotheses of 

interest are 

#o = AT(fX) 

Hx : (l-9)N(fi,cr*) + 9N(fi,<i>) 

Then the nuisance parameter (j> is not identified under the null hypothesis. 

Schmit (1982) worked on the basically same model and do not study the test

ing problem of the nuisance parameter <f> under the null. For more references, 

see Bock (1984). 

Example 2 (Non-nested Case) 

Pesaran (1981) considered the non-nested model 

yt = xtP + 9zt<j> + tt. 

If 9 = 0, then the model becomes yt = xtf3 + et. Under the null hypothesis 

of H0 : 9 = 0, (j) is not identified. 

Example 3 (Test of Normality) 
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Bera and McKenzie (1986) 

/(«.-) = ^ / % ezp(,'f«,)ezp[%^ - ?|f|'{1 + ^(t,9)}]dt 

where —oo < u,- < oo, j = l , . . . , N, i = \ / - T , t is any real number, u>(t,9) 

is tan(f) if 9 ^ 1, and Mn\t\ if 0 = 1. When 9 = 2 and <j> = 0, the 

distribution is normal. Bera and Mckenzie suggested to test if 9 is 2 for 

testing normality of the distribution. Under the null hypothesis of the test 

of normality (9 = 2), the parameter <j> disappears, and in addition, the value 

of 9 lies on the boundary of the parameter space. 

Example 4 (Pa ramete r Constancy Test) . 

It is rather unnatural to assume that parameters are constant over time. 

Nicholls and Pagan (1985) showed how pervasive varying parameters are 

in economic models. For a simplicity, let us limit our attention on varying 

coefficient regression cases. A simple varying coefficient model can be written 

as 

Vt = xtPt + Zi<% + ut 

a(B)/3t = 9(B)et 

tt ~ WN{0,ol) 
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where t = l , .. .,n and 

(:*H[(o)'(n)] 
Under some conditions, 

oo 

Pt = X>ie<-i 
i=o 

E(ft) = 0 

y(&) = ^ E ^ 

= * / (W) 

where ipf+1 = ^ ? , and t=0 , l , . . . , n. Then if 9 = 0, then it renders <£ 

unidentifiable. 

Watson and Engle (1985) considered a specific representation of the stochas

tic coefficient model which the coefficient follows AR(1) process rather than 

the general ARIMA process. 

yt = xtPt + et 

(Pt-P) = <KA-i - P) + ut 

where et ~ iV(0,p), ut ~ N(0,9), et and u< are independent, and \(j>\ < 1. 
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Then the coefficient from the model follows pt ~ N{p, 0/(1 -<^) ) . Therefore, 

with 9 = 0, <j> can not be identified. 

Example 5 (Common Roots) . 

Consider (1 - <j>B)yt = (1 - {<f> + 9)B)xt + et, where B is a lag operator. 

If 9 = 0, then <j> is not identified. 

Example 6 (Testing W h i t e Noise against A R M A (1,1)). 

Suppose a model is 

(l-(cl> + 9)B)yt = (l-c!>B)tt 

If 9 = 0,the common root, (f>, is crossed out. Therefore, the series, yt, reduce 

white noise and <j> is not identified. (yt — yt_x = et — et-\ , yt = tu e ~ WN). 

Andrew (1992, pp 8-9, and pp 15-16) discussed the same problem. Andrew 

considered testing for autocorrelation in the errors of a regression model 

against ARMA(1,1). 

Example 7 (Testing for Unit Roots) 

Consider a model as follows. 
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{yt -p) = % * - i -p) + e<-

Rewrite the model as yt = n(l — 9) + 9yt-i+tt. Then the mean of the process, 

fj,, is not identified under the null hypothesis Ho : 9 = 1. 

Example 8 (Mean Trend) 

Consider the same model as in Example 7. Rewrite the above model as 

yt = fi(l — (ft) + <&/t-i + f(. Suppose that we want to test whether yt = fi, 

over all time period. Then the hypotheses will be H0: yt = H for all t and 

Hi: yt ^ \i. Then the autoregressive parameter, <j>, is not identified under 

the null hypothesis. 

Example 9 (Testing for a Liquidity Trap) 

This example is from Konstas and Khouja (1969), and Breusch and Pagan 

(1980, p 243). 

Mt = -y% + 9{Rt - ^ + tt 

where Mt is money demand, Yt is income, and Rt is the rate of interest. When 

(j> is zero, there is no liquidity trap. Under the null hypothesis of H0 : 9 = 0, 

(ft, a parameter indicating a liquidity trap, is not identified. In addition, this 

unidentifiable parameter,^, makes the equation nonlinear. 
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Example 10 (Additive Nonlinearity) 

There are numerous examples of this. See Gallant (1977, 1987, p 139). 

Consider 

yt = g(xt, a) + 9h{xt, (ft) + et 

Then the nuisance parameter (ft is unidentified under the null hypothesis of 

H0 :9 = 0. 

Example 11 (Functional Form 1). Refer Andrew and Ploberger (1992, 

pp 4-5), Bierens (1990), and Hansen (1991). 

Consider a nonlinear model 

yt = g(xua) + 9h(zt,(ft) +tt 

To test if zt is the relevant explanatory variable, a null hypothesis of Ht : 9 = 

0 can be examined. But, the parameter, <£, is not identified under the null. 

The parameter could be a scalar or vector. When zt is scalar, the nonlinear 

iunction,h(zu(ft) can be the Box-Cox transformation (Zf — l)/(jt. 

When the explanatory variable, zt, is equal to xt, a test of the null hy

pothesis of Ho : 9 = 0 is that of functional form of the nonlinear regression. 
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Neural network tests and consistent tests for the functional form belong to 

this class. 

Example 12 (Box-Cox Transformation and Nonlinear Autoregres

sive Condit ional Heteroskedast ic ( N A R C H ) Model) 

The Box -Cox transformation has a wide range of applications. Suppose 

that 

yt = a + 0-2-r— + et 

Then the nuisance parameter </> is identified only under the alternative. As 

Bera and Higgins (1992) pointed out, NARCH proposed by Higgins and Bera 

(1992) belongs to this class. The NARCH model can be written as 

«*|*t-i ~ JV(o,M 

6, = [0okY + giW_i/-r... + #Lp)1 

where ht is the conditional variance function, and $*_i denotes the infor

mation set available at time t-1. From the above equation, we note that 

when the null hypothesis H0: 9i = 92 = . . . = 9P = 0 is true, the nuisance 

parameter, (ft, is not identified. 

Example 13 (Neural Network) Kamstra (1990, p 4), Lee, White, and 
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Granger (1989, pp 5-6), and Hornik, Stinchcombe, and White (1989) consid

ered the model 

% = /(3„ # + ! ]# (%, ,&)+ 6, 
i=i 

where tft(-) is the nonlinear function. ^(-) can be the logistic function, ijt(z) = 

(1 + e~z)~x. The neural network test for neglected nonlinearity is a testing 

problem for the hypothesis 0,-0 for i = l , . . . , p for particular choice of p and 

(ft. Under the null hypothesis H0 : 0,- = 0, for j = l , . . . , p, the functional form 

is f(xuP). However, under the null, the standard test is no longer valid due 

to presence of unidentified nuisance parameter, (ft. 

Example 14 (Functional Form 2) 

Davies (1977) considered a model with the following density function. 

p(x; 0, (ft) = (1 - 9)exp{-x) + 9(jtexp(-(jtx) 

where 1 < (ft < oo. Under the null hypothesis H0 : 9 = 0, (ft is not identifiable. 

Example 15 (Discrete Frequency) 

Davies (1987). Let xi,...,xp be independent normal random variables 

with constant known variance and the expectation 
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E(xj) = 9ism(j(ft) + 92coS(j(lt) 

When at least one of 0i and 92 is not zero, then there is a discrete frequency 

component with unknown frequency, (ft. Under the null hypothesis Ho : 0i = 

02 = 0 against Hi: at least one 0; is nonzero, the frequency parameter, (ft, is 

meaningless. 

Example 16 (Mixture of Radioactive Elements) 

Davies (1977) considered a model for a mixture of radioactive elements. 

Suppose that x = (xi,...,xp) where %*, are independent Poisson random 

variables with expectation given by 

s 
E{xk) = ]T ajexp(-\jk) + 9exp(-(ftk) 

i=i 

Under the null hypothesis of the presence of decay term (0 = 0), the nuisance 

parameter (ft is not identified. 

Example 17 (Simultaneous Regression Equat ions) (Durbin, 1954, p28). 

Simultaneous regression equations can be the example. 

y = 9x + e 
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x = (ftz + n 

Then 

y = 0(#r + /z) + e 

= 9(ftz + 9fi + e 

When 9 is zero, (ft is not identifiable. Adaptive adjustment process in eco

nomics will be a class of this case. See example 18. 

Example 18 (Partial Adjustment and Adaptive Expectations) 

Let us consider 

yt = a + 9x; + et (1) 

x*-<-i = 4%, - <_i) 

where x* = E[xt\Ft] and 0 < 0 < 1. The model can be written 

Ayt = 9(f>(xt - %;_i) + Ac, 

When 0 = 0, (ft is not identified. In economics, we can find a numerous 

examples with this type of data generating process. For instance, see Carlson 
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and Dunkelberg (1989, p 318). Geometric distribution lag model also belongs 

to this class. 

oo 

yt = 9 J2 &xt-i + f; 

(ft is unidentifiable when 0 is zero. 

Example 19 (Heteroskedasticity) 

Consider 

yt = xt(ft + ut, u< ~ NID(0,cx2) 

a2 = a2exp[9(xt(ft)] 

Bickel (1978) proposed to use the following two specifications for the variance 

term 

a2 = <r2[l + e(xt(jt)}
2 

a\ = <j2exp[9(xt(jt)} 

When 0 = 0, (ft is not identified. 

The ARCH-M model may be a well known example for the problem in 

economic literatures. The ARCH-M model, originally introduced by En-
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gle, Lilien and Robins, specifies its conditional mean equation as an explicit 

function of the conditional variance. 

yt = x\P + ht(ft + tt 

yt\Ft-i ~ N(x'tP+ht(ft,h
2) 

h2 = 0o+ !>?_, . 

where xt is a k x 1 exogenous vector, (ft is a scaler of ARCH-M parameter, P 

is a k x 1 vector, 0 = (0 0 ,0 i , . . . , 0P) and Tt-\ is an information set including 

the past information and exogenous variables. 

Consider a test of no ARCH effect against the ARCH effect in the ARCH-

M model. 

Ho : 0O = 0i = . . . = 0P = 0 

Hi : at least one 0,- > 0 for any i. 

Then the ARCH-M parameter (ft is not identified under the null. 

Another well known example is testing for GARCH(1,1) and GARCH-

M models. This example is quite similar to testing problem for ARCH-M 

conditional heteroskedasticity. Hansen (1991) discussed this problem. 

yt = x'tP + htih + tt (2) 
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Vt\Tt-i ~ N(x'tp + ht<f>i,h2) 

h2 = a + 4>2h
2t_1+0t*_i 

where xt is a k x 1 exogenous vector, tt~i — yt-i — x't_xP — (ftiht-i and 

t = l , . . . , N. Under the null hypothesis H0 : 0 = 0 (no ARCH effect), the risk 

premium parameter </>i and the GARCH(1,1) parameter (ft2 are not identified. 

Note that under null hypothesis, a nuisance parameter vector (ft = ((jti, (jt2) is 

not identified. Therefore, the limiting process is a random field which is far 

less understood than a one-parameter random process. 

Example 20 (St ruc tura l Change at Unknown Poin t ) 

Structural change is assumed to occur at the unknown time (ft in the 

model introduced by Quandt (1960). 

yt = Pxt + l ( i /n > (jt)9xt + et 

where l(-) is the indicator function. With 0 = 0, the time of structural 

parameter (ft is not identified. Hinkley (1969)'s two phase problem, Hawkins 

(1980) and Worsley (1983) belonged to this class of problem. See Poirier 

(1976) and Andrews (1989) more references. 

Example 21 (Constant Hazard Rate) 

In biological science, the hazard rate model is frequently used. Matthews 
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and Farewell (1982) considered the following model. 

pn.a A \ - i \exp{-Xt), \iQ<t<(ft, 
nh »,<P)-\ exexp[-\{(ft + 9(t - (ft))], \it>(ft. 

Under the null hypothesis Ho : 9 = 1, the nuisance parameter indicating 

an unknown change timing, 0, is not identified. In this model, the correlation 

structure is not continuous with respect to 0. Therefore the Davies' proce

dures can not be applicable. To deal with this type of discontinuity problem 

in correlation structure, the Ornstein-Uhlenbeck process can be applied. 

Example 22 (Threshold Models) 

Threshold models introduced by Tong (1990) also have the same problem. 

Consider the following self-exciting model. 

yt = P(B)yt + l(yt-i < 4>)0(B)Vt + *t 

The threshold parameter (ft can not be identified in the model under the null. 

Chan (1990) and Chan and Tong (1991) considered the supremum of LR test 

for this problem. 

Example 23 (Markov Trend Model) 

This example is from Hamilton (1989). For GNP growth rates, Hamilton 

suggested the model 
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Ay, = fi + fidst + ut 

where xft(B)ut = tt, tt is iid JV(0,<72), and st is a dummy variable with 1 or 

0. The transition probabilities for states are 

P{st = l\3t.t = 1) = p 

P{st = 0\st-i = 0) = q. 

The Markov trend model reduces to the AR process under the null hypothesis 

of H0 : fid = 0. Under the null, the transition probabilities p and q are not 

identified. 

1.3 Organization 

The next chapter discusses the testing problem of regression coefficient 

stability. We first study the effect of misspecification when a researcher dis

regard the parameter variation and erroneously use the conventional Wald 

test for testing linear restriction on the regression parameters. To test the 

parameter constancy, Davies' test is firstly considered as a general approach. 

After glancing at the error structure of random coefficient model, we propose 

a joint Lagrange multiplier (LM) test for the autocorrelation and the het

eroskedasticity for a simple alternative test. Monte Carlo results show that 
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the joint LM test for autocorrelation and heteroskedasticity has good finite 

sample properties. An empirical application for the dynamic hedge ratio is 

finally presented to illustrate our test procedure. 

In Chapter III, we study a test for white noise against autoregressive 

moving average (ARMA) alternative. In practice, ARMA has been found 

to be good time series data representation. However, theoretically, it is not 

possible to derive an LM test for this problem. Using the results of Davies 

(1987), we suggest a simplified test. Power and size of the suggested test are 

compared with the conventional LM test through simulation study. 

In Chapter IV, we consider the autoregressive conditional heteroskedas

ticity in mean (ARCH-M) model. Testing ARCH effects in the ARCH-M 

model has been an open question in econometrics. Here, we apply Davies' 

test and evaluate its power properties through simulation. 

Finally, Chapter V will provide summary of the results and some direc

tions for future research. 

19 



Chapter II 

TESTING FOR THE REGRESSION 
COEFFICIENT STABILITY 

2.1 Introduction 

The constancy of regression coefficient is very restrictive and therefore, 

it is natural for researchers to consider a random coefficient model as an 

alternative. Recently a number of alternative models and tests have been 

proposed. In this chapter we reconsider the testing regression stability with 

Rosenberg (1973) model as the alternative hypothesis as discussed by Watson 

and Engle (1985). 

Rosenberg's return to normalcy model has many interesting features. One 

is that the random coefficient and the random walk model can be obtained 

as the special cases. Bos and Newbold (1984) and Watson and Engle (1985) 

applied the Rosenberg's model to study the stability of the CAPM model. 

Bera, Garcia and Roh (1992) estimated the dynamic hedge ratio in the fu

tures market using this model. Another interesting feature of the Rosen

berg's model is the testing problem. Since the autoregressive parameter (a 

nuisance parameter) is present only under the alternative hypothesis, the 
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standard asymptotic tests such as Lagrange multiplier (LM), Likelihood ra

tio (LR) and Wald tests are not applicable. Davies (1977) considered the 

general problem in which the nuisance parameter is unidentified under the 

null hypothesis and proposed a procedure when the standard test follows a 

normal distribution. Davies (1987) extended his results to the chi-square 

distribution. Davies (1977, 1987)' tests are computed by a grid search over 

the range of a nuisance parameter and subsequently are quite expensive com

putationally. Keeping this shortcoming in mind, we propose the joint LM 

test for the autocorrelation and the heteroskedasticity as a simple alternative 

test. Though the computational cost of the joint LM test is trivial compared 

to the Davies' tests, our Monte Carlo results indicate that the joint LM test 

has good finite sample power properties. 

Throughout this chapter, we follow Watson and Engle's notation when

ever possible. This chapter is organized as follows. Section 2 first introduces 

the Rosenberg random coefficient model. Then we explore the effects of ran

dom coefficient on the Wald test designed for a fixed coefficient model. It is 

shown that both the type I error and the power of the Wald test are affected. 

Therefore, it suggests the a test for coefficient stability would be useful from 

a practical point of view. The last part of section 2 formulates such a testing 

problem. Section 3 reviews Davies (1977,1987)' procedure. We also note 

that our formulation of random coefficient model can be reformulated as 

joint presence of heteroskedasticity and autocorrelation. As an indirect test 

for regression coefficient stability, we present a simple LM test for the joint 

hypotheses, homoskedasticity and serial independence. Section 4 investigates 

the finite sample power properties of the tests through simulation. Section 5 

presents an empirical example to demonstrate our procedure. 
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2.2 The Model 

Rosenberg's (1973) return to normalcy model can be written as 

yt = x't~f + ztPt + tt (3) 

(Pt-p) = (ft{pt-i-P) + vt (4) 

-K(ft<l, 

t = 1,2,...,TV, where yt is a dependent variable, xt is a kxl exogenous 

vector with a 6x1 unknown fixed coefficients 7. zt is an exogenous scalar 

with a time varying coefficient Pt. tt and vt are independent disturbances 

with e ~ N(0,rIN) and v ~ N(0,qIN). (Pt - (3) follows the stable first order 

autoregressive process with a parameter (ft in which Pt fluctuates around its 

mean p. When the autoregressive parameter (ft is unity, Pt follows a random 

walk, while the behavior of pt is same as Hildreth-Houck (1968) random 

coefficients model when (ft is zero. 

2.2A Effect of Random Coefficient on the Standard 
Wald test 

Suppose that a researcher disregard the parameter variation and test the 

hypothesis of H0 : HP = h in the fixed coefficient model yt = z[P + tt by 

erroneously implementing the following conventional Wald type test: 
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w = 
__ (HP - h)[H(j:?=i ztz't)-

lH']-\Hp - h) 

where for generality, we take zt as k x 1 matrix and rank(i/)=s. 

When the parameters are fixed, the distribution of this conventional Wald 

test statistics is asymptotically a central x2 under H0. We want to investigate 

the properties of this test when parameters are indeed random as given in 

equation (2). Using the results of Szroeter (1992), we found the upper and 

lower bounds of rejection probability as discussed below. 

Suppose that zt, Pt and tt are mutually independent. Then a2 and W are 

asymptotically equivalent to respectively a\ and Wm: 

where 

*: = * ' + < 
I - ( f t - f#-'IX;, (5) 

( = i 

W, = o-;2(d + R + G)' 
- i i - i 

" ( J V - ' E ^ ) H' {d + R + G) (6) 

N-^d^HP-h 
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Therefore, a'^lW*, conditional on zt and Pt, has a noncentral x2 dis

tribution with s degrees of freedom and noncentrality parameter 0 = B'B 

where the unobservable random vector B is normally distributed conditional 

on zt with 

E(B | zt) = a - i 
/ N \ - l I - 1 ' 2 

HlN-^ztz'A H' 

and 

V(B | zt) = a'2 

a N \ 

. - , S M ) ! ) I 

r / N \_1 • 

^ Zz,4 ^' 
\<=i / 

/ N \ " x 

lH "' 

-*/' /w \ _ i 

^ E^ ; 
\t=i ) 

/ ff \ _ 1 ' 

^(E^;j *' 
-1/2 

Note that the unconditional distribution of B is normal with a mean of p. 

and a variance of £2. Szroeter used relationships between unconditional and 

conditional multivariate normal distributions and derived the tight upper and 

lower bounds which do not depend on the values of rank(fi) and independence 

of e. Following Szroeter's results, upper and lower bounds for Pr{W* > %̂  a} 

conditional on zt are respectively 

, - 2 „2 ,,2 1 - F, * - ' < % I (1 + AH f-'<f HUf-^ztA H' 
- 1 \ 

(7) 

and 
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1-Fm (1 + A) - l _ - 2 _ 2 ^ 2 
X,,al^ - 2 J / "(#-'i>,4) H' 

- i \ 

d 

) 
(8) 

where A is the largest characteristic root of Q. 

Assuming L/V-1 ^ j l i Z(Z() —» M in probability, then the above equa

tions (5) and (6) become upper and lower bounds on the true unconditional 

asymptotic significance probability of the test by which the hypothesis of 

Ho : HP = his rejected if Q > x2,a- These upper and lower bounds could be 

too high or too low compared to the nominal significance level. Therefore, 

if empirical researchers erroneously use the conventional Wald test, then the 

null hypothesis of Ho : HP = h could be more frequently rejected or ac

cepted. Note that when d = 0 in equations (5) and (6), the probability of 

rejecting the null is too high. Therefore, it is important to test the hypothesis 

of parameter variation. 

2.2B Testing Problems 

Let us express equations (1) and (2) as 

yt = x'tl + ztp + zt(Pt - P) + tt 

= XtT + ut 
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where Xt = [x't zt], T = [7' /?]' and vt = zt(Pt — P) + tt. Then we can simply 

write equation (3) in the matrix form 

Y = XT+v (11) 

where X is a Nx (k-fl) design matrix, Pisa (k+l)x 1 fixed coefficient matrix 

and v is a Nx 1 disturbance vector. Now the model becomes more like a 

standard regression model with fixed coefficients and the disturbance vector 

v ~ JV(0,2(1 - (ft2)~xqll(4>)z' + rlti) where z = diag(zuz2,..., z#) and 

E(*) = 

1 
<f> 

4 ^ 
1 <f> 

<ftN~l (ft JV-2 

^ - 2 

From equation (2), pt is normally distributed with a mean of P and a 

variance of (1_^2) and ^, a vector of (Pi, p2,..., PN), follows 

" ~ " ( ^ ( T ^ 5 f « ) (12) 

where 1 is a (N x 1) vector of 1. 
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Therefore, the constancy of regression coefficient can be examined by 

testing q = 0 and the relevant test hypotheses are 

Ho:q = 0 

Hi-.q > 0 

The hypotheses of interest for any t: H0 : Pt = P and Hi : Pt ^ P 

are equivalent to the hypotheses: H0 : q — 0 and Hi : q > 0. As Watson 

and Engle (1985), King and Shively (1991) and Hansen(1991) demonstrated 

that, we can not test these new equivalent hypotheses by directly employing 

the conventional asymptotic tests such as Wald, LR and LM because of the 

presence of unidentified nuisance parameter (ft. When the null hypothesis, 

q=0, is imposed, the nuisance parameter can take any value in the range of 

autoregressive coefficient (f>. The surface of the likelihood function will be 

flat over (ft 6 (—1,1). As a result, the information matrix is singular under 

Ho and the asymptotic null distribution can not be obtained. 

2.3 Davies' and LM Tests 

Davies(1977) considered the problem with a normally distributed test 

statistic. In addition, Davies(1987) simplified the previous results and ex

tends to a chi-square case. Watson and Engle (1985) modified Davies(1977) 

procedure and applied their approximated Davies test. 
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2.3A Davies' Tests 

Davies considered the case where a nuisance parameter is unidentified 

under the null hypothesis. In such case, the asymptotic null distribution 

can not be obtained since the information matrix is singular. However, the 

asymptotic distribution could be obtained easily by fixing the value of the 

unidentified parameter arbitrarily. Suppose that the test statistics S((ft) fol

lows a Gaussian distribution under the null hypothesis for any fixed value 

of the unidentified parameter (ft. Davies (1977) suggested a test which re

jects the null hypothesis for large values of S((ft). The test uses the Roy 

(1953) union-intersection principle and is based on the significance probabil

ity Pr(sup0 S((ft) > u), where u is a suitably chosen constant. The distri

bution of the test statistic sup^ S((f>) is unknown. Davies (1987) extended 

his results to the case where S(^) follows the asymptotic chi-square distri

bution rather than the Gaussian distribution, and provided an approximate 

upper bound of the significance level. Essentially he proposed a simple pro

cedure to determine the upper bounds of significance levels by providing 

approximations of the total variation of S((f>) over the range of (ft € $ = 

((ft: (jtL < (ft < (f>v). 

1) When S((ft) follows the Gaussian process for any fixed (ft, 

Pr(sup S((ft) >u)< Pr(Z < -u) + W
eXp{~^J2) (13) 

4>G* (871-)? 
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where (ft^ and (f>u are the lower and upper bounds for (ft, and 

W = J \dS((jt)/d(f>\d(ft (14) 

= \S((fti)-S((jtL)\ + \S((ft2)-S((fti)\ + 

I3W-.SWI + ... 

2) When S((ft) is asymptotically x 2 distributed for any fixed (ft, 

P K S S « > . ) < W > . ) + . ^ ^ (15, 

where (fti and (fty are the lower and upper bounds for (ft, p is degrees of 

freedom, <£,- denotes the i-th turning point of S((ft) and 

V = J \dSl'2((ft)ld(ft\d(ft (16) 

= |S'/2(&) - S ^ W I + |S'/'(&) - ^/'(^i)| + 

| S ^ ( ^ ) - ^ ( ^ ) | . 

Equation (12) and (14) are approximations of expected number of up-

crossings of u by S for (ft G <&. We expect both to perform better than the 

tests based only on the first terms in the right side of equation (11) and 

(13), the standard normal and x2 distribution function respectively, since 
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the second terms in the right hand side of the equations are added to reflect 

the variation of S((ft) over the range of (ft under various different alternative 

hypotheses. 

Watson and Engle (1985) proposed an approximation to {sup^ S((ft) > u}. 

The approximate Davies (AD) test suggested by Watson and Engle is based 

on the following significance level: 

Pr(AD>u) = l~Pr[(S((fti)<u)n(S((ft2)<u)n... (17) 

. . . n (S((ftn) < u)] 

where AD = max{S((fti) : fa E $,fa < fa+i}, and the distribution of S(fa) 

for any i is standard normal. Their suggested upper bound of the significance 

probability is given by 

n - l 

£ 
«=i 

Pr(AD >u)< Pr(S((ftx > u) + £ Pr(S((fti) <u< S((jti+i)). (18) 

For a given value of (ft, the standard LM statistic for testing q=0 in 

equation (1) and (2) is given by [for details, see Watson and Engle (1985)] 

m)? = [^>]2 (19) 

where 
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& = iz#-i) (20) 
^ (=1 r 

%w = TE^E^z^-* (21) 

W) = 

N t-l 

T t=2 t= l 

i JV JV t - l , N 

^E*XZz*E^-')-=UlX)' 
L t=\ (=2 t = l £ly t=l 

(22) 

f = T,tLi e2/iV,and tt indicates the OLS residuals from the regression yt = 

x'fl + ztfi+tt. Under general conditions, [5"(< )̂]2 is asymptotically distributed 

as x2 with one degree of freedom. 

2.3B The Joint LM test 

Since the Davies' tests involve complex computations, it is difficult for 

empirical researchers to implement these tests. As a result, it is desirable 

to develop a easy and convenient test. As we noted in equation (9), the 

Rosenberg model with a AR(1) coefficients is equivalent to the standard 

regression model with constant coefficients and non-spherical disturbances 

with heteroskedasticity and autocorrelation. The variance-covariance of i/j 

has the following forms 

6W) = r r ^ f + r (23) 

2(W = i3^MI**i (24) 
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where i = 1, 2 , . . . , N and i ^ j . Equation (21) represents the heteroskedastic

ity while equation (22) reflects the autocorrelation. Furthermore, when (ft is 

assumed to be zero, the variance-covariance matrix of v is equal to qzz'+rl^, 

which has only the heteroskedasticity component. Therefore, the parameter 

constancy might be examined by a joint test of the heteroskedasticity and the 

autocorrelation. Following Bera and Mckenzie (1987), a joint LM statistic 

(LMm) is simply the sum of the LM statistic for heteroskedasticity (LMfj) 

and the LM statistic for autocorrelation (LMi): i.e., 

LMm = LMH + LMi. 

Each component of LMm can be easily obtained by adopting the pro

cedures in Breusch and Pagan (1980), and Breusch (1978) or Godfrey and 

Wickens(1982) respectively. Applying these procedures, 

LMH = ^r'W(W'W)-lW'r (25) 

where W = (l,z) can be calculated as one-half of the explained sum of 

squares from the OLS regression of (r = 4̂ - — 1) on (1,2) or by regressing 

the squared residuals e2 on (l,zt),t = 1,2, . . . ,N and then dividing the 

variance of the predicted values by 2a2/N. tt denotes the OLS residual from 

the regression 

yt = %*7 + ztp + tt. 
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Assuming the disturbance term e follows AR(1) process, the LM statistic 

for testing autocorrelation is given by 

LMi = N E N i t 
(=1 € t € i - l 

JV 52 L 2£ i3 

The LMi is asymptotically equivalent to NR2, where R2 can be obtained 

from regressing it on et-i. 

2.4 Monte Carlo Experiment 

In this section, we examine and compare the finite sample performances 

of the LMm and Davies' statistics through an Monte Carlo experiment. In 

the experiment, we use the same model and design as that of Watson and 

Engle (1985), namely 

yt = a + ztPt + tt 

(Pt-P) = <ft(pt_i-P) + ut 

-\<(ft<\ 

(26) 

(27) 

We set a = l and /3=2, and generate zt from the first order AR process 

zt = azt-i + et, \a\ < 1. To control the degree of heteroskedasticity and 
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autocorrelation for our study, we choose (ft = (0.0, 0.45, 0.5, 0.7, 0.8, 0.9) and 

a = (0.0, 0.1, 0.4, 0.8, 0.9) respectively. We generate the disturbance term 

tt from N(0,1.0), ut from N(0,q) and et from N(0,25). 

The experiments are performed for the sample size of N=30 and 60, and 

for each N we carry out 400 replications under the null hypothesis(i.e. q=0) 

and 300 replications under the various alternative hypotheses ( q > 0 ). To 

study the size and power of statistics, we set q=(0.0, 0.1, 1.0) so that it 

reflects the null and the close and remote distance alternatives. 

One of the nice things of the model is that the range of the nuisance 

parameter (ft is restricted between -1 and 1. Therefore, finding the supremum 

of S((ft) and the total variation of S*l2(fa) and S(fa) is relatively easier. 

Since the nuisance parameter is bounded above and below, the checks for 

local maxima can also be done quite easily. 

We employ the grid search to find the supremum of S((f>) and the total 

variation of S^2(fa) and S(fa) over \(ft\ < 1 for all i. The Davies and AD 

tests are calculated for (ft G [-0.95,0.95] with step length 0.05. The OLS 

residuals tt from the regression with a fixed regression coefficient /? are used 

to compute S((ft) and LMHI- The p-value from each drawing is calculated 

as described in Section III. If the nominal significance level is greater than 

the calculated p-value, then we count it as a rejection. The size and power 

of test are estimated by dividing the total frequency of rejection by the total 

number of replications. 

We present the significance of the LMm and Davies' tests in Table 1 and 

the power of all the statistics in Tables 2 and 3. Throughout the experiments, 
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the 5 % nominal significance level is chosen. 

In Table 1, we find that the significance probabilities of Davies tests are 

relatively closer to the nominal significance level. The estimated significance 

level in the LM tests are somewhat less than the nominal level. Note that the 

maximum standard errors of the estimated significance probabilities would 

be y(0.5)(0.5)/400 = 0.0125. 

In Tables 2 and 3, we present the powers of the test statistics. As the 

distance of alternative hypothesis from the null hypothesis measured by q, 

the degree of heteroskedasticity and autocorrelation represented by (ft and a 

respectively and the sample size N increase, generally the powers of all the 

test statistics increase. We find that the power of the LMHI and Davies tests 

are about the same. With the sample size of N=30, q=0.1 and the presence 

of strong heteroskedasticity and autocorrelation (i.e. (ft and a are assumed 

to be 0.8 or 0.9), the powers of both the Davies and LMHI tests are overall 

around 80 % in Table 2(a). Table 3 reports that when q=1.0, at (ft = 0.8 or 

0.9, the powers of Davies and LMHI test with N=30 reach over 90 %. 

Throughout the experiments with N=30, all the statistics perform some

what poorly, especially at a = 0.4. However the performance of all the test 

statistics even at a = 0.4 improve noticeably with the increase in the sample 

size as we observe in Table 2(b). Letting N increase to 60, the powers of the 

tests approach to 1. Finally, to see the behavior of S((jt) for different values 

(ft, we present three graphs in Figures 1, 2 and 3 from three random replica

tions. Figure 2 for which the data is drawn from the alternative hypothesis 

of Hi : q = 0.1 has clear peak almost at the true value of (ft = 0.8. Figure 3 

from the alternative hypothesis of Hi : q = 1.0 has also clear peak almost at 
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