Future Science and Engineering Breakthroughs Hinge on Computing

- Computational Geoscience
- Computational Chemistry
- Computational Medicine
- Computational Modeling
- Computational Physics
- Computational Biology
- Computational Finance
- Image Processing
The Future Computing is Parallel

- CPU clock rate growth is slowing, future speed growth will be from parallelism

- GeForce-8 Series is a massively parallel computing platform
 - 12,288 concurrent threads, hardware managed
 - 128 SP Thread Processor cores at 1.35 GHz \(\approx \) 518 GFLOPS peak

GPU Computing features enable C on Graphics Processing Unit
Implications and Opportunities

Massively parallel computing allows
 • Drastic reduction in “time to discovery”
 • New, 3rd paradigm for research: computational experimentation
 • The “democratization of supercomputing”
 - $3,000/Teraflop in personal computers today
 - $5,000,000/Petaflops in clusters in two years
 - HW cost will no longer be the main barrier for big science
 - Global competition will be won with abilities to create and use parallel systems for discovery
 • This is once-in-a-career opportunity for many!

Future winner academic institutions will be leaders in
 • research in Parallel Programming and Parallel Architecture
 • More importantly, teach massively parallel programming to CS/ECE students, scientists and other engineers.
 • UIUC is already uniquely positioned!

http://www.nvidia.com/Tesla
http://developer.nvidia.com/CUDA