DECENTRALIZED IDENTIFICATION AND MULTIMETRIC MONITORING OF CIVIL INFRASTRUCTURE USING SMART SENSORS

BY

SUNG HAN SIM

DISsertation

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Billie F. Spencer, Jr., Chair
Professor Amr S. Elnashai
Professor Gul Agha
Associate Professor Daniel A. Kuchma
ABSTRACT

Wireless Smart Sensor Networks (WSSNs) facilitates a new paradigm to structural identification and monitoring for civil infrastructure. Conventionally, wired sensors and central data acquisition systems have been used to characterize the state of the structure, which is quite challenging due to difficulties in cabling, long setup time, and high equipment and maintenance costs. WSSNs offer a unique opportunity to overcome such difficulties. Recent advances in sensor technology have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing are common practice, WSSNs require decentralized algorithms due to the limitation associated with wireless communication; to date such algorithms are limited. This research develops new decentralized algorithms for structural identification and monitoring of civil infrastructure. To increase performance, flexibility, and versatility of the WSSN, the following issues are considered specifically: (1) decentralized modal analysis, (2) efficient decentralized system identification in the WSSN, and (3) multimetric sensing. Numerical simulation and laboratory testing are conducted to verify the efficacy of the proposed approaches. The performance of the decentralized approaches and their software implementations are validated through full-scale applications at the Irwin Indoor Practice Field in the University of Illinois at Urbana-Champaign and the Jindo Bridge, a 484 meter-long cable-stayed bridge located in South Korea. This research provides a strong foundation on which to further develop long-term monitoring employing a dense array of smart
sensors. The software developed in this research is opensource and is available at:
http://shm.cs.uiuc.edu/.
ACKNOWLEDGEMENT

First and foremost, I would like to offer my sincere gratitude and respect to my advisor, Prof. B.F. Spencer, Jr. for his advice on my research as well as all his support that made me through difficult times. His deepest academic insight and warm and trustful attitude to his students have greatly impacted on me. Indeed, having the chance to learn under his supervision was the one of the most fortunate things throughout my entire life. I would never have been able to finish my dissertation without his guidance and support.

I sincerely appreciate the efforts of my committee members, Prof. Amr Elnashai, Prof. Gul Agha, and Prof. Daniel Kuchma for being willing to participate in the committee and providing many valuable comments that improved this dissertation greatly.

I deeply appreciate Prof. Chung-Bang Yun for his continuous support not only in the pursuit of my Ph.D. study but also in my personal life. I would never forget his kind concern and help.

I would like to thank all of the SSTL members, Dr. Guangqiang Yang, Dr. Yong Gao, Prof. Tomonori Nagayama, Prof. Jennifer Rice, Ryan Giles, Brian Phillips, Chia-Ming Chang, Hyungchul Yoon, and Lauren Linderman. Their academic excellence greatly influenced and motivated me. In particular, the experiments at the Irwin Practice Field and the Assembly Hall would not be possible without the help from Nicholas Wierschem, Hongki-Jo, Robin Kim, and Jian Li. Fernando Moreu was a perfect and supportive housemate, and his tapas and sangria were the world’s best party refreshment. I would also like to thank Prof. Shinae Jang for her courageous decision that allowed me to start a new beginning in my study as well as in my personal life. I am deeply indebted to Dr. Young-Suk Kim, Dr. Kyu-Sik Park and their families.
Their kind concern and comfort during the difficult time that I should have been through will not be forgotten.

I am grateful to all of the Korean Student Association in Civil Engineering members, Dr. Wonhee Kang, Sungwoo Moon, Byungmin Kim, Seung Jae Lee, Taekeun Oh, Yongwan Kim, and Sooyun Ham. Every single activity with them was always pleasant and enjoyable. Especially, working out with my best friend, Moochul Shin, gave me energy for my study.

I would also like to express my gratitude all colleagues in KAIST, Prof. Hyung-Jo Jung, Dr. Soojin Cho, Dr. Kiyoung Koo, Jongwoong Park, Seunghun Sung, Hyojin Shim, and Jeongsu Park. I am fortunate to have a chance to work together in the Jindo Bridge project. I hope we can continue collaboration in the future.

Kirill Mechitov was one of the best supporters during my graduate study at UIUC. His deep engineering insight has been the best resource to resolve many critical issues we have faced in the smart sensor study. In addition, I also enjoyed working with Parya Moinzadeh, who showed excellence in the challenging development of the multihop communication protocol.

The research in this dissertation has been supported by the National Science Foundation Grants CMS 06-00433 and CMS 09-28886 (Dr. S.C. Liu, program director), the Korea Research Foundation Grant NRF-2008-220-D00117, and fellowships from the Korea Research Foundation and Vodafone. These supports are gratefully appreciated.

Last but not least, I thank my parents and sisters for their unfailing support and belief, which have been my shelter in the rain throughout all my life. I also appreciate my fiancée, Patricia for her love and encouragement that allowed me to continue my Ph.D. study.

This dissertation is dedicated to all people who have kindly provided me with advice and support.
TABLE OF CONTENTS

LIST OF FIGURES .. vii
LIST OF TABLES ... xi
CHAPTER 1 INTRODUCTION .. 1
CHAPTER 2 BACKGROUND .. 5
CHAPTER 3 DECENTRALIZED STRATEGIES FOR SHM USING WSSN 20
CHAPTER 4 DECENTRALIZED MODAL ANALYSIS ... 39
CHAPTER 5 DECENTRALIZED RANDOM DECREMENT TECHNIQUE 62
CHAPTER 6 DAMAGE DETECTION USING MULTIMETRIC SENSING 81
CHAPTER 7 FULL-SCALE VALIDATION ... 99
CHAPTER 8 CONCLUSIONS AND FUTURE STUDIES ... 139
REFERENCES ... 149
APPENDIX A COMMAND LINE USAGE OF APPLICATIONS ... 162
APPENDIX B RemoteCommand .. 174
APPENDIX C DECENTRALIZED CABLE TENSION ESTIMATION 178
LIST OF FIGURES

Figure 2.1	Smart sensors	11
Figure 2.2	Data acquisition and processing schemes	12
Figure 2.3	Truss structure in the Smart Structure Technology Laboratory	14
Figure 2.4	Imote2 sensor platform	15
Figure 2.5	Network topology by Zimmerman *et al.* 2008	16
Figure 3.1	Flowchart of *SensingUnit*: centralized implementation	27
Figure 3.2	Flowchart of *SensingUnit*: decentralized implementation	28
Figure 3.3	Flow of *IndependentProcessingPSD*	30
Figure 3.4	Flow of *CableTensionEstimation*	32
Figure 3.5	Network topology for *DecentralizedDataAggregation*	34
Figure 3.6	Flow of *DecentralizedDataAggregation*	36
Figure 3.7	Flowchart for fault tolerance implementation	37
Figure 4.1	Structure and overlapping subdomains ($i, j = 1~n$)	40
Figure 4.2	4 DOF model and mode shape	45
Figure 4.3	Topologies with different numbers of overlapping nodes	45
Figure 4.4	Comparison of the global mode shapes	46
Figure 4.5	Plate model	47
Figure 4.6	Global mode shapes from the Finite Element model	48
Figure 4.7	Transfer functions (Circles represent natural frequencies)	48
Figure 4.8	Schematic view of subdomains (dashed line)	49
Figure 4.9	Number of identified natural frequencies (case 4: random excitation and input not measured)	51
Figure 4.10	Absolute value of the errors between the combined and reference global mode shapes (case 4, 2nd mode)	52
Figure 4.11	Maximum error	53
Figure 4.12	Average error	54
Figure 4.13	Truss model	55
Figure 4.14	Transfer functions (Circles represent natural frequencies)	56
Figure 7.28 Auto- and cross correlation functions estimated in Group 1. 129
Figure 7.29 Global mode shapes from decentralized data aggregation. 130
Figure 7.30 Average absolute cross spectrum ... 131
Figure 7.31 Cable nodes at the Cable-Haenam network ... 132
Figure 7.32 Local axis for a cable node (x: horizontal, y: along the cable, z: vertical to the cable
and x-axis). .. 132
Figure 7.33 Power spectrum of cable vibration. ... 133
Figure 7.34 Comparison of the design tension, estimation by Park et al. (2008), and average
tension of CableTensionEstimation ... 135
Figure 7.35 Variation of estimated cable tension with respect to mean values (Note data from
node C10 is not available)... 136
Figure 7.36 Change in lower six natural frequencies for node C11 (Δf is the frequency
resolution, sampling rate divided by the number of FFT points). 137
Figure A.1 Output messages from the gateway node in CableTensionEstimation. 166
Figure A.2 Output messages from the leaf node in CableTensionEstimation. 167
Figure A.3 Input commands in the gateway node for DecentralizedDataAggregation......... 172
Figure A.4 Example output file of DecentralizedDataAggregation. 173
Figure B.1 Flow of RemoteCommand .. 176
Figure C.1 Inclined cable. ... 179
LIST OF TABLES

Table 2.1 Specification of smart sensors .. 11
Table 4.1 Global and local mode shapes. .. 46
Table 4.2 Simulation cases.. 49
Table 4.3 Sectional and material properties... 55
Table 5.1 MAC between the exact and estimated mode shapes. .. 73
Table 5.2 Transferred data for NExT and RDT. ... 74
Table 5.3 Identified natural frequencies. .. 78
Table 5.4 MAC with respect to the reference global mode shapes.. 79
Table 5.5 Transferred data for NExT and RDT. ... 80
Table 6.1 Simulation cases.. 91
Table 7.1 Subnetworks of the WSSN at the Jindo Bridge. ... 110
Table 7.2 Applications in the Jindo WSSN. ... 116
Table 7.3 Estimated natural frequencies and MAC between global mode shapes. 123
Table 7.4 Data processing parameters for *DecentralizedDataAggregation*......................... 129
Table 7.5 Cable properties. 133
Table 7.6 Summary of cable tension forces... 134
Table 7.7 Mean and maximum deviation of the estimated tension forces............................... 135
CHAPTER 1 INTRODUCTION

The term ‘civil infrastructure’ collectively refers to systems (e.g., bridges, roads, railways, electrical power networks, pipelines, etc.,) which are required for our society to properly function. In particular, modern industrialized nations such as the United States highly rely on civil infrastructure and thus invest a huge amount of resources to construct and maintain them. Indeed, the five-year investment need is estimated 2.2 trillion dollars in the United States (ASCE Report Cards 2009). During the last century, thriving economy and technological advances have allowed an unprecedented amount of civil infrastructure to be built. Focus has been placed on construction, rather than maintenance of existing infrastructure; as a result, degrading infrastructural systems are rapidly increasing. Indeed, over 26 % of the bridges in the United States were rated as structurally deficient and functionally obsolete as of December 2008 by the Department of Transportation (ASCE Report Cards 2009). Unless appropriately handled, aging and deteriorating infrastructure systems can pose a significant threat to public safety as well as proper functioning of our society. Thus, monitoring the state of a structure to ensure timely maintenance is of importance to prolong the lifetime of our valuable assets and prevent structural failures that may occur otherwise. In addition to the long-term monitoring, prompt structural damage assessment and emergency evacuation plans after extreme events such as earthquakes, hurricanes, and tornadoes are vital to improve public safety. All these issues are addressed in Structural Health Monitoring (SHM).

SHM typically consists of (1) measuring data such structural responses (e.g., strain, displacement, velocity, and acceleration) and environmental variables (e.g., temperature, and wind velocity), (2) analyzing the sensor data for feature extraction, and (3) making decisions for
further actions or maintenance plans. The research reported herein is focused on the first two issues.

Data acquisition in traditional SHM systems is based on wired sensors connected to a centralized data collection repository. All sensor data is aggregated at this central repository, where all data processing takes place to extract structural features and information. This centralized data acquisition and processing approach in the wired sensor network is common practice in traditional SHM systems; however, high cost and installation difficulties (Lynch et al. 2003) have prevented SHM from wider adoption in large-scale civil structures. For instance, imagine a SHM system of the Golden Gate Bridge; miles of cables would be required to connect the central base station to a dense array of sensor nodes distributed along the deck, towers, and cables; installation would be both costly and time-consuming, and maintenance would be challenging.

Wireless smart sensor networks provide a promising alternative to the traditional SHM approach. Smart sensors commonly refer to devices that are small, inexpensive, capable of wireless communication, and have on-board processing capabilities (Spencer et al. 2004). In the last decades, many academic and commercial smart sensors have been developed. Significant efforts have been devoted to various issues in Wireless Smart Sensor Networks (WSSNs), including data acquisition, processing, and damage detection. The majority of smart sensor research has focused on emulation of traditional wired sensor networks employing centralized data acquisition and processing. Such approaches have proven to be intractable because transferring all sensor data saturate the limited bandwidth found in wireless communication and thus causes network congestion. To illustrate this point, Pakzad et al. (2008) reported that 10 hours were required to transmit 80 seconds of data at 1000 Hz for 56 wireless sensors back to the
base station. Indeed, decentralized data acquisition and processing schemes are considered to be essential to ensure the scalability of WSSNs required to enable a dense array of sensors deployed on full-scale civil structures. Considering that structural damage is a local phenomenon, densely deployed sensor networks are expected to enhance the damage detection capability of SHM systems.

The advantage of smart sensors is not limited to SHM; modal analysis can be conducted more efficiently by employing smart sensors. Modal analysis and SHM have many common aspects in that measuring and processing structural response is involved. As in SHM systems, conventional modal analysis requires sensors, wires, and a data acquisition system. In particular, modal analysis is conducted in a short period of time to characterize dynamic properties of a structure (e.g., natural frequencies, mode shapes, and damping factors), whereas SHM is intended to track the structural health for a relatively longer time. Thus, installation convenience is more critical when conducting a modal survey; the benefit of the WSSN is evident. However, decentralized algorithms for modal analysis are sparse in the literature. A means to estimate global dynamic properties from the decentralized network is desired for the WSSN to be utilized effectively in conducting a modal survey.

While decentralized approaches enable scalable WSSNs for monitoring full-scale civil infrastructure, introducing multimetric sensor data to the WSSN can enhance the performance of WSSNs. As the human sensory system involves various perceptions, multimetric sensing can potentially enrich essential information for the condition of a structure, enabling more precise diagnosis. The same principle can be applied to SHM. Indeed, most monitoring systems for full-scale civil infrastructure takes advantage of multiple types of sensors. For example, sensors installed on the Akashi-Kaikyo Bridge include seismometers, anemometers, velocity gauges,
GPS sensors, displacement gages, TMD displacement gauges, and thermometers (Fujino et al. 2000b). Integrating multimetric sensor data into the SHM process has the potential to enhance the capability to precisely characterize the structural state; however, this integration has yet to be fully explored. In particular, such approaches for the smart sensors are rarely found.

This research develops new decentralized algorithms for structural identification and multimetric monitoring of civil infrastructure. The following four features are considered to increase performance, flexibility and versatility of WSSNs: (1) decentralized modal analysis that reliably determines global modal properties based on the local modal information, (2) efficient system identification for the WSSN, and (3) multimetric sensing for damage detection. These WSSN applications are numerically and experimentally validated, including laboratory-scale testing using a truss bridge structure and full-scale experiments in the Irwin Indoor Practice Field at the University of Illinois at Urbana-Champaign and the Jindo Bridge located in the South Korea. The following chapters provide background on this study, implementation and development of decentralized approaches for the WSSN, experimental validation, conclusions and future research.
CHAPTER 2 BACKGROUND

2.1 Structural Health Monitoring

SHM is often referred to as a process of implementing damage detection strategies for aerospace, mechanical and civil engineering infrastructure (Sohn et al. 2003); however, a broader definition can include a spectrum of applications such as design verification, assessment of structural state after catastrophic events, control of the construction process, and assisting with building and bridge maintenance. In the civil engineering field, SHM has become a prominent tool to address problems associated with deteriorating civil infrastructure. For instance, the collapse of the Silver Bridge between West Virginia and Ohio in 1967 subsequently initiated the US government to develop and implement the National Bridge Inspection Standards (NBIS) (Small et al. 1999). In addition, the Korean government has been conducting bridge monitoring since the Sungsu Bridge over the Han River collapsed in 1994 resulted in 32 casualties. As such, assessing damage at an early stage and retrofitting or repairing structures in a timely manner is of paramount importance for public safety as well as to reduce maintenance cost.

Damage detection is one of the central objectives of SHM. In bridge inspections conducted biannually by the Federal Highway Administration (FHWA) in the United States, visual inspection and simple tap testing are common practice for damage assessment. However, one of the common features of all bridge failures, including the I-35 bridge collapse in Minneapolis, is that they have all undergone and passed regular inspection, leading to the conclusion that the current inspection approach is insufficient. Indeed, damage is often lurking in locations that are not accessible. The need for more accurate damage identification has driven the research community to pursue various approaches for damage detection that can be generally
categorized as either local or global. Local and global methods can be used in combination: once
global damage detection methods determine the presence and possible region of damage, local
damage detection methods can find more specific damage locations (Chang et al. 2003). Non-
Destructive Evaluation (NDE) techniques are typically used for local damage detection. With
prior knowledge of damage location, the NDE approaches can be applied to find the exact
location and extent of damage. More information regarding the NDE methods can be found in
Chang and Liu (2002). SHM strategies in this study are focused on global damage detection
approaches.

As damage detection has been extensively studied, a number of approaches have been
developed as summarized by Doebling et al. (1996), Sohn et al. (2003), and Chang et al. (2003).
The cited papers mostly utilize vibration responses to extract the structural feature change before
and after damage. Doebling et al. (1996) categorized the vibration-based damage detection
methods as:

• Natural frequency change
• Mode shape change
• Mode shape curvature/strain mode shape change
• Dynamically measured flexibility matrix
• Structural model updating

Early research on vibration-based damage detection considered changes in modal
parameters (e.g., natural frequency and mode shape) before and after damage. However, the
natural frequency and the mode shape, global properties of a structure, have been shown to be
quite insensitive to localized damage (Begg et al. 1976; Nataraja 1983; Fox 1992; Srinivasan and
Kot 1992); damage detection using the modal property change was considered to be impractical.
Mode shape curvature was considered to find more damage sensitive quantities. Pandey et al. (1991) proposed the absolute change in mode shape curvature as a good damage indicator. Chance et al. (1994) showed numerically calculated curvature was erroneous, and thus used dynamic strains instead. However, the difficulty for methods employing dynamic strains lies in the fact that noise in dynamic strain measurements is in general higher than that in accelerations (Sohn and Law 2001).

Damage detection methods based on the dynamically measured flexibility matrix have also been developed. Unlike the stiffness matrix, the flexibility matrix is insensitive to higher frequency modes that are generally difficult to determine from measured data (Gao et al. 2004). This feature focused research efforts flexibility-based, rather than the stiffness-based, damage detection. Pandey and Biswas (1994) used changes in the measured flexibility matrix. Damage locations could be found from the first two lower modes. Bernal (2002) presented the Damage Locating Vector (DLV) method that utilizes changes in the flexibility matrix due to damage. The DLV method can find damage only with a limited number of DOFs in which the flexibility matrix is defined, if the DOFs are in the proximity of the localized damage. The DLV method was expanded to the Stochastic DLV (SDLV) method for output-only cases (Bernal 2006), and further generalized to take advantage of the transfer function matrix that can be thought as a flexibility matrix extended to the frequency domain (Bernal 2007a; Bernal 2007b).

Although researchers have continued to develop efficient damage identification methods, existing approaches have achieved only limited success, mostly through numerical simulations and laboratory experiments. Although there are some examples for damage detection of full-scale bridges (Maeck et al. 2001; Lee et al. 2005), full-scale implementation of damage detection
approaches are not yet considered mature. Indeed, Brownjohn (2007) indicated that the SHM systems for civil infrastructure thus far were not necessarily intended for damage identification.

The advancement in digital computers and data acquisition systems has enabled SHM systems to be adopted in major civil infrastructure for various monitoring purposes during the last decade. In particular, the long-term monitoring system of the Yokohama Bay Bridge was used to investigate the dynamic behavior due to the seismic loadings (Siringoringo and Fujino 2006). Modal analysis results showed that there were unwanted deformation mechanisms that could potentially damage the bridge during an earthquake. The Republic Plaza in Singapore has been serving as an exemplary monitoring test bed. Brownjohn (1998) identified the natural mode of the Republic Plaza for design verification. The monitoring system was also used to characterize the earthquake loading spectrum for the building (Brownjohn et al. 2001). Furthermore, wind-induced lateral vibration was monitored using GPS sensors to inform local design codes (Ogaja et al. 2003; Brownjohn 2005). Other monitoring examples include the Akashi-Kaikyo Bridge in Japan (Fujino et al. 2000b), the Hakucho bridge in Japan (Fujino et al. 2000a), the Tsingma Bridge in Hong Kong (Wong 2004), the Stonecutters Bridge in Hong Kong (Wong 2004), the Bill Emerson Bridge in the United States (Caicedo et al. 2002; Celebi et al. 2004), and the Punggol E26 Buildings in Singapore (Glisic et al. 2003). In addition, Ko and Ni (2005) summarized 20 bridge monitoring systems in China.

Although the full-scale SHM examples have demonstrated successful installation and monitoring to some extent, issues still remain. First of all, current SHM systems based on the traditional wired sensor system are quite expensive. For instance, the 300 sensors deployed for on the Tsing-ma Bridge cost approximately $7.8 million (Lynch and Loh 2006). This high cost is one of the most important issues that have hindered wider adoption of the SHM systems. In
addition, wiring sensors poses difficulties in installation as well as significantly contributes to the cost. In particular, ease of installation is critical for monitoring in the construction stage. A more efficient means for SHM is desired for large-scale civil structures.

Smart sensors have emerged as a promising alternative to traditional SHM systems employing wired sensors. Recent advances in sensor technology have enabled low-cost smart sensors that have wireless communication, on-board processing, and multimetric sensing capabilities; even lower prices are expected once smart sensors are in mass production. These features offered by smart sensors provide the potential of realization of a dense array of sensors for a low cost. Knowing that damage is a local phenomenon, a densely deployed sensor array is essential for accurate damage localization. Thus, networks employing smart sensors have the potential to leverage SHM techniques.

2.2 Modal Analysis

Modal surveys have been common practice to identify dynamic characteristics of a structure. Since research on structural vibration issues started in 1930s focusing on understanding the dynamic behavior of aircraft (Maia and Silver 2001), structural dynamic effects have been widely considered in various applications. Identified dynamic characteristics are often used for model updating, design verification, and improvement of serviceability. A typical example is the retrofit of the London Millennium Footbridge to address unexpected large lateral vibrations caused by pedestrians (Dallard et al. 2001). To control bridge vibrations, viscous fluid dampers and tuned mass dampers were installed on the bridge. In designing this damping system, understanding the dynamic characteristics of the as-built bridge was critical to ensuring efficient operation. Detailed theory and practice of modal surveys can be found in Ewins (1986).
Smart sensors provide a new paradigm for conducting modal surveys. As in the SHM systems, traditional modal surveys consist of a centralized data acquisition system with wired sensors that can be replaced with smart sensors. Wireless communication and cost effectiveness of smart sensors can address difficulties in wiring sensors, high cost, and long setup time. Considering that modal surveys are conducted in a relatively short period of time compared to monitoring of structures, installation convenience is critical in the modal survey. However, smart sensors are not widely adopted in modal surveys due to lack of appropriately designed software, which will be discussed in subsequent chapters.

2.3 Wireless Smart Sensor Network

2.3.1 Smart Sensor

Spencer et al. (2004) defined a *smart sensor* as having four features: (1) on-board Central Processing Unit (CPU), (2) small size, (3) wireless, and (4) the promise of being low-cost. The on-board microprocessor enables near real-time data processing in the network for identification of dynamic features, structural health diagnosis (e.g., damage assessment), and decision making. MEMS technology associated with sensing makes the smart sensor small, and wireless communication capability lowers the installation cost by removing the need for wires. By utilizing MEMS and microprocessor that are already in mass production and thus quite inexpensive, the cost of smart sensors is decreasing. These features offered by smart sensors can be utilized to resolve the difficulties that traditional wired monitoring systems have.

One of the earliest smart sensors developed for civil structures is the wireless modular monitoring system (WiMMS) by Straser and Kiremidjian (1998). WiMMS is made using commercial off-the-shelf (COTS) components: Motorola family of 68HC11 microprocessors,
Proxim Proxlink MSU2 radio unit, and dimensions of 15 cm by 13 cm by 10 cm, which correspond to the features of smart sensors described earlier. Since then, many academic and commercial smart sensors have been developed as reviewed by Lynch and Loh (2006). Some of the smart sensors are compared in Table 2.1.

Table 2.1 Specification of smart sensors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Category</td>
<td>Academic</td>
<td>Academic</td>
<td>Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>Processor</td>
<td>Motorola 68HC11</td>
<td>Atmel ATmega128</td>
<td>XScalePXA2 32M</td>
<td>Atmel ATmega128L</td>
<td></td>
</tr>
<tr>
<td>Clock Speed (MHz)</td>
<td>2.1</td>
<td>16</td>
<td>13 – 416</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bus size (bits)</td>
<td>8</td>
<td>8</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Program Memory (bytes)</td>
<td>16K</td>
<td>128K</td>
<td>32K</td>
<td>128K</td>
<td></td>
</tr>
<tr>
<td>RAM (bytes)</td>
<td>32K</td>
<td>128K</td>
<td>256K + 32M</td>
<td>4K</td>
<td></td>
</tr>
<tr>
<td>A/D Resolution (bits)</td>
<td>16</td>
<td>16</td>
<td>n/a</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>9V battery</td>
<td>7.5V battery</td>
<td>3 x AAA</td>
<td>2 x AA</td>
<td></td>
</tr>
</tbody>
</table>

![Smart sensors](image)

Figure 2.1 Smart sensors

2.3.2 Data Processing Schemes in Wireless Smart Sensor Network

Although some challenges, such as power consumption and long term reliability, still need to be resolved for the smart sensors to be more widely adopted, available smart sensors are already quite capable and can be expected to replace traditional wired sensors for many applications.
One particularly critical challenge relates to how the data is processed. Centralized data acquisition and processing schemes (see Figure 2.2a) that are commonly used in traditional wired sensor systems cannot be employed in WSSNs due to the limitation in wireless data communication speeds; bringing all data to a centralized location will result in severe data congestion in the WSSN. Indeed, sensor networks measuring dynamic response of a structure can produce a huge amount of data, which contains redundant information for characterizing the state of the structure. Thus, the lack of scalability in the centralized data acquisition and processing scheme limits wider adoption of WSSN systems. Considering WSSN for full-scale civil infrastructure directed toward a dense array of sensors, scalable sensor networks are essential in that the network scheme can be expanded to any size of networks within the capability of smart sensors.

(a) Centralized data collection.

(b) Decentralized independent processing.

(c) Decentralized coordinated processing.

Figure 2.2 Data acquisition and processing schemes.
To resolve this issue for the scalable WSSNs, a number of decentralized approaches have been proposed for conducting structural health monitoring and damage detection on networks of smart sensors. One of the decentralized approaches uses independent processing, as shown in Figure 2.2b (Tanner et al. 2003, Caffrey et al. 2004, Lynch et al. 2004a, Lynch et al. 2004b, and Nitta et al. 2005; Park 2009). Each sensor node processes measured data independently without communicating with other sensor nodes. The processed data, typically FFT or signature analysis, is then sent to the base station. The total amount of data transferred over the radio in the network is quite small. Although sensor networks based on this processing scheme is scalable, important spatial information (e.g. mode shape) cannot be extracted.

The decentralized approach proposed by Gao et al. (2005) employs a coordinated computing strategy, often called Distributed Computing Strategy (DCS), as shown in Figure 2.2c, which has the ability to capture local spatial information. The sensor network in this scheme is divided into hierarchical communities, in which sensor nodes within each community communicate with each other in processing data; communication between communities is conducted through each community’s cluster-head. Because communication for sensor data takes place within each community consisting of a limited number of sensors, the total amount of data is nearly proportional to the network size and the network is therefore scalable. Gao et al. (2005) employed this processing scheme for damage detection of a truss structure in Figure 2.3 using the DLV method. Although a wired sensor system was used, each sensor community successfully localized damage, showing that the coordinated computing strategy was promising for WSSNs.
Nagayama and Spencer (2007) implemented the DCS logic in a WSSN employing the Imote2 smart sensors. An output-only identification approach, the Natural Excitation Technique (NExT) (James et al. 1993), was employed in conjunction with Eigensystem Realization Algorithm (ERA) (Juang and Pappa 1985). The SDLV method in the distributed computing environment was programmed and embedded in each sensor node. Issues regarding time synchronization, synchronized sensing, and reliable communication were also addressed. The network topology as described in Figure 2.2c is based on the three types of sensors according to their function in the network: (a) gateway node, (b) cluster-head, and (c) leaf node. Both cluster-head and leaf node measure acceleration and do data processing to get correlation functions using a sensor data from the cluster-head as a reference signal. The cluster-head collects the correlation functions for modal parameter estimation and damage localization. Only damage information is supposed to be sent to the gateway node. Although many issues such as battery life, sensing capability, and ease of expansion should be resolved, the sensor network based on the DCS logic was shown to be promising for monitoring full-scale civil infrastructure. More detailed information can be found in Nagayama and Spencer (2007).
While a number of decentralized algorithms for structural health monitoring and damage detection have been published, relatively little effort has been devoted to developing such approaches for modal analysis. Zimmerman et al. (2008) implemented a decentralized data processing scheme on a WSSN to identify the vibration characteristics of the balcony in a historic theater in metropolitan Detroit. In the WSSN, natural frequencies were determined at each node by the Peak Picking (PP) method (see Bendat and Piersol 1993 and Felber 1993) and sent to a central node where the final natural frequencies are determined. Based on the identified natural frequencies, phase differences between the responses of each pair of sensor nodes are determined in a sequential manner (see Figure 2.5), and collected centrally to assemble the global mode shapes. While this decentralized algorithm was successfully implemented and
tested, the approach requires a linear network topology and may result in substantial accumulation of errors in the global mode shapes.

![Network topology diagram]

Figure 2.5 Network topology by Zimmerman et al. 2008.

2.3.3 System Identification Methods in WSSNs

As smart sensors typically are battery-powered, power management is critical for long-term monitoring. Although several approaches for power harvesting, e.g., solar power (Jang et al. 2010a), vibration power (Rahimi et al. 2003), have been reported, power consumption must still be appropriately managed. Reducing wireless communication, the most significant source of power consumption for smart sensors, can be achieved by employed embedded in-network data processing.

As previously described, Nagayama and Spencer (2007) implemented the NExT-based system identification. Measured time history data is locally processed to estimate the correlation function that is in general much smaller than the raw data. The use of NExT/ERA in the decentralized computing environment has been shown to be quite efficient from the data communication perspective.

The Random Decrement Technique (RDT) is an alternative output-only system identification method proposed by Cole (1968) that has several attractive features. The decentralized implementation of NExT by Nagayama et al. (2007) requires the complete time
history data from the cluster-head in a group be transferred to the leaf nodes to calculate the correlation functions. In contrast, RDT only requires the trigger crossings be sent to the leaf nodes, which is typically of a much smaller size than the raw sensor data. The output of the RDT is the random decrement (RD) function, which can be used as input to system identification methods such as ERA, Ibrahim Time Domain (ITD) (Ibrahim and Mikulcik 1977; Ibrahim and Pappa 1982), Stochastic Subspace Identification (SSI) (Peeters and De Roeck 2001; Van Overschee and De Moor 1996; Hermans and Van Der Auweraer 1999), Peak Picking (see Bendat and Piersol 1993 and Felber 1993), Frequency Domain Decomposition (FDD) (Brinker et al. 2001), Enhanced Frequency Domain Decomposition (EFDD) (Rodrigues et al. 2004), and Complex Mode Indicator Function (CMIF) (Shih et al. 1988; Gul and Catbas et al. 2008). Comparative study for the performance of various system identification methods are presented by Yi and Yun (2004).

2.4 Multimetric Sensing

In SHM systems, acceleration and strain are commonly considered as one of the most important measurands; acceleration is frequently preferred due to the convenience of sensor installation and its relatively high signal-to-noise ratio. Acceleration signals are considered to contain information regarding the global behavior of structures; whereas strain provides local information. However, because damage is a local phenomenon, damage localization using only global measurements has its limitations.

Multimetric sensing using a heterogeneous mix of measurands at various scales has the potential to provide for more accurate characterization of the state of a structure; however, to date, little effort has been devoted to the development of multimetric sensing strategies for
damage detection. Studer and Peters (2004) presented a damage identification approach for composite structures using multimetric data, including: strain, integrated strain, and strain gradients measured from optical fiber sensors. Law et al. (2005) used a wavelet-based approach to combine acceleration and strain responses to obtain better damage detection results than using the two measurements separately. Motivated by these results, Kijewski-Correa et al. (2006) developed a decentralized SHM strategy that uses measured strain and acceleration and can be implemented on a wireless sensor network. A signal-based damage detection scheme based on the two-stage AR-ARX method developed at Los Alamos National Laboratory (Sohn and Farrar 2001) is employed in the sensor network. However, this method does not exploit spatial information that potentially improves damage detection and localization. Further effort is required to develop effective multimetric damage detection strategies that can utilize fully the spatial information in the inherent distributed computing environment offered by smart sensor networks.

2.5 Summary

Background on SHM and related research was reviewed in this chapter. While the necessity of SHM has been well recognized, monitoring systems are not widely used for civil infrastructure due to intrinsic limitations associated with traditional SHM systems, e.g., high cost and installation inconvenience. Smart sensors are considered as promising alternatives that have potential to leverage off SHM techniques, enabling full-scale application. In addition, modal surveys can be more efficiently conducted employing smart sensors. Because centralized data acquisition and processing schemes conventionally used for wired sensor systems are not suitable for the WSSN, decentralized processing approaches have been developed. The
decentralized approaches in conjunction with appropriate system identification methods and multimetric sensing has the potential to enhance WSSN’s capabilities to more effectively monitor civil infrastructure. In the following chapter, software implementations of the decentralized processing approaches on smart sensors are described.
CHAPTER 3 DECENTRALIZED STRATEGIES FOR SHM USING WSSN

The decentralized data processing approaches mentioned in the previous chapter form a foundation of this study; implementation of such approaches on smart sensors is essential. Nagayama and Spencer (2007) have addressed many critical issues in software development such as network-wide time synchronization, synchronized sensing, and reliable communication, which are provided as middleware services the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite Version 2 for the MEMSIC’s Imote2 sensor platform (http://shm.cs.uiuc.edu). The decentralized approaches proposed herein are implemented on smart sensors based on the middleware services offered by the ISHMP Services Toolsuite. Following a brief overview of the ISHMP Services Toolsuite, implementations of the decentralized approaches are outlined, including:

- *SensingUnit*: a basic service component that allows WSSN applications to acquire either synchronized or unsynchronized data
- *IndependentProcessingPSD*: an application/service that calculates power spectrum of sensor data based on independent processing
- *CableTensionEstimation*: an application that estimates cable tensions based on independent processing
- *DecentralizedDataAggregation*: an application/service for data aggregation based on decentralized coordinated processing
3.1 SHM Application Development using the ISHMP Services Toolsuite

3.1.1 ISHMP Services Toolsuite

ISHMP is an interdisciplinary research project to develop hardware and software for monitoring civil infrastructure using wireless smart sensors. The ISHMP Services Toolsuite provides an open source library of services that are essential for developing SHM applications. These services can be used as building blocks to create customized applications to meet user needs. Some of the services and tools currently available include:

Foundation Services provide commonly used wireless sensor functionalities that are required to support higher-level applications. These services include basic communication and sensing functionalities.

- *Unified Sensing* is a TinyOS-based sensing interface for Imote2 that support for various sensor boards including MEMSIC’s ITS400 and Illinois SHM-A. *Unified Sensing* service provides precise time stamping of sensor data that can be used to synchronize sensor data from different sensor nodes.

- *Time Synchronization* is a network-wide service for synchronizing the local clocks that sensor nodes in the network locally have.

- *Reliable Communication* ensures reliable data communication in a wireless sensor network. Data loss, a common problem in the wireless communication, is handled by the *ReliableComm* service.

- *Reliable Multi-Hop Communication* is the beta-implementation of any-to-any reliable multi-hop routing for WSSN applications. This ensures reliable communication in a WSSN for large structures, where all sensors cannot be reached by single-hop communication.
RemoteCommand provides an efficient means for nodes to interact with each other. A command message is delivered to receiver nodes that process the designated tasks, and returns the list of responsive nodes and requested data to the sensor node. RemoteCommand allows the fault tolerant features to be easily implemented in sensor applications.

Application services The application services provide the numerical algorithms necessary to implement SHM applications on the Imote2s and may also be used independently.

- **SyncSensing** resamples the sensor data, providing synchronized data. Although the local clocks are synchronized by the Time Synchronization service, the sensing start time and the sampling rate vary with sensor nodes with a certain amount of error. The unsynchronized sensor data is synchronized by resampling using the SyncSensing service.
- **CFE** estimates the correlation function between two arrays of synchronized data.
- **CPSD** estimates the cross power spectral density between two arrays of synchronized data.
- **RD** performs the Random Decrement method to estimate unscaled impulse response functions.
- **ERA** estimates modal properties (i.e., natural frequency, damping factor, and mode shapes) using the ERA. Natural Excitation Technique (NExT) (James et al. 1993) enables the correlation functions estimated from the CFE service to be used in the ERA service.
- **SSI** performs the covariance-driven Stochastic Subspace Identification (SSI) for modal property estimation (Hermans and Van Der Auweraer 1999).
- **FDD** performs the Frequency Domain Decomposition (FDD) algorithm for modal property estimation (Brincker et al. 2001).

- **SDLV** performs the Stochastic Damage Locating Vector (SDLV) method for damage localization (Bernal 2006).

- **SDDLV** performs the Stochastic Dynamic Damage Locating Vector (SDDLV) method for damage localization (Bernal 2007).

Continuous and Autonomous Monitoring services provide for continuous and autonomous WSSN operation while maintaining power efficiency.

- **SnoozeAlarm** provides sleep cycle functionality, which greatly reduces long-term power consumption. Sensors sleep for a period of time and then wake up for a relatively short period, during which they can interact with the network. The duty cycle is configurable by the user.

- **ThresholdSentry** allows a subset of the network to act as “sentry” nodes that are awakened periodically to sense data for a short period of time, determine if an interesting event is in progress, and notify the base station.

- **AutoMonitor** is a high-level network management application that coordinates each of its components in response to various events. It schedules sensing, data transfer, and **ThresholdSentry** operation according to a user-specified policy, allowing the network to operate unattended.

Tools and Utilities provide network testing and debugging capabilities that are necessary in any large-scale or long-term WSSN deployment. These tools facilitate evaluation of the network conditions at the structure to determine appropriate values of adjustable system parameters, and assess power consumption and longevity issues.
- **LocalSensing** collects sensor data from the single Imote2 connected to the PC. This tool is useful for testing new sensor board hardware as well as driver software.
- **autocomm** is a terminal program that provides an interface between the PC and the Imote2 through the IIB2400 interface board. This tool is frequently used to run the application in the ISHMP Services Toolsuite.
- **TestServices** that combines numerical services, CFE, ERA, and SDLV, performs damage detection from user-defined acceleration signals. **TestServices** is an example code that illustrates how the numerical services can be combined.
- **RemoteSensing** performs either synchronized or unsynchronized sensing in remote leaf nodes. Sensor data is stored in the flash memory of each leaf node and can be retrieved later to save power consumption by reducing waiting time in the process of the central data collection.
- **SensingUnit**, a service component that performs synchronized or unsynchronized sensing, is particularly useful for SHM application development.
- **IndependentProcessingPSD** is an implementation of the independent processing approach that decentrally estimates the power spectral densities in each leaf node.
- **CableTensionEstimation** calculates tension forces of cables based on estimated natural frequencies. It uses **IndependentProcessingPSD** to obtain the power spectrum that is subsequently used to determine natural frequencies of cables.
- **DecentralizedDataAggregation** is an application for the data acquisition and processing on decentralized hierarchical sensor network.
- **DecentralizedSysID** estimates modal characteristics using NExT in conjunction with ERA. **DecentralizedDataAggregation** provides the correlation functions for NExT.
More detailed information regarding the service-oriented architecture of the ISHMP Services Toolsuite can be found in Rice and Spencer (2009). The rest of this chapter describes development of the decentralized algorithms, focusing on SensingUnit, IndependentProcessing-PSD, CableTensionEstimation, DecentralizedDataAggregation, and GlobalModesEstimation. The command-line usage of these service and applications are found in Appendix A.

3.1.2 Network-wide Sensing Service: SensingUnit

The decentralized processing approaches can be efficiently implemented on Imote2 smart sensors utilizing the SensingUnit service. SensingUnit is a service component in the ISHMP Services Toolsuite that receives parameters specifying sensing information (i.e., sampling rate, data length, and sensing channels) and corresponding node ID numbers in the sensor network, performs synchronized or unsynchronized sensing, and outputs measured data.

To understand the utility of SensingUnit, consider an application that needs to estimate auto-correlation functions of the measured responses in each of the leaf nodes. Such a program can be developed by combining SensingUnit and CFE services: sensor data, the output of SensingUnit, is fed into CFE to estimate the auto-correlation. Considering that sensing is required in all SHM applications, SensingUnit is a good starting point for development of a broad array of independent processing applications. RemoteSensing is a typical example developed based on SensingUnit (Miller et al. 2010).

SensingUnit provides two different implementations for centralized and decentralized networks. In the centralized implementation, the gateway node sends command messages directly to all leaf nodes in the sensor network, while the decentralized implementation based on the hierarchical network employs the cluster-heads to convey data to each leaf node (see Figure
Thus, the centralized and decentralized implementations of *SensingUnit* are well suited to independent and coordinated processing approaches, respectively.

To efficiently control the network-wide timing and flow in *SensingUnit*, a state machine is utilized. A state machine is an abstract model controlling the behavior of a program, with each state representing a particular configuration of variables and components of an application. This simplifies the control structure of complex applications by isolating data and control logic relevant to each state from the remainder of the application. States are defined based on the designated task of each node in a sensor network using *SensingUnit*; transitions between states are triggered by certain events, such as completion of sensing or sending/receiving data. For example, the default state of the leaf node in *SensingUnit*, **DISABLED**, is changed to **INIT** in the initialization, and subsequently to **SYNC** when the time synchronization starts if synchronized sensing is requested. The state is then changed to **SENSING** if the time synchronization is finished. In the state **SENSING**, sensor nodes measure data that can then be resampled if so specified. This overall process is illustrated in Figure 3.1 and Figure 3.2 for centralized and decentralized implementations, respectively.

RemoteCommand is utilized to reliably distribute command messages including sensing parameters to all sensor nodes in the network. *RemoteCommand* returns the list of the leaf nodes that correctly behave; the gateway node can subsequently remove misbehaving nodes and proceed. In addition, various commands and event handlers provided by *RemoteCommand* simplify the structure of *SensingUnit*. More information regarding *RemoteCommand* from an event-driven programming perspective is found in Appendix B.
Figure 3.1 Flowchart of SensingUnit: centralized implementation.
3.2 Decentralized Independent Processing

The decentralized independent processing approach utilizes a smart sensor’s onboard computing capability to extract important information from the measured data. Each node independently processes sensor data without the need for sharing information with neighboring nodes in the network. Thus, the wireless communication requirement can be significantly lower than the centralized data collection and the coordinated processing approaches, while discarding spatial
information. The ISHMP Services Toolsuite currently provides two example applications of independent processing, IndependentProcessingPSD and CableTensionEstimation.

3.2.1 Independent Processing Application: IndependentProcessingPSD

IndependentProcessingPSD is developed to estimate the power spectral density (PSD) function for the data measured on sensor nodes using SensingUnit. Because the PSD does not contain phase information, time synchronization is not necessary; unsynchronized data is measured in each node. The PSD functions are subsequently either collected at the gateway node or retained for further analysis. The network-wide flow of IndependentProcessingPSD is shown in Figure 3.3. The implementation is simplified as SensingUnit takes care of reliable data measurements. When SensingUnit finishes sensing on the leaf nodes, the gateway node delivers parameters that are required for the PSD calculation. The leaf nodes estimate the PSD with the received parameters. The gateway node utilizes RemoteCommand to request and receive the PSD from each leaf node. If received from all leaf nodes, the PSD in the gateway node is transferred to the base station.

Significant reduction in data communication can be achieved in the independent processing. For example, consider a sensor network of 30 nodes measuring sensor data of 21504 points. The centralized data collection transfers 30 times 21504 points (645120 points). Assuming 2048 FFT points, IndependentProcessingPSD collects 30 times 1023 (30690 points), reducing data communication to 4.76%.
3.2.2 Independent Processing Application: *CableTensionEstimation*

Cables are one of the most critical members in cable-stayed bridges; monitoring tension forces of the cables provides valuable information for assessing structural health. Several methods for estimating the cable tension are available including the direct measurement using the load cell, non-contact technique using the electromagnetic (EM) stress sensor (Wang *et al.* 2005), and vibration-based methods. Due to the convenience and cost effectiveness of sensor and sensor installation, the vibration-based methods have been recognized to be efficient in practice (Kim and Park 2007). Cho *et al.* (2010a) implemented a vibration-based method proposed by Zui *et al.*
(1996) on the smart sensors and experimentally verified in laboratory testing using a string with both ends fixed. Because Zui’s formula utilizes the first three natural frequencies, applying this formula can be difficult if cable-deck interaction is dominant in the lower natural frequency region and thus automated peak-picking may not be able to reliably distinguish the cable modes from the deck modes. As a more practical alternative, a closed form relationship between natural frequencies and the tension force is selected for cable tension estimation in this study (see Appendix C for details).

CableTensionEstimation is an application that calculates cable tensions based on the vibration-based method described in Appendix C. Because the estimation method requires the natural frequencies of each cable, information sharing between leaf nodes attached on different cables is not necessary. Thus, *IndependentProcessingPSD* in conjunction with peak-picking is appropriate to implement *CableTensionEstimation*. *IndependentProcessingPSD* performs unsynchronized sensing and estimate the power spectrum that can provide natural frequencies of cables using an automated peak-picking method; cable tensions can be obtained using the natural frequencies. The process of *CableTensionEstimation* is shown in Figure 3.4.

A simple peak-picking procedure is implemented in *CableTensionEstimation*: a peak is searched in a small frequency range around an approximate natural frequency initially provided to *CableTensionEstimation*. Two assumptions are made to justify the peak-picking method: (1) the natural frequencies of the cable are well separated and (2) the changes over time are small compared to difference between two consecutive natural frequencies. These assumptions will be discussed in the later chapter.
3.3 Decentralized Coordinated Processing

As opposed to the independent processing approach presented in the previous section, coordinated processing allows the sensor nodes to communicate with each other and share information. As shown in Figure 2.2c, the sensor network is divided into local sensor communities where data communication and processing are taking place to extract meaningful information from raw sensor data. In contrast to the situation with independent processing
strategies, coordinated processing allows estimation of spatial information that can be used to produce a global picture of a structural system (Sim et al. 2009). This section discusses design considerations of DecentralizedDataAggregation as an implementation of the coordinated processing approach.

DecentralizedDataAggregation is an application for data acquisition and processing implementing NExT and RDT in the hierarchical network shown in Figure 2.2c. DecentralizedDataAggregation outputs either correlation or RD function, depending on the user-specified input. The network is divided into local communities in which correlation or RD functions are calculated at each node and gathered by the cluster-heads as previously described. The correlation or RD functions can be either collected at the base station or retained at the cluster-heads for further analysis such as in-network system identification and damage detection. DecentralizedDataAggregation can be used as a foundation for other application development that requires the decentralized network such as decentralized modal analysis (Sim et al. 2010a; Sim et al. 2010b), decentralized system identification (Sim et al. 2009), and decentralized damage detection (Jang et al. 2010b).

To appropriately realize the decentralized implementation of data processing based on NExT and RDT in the hierarchical network, the design of DecentralizedDataAggregation requires careful consideration of (1) network topology, (2) controlled network-wide flow, (3) fault tolerance, and (4) data processing methods.

3.3.1 Network Topology

The cluster tree network topology adopted in DecentralizedDataAggregation employs three types of sensor nodes that can be categorized based on the role in the sensor network (see Figure 3.5): (1) gateway node, (2) cluster-head, and (3) leaf node. The gateway node is directly linked
to the base station, controlling network-wide information and data flow. The gateway node disseminates information for sensing, data processing, and the network topology to the cluster-head and leaf nodes. The cluster-head coordinates with the leaf nodes to calculate correlation or RD functions in the local community using the measured data. Note that overlapping nodes are allowed so that phase information from two overlapping local communities can be related to each other.

![Network topology diagram](image)

Figure 3.5 Network topology for *DecentralizedDataAggregation*.

3.3.2 Control Flow

DecentralizedDataAggregation consists of four stages: (1) initialization, (2) synchronized sensing, (3) decentralized RD function estimation, and (4) data collection. Each stage is defined as follows.

1. **Initialization**: Parameters for sensing (e.g., sampling rate, data length, and sensing channels) are distributed from the gateway node to all sensor nodes, including the cluster-head and leaf nodes. The network-wide time synchronization is then performed.

2. **Synchronized sensing**: The gateway node disseminate the parameter specifying the sensing start time to the all sensor nodes in the network. Once the sensor nodes finish sensing, the measured data is subsequently resampled to produce the synchronized data.
(3) **Decentralized data processing:** Once the synchronized data is ready,

DecentralizedDataAggregation decentrally process data in each local community. The cluster-head sends reference information (e.g., sensor data for NExT and trigger information for RDT) to the leaf nodes in the local community, and the correlation or RD function is calculated from the data at each node using the reference information. The processed data (e.g., correlation or RD function) is then sent to the cluster-head.

(4) **Data collection:** If the processed data is specified to be the output of *DecentralizedDataAggregation*, the gateway node collects the processed data from each local community, and subsequently transmits to the base station to save to a user-defined output file.

Completion of the process described herein results in the correlation or RD function estimated in the decentralized hierarchical network.
3.3.3 Fault Tolerance

SHM applications for the wireless sensor network should be able to appropriately handle failures that unexpectedly take place during operation. Failures most often occur during wireless communication and sensing. In particular, when the distance between nodes is long or the battery is low, communication failure is more likely to happen (Linderman et al. 2010). For a SHM application to be employed in a wireless sensor network for monitoring of full-scale civil
structures, this issue should be appropriately addressed so that the application proceeds even when unexpected failures occur.

In designing DecentralizedDataAggregation, fault-tolerance features are considered to improve reliability for full-scale implementations. The objective of the fault-tolerance is to ensure DecentralizedDataAggregation will continue with the working sensor nodes. Because the gateway node, which controls the flow of DecentralizedDataAggregation, should remain working throughout the operation, the gateway node removes failed nodes from the network. The cluster-head can remove its leaf nodes in case of failures, and its local sensor community is disregarded if the cluster-head fails. Leaf nodes can be removed from the network by the gateway node or cluster-heads if any failure occurs. This process is illustrated in Figure 3.7. In summary, failures are primarily handled in the node that resides in higher levels in the network hierarchy, reconfiguring the network to remove failed nodes in lower levels.

Figure 3.7 Flowchart for fault tolerance implementation.
3.3.4 Data Processing Methods

DecentralizedDataAggregation supports two data processing methods, Natural Excitation Technique (NExT) and Random Decrement Technique (RDT). Required to specify before running *DecentralizedDataAggregation*, the selected method decentrally processes sensor data to output correlation or RD function as well as the length of reference signals in the case of RDT. These two processing methods are implemented as two separate services that have the identical output data type and similar interfaces for *DecentralizedDataAggregation* so that NExT and RDT can be interchangeably used. The RDT-based data aggregation is more efficient in wireless communication than the NExT-based approach; the efficacy of RDT will be described in more detail in Chapter 5.

3.4 Summary

Implementations of the decentralized processing approaches on the WSSN consisting of Imote2 smart sensors were described in this chapter. *SensingUnit* is a basic software component that performs network-wide synchronized or synchronized sensing. *SensingUnit* can be commonly used in developing SHM applications. Two applications of the independent processing scheme were described: (a) *IndependentProcessingPSD* uses *SensingUnit* to measure data, of which power spectrum is calculated and (b) *CableTensionEstimation* estimates tension forces of cables using power spectrum obtained from *IndependentProcessingPSD*. As an example for decentralized coordinated processing, *DecentralizedDataAggregation* collects correlation functions based on NExT and RDT. The next chapter develops decentralized modal analysis tailored to the WSSN based on *DecentralizedDataAggregation*.
CHAPTER 4 DECENTRALIZED MODAL ANALYSIS

The WSSN ultimately requires decentralized local processing utilizing smart sensor’s onboard computing capability to efficiently use limited resources such as available bandwidth and battery. The processed data in the decentralized hierarchical network shown in Figure 2.2c contains only local information of each local sensor community. Decentralized modal analysis provides a means to obtain a global picture of a structure by combining the local information. This chapter presents formulation and numerical validation of decentralized modal analysis.

4.1 Formulation

An automated, hierarchical decentralized approach for modal analysis using smart sensors is proposed to obtain the global modal properties using a decentralized network topology. It consists of two parts: (i) local feature extraction and (ii) determination of global modal properties. In the WSSN, local features are estimated independently in each local sensor community and subsequently collected at the base station, where the global modal properties are determined. This section describes this process.

4.1.1 Local Feature Extraction

Consider the structure and sensor network topology depicted in Figure 4.1. The structure is divided into overlapping subdomains, represented by \(\Omega_i (i = 1, \ldots, n) \). Data aggregation and processing are conducted independently within each subdomain. In this study, two cases regarding the input excitation are considered. In the first, the input excitation is assumed to be measurable, allowing the transfer function to be estimated. By taking the inverse FFT of the transfer function, the impulse response function can be obtained, and subsequently used as input.
to ERA. The second case assumes that the input excitation is unavailable, and NExT is employed. In this approach, the cross-correlation functions between the measured responses are used as the input to ERA. In both cases, only the identified local information is collected centrally for determination of the global modal properties. More information regarding implementation of these two approaches on smart sensor networks can be found in Nagayama and Spencer (2007).

Figure 4.1 Structure and overlapping subdomains \((i, j = 1\sim n)\).

4.1.2 Determination of Global Modal Properties

Once the local information is collected centrally, the first task is to delineate the true modes from the noise modes. In this study, the true modes are selected based on the number of identified natural frequencies from the subdomains (Zimmerman et al. 2008). The true modes should be identified in the majority subdomains, while the noise modes will randomly appear in the subdomains. Thus, if a specific natural frequency is identified in a substantial number of the subdomains, it is considered as a true mode. If ERA fails to find the true mode in certain subdomains, the cross spectrum is alternatively used to estimate the local mode shapes. Once the
true modes are determined, the corresponding mode shapes can be combined together; the remainder of this section describes this process.

Consider global mode shape ϕ_m^{Ω} for the mth mode, along with the previously determined local mode shapes $\phi_m^{\Omega_1}, \phi_m^{\Omega_2}, \ldots, \phi_m^{\Omega_n}$ associated with respective subdomains. The local mode shapes $\phi_m^{\Omega_i}$ and $\phi_m^{\Omega_j}$ associated with two neighboring subdomains can be expressed as

\[
\phi_m^{\Omega_i} = \begin{bmatrix}
1 \\
\phi_{i,2} \\
\vdots \\
\phi_{i,p} \\
\phi_{i,1} \\
\phi_{i,r}
\end{bmatrix} \quad \text{and} \quad \phi_m^{\Omega_j} = \begin{bmatrix}
1 \\
\phi_{j,2} \\
\vdots \\
\phi_{j,q} \\
\phi_{j,1} \\
\phi_{j,r}
\end{bmatrix}
\] (3.1)

where the superscript o denotes the overlapping node in the ith and jth subdomains, r is the number of the overlapping nodes, and p and q are the number of non-overlapping nodes in the ith and jth subdomains, respectively. To allow assembly, the mode shapes in Equation (3.1) should be rescaled to have the same values at the overlapping nodes, i.e.,

\[
R_i \begin{bmatrix}
\phi_{i,1}^o \\
\vdots \\
\phi_{i,r}^o
\end{bmatrix} = R_j \begin{bmatrix}
\phi_{j,1}^o \\
\vdots \\
\phi_{j,r}^o
\end{bmatrix}
\] (3.2)

where R_i and R_j are the normalization factors for the mode shapes $\phi_m^{\Omega_i}$ and $\phi_m^{\Omega_j}$, respectively. The global mode shape is the union of the local mode shapes as

\[
\phi_m^{\Omega} = \bigcup_{i=1}^{n} R_i \phi_m^{\Omega_i}
\] (3.3)
In the presence of noise, the solution to Equation (3.2) for any \(r > 1 \) does not exist in general. Therefore, the normalization factor \(R_i \) for any \(i = 1, 2, \cdots, n \) must be approximately determined, for example as a solution in the least-square sense. Because the subdomains are interconnected, Equation (3.2) can be expanded up to \(n(n-1)/2 \) equations for all pairs of the overlapping local mode shapes as follows.

\[
\phi_{\Omega_2}^m = R_2 \phi_{\Omega_1}^m + \epsilon_{12}
\]

\[
\phi_{\Omega_1}^m = R_2 \phi_{\Omega_1}^m + \epsilon_{13}
\]

\[
\vdots
\]

\[
\phi_{\Omega_n}^m = R_2 \phi_{\Omega_1}^m + \epsilon_{1n}
\]

\[
R_2 \phi_{\Omega_1}^m = R_3 \phi_{\Omega_3}^m + \epsilon_{23}
\]

\[
\vdots
\]

\[
R_2 \phi_{\Omega_n}^m = R_n \phi_{\Omega_n}^m + \epsilon_{2n}
\]

\[
\vdots
\]

\[
R_{n-1} \phi_{\Omega_n}^m = R_n \phi_{\Omega_n}^m + \epsilon_{(n-1)n}
\]

where \(\phi_{\Omega_i}^m \) is the \(m \)th local mode shape in the \(i \)th domain at the nodes that overlap the \(j \)th domain, and \(\epsilon_{ij} \) is the error between the mode shapes. Note that the normalization factor for the first subdomain \(R_1 \) is selected to be 1. In matrix form, Equation (3.4) becomes

\[
y = XR + \epsilon
\]

where
The estimator \(\hat{R} \) that minimizes the square of errors \(\mathbf{e}^T \mathbf{e} \) is given by (see Montgomery and Runger 1994)

\[
\hat{R} = (X^T X)^{-1} X^T y
\]

(3.6)

Using the normalization factor \(R \), the local mode shapes are scaled and assembled to obtain the global mode shape. At the overlapping nodes, the local mode shapes are averaged to obtain the associated values of the global mode shape.

The accuracy of the combined global mode shapes can be evaluated by the error between the combined and reference global mode shapes, \(\phi_{\Omega}^m \) and \(\phi_{\Omega, \text{ref}}^m \), respectively:

\[
e_m = \phi_{\Omega}^m - \phi_{\Omega, \text{ref}}^m
\]

(3.7)

The reference global mode shapes are estimated using all measured accelerations simultaneously. Note that the reference global mode shapes correspond to the centralized data acquisition and processing scheme commonly used in the wired sensor networks, while the proposed decentralized approach is for the WSSN. For the error \(e_m \) to be meaningful, the two global mode shapes should be appropriately normalized. Thus, \(\phi_{\Omega, \text{ref}}^m \) is normalized so that the largest
element in $\phi_{\Omega, \text{ref}}^m$ is equal to 1, and ϕ_{Ω}^m is then scaled to minimize the square error between ϕ_{Ω}^m and $\phi_{\Omega, \text{ref}}^m$:

$$\min \left(\phi_{\Omega}^m - \phi_{\Omega, \text{ref}}^m \right)^T \left(\phi_{\Omega}^m - \phi_{\Omega, \text{ref}}^m \right) \quad (3.8)$$

To better understand the proposed method employing the least squares approximation, consider the 5 DOF spring-mass model in Figure 4.2a and its first mode shape in Figure 4.2b. This model is divided into subgroups forming two different topologies as shown in Figure 4.3. Note that subgroups share one overlapping node in Topology 1 and two in Topology 2.

Table 4.1 summarizes the global and local mode shapes, normalized with respect to the first node in each mode shape and with 10% error. In Topology 2, the normalization factors calculated using Equations (3.6) are $R_2=2.0694$ and $R_3=2.7388$. The scaled local mode shapes are

$$\phi_{\Omega_2} = \begin{pmatrix} 1.0000 \\ 2.2000 \\ 2.7500 \end{pmatrix}, \quad R_2\phi_{\Omega_2} = \begin{pmatrix} 2.0694 \\ 2.8454 \\ 2.2763 \end{pmatrix}, \quad R_3\phi_{\Omega_3} = \begin{pmatrix} 2.7388 \\ 2.4102 \\ 1.2051 \end{pmatrix} \quad (3.9)$$

Taking the average values at the overlapping nodes, the global mode shape is assembled as

$$\phi_{\Omega} = \begin{pmatrix} 1.0000 & 2.1347 & 2.7781 & 2.3433 & 1.2051 \end{pmatrix}^T \quad (3.10)$$

where T denotes the matrix transpose. The same procedure can be applied to Topology 1, resulting in the global mode shape as follows.

$$\phi_{\Omega} = \begin{pmatrix} 1.0000 & 2.2000 & 3.0250 & 2.6620 & 1.4641 \end{pmatrix}^T \quad (3.11)$$

Note that averaging is not required to assemble the scaled local mode shapes in Topology 1, because the subgroups share only one node.
Figure 4.4 compares the exact global mode shape and the combined global mode shapes of topologies 1 and 2. After normalizing the combined and reference global mode shapes, which is the exact in this example, the error e_1 is calculated. From Figure 4.4, the combined global mode shape of Topology 2 is seen more accurate than that of Topology 1. In the subsequent sections, numerical examples are provided to investigate the efficacy of the proposed method in detail, mainly focused on the sensor topologies.

(a) 4 DOF model.

(b) Exact global mode shape (1st mode).

Figure 4.2 4 DOF model and mode shape.

(a) Topology 1: 1 overlapping node

(b) Topology 2: 2 overlapping nodes

Figure 4.3 Topologies with different numbers of overlapping nodes.
Table 4.1 Global and local mode shapes.

<table>
<thead>
<tr>
<th>Mode shape</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Exact global mode shape</td>
<td>1.0</td>
</tr>
<tr>
<td>Topology 1</td>
<td>Group 1</td>
</tr>
<tr>
<td>Group 2</td>
<td>-</td>
</tr>
<tr>
<td>Group 3</td>
<td>-</td>
</tr>
<tr>
<td>Group 4</td>
<td>-</td>
</tr>
<tr>
<td>Topology 2</td>
<td>Group 1</td>
</tr>
<tr>
<td>Group 2</td>
<td>-</td>
</tr>
<tr>
<td>Group 3</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 4.4 Comparison of the global mode shapes.

Numerical examples of a plate and planar truss are provided to validate the proposed approach. In these examples, the effects of the sensor topologies on the accuracy of the combined global mode shapes are investigated.
4.2 Examples

4.2.1 Plate Model

Consider the uniform plate shown in Figure 4.5. The top and left edges of the plate are considered as fixed, and the bottom and right edges are simply supported. The plate is assumed to be 0.7 m by 1 m and made of steel having an elastic modulus of 200 GPa, a Poisson ratio of 0.3, mass density of 7.83×10^3 kg/m3, and thickness of 1 mm. The numerical model of the plate is implemented in MATLAB using the 12 DOF (3DOF at each node) rectangular Kirchhoff plate element known as the ACM element (Zienkiewicz and Cheung 1964). The shape functions are selected to be incomplete, 4th-order polynomials in the x- and y-directions resulting in 12 terms. The first seven out-of-plane mode shapes of the plate model are presented in Figure 4.6, and the transfer functions between the input excitation applied vertically at the nodes marked by an “X” and the accelerations at nodes N1 and N2 (see Figure 4.5) are shown in Figure 4.7.

Figure 4.5 Plate model.
Figure 4.6 Global mode shapes from the Finite Element model.

Figure 4.7 Transfer functions (Circles represent natural frequencies).
A total of 63 evenly spaced sensor nodes are selected as shown in Figure 4.5 to obtain vertical accelerations under the input excitation. As summarized in Table 4.2, four different simulation cases are considered: an impulse loading (cases 1 and 2) or a band-limited white noise up to 50 Hz (cases 3 and 4). 5% RMS noise is added to all measurements. ERA is used to identify the mode shapes and frequencies in cases 1, 2, and 3, whereas NExT/ERA is used in case 4. As the input excitation to large-scale civil engineering structures is not generally available, output-only modal analysis for random excitations is often employed; thus, case 4 may be considered as the most important for structural health monitoring.

Table 4.2 Simulation cases.

<table>
<thead>
<tr>
<th>Excitation type</th>
<th>Input measured</th>
<th>Input not measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse</td>
<td>Case 1 (ERA)</td>
<td>Case 2 (ERA)</td>
</tr>
<tr>
<td>Band-limited white noise</td>
<td>Case 3 (ERA)</td>
<td>Case 4 (NExT/ERA)</td>
</tr>
</tbody>
</table>

To investigate the effect of the sensor topologies on the combined global mode shapes, the nodes are grouped in four different ways, as shown in Figure 4.8: (a) Topology 1: two nodes in each group with one overlapping node, (b) Topology 2: four nodes in each group with two overlapping nodes, and (c) Topology 3: nine nodes in each group with three overlapping nodes. Note that Topology 1 corresponds to the approach adopted by Zimmerman et al. (2008).

Figure 4.8 Schematic view of subdomains (dashed line).
From the data communication perspective, having fewer local groups is advantageous due to less amount of data being transmitted over the radio. In a local group, the reference sensor sends sensor data that is generally long and all other sensors transmits the condensed data such as the correlation function of the cross spectrum. Thus, the amount of transmitted data can be drastically reduced by adopting a topology with less number of local groups. Assuming the time history record of length N and n_d times averaging without any overlap between spectral windows, the total transmitted data (Nagayama and Spencer 2007) is at most

$$N_{data} = n_g \left(N \cdot n_d + \frac{N}{2} \cdot (n_s - 1) \right)$$

(3.12)

where n_g and n_s are the numbers of local groups and sensor nodes, respectively. From Equation (3.12) with $N = 1024$, N_{data} are about 1.30×10^6, 1.06×10^6, and 0.29×10^6 for topology 1, 2, and 3, respectively. Thus, Topology 3 has the least data communication requirement.

As previously described, the number of groups in which a natural frequency is locally identified is utilized to delineate between true modes and noise modes. The natural frequencies estimated in each group are collected, and if the number of collected natural frequencies in a specific frequency range is greater than a predetermined threshold value, it is assumed to be a true mode. The threshold is selected to be 70% of the number of local groups. The frequency range in which identified frequencies are counted is $(f_c - \Delta f, f_c + \Delta f)$ where f_c is the central frequency of the range and $2\Delta f$ is the width. In this study, f_c and Δf are selected as follows.

$$f_c = k \cdot \frac{f_s}{N_{FFT}}, \quad k = 1, 2, \cdots$$

$$\Delta f = 2 \cdot \frac{f_s}{N_{FFT}}$$

(3.13)
where f_s is the sampling rate, N_{FFT} is the number of FFT points, and k is any positive integer such that f_c is less than the bandwidth of the input excitation. Note that the adjacent ranges are made to overlap with each other to prevent the case that the identified frequencies are evenly distributed over two adjacent non-overlapping ranges.

Figure 4.9 shows the typical number of groups in which a natural frequency is found in case 4 (random excitation, input not measured). The identified frequencies in the local groups are concentrated at several frequencies such as about 10 Hz, 18 Hz, 27 Hz, 31 Hz, 34 Hz, 47 Hz, and 49 Hz that are finally considered as corresponding to true modes. In some frequency ranges, the number of local groups is greater than the total number of local groups due to noise modes that are closely located to the true modes. In this case, the frequency that is closest to f_c is considered as the natural frequency of the local group.

![Figure 4.9 Number of identified natural frequencies (case 4: random excitation and input not measured).](image)

The global mode shapes can be assembled with the local mode shapes using the proposed method previously described. If a true mode is not identified in a certain local group, cross spectra of the accelerations in the group are alternatively utilized to estimate the local mode shapes. The cross spectrum values at the spectral line nearest to the natural frequency of the majority groups are assumed as the mode shape. Note that mode shapes obtained only from the
cross spectra may not be as accurate as those from the ERA because the cross spectra have values only at the spectral lines.

The error e_j defined in Equation (3.7) is calculated to assess the accuracy of the combined global mode shape. Typical plots of the error e_j for each topology in case 4 are shown in Figure 4.10. Improvement in accuracy is clearly shown for Topologies 2 and 3, where a larger size of local groups and more overlapping nodes are employed.

![Figure 4.10](image)

(a) Topology 1. (b) Topology 2. (c) Topology 3.

Figure 4.10 Absolute value of the errors between the combined and reference global mode shapes (case 4, 2\(^{nd}\) mode).

Two error measures defined previously in Equations (3.14) and (3.15) are considered to quantitatively evaluate the accuracy of the combined global mode shapes.

\[
E_{\text{max},j} = \max \left(|e_{j,1}|, |e_{j,2}|, \cdots, |e_{j,n}| \right)
\]

(3.14)

\[
E_{\text{avg},j} = \text{mean} \left(|e_{j,1}|, |e_{j,2}|, \cdots, |e_{j,n}| \right)
\]

(3.15)

Repeating the simulation 100 times for each case, the averages of each error measure are calculated for the first seven modes as shown in Figure 4.11 and Figure 4.12. Zoomed figures from 0% to 15% are also provided in Figure 4.12 to clearly show $E_{\text{avg},j}$. In Figure 4.11 and Figure 4.12, topology 3 consistently has the smallest errors in most cases. It can be concluded that sufficiently large local groups and multiple overlapping nodes as in Topology 3 contribute to reliable and accurate estimation of global modal properties.
(a) Case 1: Impulse loading, input measured.
(b) Case 2: Impulse loading, input not measured.
(c) Case 3: Random excitation, input measured.
(d) Case 4: Random excitation, input not measured.

Figure 4.11 Maximum error.
4.2.2 Truss Model

Consider the three-dimensional truss model shown in Figure 4.13. This simply supported truss consists of 53 elements that have the identical sectional and material properties shown in Table 4.3. The input excitation, either impulse loading or random excitation, is applied vertically as
shown in Figure 4.13. Transfer functions between the excitation and the accelerations at nodes N1 and N2 marked by circles in Figure 4.13 are shown in Figure 4.14. As in the plate example, four cases in Table 4.2 are considered. For cases 3 and 4, a band-limited white noise of which bandwidth is from 0 to 120 Hz that encompasses the first four modes of the truss is applied. Vertical accelerations at all lower nodes are obtained in each case. 5% RMS noise is added to all measurements.

Figure 4.13 Truss model.

Table 4.3 Sectional and material properties.

<table>
<thead>
<tr>
<th>Cross sectional area (m²)</th>
<th>Moment of inertia (m⁴)</th>
<th>Elastic modulus (Pa)</th>
<th>Shear modulus (Pa)</th>
<th>Mass density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_x</td>
<td>I_y</td>
<td>I_z</td>
<td></td>
</tr>
<tr>
<td>3.0×10⁻⁴</td>
<td>5.0×10⁻⁹</td>
<td>2.5×10⁻⁹</td>
<td>2.5×10⁻⁹</td>
<td>1.999×10¹¹</td>
</tr>
</tbody>
</table>
Two types of sensor topologies in Figure 4.15 are considered: (a) for Topology 1 each local group consist of two nodes, one of which is the overlapping node and (b) for Topology 2 each local group has four nodes, two of which are the overlapping nodes.

Figure 4.15 Plan view of the truss model for sensor topologies.

The proposed method is applied to determine the global modal properties of the truss. Modal analysis is conducted in each group using ERA (cases 1, 2, and 3) or NExT/ERA (case 4) to estimate local modal properties, and the true modes are obtained based on the locally identified natural frequencies. However, the 1st mode that does not have significant energy as
can be seen in Figure 4.14 is not determined as a true mode in case 4. This mode can be manually identified if correlation function is collected to the base station.

As in the plate example, the maximum and average errors between the reference and combined global mode shapes are selected to evaluate the accuracy. The simulation is repeated 100 times, and the averages of the errors are obtained for the first 7 modes as shown in Figure 4.16 and Figure 4.17. In these graphs, topology 2 (larger local groups and multiple overlapping nodes) exhibits consistently smaller error than that of topology 1. Particularly in case 4, which is considered as the most important for the civil structures due to the difficulty in measuring the input excitation, the difference between the errors for topologies 1 and 2 is clearly seen in Figure 4.16d and Figure 4.17d.

To visualize the difference, typical combined global mode shapes of the 3rd, 6th, and 7th modes for topologies 1 and 2 are compared with the reference global mode shapes in Figure 4.18, Figure 4.19, and Figure 4.20. Here, the mode shape at upper nodes is assumed having the same values with the corresponding lower nodes to fully draw mode shapes of the truss. The discrepancy between the reference and the combined global mode shape of topology 1 is clear; topology 2 shows better agreement with the reference.
(a) Case 1:
Impulse loading, input measured.

(b) Case 2:
Impulse loading, input not measured.

(c) Case 3:
Random excitation, input measured.

(d) Case 4:
Random excitation, input not measured.

Figure 4.16 Maximum error.
Figure 4.17 Average error.

(a) Case 1: Impulse loading, input measured.

(b) Case 2: Impulse loading, input not measured.

(c) Case 3: Random excitation, input measured.

(d) Case 4: Random excitation, input not measured.
4.3 Summary

An automated, hierarchical, decentralized approach for modal analysis using smart sensors has been presented. Decentralized modal analysis consists of two main parts: (1) local feature extraction and (2) determination of global modal properties. Modal analysis is conducted independently in each sensor group to estimate the local modal information using NExT/ERA.
Frequency for which the local groups identify the natural frequencies is utilized to delineate between the true and noise modes. Local mode shapes are then assembled using a least squares approximation to estimate the global mode shape.

The decentralized modal analysis approach was numerically validated. From the plate and truss examples, sensor topologies were investigated in terms of the size of local groups and the number of overlapping nodes. Larger groups with overlapping nodes were found to reduce errors in the assembled global mode shape. The numerical results showed global modal properties can be reliably and accurately estimated if sensor topologies are appropriately selected to have sufficiently large local groups and multiple overlapping nodes.

In the next chapter, the Random Decrement Technique is considered as an alternative of NExT for more efficient data communication in decentralized data processing in the WSSN.
CHAPTER 5 DECENTRALIZED RANDOM DECREMENT TECHNIQUE

The Random Decrement Technique (RDT) is in nature well-suited to the decentralized in-network processing for output-only system identification. While the NExT-based decentralized data aggregation proposed by Nagayama and Spencer (2007) has been recognized as an efficient way to extract modal information, RDT has potential to further reduce wireless communication in WSSN. This chapter develops the Random Decrement Technique for use in the decentralized computing environment of WSSNs.

5.1 Random Decrement Technique

Cole (1968) initially proposed RDT to estimate the dynamic properties of space structures excited by immeasurable ambient excitation. The basic assumption is that the dynamic response of a structure under ambient excitation is ergodic. From the structural response, n time history segments in the interval $[t_i, t_i + \tau]$ ($i = 1, \ldots, n$) are selected such that the displacement at t_i is equal to a specific trigger level. The response of a system at $t_i + \tau$ is comprised of three components:

1. Deterministic response due to the initial displacement at time t_i
2. Deterministic response due to the initial velocity at time t_i
3. Random response due to the random excitation between t_i and $t_i + \tau$

If the average is taken over a sufficiently large number of the segments, the third part of the response due to the random excitation will tend toward zero. Furthermore, the velocity at time t_i is uncorrelated with the displacement and has zero mean. Thus, the part of the response
due to the initial velocity also tends to zero. The resulting RD function is the free vibration caused by a nonzero initial displacement.

Vandiver et al. (1982) provided a mathematical foundation for the random decrement function, showing that the RD function is proportional to the autocorrelation function for a linear, time-invariant system excited by a zero-mean, stationary, Gaussian random process. Later, Brincker et al. (1992, 1995) introduced a general triggering function and showed that RDT estimates a weighted sum of the auto- and cross-correlation functions and their time derivatives. For completeness, this section briefly describes the fundamental concept of RDT.

Consider stationary, Gaussian random processes $X_1(t)$ and $X_2(t)$. The auto- and cross-random decrement (RD) functions of $X_1(t)$ and $X_2(t)$ can be defined as the expected value of $X_1(t)$ and $X_2(t)$ given a trigger condition $C_{X_i(t)}$ (Brincker et al. 1992, 1995):

$$D_{X_1X_1}(\tau) = E\left[X_1(t_1 + \tau)|C_{X_1(t)}\right]$$

(3.16)

$$D_{X_1X_2}(\tau) = E\left[X_2(t_1 + \tau)|C_{X_1(t)}\right]$$

(3.17)

$$C_{X_1(t)} = \left[a_1 \leq X_1(t_1) < a_2, b_1 \leq \dot{X}_1(t_1) < b_2\right]$$

(3.18)

where $E[\cdot]$ denotes expectation. Equations (3.16) and (3.17) also can be written as:

$$D_{X_1X_1}(\tau) = \frac{R_{X_1X_1}(\tau)}{\sigma_{X_1}^2} \bar{a} - \frac{\dot{R}_{X_1X_1}(\tau)}{\sigma_{X_1}^2} \bar{b}$$

(3.19)

$$D_{X_1X_2}(\tau) = \frac{R_{X_1X_2}(\tau)}{\sigma_{X_1}^2} \bar{a} - \frac{\dot{R}_{X_1X_1}(\tau)}{\sigma_{X_1}^2} \bar{b}$$

(3.20)

where $R_{X_1X_1}(\tau) = E[X_1(t)X_1(t + \tau)]$ and $R_{X_1X_2}(\tau) = E[X_2(t)X_1(t + \tau)]$ are the auto- and cross-correlation functions, respectively, and \bar{a} and \bar{b} can be defined in terms of the probability density functions $p_{X_1}(x)$ and $p_{\dot{X}_1}(\dot{x})$, respectively, as:
\[
\bar{a} = \int_{a_1}^{a_2} x p_{X_i}(x) dx / \int_{a_1}^{a_2} p_{X_i}(x) dx \quad \text{and} \quad \bar{b} = \int_{b_1}^{b_2} x p_{X_i}(x) dx / \int_{b_1}^{b_2} p_{X_i}(x) dx
\]

(3.21)

In this study, the positive-point trigger condition (Asmussen, 1997) is considered:

\[
C_{\dot{X}_i(t_i)} = \left[\alpha_1 \sigma_{X_i} \leq \dot{X}_i(t_i) < \alpha_2 \sigma_{X_i}, -\infty \leq X_i(t) < \infty \right]
\]

(3.22)

where \(0 \leq \alpha_1 < \alpha_2 \leq \infty\). Equations (3.19) and (3.20) are then:

\[
D_{\dot{X}_iX_i}(\tau) = \frac{R_{\dot{X}_iX_i}(\tau)}{\sigma_{X_i}^2} \bar{a} \quad \text{and} \quad D_{X_iX_i}(\tau) = \frac{R_{X_iX_i}(\tau)}{\sigma_{X_i}^2} - \bar{a}.
\]

(3.23)

Now, consider the equation of motion for a multi-degree-of-freedom system:

\[
\mathbf{M}\ddot{\mathbf{X}}(t) + \mathbf{C}\dot{\mathbf{X}}(t) + \mathbf{K}\mathbf{X}(t) = \mathbf{F}(t)
\]

(3.24)

where \(\mathbf{M}, \mathbf{C}, \text{ and } \mathbf{K}\) are the mass, damping, and stiffness matrices, respectively. The externally applied force is assumed to be a zero-mean, stationary, Gaussian random process, and the mass, damping, and stiffness are assumed to be deterministic. James et al. (1993) showed that the correlation function between responses and a reference response \(X_k\) is the homogeneous solution of the equation of motion:

\[
\mathbf{M}\ddot{\mathbf{X}}_{X_k}(\tau) + \mathbf{C}\dot{\mathbf{X}}_{X_k}(\tau) + \mathbf{K}\mathbf{X}_{X_k}(\tau) = \mathbf{0}
\]

(3.25)

Substituting Equation (3.23) into Equation (3.25), and multiplying by \(\frac{\sigma_{X_i}^2}{\bar{a}}\) yields

\[
\mathbf{M}\ddot{\mathbf{D}}_{XX_i}(\tau) + \mathbf{C}\dot{\mathbf{D}}_{XX_i}(\tau) + \mathbf{K}\mathbf{D}_{XX_i}(\tau) = \mathbf{0}
\]

(3.26)

where \(\mathbf{D}_{XX_i}(\tau)\) is the vector of RD functions, with the scalar response process \(X_k\) being referenced for the trigger condition. Thus, the RD functions \(\mathbf{D}_{XX_i}(\tau)\) are seen to satisfy the homogeneous equation of motion.

The RD functions can be estimated from data as follows:
\[
\hat{D}_{x,x_j}(\tau) = \frac{1}{N} \sum_{i=1}^{N} x_j(t_i + \tau) C_{q_i(t_i)} \tag{3.27}
\]

where \(\hat{D}_{x,x_j}(\tau) \) is the RD function obtained from \(x_j(t) \) with respect to the reference \(x_k(t) \), \(N \) is the total number of trigger events, \(C_{q_i(t_i)} \) is the specified positive point trigger condition, and \(t_i \) is the \(i^{th} \) time obtained from the trigger event \(C_{q_i(t_i)} \). When \(j = k \), \(\hat{D}_{j,j}(\tau) \) is an auto-RD function.

Once the RD functions are obtained, modal properties of the structure can be estimated using a wide range of system identification methods. For example, the RD function can be directly used in the time domain methods such as ERA and SSI. Also, the unscaled frequency response function obtained by taking the Fourier transform of the RD function can be used as an input to frequency domain methods such as Peak Peaking and FDD. Figure 5.1 illustrates the use of the RD functions for various identification methods.

![Figure 5.1 Application of RDT for system identification.](image)

5.2 RDT-based Decentralized Data Aggregation

RDT can significantly enhance the efficiency of data aggregation in the distributed computing environment in WSSNs. As previously described, central data collection and processing in WSSNs can cause severe data congestion due to limited communication bandwidth; decentralized in-network processing for data condensation can mitigate this problem.

To better understand the efficiency of the decentralized processing, consider the centralized implementation of community-wide data processing shown in Figure 5.2. Assuming
the community has \(n_s \) nodes, each sensor node measures data and transmits to Node 1 that provides reference information for correlation function estimation. For time history records of length \(N \) and \(n_d \) averages, the amount of transmitted data is \(N \times n_d \times (n_s - 1) \).

Nagayama et al. (2007) proposed a decentralized NExT implementation, taking advantage of each node’s computing capability to reduce data communication (see Figure 5.3). Node 1 sends a measured time history record as a reference signal to each node. Correlation functions are calculated in all nodes in the community and subsequently collected at Node 1. The amount of transmitted data is at most \(N \times n_d + N/2 \times (n_s - 1) \). As the numbers of nodes or averages increase, the efficiency of the decentralized NExT implementation becomes clearer.

The decentralized RDT implementation shown in Figure 5.4 can further reduce data communication. In this approach, Node 1 sends the trigger information found in Equation (3.22) to all nodes in the community. Once the reference is received, each node calculates the RD functions that are subsequently collected at Node 1. Note that (1) the trigger information is in general much shorter than the time history record used as the reference for NExT, and (2) transmission of the reference takes a significant portion of the total communication in the decentralized NExT implementation, particularly when long records are used. Thus, the RDT-based decentralized data aggregation can considerably reduce data communication requirement.

![Figure 5.2 Centralized NExT implementation (Nagayama et al. 2007).](image)
Data communication required by the decentralized RDT implementation is closely related to the number of triggering points. For the positive-point trigger condition found in Equation (3.22), the expected number of triggering points is (Asmussen 1997):

\[
E\left[n(a_1,a_2) \right] = \left(N_X - N_r \right) \int_{a_1}^{a_2} p_X(x) \, dx
\]

(3.28)

where \(n(a_1,a_2) \) is the number of triggering points between \(a_1 \) and \(a_2 \), \(\Delta t \) is the sampling rate, \(p_X(x) \) the probability density function of \(X(t) \), and \(N_X \) and \(N_r \) are the number points in \(X(t) \) and the RD function, respectively. Thus, the total number of points to be wirelessly transferred in the decentralized RDT implementation is:

\[
\left(N_X - N_r \right) \int_{a_1}^{a_2} p_X(x) \, dx + N_r (n_s - 1)
\]

(3.29)

To better understand the efficiency of the decentralized RDT implementation from the data communication perspective, consider data communication requirements in each of three
implementations (i) centralized data collection, (ii) decentralized NExT, and (iii) decentralized RDT. Assuming $N = 1024$, $n_d = 20$, $n_s = 6$, $N_X = 20,480$, $N_t = 512$, $a_1 = \sigma_x$, $a_2 = 1.5 \times \sigma_x$, and $X(t)$ follows the Gaussian distribution, the numbers of transferred data points are:

- Centralized implementation: $N \cdot n_d \cdot (n_s - 1) = 102,400$
- Decentralized NExT: $N \cdot n_d + N/2 \cdot (n_s - 1) = 23,040$
- Decentralized RDT: $(N_X - N_t) \int_{n_s}^{n_s^2} p_x(x) \, dx + N_t \cdot (n_s - 1) = 4,394$

In this particular example, the decentralized RDT implementation reduces data communication to 4.3% of the centralized implementation and 19.1% of the decentralized NExT implementation.

RDT exhibits less data communication requirements than NExT because RDT does not require the entire time history for a reference, but rather needs only the trigger information. The next section presents a numerical example to validate the feasibility of RDT in the distributed computing environment for WSSNs.

5.3 Numerical Validation

The efficacy of the proposed RDT-based decentralized data aggregation is numerically investigated. The performance in the distributed computing environment is checked in two criteria: (1) estimation accuracy and (2) data communication requirements. To assess the accuracy, global modal properties are estimated from local information (Sim et al. 2010) obtained by the RDT-based decentralized data aggregation. The NExT-based decentralized data aggregation is employed as a reference.
Consider the simply supported truss model in Figure 5.5. The truss consists of 53 elements, for which the area moments of inertia are $I_x = 5.0 \times 10^{-9}$ m4 and $I_y = I_z = 2.5 \times 10^{-9}$ m4, the elastic modulus is 1.999×10^{11} Pa, the shear modulus is 7.692×10^{11} Pa, and the mass density is 7.827×10^3 kg/m3. A band limited white noise on the interval 0 Hz to 120 Hz is applied vertically as shown in Figure 5.5. Vertical accelerations at all lower nodes are obtained, and 5% RMS noise is added to all measurements. For subsequent reference, the transfer functions between the input excitation and the measured accelerations at points N1 and N2 (see Figure 5.5) are obtained from the analytical model as shown in Figure 5.6. Because the 5th mode is not excited by the given input, the 5th peak is not present in the transfer functions.

Figure 5.5 Truss model.
Figure 5.6 Transfer functions from the input excitation to accelerations at nodes N1 and N2.

The selected sensor topology shown in Figure 5.7 (Sim et al. 2010) consists of six groups with 26 nodes in total. Each local group has six nodes, two of which are the overlapping nodes. The second node of each group (see Figure 5.8) is selected as the cluster-head that provides the reference information (i.e., time history records for NExT and trigger information for RDT).

![Sensor topology](image)

Figure 5.7 Sensor topology (top view).

![Topology of a local group](image)

Figure 5.8 Topology of a local group (top view).

Once acceleration responses are obtained, RD and correlation functions are decentrally estimated in each local group as previously described. Subsequently, ERA is employed to
estimate local modal properties, from which global modal properties are obtained (Sim et al. 2010). Simulation is repeated 100 times to accommodate the randomness in the identification process.

The interval \((a_1, a_2)\) for the positive-point trigger crossing is optimally chosen for RDT to accurately estimate modal properties while maintaining a low number of trigger crossings by maximizing the following function with respect to \((a_1, a_2)\):

\[
\frac{MAC}{E \cdot S} \quad (3.30)
\]

where

\[
MAC = \sum_i \frac{\left|\phi_{i,\text{est}}^T \phi_{i,\text{ext}}\right|^2}{(\phi_{i,\text{est}}^T \phi_{i,\text{ext}})(\phi_{i,\text{est}}^T \phi_{i,\text{ext}})} \quad (3.31)
\]

\[
E = \sum_i \left|\frac{f_{i,\text{est}} - f_{i,\text{ext}}}{f_{i,\text{ext}}}\right| \quad (3.32)
\]

\(S\) is the total number of trigger crossings, \(\phi_{i,\text{est}}\) and \(\phi_{i,\text{ext}}\) are the \(i^{th}\) estimated and exact global mode shapes, respectively, and \(f_{i,\text{est}}\) and \(f_{i,\text{ext}}\) are the \(i^{th}\) estimated and exact natural frequencies, respectively. Note the modal assurance criterion (Allemang and Brown 1982) is utilized in Equation (3.31). Equation (3.30) is evaluated in the intervals with lower and upper bounds from 0 to 3\(\sigma\) as shown Figure 5.9: the optimal interval \((a_1, a_2)\) that maximizes \(MAC/(E \cdot S)\) is \((1.75\sigma, 2.50\sigma)\). While determining the optimal interval in full-scale applications may not be possible due to the lack of the exact mode shapes, the trend shown in Figure 5.9 can be utilized to determine appropriate intervals that produce accurate modal identification. In the subsequent analysis, the interval \((1.75\sigma, 2.50\sigma)\) is utilized for the positive-point trigger crossing in the RDT-based decentralized data aggregation.
As shown in Figure 5.10, the global mode shapes obtained by RDT- and NExT-based decentralized data aggregation approaches match well with the exact mode shapes from the finite element model. Note that the 1st mode is not identified in both RDT- and NExT-based decentralized data aggregation approaches due to the low energy by the given responses (see Figure 5.6). The 1st mode is dominated by a transverse motion; it is neither well excited nor well observed, because the input excitation is vertically applied and only vertical accelerations are measured. MAC between the exact and estimated mode shapes shown in Table 5.1 is consistent with the observation made in Figure 5.10. As such, the decentralized implementation of RDT accurately estimates modal properties.
Figure 5.10 Global mode shapes (Note that Modes 1 and 5 are not represented well in the response, as shown in Figure 5.6).

Table 5.1 MAC between the exact and estimated mode shapes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>NExT-based decentralized data aggregation</th>
<th>RDT-based decentralized data aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>3</td>
<td>0.9998</td>
<td>0.9998</td>
</tr>
<tr>
<td>4</td>
<td>0.9995</td>
<td>0.9997</td>
</tr>
<tr>
<td>6</td>
<td>0.9144</td>
<td>0.9649</td>
</tr>
<tr>
<td>7</td>
<td>0.9251</td>
<td>0.9823</td>
</tr>
</tbody>
</table>
Now, the efficiency of RDT is investigated in terms of data communication. For this purpose, the identical acceleration records are used in the numerical simulation for both NExT/ERA and RDT/ERA. The length of an acceleration signal is 21,504 points, determined as:

- Number of averages $N_{\text{average}} = 20$
- Number of FFT points $N_{\text{FFT}} = 2048$
- Overlap between adjacent windows: $R_{\text{overlap}} = 0.5$

\[
\text{Data points} = N_{\text{FFT}} \times \left((1 - R_{\text{overlap}}) \times N_{\text{average}} + R_{\text{overlap}} \right) = 21,504 \quad (3.33)
\]

In NExT-based decentralized data aggregation, the reference acceleration of 21,504 points in each group is broadcast to the leaf nodes by the cluster-head to compute the correlation functions.

When applying RDT, the trigger crossing information in the cluster-head is required as the reference in the leaf nodes. The number of trigger crossings in each of the cluster-heads for the six local groups are indicated in Table 5.2, along with the amount data required for NExT. The total transmitted data over the radio link in the case of RDT is only 22% of NExT. Thus, the efficiency in the data communication can be significantly improved.

Table 5.2 Transferred data for NExT and RDT.

<table>
<thead>
<tr>
<th>Local group</th>
<th>NExT</th>
<th>RDT</th>
<th>RDT/NExT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total1</td>
<td>Trigger crossing2</td>
<td>Total3</td>
</tr>
<tr>
<td>1</td>
<td>26,629</td>
<td>729.35</td>
<td>5,854.35</td>
</tr>
<tr>
<td>2</td>
<td>26,629</td>
<td>727.82</td>
<td>5,852.82</td>
</tr>
<tr>
<td>3</td>
<td>26,629</td>
<td>732.35</td>
<td>5,857.35</td>
</tr>
<tr>
<td>4</td>
<td>26,629</td>
<td>730.80</td>
<td>5,855.80</td>
</tr>
<tr>
<td>5</td>
<td>26,629</td>
<td>728.06</td>
<td>5,853.06</td>
</tr>
<tr>
<td>6</td>
<td>26,629</td>
<td>729.75</td>
<td>5,854.75</td>
</tr>
<tr>
<td>Total</td>
<td>159,774</td>
<td>7,378.13</td>
<td>35,128.13</td>
</tr>
</tbody>
</table>

1 The total is the sum of reference data (21,504 points) and correlation functions (1025 from 5 leaf nodes).
2 The number of trigger crossings is a mean value obtained from 100 simulations.
3 The total is the sum of trigger crossings and RD functions (1025 from 5 leaf nodes).
5.4 Experimental Validation

5.4.1 Experimental Setup

The performance of RDT-based decentralized data aggregation in the WSSN is experimentally investigated using the truss structure shown in Figure 5.11. As in the previous numerical example, the estimation accuracy for global modal properties and data communication requirements are assessed. *DecentralizedDataAggregation* installed on the Imote2 sensors is employed to decentrally calculate RD functions as well as correlation functions that are used as the reference.

The experimental structure considered is a simply supported truss that consists of steel hollow circular tubes with an inner diameter of 0.428 inches and an outer diameter of 0.612 inches (see Figure 5.11). A shaker is used to vertically excite the truss with a band-limited white noise on the interval 0–100 Hz.

![Figure 5.11 Truss structure.](image)

A total of 14 Imote2 sensors with SHM-A acceleration sensor boards are installed on the bottom chord of the truss as shown in Figure 5.12 and Figure 5.13. The SHM-A, developed at the University of Illinois at Urbana-Champaign by Rice and Spencer (2009), is a general purpose, multimetric sensor board for the Imote2 sensor platform that can measure up to 3-axis of
accelerations, light, temperature, and humidity. The sensor network is divided into four local sensor groups that consist of four or six sensor nodes. Sensor nodes S2, S6, S10, and S14 in Figure 5.13 serve as cluster-heads in each local sensor groups.

![Figure 5.12 Imote2 sensor node attached to the bottom chord of the truss.](image)

Figure 5.13 Sensor topology (plan view) (S2, S6, S10, and S14 are cluster-heads).

5.4.2 Data Acquisition and In-network Processing

Vertical accelerations are measured at each sensor node with a sampling rate of 280 Hz, with a 70 Hz cutoff frequency. The measured acceleration time histories are 21,504 points in length for both correlation and RD function estimation using *DecentralizedDataAggregation*. With respect to calculation of the correlation functions, a signal with 21,504 points allows 20 averages if 2,048 points of FFT and 50% overlap between windows are specified.

DecentralizedDataAggregation is consecutively employed to estimate the correlation and RD functions, as shown in Figure 5.14 and Figure 5.15, respectively. The positive-point trigger crossing with an interval of \((\sigma, 2.5\sigma) \) was found to produce the best results. Local modal
properties are estimated at the base station for both cases by ERA using the correlation and RD functions that are calculated on the Imote2 sensors, and subsequently global modal properties are obtained. In addition, raw acceleration time history data from all sensor nodes are centrally collected to provide a reference in comparison of NExT and RDT in the distributed computing environment. Using the centrally collected accelerations, NExT/ERA and RDT/ERA are employed to estimate reference modal properties.

Figure 5.14 Auto-correlation of S10 (top) and cross-correlation between S10 and S8 (bottom).

Figure 5.15 Auto-RD function of S10 (top) and cross-RD function between S10 and S8 (bottom).
5.4.3 Data Processing at Base Station

Table 5.3 summarizes the identified natural frequencies of the truss for system identification method:

- Reference 1: Centralized processing using NExT/ERA
- Reference 2: Centralized processing using RDT/ERA
- Case 1: Decentralized processing using NExT/ERA
- Case 2: Decentralized processing using RDT/ERA

Compared to the cases of the centralized processing, both NExT/ERA and RDT/ERA based on the decentralized processing estimate natural frequencies with a reasonable accuracy (see Table 5.3).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Natural frequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centralized processing (reference)</td>
</tr>
<tr>
<td></td>
<td>Reference 1</td>
</tr>
<tr>
<td>1</td>
<td>20.77</td>
</tr>
<tr>
<td>2</td>
<td>33.26</td>
</tr>
<tr>
<td>3</td>
<td>41.61</td>
</tr>
<tr>
<td>4</td>
<td>64.16</td>
</tr>
<tr>
<td>5</td>
<td>69.38</td>
</tr>
</tbody>
</table>

The global mode shapes for each case are compared as shown in Figure 5.16, which shows good agreements with the reference. Note that only Reference 1 is shown in Figure 5.16, because global mode shapes from Reference 1 and 2 are visibly indistinguishable. The MAC values between the global mode shapes from the decentralized processing (Cases 1 and 2) and centralized processing (References 1 and 2) are calculated as shown in Table 5.4, all MAC values are close to 1, which is consistent with Figure 5.16. Both NExT/ERA and RDT/ERA in decentralized processing environment estimate global mode shapes accurately.
Figure 5.16 Global mode shapes.

Table 5.4 MAC with respect to the reference global mode shapes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Reference 1 Centralized NExT/ERA</th>
<th>Reference 2 Centralized RDT/ERA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1 NExT/ERA decentralized</td>
<td>Case 2 RDT/ERA decentralized</td>
</tr>
<tr>
<td>1</td>
<td>0.9997</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.9980</td>
<td>0.9992</td>
</tr>
<tr>
<td>3</td>
<td>0.9996</td>
<td>1.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.9943</td>
<td>0.9990</td>
</tr>
<tr>
<td>5</td>
<td>0.9975</td>
<td>0.9988</td>
</tr>
</tbody>
</table>

Wireless data communication required in correlation and RD function estimation is investigated to identify the efficiency of RDT-based decentralized data as summarized in Table

79
5.5: RDT reduces wireless data communication to 28.47% of NExT. As previously described, NExT requires an entire time history of the reference signal transferred for each local sensor group, which results in more data communication than RDT.

<table>
<thead>
<tr>
<th>Local group</th>
<th>Transferred data (points)</th>
<th>RDT/NExT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1 - NExT</td>
<td>Case 2 - RDT</td>
</tr>
<tr>
<td>Ref.¹</td>
<td>CF²</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>21,504</td>
<td>3,075</td>
</tr>
<tr>
<td>2</td>
<td>21,504</td>
<td>5,125</td>
</tr>
<tr>
<td>3</td>
<td>21,504</td>
<td>5,125</td>
</tr>
<tr>
<td>4</td>
<td>21,504</td>
<td>3,075</td>
</tr>
<tr>
<td>Total</td>
<td>86,016</td>
<td>16,400</td>
</tr>
</tbody>
</table>

¹ Ref. is the length of the reference data in NExT.
² CF is the total length of correlation functions (number of leaf nodes × length of a correlation function).
³ Ref. is the length of the reference data in RDT. This number varies depending on the reference data.
⁴ RDF is the total length of RD functions (number of leaf nodes × length of a RD function).

5.5 Summary

The experiment using the Imote2 sensor nodes with DecentralizedDataAggregation embedded was conducted using the truss structure shown in Figure 5.11. In the experiment, the RDT-based decentralized data aggregation was demonstrated to be efficient in terms of wireless communication with accurate estimation results. In addition, performance of decentralized modal analysis and software reliability of DecentralizedDataAggregation were successfully verified in the laboratory environment.
Structural damage detection can be enhanced by using a heterogeneous mix of measurands containing both local and global information. Herein, a damage detection method that extends the Stochastic DLV method (Bernal 2006) to use acceleration and strain in combination is described. This section first describes the DLV method briefly, provides a mathematical formulation for the extension to use acceleration and strain in the DLV method, and presents a numerical example to validate the multimetric approach.

6.1 Damage Locating Vector Method

For completeness, the DLV method is briefly reviewed in this section. The flexibility matrices of a linear structure before and after damage are determined from the measured data and are denoted as F_u and F_d, respectively. Assume the load vectors L that produce identical displacements at the sensor locations before and after damage exist and can be written as

$$ (F_u - F_d) \cdot L = F_\Delta \cdot L = 0 $$

These vectors, L, are termed the damage locating vectors (DLV). The DLVs constitute a set of loads that induce no stress in the damaged elements. Excluding the trivial case where $F_\Delta = 0$, L is in the null space of F_Δ and can be determined using the singular value decomposition.

Once determined, each of the DLVs can be applied to a numerical model of the undamaged structure, and the stress in each element calculated and normalized as follows:

$$ \bar{\sigma}_j = \frac{\sigma_j}{\max_k(\sigma_k)} \quad \text{and} \quad \sigma_j = \sum_{i=1}^{m} \left\{ \frac{\sigma_{ij}}{\max_k(\sigma_{ik})} \right\} $$

(3.35)
where σ_j is the normalized accumulated stress, σ_{ij} is the stress in the jth element induced by the ith DLV, and m is the number of DLVs. If the normalized stress in an element is zero, then this element is a damage candidate. However in practice, the cumulative stress may not be exactly zero due to intrinsic uncertainties such as measurement noise or model error. Thus, a threshold value needs to be selected to determine the damaged elements. If the cumulative stress of an element is less than the selected threshold, then the element is considered as a damage candidate. This nonzero error stress at the damaged element caused by uncertainties is required to be small for reliable damage detection.

Bernal (2006) extended the DLV method to accommodate the output-only case (i.e., the input excitation is not measured), resulting in the stochastic DLV method. In this approach, an alternative matrix that spans the same null space as F_Δ in Equation (3.34) is used to determine the DLVs. The stochastic DLV method has been extended, implemented, and experimentally verified on a network of smart sensors (Nagayama and Spencer 2007). In the next section, the stochastic DLV method is further extended to accommodate multimetric sensed data.

6.2 Derivation

The DLV method and the flexibility matrix estimation are based on global measurements such as displacement, velocity, and acceleration. Only accelerations have been used in the experimental verification of the DLV method (Gao et al. 2004; Nagayama and Spencer 2007). Herein, the mathematical formulation for the approach to combine the strain with the displacement, velocity, and acceleration in the stochastic DLV method is provided.
6.2.1 Strain flexibility matrix

Consider the flexibility matrix F_d that relates the external load to the displacement of the structure such that

$$\{u\} = F_d \{L\}$$ \hfill (3.36)

where $\{u\}$ and $\{L\}$ are the displacement and load vectors, respectively. The strain flexibility F^* is defined herein as

$$\{\varepsilon\} = F^* \{L\}$$ \hfill (3.37)

where $\{\varepsilon\}$ is the strain vector. Assume that a linear transformation T between the strain and the displacement exists such that

$$\{\varepsilon\} = T \{u\}$$ \hfill (3.38)

The strain flexibility matrix is then written as:

$$F^* = TF_d$$ \hfill (3.39)

In terms of the modal parameters, the flexibility matrix and the strain flexibility matrix can be expressed as:

$$F_d = \Phi_d D \Phi_d^T$$ \hfill (3.40)

$$F^* = TF_d = T \Phi_d D \Phi_d^T = \Phi_s D \Phi_s^T$$ \hfill (3.41)

where Φ_d is the displacement mode shape matrix, Φ_s is the strain mode shape matrix, and

$$D = \text{diag}\left[\left(\frac{d_j}{\omega_j}\right)^2 \left(\frac{d_j}{\omega_j}\right)^2 \cdots \left(\frac{d_j}{\omega_j}\right)^2 \cdots \right]$$ \hfill (3.42)

where d_j and ω_j are the mass normalization constant and the natural frequency of the jth mode, respectively. Equation (3.41) shows that the strain flexibility matrix is not symmetric in the
This difficulty can be overcome by introducing the pseudo element force vector \(\{ L_e \} \) such that
\[
\{ L \} = T^T \{ L_e \} \tag{3.43}
\]
Note that for statically determinate structures, the pseudo element force \(\{ L_e \} \) is equal to the element force. Then the strain flexibility relating the strain and the pseudo element force can be defined as:
\[
\{ e \} = F_s \{ L_e \} \tag{3.44}
\]
Substituting Equations (3.36), (3.38), and (3.43) into Equation (3.44),
\[
F_s \{ L_e \} = TF_d T^T \{ L_e \} \tag{3.45}
\]
For an arbitrary force \(\{ L_e \} \), Equation (3.45) is satisfied if and only if
\[
F_s = TF_d T^T \tag{3.46}
\]
or in terms of the modal parameters
\[
F_s = T \left(\Phi_d D \Phi_d^T \right) T^T = \Phi_s D \Phi_s^T \tag{3.47}
\]
Thus, the symmetry of the strain flexibility defined in Equation (3.44) is ensured.

The flexibility matrix including both displacement and strain can be shown to be symmetric as follows. Consider a system under two load vectors, \(L_1 \) in the coordinate where displacements are defined, and \(L_2 \) which is a pseudo element force. The displacement and strain are thus
\[
u = FL_1 + FT^T L_2 \tag{3.48}
\]
\[
\varepsilon = Td = TFL_1 + TFT^T L_2
\]
(3.49)

which leads to the combined flexibility matrix such that

\[
\begin{bmatrix}
u \\
\varepsilon
\end{bmatrix} = \begin{bmatrix}
F & FT^T \\
TF & TFT^T
\end{bmatrix} \begin{bmatrix}
L_1 \\
L_2
\end{bmatrix}
\]
(3.50)

The symmetry of the combined flexibility matrix enables the use of multimetric data in the stochastic DLV method.

6.2.2 Multimetric data in the stochastic DLV method

The formulation herein follows the derivation of the stochastic DLV method (Bernal 2006), but extends the approach to accommodate the combined use of strain and acceleration. Consider a system represented in the following state space form

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
y &= C_d x + D_d u
\end{align*}
\]
(3.51)

where \(y \) is the displacement vector, \(C_d \in \mathbb{R}_{m \times N} \), \(D_d \in \mathbb{R}_{n \times N} \), \(N \) is the order of the system, \(m \) and \(n \) are the numbers of displacements and inputs, respectively. Because the input force is not directly transmitted to the displacement, \(D_d = 0 \). Taking the first and second derivatives of the output in Equation (3.51) yields

\[
\begin{align*}
\dot{y} &= C_d Ax + C_d Bu \\
\ddot{y} &= C_d A^2 x + C_d ABu + C_d B \ddot{u}
\end{align*}
\]
(3.52, 3.53)

The fact that the input force is not directly transmitted to the velocity leads to

\[
C_d B = 0
\]
(3.54)

In addition, the output and direct transmission matrices for the acceleration in Equation (3.54) can be written as:
\[C_a = C_d A^2 \]
\[D_a = C_d AB \]

Substituting \(C_d \) in Equation (3.55) into Equations (3.54) and (3.56),

\[C_a A^{-2} B = 0 \]
\[C_a A^{-1} B = D_a \]

For velocity and displacement, similar equations can be derived as (Bernal 2006)

\[C_v A^{-3} B = C_d B = 0 \]
\[C_v B = C_d AB = D_a \]

where \(C_v \) and \(C_d \) are the output matrices for velocity and displacement. The output matrix \(C_s \in R_{l\times N} \) for the strain where \(l \) is the number of strains is introduced by multiplying Equations (3.54) and (3.56) by the transform matrix \(T \) in Equation (3.38) to obtain

\[TC_a B = C_s B = 0 \]
\[TD_a = TC_d AB = C_s AB \]

Equations (3.57) ~ (3.62) can be combined in a simple form as

\[H_{pm} B = L_{h} D_{a} \]

where \(H_{pm} \in R_{2(m+l)\times N} \) and \(L_{h} \in R_{2(m+l)\times m} \) are given by

\[
H_{pm} = \begin{bmatrix}
C_v A^{1-p} \\
C_s A \\
C_v A^{-p} \\
C_s
\end{bmatrix}
\quad \text{and} \quad
L_{h} = \begin{bmatrix}
I_{m \times m} \\
T_{l \times m} \\
0_{m \times m} \\
0_{l \times m}
\end{bmatrix}
\]

where \(p = 0,1, \) and 2 for displacement, velocity and acceleration, respectively, and \(C_v \) is the corresponding output matrix. The input matrix \(B \) in Equation (3.63) is then written as:

86
\[B = H_{pm}^+ L_h D_a \] (3.65)

where \(H_{pm}^+ \) is the pseudo inverse (Penrose 1955) of \(H_{pm} \).

The flexibility matrix can be determined (Bernal and Gunes 2004) as

\[F_p = -C_p A_p^{-(p+1)} B_p \] (3.66)

The combined flexibility matrix is:

\[
\begin{bmatrix}
C_s A_s^{-(p+1)} \\
C_s A_s^{-1}
\end{bmatrix}
\begin{bmatrix}
B \\
B^{-T}
\end{bmatrix} = Q_m D_m
\] (3.67)

where:

\[Q_m = -
\begin{bmatrix}
C_s A_s^{-(p+1)} \\
C_s A_s^{-1}
\end{bmatrix} H_{pm}^+ L_h \] (3.68)

\[D_m = D_a \begin{bmatrix} I & T^T \end{bmatrix} \] (3.69)

Subtracting the flexibility matrices from the damaged and undamaged states,

\[F_d - F_u = Q_{m,d} D_{m,d} - Q_{m,u} D_{m,u} \] (3.70)

where the subscripts \(d \) and \(u \) denote damaged and undamaged states. Introducing

\[\Delta D_m = D_{m,d} - D_{m,u}, \quad \Delta Q_m = Q_{m,d} - Q_{m,u} \quad \text{and} \quad \Delta F = F_d - F_u, \]

Equation (3.70) becomes

\[\Delta F = \Delta Q_m D_{m,u} - Q_{m,d} \Delta D_m \] (3.71)

Performing the singular value decomposition, \(\Delta D_m \) can be written as

\[\Delta D_m = [U_1 \quad U_2] \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix} \begin{bmatrix} Z_1^T \\ Z_2^T \end{bmatrix} \] (3.72)

Assuming that the singular value \(s_2 \) is negligible, post-multiplying \(Z_2 \) to Equation (3.71) yields

\[\Delta F \cdot Z_2 \approx \Delta Q_m D_{m,u} Z_2 \] (3.73)
Taking the transpose of Equation (3.73) leads to the fundamental expression for the stochastic DLV method:

\[
\left(Z_2^T\right)^\Delta F \approx \left(Z_2^T D_{m,u}\right)^\Delta Q_m^T \tag{3.74}
\]

Because most vectors in the null space of \(\Delta Q_m^T\) will be in the near null space of the change in the flexibility matrix (Bernal 2006), \(Q_m\) can be employed as a substitute for the flexibility matrix. The singular value decomposition of \(\Delta Q_m^T\) leads to the DLVs.

6.2.3 DLV from multimetric data

The damage locating vectors obtained using the singular value decomposition consist of two parts corresponding to displacement and strain. The combined damage locating vector \(\{L_c\}\) is written as:

\[
\{L_c\} = \begin{bmatrix} \{L_1\} \\ \{L_2\} \end{bmatrix}
\]

where \(\{L_1\}\) and \(\{L_2\}\) are the load vectors for displacement and strain, respectively. To apply \(\{L_2\}\) to the structural model, \(\{L_2\}\) needs be converted as \(\{L_n\} = T^T\{L_2\}\). Note that the load vectors \(\{L_1\}\) and \(\{L_n\}\) are not necessarily applied at co-located or separately located nodes; they can share none, some, or all of the nodes. Applying the load vectors, the normalized accumulated stress can be obtained using Equation (3.35).

If only strain measurements are used in damage detection, the stochastic DLV method requires the strain in the damaged element to be measured. For statically determinate structures, the pseudo element force \(\{L_2\}\) is equal to the element force, resulting in zero stress at the unmeasured elements regardless of the damage status of the elements. For redundant structures,
although the stress induced by \(L_2 \) is redistributed over the adjacent elements, the redistributed stress is generally not significant when compared to the stress induced by \(L_2 \). Due to the small stress, the damage localization in an unmeasured element is difficult in practice. This limitation on the use of strain measurement for damage detection can be resolved by using acceleration along with strain, as will be demonstrated in the later section.

6.3 Numerical Validation

6.3.1 Overview of simulation

Numerical simulation is conducted to verify the efficacy of the proposed extension of the stochastic DLV method using multimetric data. Consider the 53 degree-of-freedom (DOF) planar truss model shown in Figure 6.1. Damage is simulated by 10% and 40% stiffness reductions in element 16. Independent band-limited white noise forces are applied as the input excitation in both horizontal and vertical directions at all nodes. Vertical and horizontal accelerations are measured at nodes 5~7 and 19~21 and the strain is measured at elements 16~25. Gaussian measurement noise with a bandwidth up to the Nyquist frequency and an amplitude of 5% RMS the corresponding measured signal is added to the acceleration and strain. Because these nodes and elements are in the fourth and fifth bays of the truss model, only the elements in these bays (elements 16~25) are considered in damage detection (Gao et al. 2005). Note that the structural model is internally statically indeterminate because of these bays.

Figure 6.1 53 DOF planar truss model.
Simulation cases in Table 6.1 are considered for both the 10% and 40% damage: (a) Case 1: strain-only, (b) Cases 2~5: acceleration-only, (c) Cases 6~10: multimetric data when strain in the damaged element is measured, and (d) Cases 11~15: Multimetric data without measuring strain in the damage element. Each simulation case is repeated 500 times independently to account for the statistical nature of the problem while investigating the accuracy and robustness of the proposed method.

The mean and standard deviation of the normalized accumulated stress for cases 1 (strain-only), 3 (acceleration-only), and 10 (multimetric) are shown in Figure 6.2. As can be seen in these figures, the normalized accumulated stress in element 16 is considerably smaller than other elements of interest. Therefore, the stochastic DLV method identifies element 16 as a damage candidate in these cases. The normalized accumulated stress at element 16 for Case 10 (i.e., multimetric data) has a smaller mean value and less variation than that for Case 2 (i.e., acceleration-only). Although Case 1 (i.e., strain-only) has the smallest stress at element 16, the strain in the damaged element should be measured, as previously illustrated. As such, multimetric data is seen to reduce the normalized accumulated stress at damage location, as well as facilitate the use of strain in the stochastic DLV method. More detailed discussion follows in the remainder of this section.
Table 6.1 Simulation cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Acceleration</th>
<th>Strain</th>
<th>Strain in the damaged element measured?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of measurements</td>
<td>Node</td>
<td>Number of measurements</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>N/A</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5~7, 19, 20</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>57, 1921</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>47, 1921</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>47, 1821</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>57, 1921</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>57, 1921</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>57, 1921</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>57, 1921</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>57, 1921</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>57, 1921</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>57, 1921</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>57, 1921</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>57, 1921</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>57, 1921</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 6.2 Mean and standard deviation of normalized accumulated stress (40% stiffness reduction in element 16).
6.3.2 Performance evaluation: false negative and false positive detections

False negative and false positive detections of damage are considered to demonstrate the efficacy of the proposed multimetric sensing approach. A false negative detection occurs when the algorithm cannot detect a damaged element, i.e., reports it as undamaged. A false positive detection occurs when the algorithm reports an undamaged element as damaged. From the structural engineering perspective, the false negative detection is more critical, because undetected damaged elements may have severe consequences, even resulting in structural collapse. On the other hand, false positive detections can needlessly heighten concern about a safe structure. Note that in the DLV method the zero stress does not necessarily mean damage; the term ‘damage candidate’ is used. Practically, when damage candidate elements are identified based on the threshold stress, further actions should be taken to verify damage and repair if necessary. Thus, the false positive detection is defined to evaluate how often false damage candidates are identified. For the simulations reported herein, the numbers of false negative and positive detections are tracked.

Figure 6.3 shows the percentage of false negative detections for 10% stiffness reduction for the cases (a) only strain or only acceleration, (b) multimetric data when strain in the damaged element is measured, and (c) multimetric data when strain in the damaged element is not measured. Compared to the acceleration-only cases (Cases 2~5), the false detection rate is drastically reduced if multimetric data is employed. In particular, the false detection of all acceleration-only cases is nearly 100% (see Figure 6.3a), which is shown to be significantly reduced by the use of multimetric data (see Figure 6.3b, c). Note that the strain-only case (Case 1) has a smaller number of false negatives than the acceleration-only cases (see Figure 6.3a).
However, the strain-only case has a critical limitation, as described in the previous section, that strain in the damaged element must be measured to localize damage.

While multimetric data can reduce the false negative detection, multimetric data does not always guarantee a smaller number of false positives than for the case when strain or acceleration is used separately. In cases 8, 11, and 12 of Figure 6.4, the number of false positive detections is greater than for the case when only accelerations were used (\textit{e.g.}, Case 4). Because false negative detection is more critical than false positive detection, use of multimetric data is considered to be more effective than use of either strain or acceleration separately. By selecting a proper threshold stress, both the false positive and negative detections can be reduced to an acceptable level.

The 40\% stiffness reduction case shows the same trend as in the 10\% case. The false negative detection rates are significantly reduced when the multimetric data is employed as can be seen in Figure 6.5 while the false positive detection rates tend to increase in Figure 6.6.

Note that when strain at the damaged element is not measured (Case 11~15), the numbers of false negative detections in Figure 6.3c and Figure 6.5c are somewhat greater than for the cases when it is measured (Case 10~13) in Figure 6.3b and Figure 6.5b, showing seemingly better performance. However, the damage decision for non-measured elements becomes less reliable, because the DLV obtained using strain data is applied only to the measured elements, making the cumulative stress at the unmeasured elements smaller when normalized. Thus, unmeasured elements have a higher chance of false positive detections as shown in Figure 6.4 and Figure 6.6. Although the smaller number of false negative detections is considered normally better, false positive detection also should be taken into account to appropriately assess structural damage.
(a) Strain and acceleration employed independently.

(b) Multimetric data when strain in the damaged element is measured.

(c) Multimetric data without measuring strain in the damage element.

Figure 6.3 False negative detection (10% stiffness reduction).
(a) Strain and acceleration employed independently.

(b) Multimetric data when strain in the damaged element is measured.

(c) Multimetric data without measuring strain in the damage element.

Figure 6.4 False positive detection (10% stiffness reduction).
(a) Strain and acceleration employed independently.

(b) Multimetric data when strain in the damaged element is measured.

(c) Multimetric data without measuring strain in the damage element.

Figure 6.5 False negative detection (40% stiffness reduction).
Damage detection results from numerical simulation have been presented in this section to evaluate the performance of the proposed approach utilizing multimetric data for structural damage detection. Two different damage severity cases (10% and 40% stiffness reductions at a horizontal element) have been considered. Damage at a diagonal element has produced the

Figure 6.6 False positive detection (40% stiffness reduction).

(a) Strain and acceleration employed independently.

(b) Multimetric data when strain in the damaged element is measured.

(c) Multimetric data without measuring strain in the damage element.
similar trend as in the horizontal element although it is not presented herein due to space limitations. From the numerical study, multimetric data has been shown to improve the performance of structural damage detection.

6.4 Summary
This chapter described a damage detection approach based on the stochastic DLV method using the multimetric data. A symmetric strain flexibility matrix was introduced and the stochastic DLV method was modified to accommodate acceleration and strain measurements simultaneously. The damage detection approach was validated by extensive numerical simulation using a planar truss model.

The damage detection strategy based on the multimetric data outperformed the stochastic DLV method that uses only a single type of data. In particular, the limitation of the strain-only case that the strain in the damaged element needs to be measured was resolved with the aid of acceleration. This result shows the multimetric damage detection strategy is promising for SHM. The next chapter illustrates full-scale experimental validation of decentralized approaches described in this study.
CHAPTER 7 FULL-SCALE VALIDATION

The decentralized approaches, implemented on the Imote2 sensor platform using the ISHMP Services Toolsuite, are experimentally validated in this chapter using two full-scale testbeds: (i) the Irwin Indoor Practice Field in the University of Illinois at Urbana-Champaign, and (ii) the Jindo Bridge, a cable-stayed bridge located in South Korea. Robustness of the WSSN should be proven in the harsh environment from hardware and software aspects to validate the applicability of smart sensors to monitoring civil infrastructure. The nature of the spatially distributed WSSN over wide areas provided by these test beds is well-suited to demonstrating the efficacy of the decentralized approaches.

7.1 Decentralized Modal Analysis at the Irwin Indoor Practice Field

7.1.1 Irwin Indoor Practice Field

The decentralized modal analysis is applied in the filed testing at the Irwin Indoor Practice Facility located on the campus of the University of Illinois at Urbana-Champaign (see Figure 7.1). The facility, which embraces a reduced-size football field inside, has a semi-parabolic dome structure with an arched box truss spanning the length of the football field as shown in Figure 7.1b. The box truss is approximately 94.5 m in length and reaches up to an internal height of 15 m. The large scale of the facility provides a unique test bed for decentralized modal analysis using wireless smart sensors.
7.1.2 Sensor Deployment

A total of 14 Imote2 sensor nodes are prepared as shown in Figure 7.2. Each sensor node consists of an Imote2, a SHM-A sensor board, an external antenna, 3 D-Cell batteries, an enclosure with an aluminum plate bolted to the bottom. The Imote2 smart sensor nodes are installed at the center truss of the practice facility (see Figure 7.3). A lift truck was used to reach the ceiling (see Figure 7.4) and clamp the sensor nodes to structural members as shown in Figure
7.5. All nodes including the gateway and sensor nodes have antennas vertically oriented to ensure wireless communication between the sensor nodes and between the gateway and sensor nodes.

Figure 7.2 Imote2 sensor node assembly.
Figure 7.3 Sensor locations indicated as circles.

The effort for the sensor installation can be significantly reduced due to the nature of the wireless smart sensors. Most of the sensor deployment time (about 6 hours) is spent on the lift truck operation as clamping the sensor nodes to the structure is quickly done. If the centralized data acquisition system with wired sensors is employed in the experiment, wiring all sensor nodes distributed over the 94 m-long truss at the height of 15 m from the ground should be costly and challenging. As such, the WSSN provides a convenient means for dynamic testing.

Figure 7.4 Lift truck for sensor installation.
7.1.3 Decentralized data acquisition and processing

DecentralizedDataAggregation is utilized to obtain correlation functions as in the laboratory experiment previously described. The network consists of 4 local groups, each of which has a cluster-head (S6, S10, and S9 for groups 1, 2, and 3, respectively) and 5 leaf nodes. Ambient accelerations in the vertical direction are measured at each sensor node, and correlation functions are subsequently calculated on the Imote2 sensor nodes with respect to reference data measured at cluster-heads. Then, the cluster-heads send the group’s correlation functions to the gateway node to save in the base station. Figure 7.7 shows the estimated correlation functions between sensor nodes S and S. Parameters for sensing and data processing are summarized as:

- Sampling frequency: 100 Hz
- Cutoff frequency: 50 Hz
- Data channel: Vertical
- Number of FFT: 1024
- Number of overlaps between windows: 512
- Number of averages: 10
- Detrended
Figure 7.6 Sensor topology at the center truss (S6, S10 and S9 are cluster-heads of Groups 1, 2, and 3, respectively).

Figure 7.7 Correlation functions $R_{S7,S10}$ and $R_{S5,S10}$ in Group 2.

Global modal properties are estimated in the base station using the collected correlation functions as shown in Figure 7.8. The identified modes correspond to the peaks found in cross spectra between the reference accelerations from the cluster heads and accelerations from leaf nodes. Taking the inverse FFT of the correlation functions estimated at each group, the cross spectra are calculated. The absolute value of the cross spectra is normalized and averaged for each group as shown in Figure 7.9. The peaks at the identified frequencies are commonly found in all three groups, supporting that the identified frequencies indicate true modes.
Figure 7.8 Global mode shapes and corresponding natural frequencies.
Figure 7.9 Absolute value of cross spectrum (circles represent identified frequencies).

7.1.4 Summary

Decentralized modal analysis was applied to identify global modal properties of the Irwin Indoor Practice Field using the network of Imote2 smart sensors. *DecentralizedDataAggregation* for sensing and in-network data processing could successfully collect correlation functions decentrally estimated in each subdivided groups. The global modal properties were identified
from the correlation functions at the base station. Furthermore, the WSSN was seen to be quite efficient in the short term dynamic testing, significantly reducing the installation efforts. The next section will discuss the efficacy of the decentralized approaches for the WSSN from the long-term monitoring perspectives.

7.2 Jindo Bridge Deployment

The second year WSSN deployment at the Jindo Bridge is part of a collaborative project between South Korea (KAIST; Seoul National University), Japan (University of Tokyo) and the USA (University of Illinois at Urbana-Champaign; Texas Tech University). In the first year of the project, a total of 70 Imote2 sensor nodes with two base stations were deployed to realize the first large-scale, autonomous WSSN for SHM (Rice et al. 2010; Jang et al. 2010a; Cho et al. 2010b; Nagayama et al. 2010). The deployment focused on demonstrating the performance and applicability of the Imote2 sensor platform and the ISHMP software in the full-scale test bed in a harsh environment. The research effort has been continued to the second year to realize a larger, autonomous, power-harvesting network of sensors with decentralized data processing strategies as well as the centralized data acquisition. The primary goals of the deployment are as follows:

- Realize the power-harvesting network of sensors for long-term monitoring
- Validate the performance of the high-sensitivity sensor board (SHM-H) developed at the University of Illinois at Urbana-Champaign (Jo et al. 2010)
- Validate the capability of autonomous operation of the WSSN
- Validate the applicability of decentralized modal analysis to bridge structures
- Monitor tension forces of the cables and validate associated software applications
- Validate the multi-hop communication protocol of the ISHMP Service Toolsuite
After providing an overview of the Jindo Bridge deployment, this section will describe the decentralized approached used in WSSN (i.e., decentralized modal analysis and monitoring cable tensions).

7.2.1 Jindo Bridges

The Jindo Bridges pictured in Figure 7.10 are twin cable-stayed bridges constructed in 1984 (the 1st Jindo Bridge) and 2005 (the 2nd Jindo Bridge) to connect Jindo Island and the town of Haenam, located at the southeastern part of the Korean Peninsula. The 2nd Jindo Bridge, on the left in Figure 7.10, is the test bed in the WSSN deployment. ‘Jindo Bridge’ indicates the 2nd Jindo Bridge in the rest of this document. The Jindo Bridge features three continuous spans (344 m of mid span, 70 m of each side span) and a total of 60 steel cables that support the bridge deck (see Figure 7.11). As the bridge has no structural part under the sea, the bridge scour is not a concern while it could be a serious problem due to the high speed tidal current. Instead, wind- or traffic- induced vibration can be a potential threat to structural health for this lightly damped structure.

Figure 7.10 Jindo Bridges (1st: right, 2nd: left).
7.2.2 WSSN Deployment

The WSSN deployed on the Jindo Bridge, consisting of 113 Imote2 sensor nodes (see Figure 7.12), is the world’s largest network of smart sensors for SHM to date. To efficiently operate the large network, the WSSN is divided into 4 subnetworks controlled by 2 base stations (Jindo base station at the Jindo side and Haenam base station at the Haenam side). Each base station manages two networks, each of which is for cable and deck. The subnetworks are summarized in Table 7.1. This section describes the installation of the WSSN components, i.e., sensor nodes, base stations, and gateway nodes.
In total, 113 sensor nodes (100 nodes with SHM-A, 10 nodes with SHM-H, and 3 nodes with anemometers) have been deployed on the Jindo Bridge (see Figure 7.12 and Table 7.1). To achieve long-term monitoring, all sensor nodes have equipped with solar panels and rechargeable batteries as well as environmentally hardened enclosures.
The sensor node shown in Figure 7.13 consists of an Imote2, either SHM-A or SHM-H sensor board, a rechargeable battery, an external antenna, and an enclosure. As opposed to the 1st year’s deployment that mostly employed 3 D-cell batteries per node, a rechargeable battery has been adopted with solar panels (see Figure 7.14). Two magnets are bolted down to the bottom of the enclosure for nodes to be attached to the steel deck of the bridge.

The SHM-H requires a different configuration as shown in Figure 7.13. The SHM-H has been designed based on the SHM-A with an increased resolution with low measurement noise for the vertical acceleration while sacrificing the cost effectiveness (Jo et al. 2010). Because the measurement range of the SHM-H has been selected as 0.8g – 1.2g for the vertical acceleration, the SHM-H should be placed upward so that SHM-H measures 1g. As the sensor nodes with SHM-H have been deployed underneath the deck upside down, the SHM-H has been attached to the lid of the enclosure as shown in Figure 7.13.

Figure 7.13 Sensor nodes with a SHM-A (left) and a SHM-H (right) sensor board.
Figure 7.14 Solar panel.

Figure 7.15 shows how the sensor nodes with solar panels and power cables are arranged underneath the deck. The sensor nodes are attached to the steel deck using the magnets bolted to the bottom of the enclosure. Two solar panels are installed on the wind fair of the bridge to allow the direct sun light on the solar panels for more efficient power harvesting. Sensor nodes and solar panels are connected with power cables shown in Figure 7.14. Although the solar panels are exposed to the direct sun light for only a few hours with some angle in this configuration, the power harvesting of the sensor nodes has shown to be enough for the operation of the WSSN.

For the cable node, the solar panel is directly attached on top of the enclosure as shown in Figure 7.16. A plastic plate is bolted down to the enclosure and installed on the cable using the U-shaped steel rod. In total, 52 cable nodes are installed on the cables in the same manner.
Figure 7.15 Power harvesting node deployment: schematic view of the installation (top), sensor nodes with power cables (bottom left), and solar panels on the wind fairing (bottom right).

Figure 7.16 Cable node.
Base station and gateway node

The base stations, pictured in Figure 7.17, are industrial grade PC running on Windows XP with an Uninterrupted Power Supply (UPS) housed in the environmentally hardened case. The base stations can be remotely accessed from local computers via internet connection provided by an Internet Service Provider (ISP). Two gateway nodes, also enclosed in the case, are connected to the base station. To improve radio communication between the gateway nodes and sensor nodes, larger 7 dBi antennas (see Figure 7.17) with boosters are used for the gateway nodes, compared to sensor nodes’ 2 dBi antennas.

![Base station and external antennas](image)

Figure 7.17 Base station and external antennas for the gateway nodes.

The base stations have been installed on the piers of the 1st Jindo Bridge as shown in Figure 7.17 and Figure 7.12. As the height of the bridge pier is lower than the deck, the antennas at the base stations and most sensor nodes under the deck are on the direct line of sight, resulting in excellent communication. However, the cables nodes on the west side of the bridge (the far
side from the base station) cannot be seen from the base station; communication with these nodes is quite degraded while the cable nodes on the east side are well responsive. With the available sensor nodes, the WSSN has autonomously operated, providing information valuable for monitoring the bridge; decentralized modal analysis and cable tension monitoring are presented in the following sections.

7.2.3 Software Configuration

Software is prepared for the WSSN to autonomously conduct designated tasks such as centralize/decentralized data acquisition, monitoring the status of the WSSN, and estimation of cable tensions. Applications installed on each network component are summarized in Table 7.2.

The Jindo Bridge deployment aims at long-term, autonomous monitoring that is made possible by efficient power management using sleep cycling and autonomous operation using AutoMonitor.

As the smart sensors are typically battery-powered, power management to prolong the operation period is utmost important. Although all sensor nodes in the Jindo Bridge deployment are equipped with solar panels for power harvesting, power management is still required as the solar panels are insufficient for a continuous operation.

The strategy adopted in the ISHMP Services Toolsuite is to utilize Imote2’s deep sleep mode, in which only the clock of the processor is powered while all other components are powered down (Rice and Spencer 2009). Sensor nodes are put to the deep sleep mode for a period of time T_s and wake up for another period of time T_w. In the deep sleep mode, the sensor nodes cannot receive any packets while consuming little power. With the two time periods $T_s \gg T_w$, the sensor nodes are in the deep sleep mode for most of the operation time, significantly reducing power consumption compared to the case when the sensor nodes always stay on. If the
sensor nodes receive any packets during the time period T_w, the sensor nodes stay with all components power on and are ready to conduct tasks that the gateway node command. This sleep cycling is implemented as *SnoozeAlarm* in the ISHMP Services Toolsuite. For more detailed information regarding the sleep cycling, see Rice and Spencer (2009).

Table 7.2 Applications in the Jindo WSSN.

<table>
<thead>
<tr>
<th>Network component</th>
<th>Application/Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base station</td>
<td>Team Viewer</td>
<td>A free program for Windows that allows remote control and file transfer</td>
</tr>
<tr>
<td></td>
<td>autocomm</td>
<td>A terminal program for interfacing with the Imote2 through the Imote2 Interface Board</td>
</tr>
<tr>
<td>Gateway node</td>
<td>AutoMonitor</td>
<td>An Imote2 application for the gateway node that controls the sensor nodes for autonomous operation</td>
</tr>
<tr>
<td></td>
<td>ThresholdSentry</td>
<td>A service that periodically wakes up designated sensor nodes, takes short data, and reports whether the maximum data exceeds specified thresholds or not.</td>
</tr>
<tr>
<td></td>
<td>SnoozeAlarm</td>
<td>A service for power management. Sensor nodes sleep for a period of time and wake up for a short period time to listen a command. They stay awake if a command is received.</td>
</tr>
<tr>
<td></td>
<td>RemoteSensing</td>
<td>An Imote2 application that implements central data acquisition</td>
</tr>
<tr>
<td></td>
<td>DecentralizedDataAggregation</td>
<td>An Imote2 application for decentralized correlation/random decrement function estimation</td>
</tr>
<tr>
<td></td>
<td>CableTensionEstimation</td>
<td>An Imote2 application for estimation of cable tension forces based on independent processing</td>
</tr>
<tr>
<td>Deck node</td>
<td>AutoCommand</td>
<td>A part of AutoMonitor for monitoring the network status and environment (voltage level, charging status, and temperature)</td>
</tr>
<tr>
<td>Deck node</td>
<td>RemoteSensing</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>DecentralizedDataAggregation</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>SnoozeAlarm</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>ThresholdSentry</td>
<td>See above</td>
</tr>
<tr>
<td>Cable node</td>
<td>RemoteSensing</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>CableTensionEstimation</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>SnoozeAlarm</td>
<td>See above</td>
</tr>
<tr>
<td></td>
<td>ThresholdSentry</td>
<td>See above</td>
</tr>
</tbody>
</table>
Another important feature of the Jindo WSSN is the autonomous operation controlled by \textit{AutoMonitor}. The primary operations of \textit{AutoMonitor} can be categorized as event-triggered process and periodic process. The event-triggered process utilizes \text{ThresholdSentry} that periodically wakes up designated nodes (called sentry node) to measure data (i.e., acceleration or wind velocity) and alarms the gateway node if the maximum data is greater than specified threshold values. Subsequently, \text{AutoMonitor} at the gateway node run a specified application that is either \textit{RemoteSensing} or \textit{DecentralizedDataAggregation} in this deployment. The periodic process runs, as the name indicates, on a regular basis according to the user-specified time interval. The periodic processes of the Jindo WSSN include \textit{CableTensionEstimation} and \textit{AutoCommand} for monitoring the network status and environment such as battery levels, charging status, and temperature.

Hardware and software aspects of the WSSN deployed on the Jindo Bridge were described here. In the following sections, analyses on the bridge using the collected data are presented, focusing on centralized and decentralized modal analysis and estimation of cable tensions.

7.2.4 Decentralized Modal Analysis
Tailored to the modal testing using the WSSN, decentralized modal analysis estimates global modal properties based on the local information, obtained using the decentralized in-network data processing. As previously mentioned, this decentralized approach is especially useful for a large sensor network, in which the central data collection becomes inefficient due to data inundation and excessive power consumption. To validate the performance in a full-scale bridge structure, decentralized modal analysis is first simulated on a local computer using centrally
collected sensor data, and then conducted with the local information condensed by in-network processing on the Imote2 sensor nodes.

Simulated decentralized modal analysis with centrally collected sensor data

RemoteSensing has collected acceleration time history data from each network. As the most fundamental natural modes of the Jindo Bridge are found in the 0 – 5 Hz range (Cho et al. 2010), the sample rate of 25 Hz with a cutoff frequency of 10 Hz (the lowest value of the default sampling rates) is selected. Time history data, taken while typhoon Kompasu is passing nearby, is shown in Figure 7.19: maximum acceleration levels are 9.37mg, 25.64mg, 26.88mg, and 29.99mg for N26 (top left, side span), N21 (top right, main span), N17 (bottom left, main span), and N14 (bottom right, main span), respectively (see Figure 7.20 for node numbers). Due to the typhoon, the bridge is well excited with a large input excitation.

![Figure 7.18 Typhoon Kompasu (9/2/2010 at the Jindo Bridge).](image)

Decentralized modal analysis is conducted with the sensor topology shown in Figure 7.20. Each network consists of 4 subgroups with a cluster head and 7 or 9 leaf nodes, two of which are
overlapping nodes. Note that N14 and N15 placed at the same location can provide phase information of two networks. The high sensitivity sensor boards (SHM-H) are assigned to all cluster heads. Jo et al. 2010 has indicated that given the limited number of high sensitivity sensors, using them as reference nodes (herein cluster heads serve as reference) in decentralized system identification is an efficient way to improve the identification results. This fact can be seen by comparing acceleration time history and power spectrum measured from SHM-A and SHM-H. When the acceleration level is high for both SHM-A and SHM-H to capture most vibration characteristics, the difference is not significant (see Figure 7.21). Note that measured accelerations for N26 and N54 in Figure 7.21 are similar to each other due to symmetry of the structure. On the contrary, the acceleration in Figure 7.22 is too low for SHM-A to accurately measure; thus the first several peaks between 0 and 1 Hz are under the noise floor.

Figure 7.19 Time history data (vertical acceleration) from the Deck-Jindo Network.
Figure 7.20 Sensor topology.

Figure 7.21 Time history data and power spectrum: high acceleration level.
Traditional modal analysis is also conducted using Frequency Domain Decomposition (FDD) (Brincker et al. 2001) to provide reference modal properties. Figure 7.23 shows 1st singular values in FDD, which can be considered as PSD (Brincker et al. 2001), in the frequency region of 0 – 3 Hz, where most fundamental natural modes of the Jindo Bridge are found (Cho et al. 2010). Because measured accelerations from the two networks are not time synchronized to each other, modal properties are calculated separately in each network. The mode shape values corresponding to the pairs of overlapping nodes at the mid span (i.e., N14 and N15; N42 and N43) are then utilized to combine each network’s mode shapes using Equation (3.6) as in the decentralized modal analysis.
Combining the local mode shapes based on the overlapping nodes can result in unreasonable global mode shapes for a certain modes that have near-zero values at the mid span (see Figure 7.24). Because mode shapes values at the overlapping nodes are close to zero for the anti-symmetric modes, small errors introduced to these nodes can significantly distort the combined mode shape. As a result, the mode shapes for the Jindo and Haenam sides in Figure 7.24 are in phase with different magnitudes. To obtain appropriate mode shapes in such cases, the modes shapes are assumed to be anti-symmetric. Scale factors for the Jindo and Haenam sides to be out of phase with the same magnitudes of mode shapes are calculated in the least squares sense.
The global modal properties estimated by centralized/decentralized modal analysis are compared in Table 7.3 and Figure 7.25. Note that anti-symmetric modes are reasonably estimated (see Figure 7.25b, d, and g). The natural frequencies for centralized and decentralized approaches are close to each other; MAC as the accuracy measure for mode shapes indicates the global mode shapes are found in proximity. However in Figure 7.25, noticeable difference between two mode shapes is commonly seen in the side span at the Jindo side. Because the overlapping nodes N4 and N32 are located near the bridge pylon where the deck sits on the pier, N4 and N32 serve as nodal points of most modes. As discussed previously, overlapping nodes N4 and N32 with small mode shape values can introduce significant errors to combined mode shapes. In particular, the 1.6602 Hz mode with the largest error as shown in Table 7.3 has all overlapping nodes near the nodes of the mode shape (see Figure 7.25f). Excluding the side span at the Jindo side, MAC can be increased as shown in the last column of Table 7.3. From the natural frequencies and global mode shapes compared in Table 7.3 and Figure 7.25, decentralized modal analysis appears to estimate modal properties accurately.

Table 7.3 Estimated natural frequencies and MAC between global mode shapes.

<table>
<thead>
<tr>
<th>No.</th>
<th>Natural frequencies</th>
<th>MAC</th>
<th>Complete mode shapes</th>
<th>w/o side span at Jindo network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Centralized</td>
<td>Decentralized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.4456</td>
<td>0.4462</td>
<td>0.9905</td>
<td>0.9999</td>
</tr>
<tr>
<td>2</td>
<td>0.6436</td>
<td>0.6452</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>3</td>
<td>1.0328</td>
<td>1.0316</td>
<td>0.9824</td>
<td>0.9954</td>
</tr>
<tr>
<td>4</td>
<td>1.3644</td>
<td>1.3660</td>
<td>0.9836</td>
<td>0.9923</td>
</tr>
<tr>
<td>5</td>
<td>1.5645</td>
<td>1.5617</td>
<td>0.9200</td>
<td>0.9552</td>
</tr>
<tr>
<td>6</td>
<td>1.6602</td>
<td>1.6581</td>
<td>0.4545</td>
<td>0.4545</td>
</tr>
<tr>
<td>7</td>
<td>1.8715</td>
<td>1.8724</td>
<td>0.9406</td>
<td>0.9959</td>
</tr>
<tr>
<td>8</td>
<td>2.2698</td>
<td>2.2620</td>
<td>0.9442</td>
<td>0.9808</td>
</tr>
<tr>
<td>9</td>
<td>2.3804</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>2.8133</td>
<td>2.8153</td>
<td>0.9240</td>
<td>0.9340</td>
</tr>
</tbody>
</table>
(a) 0.4456 Hz (MAC: 0.9905).

(b) 0.6452 Hz (MAC: 1.0000).

(c) 1.0328 Hz (MAC: 0.9824).

Figure 7.25 Global mode shapes and corresponding natural frequencies.
(d) 1.3644 Hz (MAC: 0.9836).

(e) 1.5645 Hz (MAC: 0.9200).

(f) 1.6602 Hz (MAC: 0.4545).

Figure 7.25 (cont.)
(g) 1.8715 Hz (MAC: 0.9406).

(h) 2.2698 Hz (MAC: 0.9442).

(i) 2.3804 Hz (MAC is not available).

Figure 7.25 (cont.)
(j) 2.8133 Hz (MAC: 0.9240).

Figure 7.25 (cont.)

Decentralized modal analysis with in-network data processing

Decentralized modal analysis is conducted using the Imote2’s on-board computing capability for in-network data processing. *DecentralizedDataAggregation* measures and processes acceleration responses of the bridge, producing correlation functions in the base station at the Jindo Bridge. The correlation functions, outcome of the in-network data processing, are transferred to a local computer in the University of Illinois at Urbana-Champaign for estimation of global modal properties. The procedure of decentralized modal analysis for the Jindo Bridge deployment is schematically shown in Figure 7.26.

![Flowchart of decentralized modal analysis for the Jindo Bridge deployment](image)

Figure 7.26 Flowchart of decentralized modal analysis for the Jindo Bridge deployment.
As the first step of the decentralized modal analysis, *DecentralizedDataAggregation* is used to obtain local information (i.e., correlation functions) with the same sensor topology shown in Figure 7.20. As the Jindo Bridge deployment is still in the debugging phase, only partial information is currently available; only the Deck-Haenam network is considered in the analysis. Cluster-heads in each group are sensor nodes with the SHM-H sensor boards. Having cluster-heads that provides high-precision acceleration, system identification can be significantly improved (Jo et al. 2010). The sensor nodes indicated as ‘X’ in Figure 7.20 are unavailable due to poor data communication or low battery. Ambient accelerations are measured under the normal condition, contrary to the previous case that the typhoon is the main excitation source. Parameters used in *DecentralizedDataAggregation* are summarized in Table 7.4.

DecentralizedDataAggregation has successfully conducted the whole procedure, consisting of sensing, in-network processing, and collection of the processed data in the large-scale network of sensors distributed over the broad area. Figure 7.28 shows sample correlation functions. The fault-tolerance has served as designed when some of the nodes experienced problems such as poor radio communication or low battery. The robustness of *DecentralizedDataAggregation* and its components (i.e., *SensingUnit*, *ReliableComm*, *RemoteCommand*) in the field testing is validated.

Figure 7.27 Sensor Topology.
Table 7.4 Data processing parameters for DecentralizedDataAggregation.

<table>
<thead>
<tr>
<th>Sampling frequency</th>
<th>Cutoff frequency</th>
<th>Data channel</th>
<th>Number of FFT</th>
<th>Number of overlaps</th>
<th>Number of averages</th>
<th>Detrend</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Hz</td>
<td>10 Hz</td>
<td>Vertical</td>
<td>1024</td>
<td>512</td>
<td>10</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 7.28 Auto- and cross correlation functions estimated in Group 1.

Global modal properties are estimated using the correlation functions obtained from DecentralizedDataAggregation. NExT/ERA is applied to each group to obtain local modal properties that are subsequently used to determine true modes and combine global mode shapes as found in Figure 7.29. In total, 7 natural modes are successfully estimated in the range of 0 – 3 Hz, and consistent with those obtained from the centralized approach previously described. Contrary to the previous case with typhoon Kompasu, the natural modes of 1.5645 Hz, 1.6602 Hz, and 2.3804 Hz are unidentified because these modes are not well excited as can be seen in the average absolute cross spectrum of each group shown in Figure 7.30. As such, the performance of decentralized modal analysis is validated in the Jindo Bridge deployment.
Figure 7.29 Global mode shapes from decentralized data aggregation.
7.2.5 Estimation of cable tension

The tension forces of the cables are estimated on the sensor nodes shown in Figure 7.31. Because the Jindo Bridge deployment is currently in the debugging phase as previously mentioned, only the sensor nodes located on the south-east side of the Cable-Haenam network are utilized in the cable tension monitoring (see Figure 7.31). The sensor node C10 is excluded from the network because C10 is unresponsive. *AutoMonitor* at the gateway node runs *CableTensionEstimation* on a regular basis with the predefined time interval (24 hours), saving the retrieved cable tension values in the base station.

Prior to running *CableTensionEstimation*, accelerations of the cables are collected using *RemoteSensing* to determine approximate natural frequencies that are required for the peak-picking method implemented in *CableTensionEstimation*. Local axis is defined as shown in Figure 7.32, and the corresponding power spectrum of cable accelerations are given for node C12 in Figure 7.33. Both x and z directional accelerations have the same, well separated peaks with an almost constant intervals, while the y directional acceleration along the cable has little
dynamics of the cable. Because using both x- and z-axis is redundant for identification of natural frequencies, only z-axis is used for $\text{CableTensionEstimation}$. Natural frequencies for each cable node as well as properties of cables (see Table 7.5) are saved in the gateway node to use for estimation of each cable tension.

![Figure 7.31 Cable nodes at the Cable-Haenam network.](image)

![Figure 7.32 Local axis for a cable node (x: horizontal, y: along the cable, z: vertical to the cable and x-axis).](image)
Figure 7.33 Power spectrum of cable vibration.

Table 7.5 Cable properties.

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Total length (m)</th>
<th>Effective length (m)</th>
<th>Unit mass (ton/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Φ7×139</td>
<td>174.150</td>
<td>169.686</td>
<td>0.0439</td>
</tr>
<tr>
<td>C2</td>
<td>Φ7×139</td>
<td>157.880</td>
<td>152.704</td>
<td>0.0439</td>
</tr>
<tr>
<td>C3</td>
<td>Φ7×109</td>
<td>141.755</td>
<td>136.869</td>
<td>0.0347</td>
</tr>
<tr>
<td>C4</td>
<td>Φ7×109</td>
<td>126.090</td>
<td>120.886</td>
<td>0.0347</td>
</tr>
<tr>
<td>C5</td>
<td>Φ7×109</td>
<td>110.940</td>
<td>106.201</td>
<td>0.0347</td>
</tr>
<tr>
<td>C6</td>
<td>Φ7×109</td>
<td>96.515</td>
<td>92.172</td>
<td>0.0347</td>
</tr>
<tr>
<td>C7</td>
<td>Φ7×73</td>
<td>83.165</td>
<td>79.011</td>
<td>0.0231</td>
</tr>
<tr>
<td>C8</td>
<td>Φ7×73</td>
<td>71.620</td>
<td>68.369</td>
<td>0.0231</td>
</tr>
<tr>
<td>C9</td>
<td>Φ7×73</td>
<td>62.625</td>
<td>58.170</td>
<td>0.0231</td>
</tr>
<tr>
<td>C10</td>
<td>Φ7×151</td>
<td>65.000</td>
<td>63.327</td>
<td>0.0476</td>
</tr>
<tr>
<td>C11</td>
<td>Φ7×151</td>
<td>78.600</td>
<td>76.761</td>
<td>0.0476</td>
</tr>
<tr>
<td>C12</td>
<td>Φ7×151</td>
<td>101.445</td>
<td>99.801</td>
<td>0.0476</td>
</tr>
</tbody>
</table>

Cable tensions in the debugging phase (9/8/10 and from 9/21/10 to 9/26/10) are tracked using CableTensionEstimation in conjunction with AutoMonitor as shown in Table 7.6. Note that some tension values have not been obtained due to poor communication. To check the validity of the estimation, cable tensions from CableTensionEstimation are compared to
references that are the design tension and estimated tension from Park et al. (2008); mean tension values from *CableTensionEstimation* measured in Figure 7.34 are consistent with the references.

The estimated cable tensions shown in Figure 7.35 are within about 2% deviation from mean values in most cases. This variation is caused due to not only actual tension changes but also errors introduced by the FFT-based data processing. As the simple peak-picking method has been used with power spectrum, natural frequencies are found only on the discrete spectral lines that are integer multiples of Δf (sampling rate divided by the number of FFT points). Thus, with small change in real natural frequency, the peak locations can be moved to the adjacent spectral lines. Fluctuation of the natural frequencies for node C11 shown in Figure 7.36 is considered due to the error from discretization as well as actual natural frequency changes. In particular, the discretization error in lower frequency modes has more impact on cable tension estimation as the ratios between Δf and natural frequencies are more significant in lower modes. The discretization error can be reduced by using a smaller sampling rate or a larger number of FFT points in power spectrum calculation.

<table>
<thead>
<tr>
<th>ID</th>
<th>Design Tension</th>
<th>Park et al. (2008)</th>
<th>CableTensionEstimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>202</td>
<td>223.3</td>
<td>222.5</td>
</tr>
<tr>
<td>C2</td>
<td>174</td>
<td>183.1</td>
<td>184.5</td>
</tr>
<tr>
<td>C3</td>
<td>160</td>
<td>164.3</td>
<td>165.7</td>
</tr>
<tr>
<td>C4</td>
<td>141</td>
<td>139.9</td>
<td>144.2</td>
</tr>
<tr>
<td>C5</td>
<td>122</td>
<td>132.8</td>
<td>132.9</td>
</tr>
<tr>
<td>C6</td>
<td>108</td>
<td>106.5</td>
<td>112.1</td>
</tr>
<tr>
<td>C7</td>
<td>90</td>
<td>86.2</td>
<td>89.2</td>
</tr>
<tr>
<td>C8</td>
<td>73</td>
<td>77.5</td>
<td>82.4</td>
</tr>
<tr>
<td>C9</td>
<td>70</td>
<td>59.0</td>
<td>60.8</td>
</tr>
<tr>
<td>C10</td>
<td>271</td>
<td>293.1</td>
<td>-</td>
</tr>
<tr>
<td>C11</td>
<td>271</td>
<td>304.8</td>
<td>300.1</td>
</tr>
<tr>
<td>C12</td>
<td>237</td>
<td>258.7</td>
<td>273.7</td>
</tr>
</tbody>
</table>
Figure 7.34 Comparison of the design tension, estimation by Park et al. (2008), and average tension of CableTensionEstimation

Table 7.7 Mean and maximum deviation of the estimated tension forces.

<table>
<thead>
<tr>
<th>ID</th>
<th>Mean of cable tension (9/8/10 – 9/26/10)</th>
<th>Maximum deviation from the mean value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>221.39</td>
<td>1.08</td>
</tr>
<tr>
<td>C2</td>
<td>2</td>
<td>0.78</td>
</tr>
<tr>
<td>C3</td>
<td>165.99</td>
<td>1.33</td>
</tr>
<tr>
<td>C4</td>
<td>143.82</td>
<td>0.93</td>
</tr>
<tr>
<td>C5</td>
<td>133.12</td>
<td>1.08</td>
</tr>
<tr>
<td>C6</td>
<td>111.10</td>
<td>0.91</td>
</tr>
<tr>
<td>C7</td>
<td>87.67</td>
<td>1.77</td>
</tr>
<tr>
<td>C8</td>
<td>81.55</td>
<td>1.73</td>
</tr>
<tr>
<td>C9</td>
<td>59.31</td>
<td>2.45</td>
</tr>
<tr>
<td>C10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C11</td>
<td>298.65</td>
<td>1.97</td>
</tr>
<tr>
<td>C12</td>
<td>270.55</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Figure 7.35 Variation of estimated cable tension with respect to mean values (Note data from node C10 is not available).
Cable tensions could be successfully obtained using *CableTensionEstimation* autonomously ran by *AutoMonitor*. As the deployment on the cables is primarily focused on realization of the first autonomous WSSN for cable tension monitoring, the WSSN can be
improved in both hardware and software aspects (e.g., different antenna for better communication, cable tension algorithm that considers the cable sag, and improved fault tolerance).

7.2.6 Summary

The WSSN on the Jindo Bridge was introduced for validation of the decentralized approaches. The hardware/software aspect of the deployment was described. For modal analysis, DecentralizedDataAggregation was able to successfully collect correlation functions from the large size of sensor network, proving the robustness and applicability to full-scale testing. The collected local information output the natural frequencies and global mode shapes that were shown to be accurate, compared to those from centralized data collection. In addition, the WSSN showed the potential of smart sensors for autonomous monitoring of cable tensions. The estimated cable tensions were shown to be consistent with the references as well as can be used as the valuable information for the maintenance purposes.

This chapter focused on providing experimental results to validate the efficacy and applicability of the WSSN to full-scale civil infrastructure. Based on the results shown in this chapter, conclusions and future research are provided in the next chapter.
CHAPTER 8 CONCLUSIONS AND FUTURE STUDIES

8.1 Conclusions

This dissertation outlined the research on realization of the flexible, versatile wireless smart sensor network (WSSN) for monitoring and identification of civil infrastructure. To extend the current WSSN beyond emulating the traditional centralized approach typically used in the wired system, decentralized strategies have been adopted as an alternative to overcome the limitations and benefit the powerfulness of smart sensors. This dissertation consisted of introduction, background, theoretical development of the decentralized approaches, implementation on smart sensors, and experimental validation.

Extensive background on Structural Health Monitoring (SHM), modal analysis, and smart sensors has been provided. The smart sensor has been recognized as a promising alternative to overcome the intrinsic limitations that the traditional SHM systems have. For the smart sensor network to be implemented in the full-scale civil structures, scalability was shown to be essential, which can be achieved by the decentralized sensor network. While the decentralized approaches have been primarily developed for SHM, such algorithms from the modal analysis perspective were shown to be still lacking. In addition, introducing multimetric sensing was seen to have the potential to further enhance the performance of the WSSN.

To achieve the goal of this research, which is to develop a flexible, versatile WSSN based on the decentralized strategies, this research considered (1) decentralized modal analysis that enables the decentralized WSSN to be used for estimation of global modal properties, (2) efficient decentralized system identification in the WSSN, and (3) multimetric sensing to enrich
essential information of the state of structures. Numerical simulation was conducted to verify the efficacy of the decentralized and multimetric sensing approaches.

Decentralized modal analysis has developed as an automated, decentralized strategy for modal analysis using smart sensors. The WSSN ultimately requires in-network processing utilizing smart sensor’s onboard computing capability to efficiently use limited resources such as available bandwidth and battery. Thus, the processed data in the decentralized hierarchical network contains only local information of each local sensor community. Decentralized modal analysis provides a means to combine the local information to obtain the global picture of a structure. The numerical simulation using the plate and truss models shown in Figure 4.5 and Figure 4.13, respectively, has shown that the decentralized modal analysis can find the global modal properties accurately.

System identification methods were investigated for more efficient use of smart sensors in local data processing. Natural Excitation Technique (NExT) has been known as an efficient data processing method particularly for the decentralized WSSN, providing correlation functions that can be further used as the input to Eigensystem Realization Algorithm (ERA). While NExT has been used for decentralized in-network processing, study in Random Decrement Technique (RDT) revealed that RDT was more efficient in terms of wireless communication than NExT that was an important issue in the WSSN. In NExT, cluster-heads in each local sensor community broadcasts a measured signal as a reference for correlation function estimation; cluster-heads in RDT sends the triggering information that is much smaller than the raw sensor data. As the sending reference data takes a significant part of radio communication in NExT, reducing the size of the reference data in RDT results in an important impact on the overall communication.
requirement. Numerical study with the 3D truss model shown in Figure 5.5 showed that if RDT was employed, data communication could be reduced to 22%, compared to the NExT case.

The third contribution of this study in the theoretical development is the use of multimetric data for structural damage detection. The fundamental idea behind this approach is that damage detection can be significantly enhanced by using a heterogeneous mix of measurands containing both local and global information. Here in this study, the Stochastic DLV method, an output-only, flexibility-based damage detection method, was extended to accommodate acceleration and strain in combination. The accuracy and reliability of the damage detection result in the presence of measurement noise could be improved due to the multimetric data in the numerical study.

The decentralized approaches developed for the WSSN were implemented on the Imote2 smart sensor platform based on the ISHMP Services Toolsuite. A wide variety of WSSN applications and services are available; thus the ISHMP Services Toolsuite reduces the efforts necessary for software development. To realize the decentralized approaches, several services and applications were developed using the ISHMP Services Toolsuite: SensingUnit, IndependentProcessingPSD, CableTensionEstimation, DecentralizedDataAggregation, and GlobalModesEstimation. SensingUnit is a basic service component for network-wide sensing, supporting two types of networks, centralized and decentralized networks. This service was used by the other three applications. IndependentProcessingPSD, an example implementation of independent processing, was designed to calculate the power spectrum of measured data. CableTensionEstimation was developed implementing the vibration-based cable tension estimation. It performs pick-picking on the power spectrum from IndependentProcessingPSD to obtain natural frequencies that are subsequently used in calculating cable tensions.
DecentralizedDataAggregation is an application that performs decentralized in-network processing and outputs the processed data, correlation and RD functions. The processed data can be further used for local system identification or damage detection within the WSSN, or collected at the base station for other purposes such as global modal property estimation by the GlobalModesEstimation.

The decentralized approaches and software implementations were validated by a series of laboratory- and full-scale experiments: the 3D truss structure, the Irwin Indoor Practice Field, and the Jindo Bridge. As the first example, the 3D truss structure at the University of Illinois at Urbana-Champaign was utilized in the laboratory testing. A total of 14 Imote2 sensors with DecentralizedDataAggregation were installed on the truss, providing correlation and RD functions locally estimated in each subdivided sensor community. Global modal properties were successfully obtained both from correlation and RD functions, while RDT was seen to be more efficient in terms of data communication than NExT.

The second experiment was conducted in the Irwin Indoor Practice Facility at the University of Illinois at Urbana-Champaign. The steel arch box truss at the center of the roof was selected as the test bed to conduct decentralized modal analysis. 14 Imote2 sensors with DecentralizedDataAggregation were deployed to measure ambient accelerations, process the sensor data in each subdivided local sensor community, and collect the processed data at the base station. The processed data only containing local information of each community was subsequently combined to produce the global modal properties of the center truss; several fundamental natural modes were successfully estimated. The experiment at the Practice Facility has showed the validity of decentralized modal analysis as well as the software reliability of
DecentralizedDataAggregation and the basic services used in DecentralizedDataAggregation (i.e., UnifiedSensing, SensingUnit, RemoteCommand, and ReliableComm)

Ongoing efforts at the Jindo Bridge deployment, the world-largest smart sensor deployment for SHM to date, have demonstrated the performance and potential of the WSSN in the large-scale network of smart sensors. Both hardware and software were carefully prepared to conduct autonomous, long-term monitoring of the Jindo Bridge. The Jindo Bridge deployment features autonomous operation, power harvesting capability for all sensor nodes, multi-hop communication, decentralized data aggregation, cable tension monitoring, and high-precision acceleration measurement using the new SHM-H sensor board. This study mainly focused on investigating the efficacy of the decentralized approaches (i.e., decentralized modal analysis and cable tension monitoring) on the performance of the WSSN. As an example of decentralized coordinated processing, decentralized modal analysis is applied to estimate the global modal properties of the Jindo Bridge: DecentralizedDataAggregation collected local information using in-network processing within the network, and the global modal properties were combined at the local computer. Comparison between centralized and decentralized approaches showed a good agreement. Tension forces of the cables were monitored using CableTensionEstimation based on the decentralized independent processing. Monitoring cable tension showed the variation of the forces in terms of time and temperature. As such, the decentralized approaches and the software system based on the ISHMP Services Toolsuite were successfully validated at the Jindo Bridge deployment.

The decentralized strategies for the WSSN and multimetric sensing for damage detection have showed the significant impact on the capability of SHM for civil infrastructure. In particular, the decentralized approaches and their software implementations have intensively
investigated from the theoretical development along with numerical simulation to a series of laboratory- and full-scale experiments. The efficacy of the decentralized approaches validated in this study is expected to be more distinct for a larger size and spatial distribution of sensor network that the centralized data collection is no longer applicable. In addition, multimetric data has been shown to enhance the accuracy and reliability of damage detection; if the WSSN is intended to monitor structural damage, multimetric data can be adopted for more reliable damage detection. Findings of this study will serve as a foundation that enables civil infrastructure monitoring using smart sensors to make a step forward in the field of SHM research.

8.2 Future Studies

Advances in both hardware and software aspects of smart sensor technology have enabled the unprecedented large-scale WSSN at the Jindo Bridge. While the Jindo Bridge deployment has been an excellent test bed in which significant steps in the field of smart sensor research have been made, it also has revealed new issues that should be addressed for smart sensors to be more widely used for monitoring civil infrastructure. Herein, several issues for improvement of the WSSN are presented.

8.2.1 Multimetric Sensing

As an example for the use of multimetric data, combination of acceleration and strain is considered to improve damage localization in this research. The Stochastic DLV method, which was extended to accommodate multimetric data in this study, was shown to be effective in the decentralized computing environment. Thus, the proposed damage detection approach for multimetric data is also well-suited to the large-scale WSSN. Laboratory experiments should be first conducted to verify the efficacy of the approach in a well-controlled environment. To
implement on WSSNs, both hardware and software should be prepared. For the Imote2 sensor platform, acceleration sensor boards are already commercially available while appropriate strain sensor boards are not yet developed. To make use of acceleration and strain measurements in combination associated with smart sensors, strain sensor boards compatible with the current acceleration sensor boards should be developed. As the damage detection approach for multimetric data is based on the local system identification results, the DecentralizedSysID application that combines DecentralizedDataAggregation and the ERA service in the ISHMP Services Toolsuite can serve as a basis for the software development. Successful implementation of the decentralized damage detection strategy using multimetric data will significantly improve the performance of the WSSN.

In addition to the combined use of acceleration and strain for damage detection, GPS provides a unique opportunity for smart sensors to measure displacement. Despite usefulness of the displacement response, displacement has not been widely employed in SHM because traditional displacement sensors such as the Linear Variable Differential Transformer (LVDT) requires a reference point, which makes deployment particularly difficult for large-scale civil structures. However, recent advances in GPS technologies have allowed displacement measurement to be more viable in the SHM. Indeed, researchers have been using GPS in civil engineering applications (Leach and Hyzak 1992; Lovse et al. 1995; Brown et al. 1999; Roberts et al. 1999; Fujino et al. 2000a; Fujino et al. 2000b; Ogaja et al. 2003; Brownjohn et al. 2005). GPS chips in the market are relatively inexpensive and consume little power, so they can be operated readily with batteries. As such, a sensor board for the Mica Mote on which a GPS sensor is commercially available. However, the GPS-based displacement measurement is not sufficiently accurate for most SHM applications.
One approach to improve the accuracy of GPS-based displacement measurements, this research proposes to address this problem to combine acceleration with GPS-based displacement measurements using a model-based Kalman estimator. Generally, displacement measurement of a physical system exhibits higher accuracy in the low frequency region while acceleration measurement is more reliable in the relatively high frequency region. Knowing the different characteristics of these two measurements, combination of acceleration and displacement with a model-based Kalman estimator is considered to obtain accurate displacement estimate. For this purpose, development of a numerical model for the structure under consideration followed by model updating is necessary to appropriately design the model-based Kalman estimator to achieve improved displacement estimation.

8.2.2 Rare Event Monitoring

To date, most research for monitoring full-scale civil structures has been conducted based on ambient vibration that are relatively common and long duration. However, the smart sensors have potential to be used to monitor rare events such as earthquakes and heavy vehicle loadings. The critical issues that should be addressed to enable the rare event monitoring are related to power management. In the Jindo Bridge deployment, the sensor nodes are put in the deep sleep mode during the most of the operation time to save power. Thus, capturing the sudden events is not supported due to the time it takes to wake up nodes and prepare sensing. Monitoring such events with battery consumption low may not be possible with the current Imote2 sensor platform; realizing this feature may require both hardware and software supports.

One possible solution is an alarm system that powers on the mote for measurement if a certain triggering event occurs. A low-power sensor separately powered from the rest of the mote can be utilized to continuously measure vibration responses, and wake up the main
microprocessor and sensor module if a certain condition is met (e.g., the maximum vibration level is greater than a predefined threshold). A disadvantage of this approach is difficulties in determining the condition. For example, setting the threshold value too low, normal events might be considered to be rare events, waking up the sensor node. On the contrary, too large threshold value may allow the main sensor module to measure the event after important large vibration passed. Thus, the triggering condition should be carefully selected. Although the rare event monitoring using smart sensors is a challenging task, it will greatly increase versatility of the WSSN for SHM.

8.2.3 Over-the-Air Programming

The WSSN for civil infrastructure monitoring will ultimately consist of hundreds or thousands of sensor nodes with huge spatial distribution over a structure. Reprogramming the sensor nodes, which can be required for maintenance such as software improvement and bug fixes, is a daunting task in the current Imote2 sensor platform because each node should be connected to a PC with a USB cable to reprogram. For large-scale civil structures, accessing each sensor node for reprogramming is not tractable.

This issue can be resolved by over-the-air programming that distributes new software images to each sensor node via wireless communication. In the Imote2 sensor platform, applications are stored in the designated address of the flash memory and loaded to RAM by bootloader on the startup. The application image can be wirelessly transmitted from the gateway node to the sensor nodes, and then saved in the flash memory. Updating the address where the new application located for bootloader, the new one is loaded to RAM. Implementation of the over-the-air programming for Imote2 will lower costs in maintenance of the deployed WSSN.
8.2.4 Fatigue Prediction

Fatigue is an important issue in steel structures; the capability of monitoring fatigue accumulation can provide valuable information for timely maintenance practices. The fatigue accumulation can be predicted based on damage accumulation formulas using measured time history responses. In this approach, however, the fatigue accumulation can be estimated only at the measurement points. To resolve this limitation, Papadimitriou et al. (2010) used the Kalman filter to estimate structural responses at unmeasured locations, which can lead to prediction of the fatigue accumulation. Numerical simulation using a simple spring-mass model and a truss model has showed the accuracy of the approach. However, several issues should be addressed for this approach to be incorporated with the WSSN. The prediction approach for the fatigue accumulation should be proven to work in the distributed computing environment intrinsically found in the WSSN. In addition, the prediction approach is based on the uniaxial stress that needs to be extended to the multiaxial stress to apply for general structures. Experimental verifications are also necessary for real-world applications. The estimation of fatigue accumulation can be incorporated with other damage detection approaches for more accurate characterization of civil structures.
REFERENCES

James, G.H., Carne, T.G. and Lauffer, J.P. (1993) "The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines," Sandia Report, SAND92-1666, Sandia National Laboratories, Albuquerque, NM.

using smart sensor technology: Deployment and evaluation," Smart Structures and Systems, 6(5-6), 439-459.

The Imote2 applications developed in this study are part of the open source ISHMP Services Toolsuite that can be downloaded from the ISHMP website (http://shm.cs.uiuc.edu). To take full advantage of the applications implementing decentralized approaches, installation of TinyOS 1.x and ISHMP Services Toolsuite 2.2.0 or higher is required. Following documents, found at the ISHMP website, are useful to install them as well as to get familiar with programming on TinyOS and ISHMP Services Toolsuite.

- Getting Started for Advanced Users and Developers guide (http://shm.cs.uiuc.edu)
- TinyOS tutorial (http://www.tinyos.net/tinyos-1.x/doc/tutorial/) (up to Lesson 4)

Once TinyOS and ISHMP Services Toolsuite are installed on a PC, the Imote2 applications are needed to compiled and installed on each mote. Each application has own commands (called BluSH command) that should be properly used to have the application run. The BluSH commands are typically used to set up Imote2 node IDs and necessary parameters (e.g., sampling rate for any sensing application), and start an application. This appendix illustrates how to run two main applications used in this study (i.e., CableTensionEstimation and DecentralizedDataAggregation).

A.1 CableTensionEstimation

The procedure to run CableTensionEstimation consists of two steps as in all other applications: (1) step 1 for compiling and installation the application and (2) step 2 for running CableTensionEstimation.
Step 1: Preparation

The first step is to compile and install the application. Open a cygwin window and change the directory to where *CableTensionEstimation* is located as:

```
cd $SHMROOT/tools/CableTensionEstimation
```

Use a USB-MiniB cable to connect an Imote2 to the computer. Run the following command to compile and install:

```
make imote2 usbinstall
```

This command will compile *CableTensionEstimation*, and install the binary file on the connected Imote2. Next, run the following command simply to install the binary file of *CableTensionEstimation* on each subsequent Imote2:

```
make imote2 usbreinstall
```

Once installation is complete, run the following command in the cygwin window:

```
autocomm –d COMy
```

COMy represents the highest port listed in the Windows Device Manager. By pressing the <Enter> key a couple of times, a BluSH prompt should appear. If not, check the port number used for *COMy* and the connection between the interface board and the computer. Open another cygwin window, and type:

```
autocomm –n –o out.txt COMx
```

COMy is the second highest port listed in the Windows Device Manager. This command will save the PSD to the output file *out.txt*. The ‘-n’ option suppresses printing outputs on the screen.
Step 2: Running CableTensionEstimation

Three BluSH commands should be used to specify the sensor nodes and the parameters for the PSD calculation, and to start the operation. At the first cygwin window, input:

```
SetCTENodes <nodeId> [nodeId] [nodeId]
```

To specify parameters necessary for tension estimation, input:

```
SetCTEParameters channelMask fs nfft navg overlap window normalize savepsd ppmethod estimation_method
```

(Note: this command is all one line.)

where

- `channelMask` specifies sensing channels: 1 for channel 1, 12 for channels 1 and 2, and 123 for channels 1, 2, and 3
- `fs` is the sampling frequency in Hz
- `nfft` is the number of FFT points (i.e., N_{FFT})
- `navg` is the number of averaging windows
- `overlap` is the number of overlapping points between consecutive spectral windows
- `window` specifies the spectral window: 1 for Welch window, 2 for Hamming window, and 3 for Hanning window
- `normalize` decides if the mean values of the measured data are removed: 1 to remove, and 0 not to remove
- `savepsd` decides if the estimated power spectrum is collected: 1 to save, and 0 not to save
- `ppmethod` specifies the peak-picking method: 1 for a method that is designed for cable vibrations without cable-structure interaction, and 2 for a method that requires knowledge of approximate peak locations.

- `estimation_method` specifies the estimation method for cable tensions: 1 for Zui’s formula, and 2 for the method utilizing the cable dynamics as well as least squares that used in this study.

Then, cable properties need to be provided using the following command:

```
SetCTECableParameters NodeID E area moment length wc angle sag designT Cvalue
```

(Note: this command is all one line.)

where

- `NodeID`: ID for this node
- `E`: elastic modulus
- `area`: sectional area
- `moment`: moment of inertia
- `length`: effective length of cable
- `wc`: weight per length
- `angle`: angle of cable
- `sag`: span to sag ratio
- `design`: design tension force
- `Cvalue`: C value defined in Zui’s formula

If the least squares-based method is used, only sectional area and weight design are required; use any small number (e.g., 0) for the rest of them. If `ppmethod` of 2 (the method that requires approximate peak locations), the following command should be used:
SetCTERefFreq NodeID width mode# freq mode# freq ...

where

- width defines the ratio of search width to the sampling frequency. The highest point in this region is determined as the peak.
- mode#: mode number for the following natural frequency
- freq: natural frequency

To start *CableTensionEstimation*, type:

StartCTE

An example of running *CableTensionEstimation* is presented in the screenshots (see Figure A.1 for the gateway node, and Figure A.2 for the leaf nodes).

![Screenshot of CableTensionEstimation output messages](image)

Figure A.1 Output messages from the gateway node in *CableTensionEstimation*.
A.2 DecentralizedDataAggregation

The following steps are required to run DecentralizedDataAggregation, as was the case for CableTensionEstimation.

Step 1: Preparation

The first step is to compile and install the application. Open a cygwin window and change the directory to where DecentralizedDataAggregation is located as:

```
   cd $SHMROOT/tools/DecentralizedDataAggregation
```

Use a USB-MiniB cable to connect an Imote2 to the computer. Run the following command to compile and install:

```
   make imote2 usbinstall
```
This command will compile *DecentralizedDataAggregation*, and install the binary file on the connected Imote2. Next, run the following command simply to install the binary file of *DecentralizedDataAggregation* on each subsequent Imote2:

```
make imote2 usbreinstall
```

Once installation is complete, run the following command in the cygwin window:

```
autocomm -d COMy
```

COMy represents the highest port listed in the Windows Device Manager. By pressing the `<Enter>` key a couple of times, a BluSH prompt should appear. If not, check the port number used for **COMy** and the connection between the interface board and the computer. Open another cygwin window, and type:

```
autocomm -n -o out.txt COMx
```

COMx is the second highest port listed in the Windows Device Manager. This command will save the correlation functions to the output file `out.txt`.

Step 2: Running DecentralizedDataAggregation

Either SetDDANExTParameters or SetDDARDTParameters should be used at the BluSH prompt to provide necessary parameters for data processing.

```
SetDDANExTParameters nfft navg overlap window filter normalize samplingRate cutoff refChannel channelMask saveData saveCF (Note: this command is all one line.)
```

where

- **nfft** is the number of FFT points
- **navg** is the number of averaging windows
- overlap is the number of overlapping points between consecutive spectral windows
- window specifies the spectral window: 1 for Welch window, 2 for Hamming window, and 3 for Hanning window
- filter specifies the use of low pass filters: 1 to apply, and 0 not to apply
- normalize decides if the mean values of the measured data are subtracted: 1 to subtract, and 0 not to subtract
- samplingRate is the sampling frequency in Hz
- cutoff is the cutoff frequency for the low pass filter
- refChannel is the channel number for the reference signal of the cluster-head used in estimating correlation functions
- channelMask specifies sensing channels: 1 for channel 1, 12 for channels 1 and 2, and 123 for channels 1, 2, and 3
- saveData determines if the sensor data is collected at the base station for debugging purposes: 1 to collect, and 0 not to collect
- saveCF determines if the correlation function is collected at the base station. If the correlation function is desired to be used further in-network analysis, collection at the base station may not be desired. Use 1 to collect, and 0 not to collect.

SetDDARDTParameters data_len RDF_len trig_level_a trig_level_b samplingRate refChannel channelMask saveData saveRDF (Note: this command must be all on one line.)
where

- **data_len** is the number of data points in a channel
- **RDF_len** is the number of points in a random decrement function
- **trig_level_a** is the lower bound of the trigger level
- **trig_level_b** is the upper bound of the trigger level
- **samplingRate**, **refChannel**, **channelMask**, and **saveData** are as described previously.
- **saveRDF** determines if the random decrement function is collected at the base station. Use 1 to collect, and 0 not to collect.

Once the data processing parameters are set, the SetDDASensorTopology command should be used to configure the sensor topology, i.e.:

```
SetDDASensorTopology <nodeId> <nodeId> ... <nodeId> 0 <nodeId> <nodeId> ... <nodeId> 0 ... (Note: this command is all one line.)
```

Setting the sensor topology using SetDDASensorTopology is the same as was done using SetSUSensorTopology, as previously described. Another way to set the sensor topology is to call SetDDASensorTopology for each local sensor community, i.e.:

```
SetDDASensorTopology <nodeId> <nodeId> ... <nodeId>

SetDDASensorTopology <nodeId> <nodeId> ... <nodeId>

...

SetDDASensorTopology <nodeId> <nodeId> ... <nodeId>
```

For example, consider a sensor network that has the following topology:
where nodes 21, 51, and 2 are the cluster-heads for communities 1, 2, and 3, respectively. Thus, the corresponding input command should be:

\[
SetDDASensorTopology \ 21 \ 87 \ 32 \ 0 \ 51 \ 8 \ 21 \ 87 \ 0 \ 2 \ 112 \ 42
\]

or

\[
SetDDASensorTopology \ 21 \ 87 \ 32 \\
SetDDASensorTopology \ 51 \ 8 \ 21 \ 87 \\
SetDDASensorTopology \ 2 \ 112 \ 42
\]

To start \textit{DecentralizedDataAggregation}, input:

\textbf{StartDDA}

At the completion of \textit{DecentralizedDataAggregation}, ‘(*) DDA finished at the base station’ should be seen in the cygwin window. Figure A.3 shows an example for running \textit{DecentralizedDataAggregation}.

Raw sensor and processed data are saved in the output file specified in the second cygwin window using the options \texttt{saveData}, \texttt{saveCF}, and \texttt{saveRDF} for the \texttt{SetDDANExTParameters} and \texttt{SetDDARDTParameters} commands. The output file includes measured data from each node and processed data from each local sensor community as shown in

Figure A.4. If “.m” is appended to the name, then these files can be run directly in MATLAB, resulting in variables in the workspace of the form \texttt{x[nodeId]} for measured data,
$R_{xy[nodeId]}$ for correlation functions, and $D_{xy[nodeId]}$ for random decrement functions. For example:

- x_{69} is a matrix with the measured data from node 69.
- R_{xy69} is a matrix with the correlation functions from the community for which node 69 is the cluster-head.
- D_{xy69} is a matrix with the random decrement functions from the community for which node 69 is the cluster-head.

![Image](image.png)

Figure A.3 Input commands in the gateway node for $DecentralizedDataAggregation$.

172
Figure A.4 Example output file of *DecentralizedDataAggregation*.

```plaintext
%Time History Data
x69=
13837 20271
13837 20271
13838 20272
\vdots \vdots
13836 20276
];
%Time History Data
x39=[
13814 21497
13812 21498
13812 21502
\vdots \vdots
13809 21496
];
%CFE: cluster-head 69
%node: 69,ch:1 %node: 69,ch:3 %node: 39,ch:1 %node: 39,ch:3
Rxy69=[
6.19997626e-01 4.30631513e+00 4.23836029e-02 6.82955712e-01
5.12753638e-01 3.06439151e+00 1.90794679e-02 6.17799897e-01
3.76651171e-01 1.36226064e+00 9.23906115e-02 4.13684798e-01
\vdots \vdots \vdots \vdots
3.80944256e-01 1.39077845e+00 1.24120981e-01 3.89017034e-01
];
```
APPENDIX B *RemoteCommand*

RemoteCommand developed by K. Mechitov provides an efficient means for the nodes to interact with each other to collaboratively conduct a certain task. *RemoteCommand* provides a fault tolerant and efficient implementation of Remote Method Invocation (RMI) (Waldo 1998) for the ISHMP Services Toolsuite. The most common pattern in WSSN applications is that a node (let say *master* node) sends a command message to other nodes (*slave* node) that in turn perform a task (e.g., time synchronization, sensing, or data processing) and optionally returns results to the master node. *RemoteCommand*, well-suited to the process, can significantly reduce the programming effort by taking advantage of the unique features offered by *RemoteCommand*. This appendix outlines it.

The interface of *RemoteCommand* provides several commands and event handlers. The commands are supposed to be called for a specific purpose in a WSSN application that uses *RemoteCommand*, and the event handler is to be triggered when a certain event happens. Commands and event handlers provided by *RemoteCommand* are:

- **command** *registerCommand* is used to register a command, specifying initialization parameters.
- **command** *unregisterCommand* unregisters the command.
- **command** *executeCommand* is called by the master node, sending a command message to the slave nodes.
- **command** *executionDone* is called by the slave nodes when the designated tasks are done.
- **command** *stopCommand* is to stop the command.
- **event handler** *blushCommandCalled* is triggered when a BluSH command is called.
- event handler `commandSent` is triggered in the master node when the command message is successfully delivered to the slave nodes.
- event handler `responseSent` is triggered in the slave nodes when data is successfully sent back to the master node.
- event handler `commandExecuted` is triggered in both the master and slave nodes when the command `executionDone` is called.

Closely related to each other, the commands and event handlers should be used in a correct order and timing. Figure B.1 shows the control flow of `RemoteCommand`.

1. `registerCommand` is called in the slave nodes to initialize the `RemoteCommand`.
 - The start function that runs when a command message is received should be specified.
 - Whether data is returned after executing the command or not should be determined.

2. Calling `executeCommand` in the master node, a command message, possibly parameters for the task of the slave node, is sent.

3. When the message is sent:
 - `commandSent` is triggered in the master node, and the start function runs in the slave nodes. If no return data is specified, `commandExecuted` is triggered as well.
 - The start function is used to conduct the task of the slave nodes (e.g., time synchronization, sensing, or data processing).

4. When the task is finished, the slave nodes should call `executionDone`. Data is sent to the master node if requested to do so.

5. When the data is sent:
 - `commandExecuted` is triggered in the master node.
- **responseSent** is triggered in the slave nodes.

![Diagram of RemoteCommand flow]

Figure B.1 Flow of RemoteCommand.

RemoteCommand is useful for the following examples.

1. The gateway node sends parameters for sensing, and the leaf nodes start sensing when receiving the parameters.

2. After sensing, the gateway node sends an acknowledgement, and the leaf nodes send sensor data when receiving the acknowledgement.

3. The gateway node sends parameters for the power spectral density (PSD) estimation, and the leaf nodes start calculation when receiving the parameters.

4. After the calculation, the gateway node sends an acknowledgement, and the leaf nodes send the calculated PSD when receiving the acknowledgement.
These four different tasks fundamentally have the same structure from the programming point of view, in that one node (master node) sends a command message (e.g., sensing parameters or acknowledgement) and the other node (slave node) starts a designated task when it receives the command message. *RemoteCommand* is well-suited to carry the tasks that have this type of structure, allowing the four different tasks to be implemented in a straightforward manner.
APPENDIX C DECENTRALIZED CABLE TENSION ESTIMATION

Cables of cable-stayed bridges are one of the most critical members for structure health; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Several methods for estimating the cable tension are available including the direct measurement using the load cell, non-contact technique using the electromagnetic (EM) stress sensor (Wang et al. 2005), and vibration-based methods. Due to the convenience and cost effectiveness of sensor installation, the vibration-based methods have been recognized to be efficient in practice. As summarized by Kim and Park (2007), the vibration-based methods can be categorized as (1) methods based on the flat taut string theory (sag-extensibility and bending stiffness are not considered), (2) methods based on the modern cable theory (only sag-extensibility is considered), (3) methods based on the equation of motion of a cable that considers only bending stiffness, and (4) methods in which both sag-extensibility and bending stiffness are considered (Zui et al. 1996; Mehrabi and Tabatabai 1998; Kim and Park 2007). Examples include Tsing Ma Bridge (Ni et al. 2002), Seohae Bridge (Kim et al. 2007), and Kao-Ping-His (Fang I.-K. et al. 2004).

Cho et al. (2010a) implemented a vibration-based method proposed by Zui et al. (1996) on smart sensors and experimentally verified in the laboratory using a string with both ends fixed. On the FFT of measured vibration data from the cable, the automated Peak-Picking method finds the first three natural frequencies that are required for Zui’s formula. Estimated tension forces are then transmitted to the base station. This earliest study for cable tension estimation using smart sensors has been seen to be promising. However, using Zui’s formula in an automated manner can involve difficulties in distinguishing cable dynamics from the cable-deck interaction.
In the Jindo Bridge (484m-long cable-stayed bridge), peaks due to the cable-deck interaction are clearly present near the peaks for cable modes in the power spectrum of the cable vibration (Cho et al. 2010b), making it difficult to implement an automatic Peak-Picking method.

Here in this study, a closed form relationship between natural frequencies and the tension force is used for cable tension estimation. Assuming the tension force \(T \) is constant over the entire cable, the equation of motion of the inclined cable shown in Figure C.1 can be written as (Shimada 1994):

\[
\frac{w}{g} \frac{\partial^2 z}{\partial t^2} + EI \frac{\partial^4 z}{\partial x^4} - T \frac{\partial^2 z}{\partial x^2} = 0
\]

where \(z \) is the deflection in the y-direction, \(w \) is the weight density per length, \(EI \) is the flexural rigidity, and \(g \) is the gravity. With the boundary condition of hinged ends, the solution is:

\[
T = \frac{4wL^2}{g} \left(\frac{f_n}{n} \right)^2 - \frac{EI\pi^2}{L^2}n^2
\]

or

\[
\left(\frac{f_n}{n} \right)^2 = \frac{Tg}{4wL^2} + \frac{EI\pi^2g}{4wL^2}n^2
\]

where \(L \) is the length of the cable, \(f_n \) is the natural frequency, and \(n \) is the order of the natural mode. Linear regression with \((f_n/n)^2 \) and \(n^2 \) leads to estimation of the tension force \(T \) and the flexural rigidity \(EI \).
Although this simple approach neglects the sag-extensibility, it can be a practical solution for an automated cable tension estimation system. In addition, because many higher frequency modes are included, reliable estimation can be expected.