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Abstract

Nowadays, many complex text search systems, such as Entity Search or Topic Search, have been proposed

to allow users to retrieve fine granularity units (e.g., entities or topics) inside documents directly. As those

search systems target on more complex search tasks, the traditional query processing method purely based

on an inverted index can not execute those search queries efficiently. New execution algorithms and index

structures need to be proposed.

In this paper, we study the problem of automatically deriving an efficient execution algorithm and in-

dexes that support the algorithm for those systems. We take a relational view of the problem and model it as

optimizing a query template with views. This query template optimization problem raises new challenges

including enumerating plans with views and selecting plans for answering a template for a query optimizer.

We present a novel optimization framework with a new set of transformation rules and an efficient selection

strategy to deal with those two challenges.

We systematically evaluate our framework in two concrete application settings. Experiments show

that: (1) The derived algorithm and indexes significantly improve the efficiency the keyword-based baseline

method. (2) Our framework can automatically derive plans and indexes that are manually optimized for a

system. (3) Our approach is general enough to be applied to different search systems.
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Chapter 1

Introduction

1.1 Complex Text Search System Overview

Nowadays ubiquitous text data, such as web pages or news archives, becomes an ultimate repository for

people to find useful information. Everyday millions queries are submitted to web search engines to search

relevant pages from the Web. In order to meet users’information needs directly, a new type of search

systems [7, 17, 20], which allow to users to search specific information beyond web pages, have emerged.

The following two systems are typical examples.

Scenario 1 EntitySearch System: An entity search system (EntitySearch) enables users to search various

types of entities (e.g., #university, #professor) directly from a document collection [7]. Each type of entities

(e.g. “Stanford” ∈ #unversity) are pre-extracted from each web page in a collection C. The system accepts

a query containing both keywords K (e.g., “computer science”) and an entity type E (e.g., #professor) and

returns a list of entity instances ordered according to their relevance to the query. The relevance of an entity

instance is calculated by how the entity matches with the keywords across all the pages.

Scenario 2 TopicSearch System: A popular topic search system (TopicSearch) enables users to retrieve

popular topics from a document collection (e.g. Twitter status). A topic can be any noun phrase or any term

defined in a dictionary (e.g. Wikipedia). Topics are pre-extracted from each document and each document

has a time stamp si (e.g., Sep 1, 2009). The system accepts a query containing both keywords K (e.g.,

“Obama”) and a period p (e.g., Sep 01 2009), and returns a list of topics (e.g., “speech”, “health care ”)

according to their popularity. The popularity of a topic is measured by how likely a topic associates with

keywords across all the documents during the given period.

The above examples illustrate search tasks of two specific systems. We can find that although search

tasks of different systems are different, they can be abstracted as the following three operations:
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Fine Granularity Unit Retrieving Those systems retrieve a piece of useful text (e.g., entities and topics),

which can be pre-extracted inside a document, instead of relevant documents. Since those pieces of

text represent more specific information than documents, we define them as fine granularity units.

Contextual Matching When matching a fine granularity unit with a query, those systems need to examine

the context of every document. A unit matches with a query only if the unit occurs with query key-

words in a document. In addition, the matching of a unit and a query is evaluated across a collection

since the unit may occur in many pages in the collection. For example, in a TopicSearch system, the

score of a topic is defined based on how frequently it occurs with the keywords in the documents

created at the given time period.

Complex Filtering Those systems allow users to specify additional filtering conditions for documents or

fine granularity units. For example, in an EntitySearch system, an entity instance is matched if the

instance is the given type and co-occurs with query keywords in a document. In a TopicSearch system,

a topic is matched if the topic co-occurs with the given keywords in a document that is created at the

given time period.

Therefore, the general function of those systems can be summarized as retrieving fine Granularity units,

such as entities and topics, inside documents directly and across many pages holistically with keywords

and additional conditions. Comparing to a traditional document search system, those systems have more

complex search functions. We name them as complex text search (CTS) systems.

1.2 Computation Challenges

As an online search system, a CTS system should execute a query efficiently. However, those systems

cannot efficiently be supported by the standard document search procedure, which retrieves a set of relevant

document by intersecting inverted lists of each keyword. Additional computations are needed to retrieve

fine granularity units from matched documents. Specifically, after retrieving all the relevant documents

with keywords, a CTS system has to access the content of each relevant document to match fine granularity

unites. This additional step accesses the content of each relevant documents and costs N random reads,

where N is the number of relevant documents. It is inefficient when the N is large. Therefore, there is
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a great demand for deriving an efficient online execution algorithm and corresponding new indexes that

support the algorithm to efficiently support a CTS system.

In this paper, we propose to study the problem of automatically deriving an online execution algorithm

and corresponding indexes for a CTS system. It is a nontrivial task due to the following challenges: First, for

a CTS system, many kinds of indexes can be built, and many execution algorithms can be constructed with

a given index configuration. Some of them are efficient while others may not. Thus, the solution should

be able to systematically enumerate every candidate algorithm and indexes and select the most efficient

algorithm and indexes used by it. Second, there are usually constraints on what kind of indexes can be used

and how much space indexes can take. Thus, the solution should be able to handle those constraints when

selecting online algorithms and indexes. Third, there are different CTS systems, each of which has a specific

search task. The solution should be general enough to apply to different CTS systems.

1.3 Our Solution Overview

In order to derive an execution algorithm with indexes for a CTS system in a principled way, we take

a relational view of the problem. Queries of a CTS system is viewed as a SQL template; the execution

algorithm is viewed as a query plan for the template; and indexes are viewed as materialized views used in

the plan. Thus, the original problem becomes a problem of optimizing a SQL query template with views.

With this relational view, mature database query optimization framework can help us to systematically

enumerate and select plans for a template, and different search tasks can be viewed as different templates,

which can be optimized in a unified framework.

However, this new template optimization problem raises new challenges for a traditional query optimiza-

tion algorithm. Specifically, the challenges are how to enumerate efficient plans with views systematically

and how to select efficient plans for answering a template. We develop a general optimization approach to

solve the new challenges. To enumerate plans with views, we identify ways of using views to construct

improved plans for a given plan and model them as a set of new transformation rules. The new rules can

be used to construct efficient plans with views in a systemical way. To answer all the queries represented

by a template efficiently, a set of plans needs to be selected. Our approach selects the best plan set in a a

cost estimation based approach. An efficient greedy selection strategy with guaranteed approximation rate

is used in the selection procedure, so that the most efficient plan set can be constructed step by step.
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Chapter 2

Problem Abstraction

2.1 A Relation View of CTS Systems

To design a general solution, which can derive an efficient execution algorithm and indexes for any CTS

system, we take a relational database view of a CTS system. Specifically, we abstract search tasks of

different CTS systems as standard database operations over a relational schema.

2.1.1 From a document collection to a database schema

As discussed in Section1, search tasks of different CTS systems can be abstracted as searching fine gran-

ularity units from documents with keywords. Documents, keywords, units and their relations can be cap-

tured by a relation model shown in Figure 1. Specifically, a document is an entity with attributes (e.g.,

time). It can be captured by a document table Doc(docID, att1, ..., attn). Documents also contain key-

words (e.g., Microsoft, kick). This relationship can be captured by a keyword and document relation table

KeyDoc(docID, keyword). Since a keyword does not have any additional attribute, we do not need to use a

sperate table for keywords. Documents also contain units(e.g., Windows). This relationship can be captured

by a unit and document relation table UnitDoc(unit, docID). A unit is an entity with attributes(e.g., entity

type). It can be captured by a unit table Unit(unit, att1, ..., attm). Formally, we define the following a CTS

schema to capture keywords, documents, units and their relations in different CTS systems.

Definition 1. CTS Schema is a relational schema that captures keywords, documents, units and their

relations of a CTS system. It contains four tables: a document table T1 : Doc(docID, att1, ..., attn),

a keyword document relation table T2 : KeyDoc(docID, keyword), a unit document relation table T3 :

UnitDoc(unit, docID), and a unit table T4 : Unit(unit, att1, ..., attm).

Example 1. The CTS schema for a TopicSearch system contains T1,T2, and T3 defined in Definition 1. In
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Figure 2.1: The Relation Tables

particular, T1 describes the time stamp for each document, and T3 describes which document a topic is

extracted from. Since a topic does not have any attribute, the schema does not have a unit table T4.

2.1.2 From search queries to a SQL template

Given the CTS schema, the task of searching fine granularity units from a document collection with a query

can be viewed as executing a SQL query on those tables. Specifically, searching documents with a keyword

can be viewed as a selection over KeyDoc. Searching documents with a set of keywords can be viewed

as intersections over selected document list of each keyword. Contextual matching units with keywords in

the context of a document and across many documents can be viewed as joining on UnitDoc and selected

documents of the keywords. Filtering documents with a time period or filtering entity instances with a type

can be viewed as a selection over the Doc and Unit respectively.

Furthermore, the computation for different queries from a CTS system are basically same except that the

number of keywords and specific values of keywords and filter conditions are different. Queries with various

numbers of keywords can be captured by a K-nary intersection operation, which takes a variable number of

lists as input and computes the intersection of those lists. Different values of keywords and filter conditions

can be represented by a set of parameters, each of which represents a set of possible values. Therefore, we

can use a query template with variable-length parameters to represent all the queries.

Definition 2. CTS Query Template is a SQL query defined based on a set of relational operations including

selection (σ), projection (π), join (on), intersection (∩) or union (∪). Each selection condition is a parameter,

denoted as σA=X(T ), where X is a parameter and A is an attribute of T And on, ∩, ∪ may be a K-nary

operation, which takes a variable inputs.

We use Q({T1.Ar = X1...}, ..., {Tk.As = Xi...}) to denote a template with variable-length parameterized

selections. Each T.A = X means a parameterized selection σAtt=X(T ) in the query, which can be instantiated
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to any value in the attribute A. {T1.A=X1...} means the selection may repeat variable times. In this paper, we

use capitalized X to represent a parameter, and the lower cased character x to a specific value of a parameter.

Given a template for a CTS system, any query is an instance of the template. Thus, the search task of a

CTS system can be viewed as executing a SQL template.

Example 2. In a TopicSearch system, retrieving topics for a query “Google, 2009” can be viewed as

a SQL query, “select T1.DID, T ID from T1, T2, T3 where Key = Google and Time = 200909 and

T1.DID = T2.DID and T1.DID = T3.DID”. All the queries can be represented by a template Q({T1.Key =

k1...}, ..., {T2.Time = X}) shown below with parameters ki presenting the kth keyword and p representing

the time. In the template, intersection is a K-nary operation, which takes a variable number of lists as

input.

SELECT TID, DID FROM T3, T1

SELECT DID FROM T2 WHERE Key = k1 INTERSECT

...

SELECT DID FROM T2 WHERE Key= kn

WHERE DID = T3.DID and TIME = p and DID = T1.DID

2.2 A Relational View of the Problem

With a relational view of a CTS system, we further model the problem of deriving an efficient online exe-

cution algorithm with indexes for a CTS system as optimizing a query template with views.

2.2.1 From an online algorithm to execution plans

Since queries in CTS system is viewed as a SQL query template, an online execution algorithm for the

query can be viewed as an execution plan for a SQL query. The problem of searching an efficient online

algorithm for all the queries in a CTS system can be viewed as selecting the most efficient execution plan

for the template.

In the database area, query optimization [10, 19, 4] is used to select the most efficient plan for a

single SQL query. However, the most efficient execution plan for a template may not exist. Because

the template represents a set of queries, the best plan for different queries is different. For instance,

given a template, (σKey=kiT2
∩
σKey=k jT2) on T3, the hash join method is used when the number of tu-
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ples in σkey=kiT2
∩
σKey= jT3 is small; while the sort-merge join is used when the number of tuples in

σkey=kiT2
∩
σkey=k jT2 is large. Therefore, to optimizer a template, a set of plans instead of a single plan

should be selected. Each plan in the set can execute some queries represented by the template efficiently.

If a set of plans are selected for a template of a CTS system, an online execution algorithm for the CTS

system can be easily built based on those plans. Specifically, the algorithm contains a plan selector and a

set of routines, each of which is an implementation of a selected plan. When a query comes, the selector

estimates the efficiency of each routine and uses the most efficient one to answer the query.

2.2.2 From indexes to materialized views:

In addition, the original problem needs to search an online algorithm with indexes. Indexes used by an online

execution algorithm can be viewed as data structures for speeding up an execution plan. In the database

area, both indexes and materialized views are such structures. Indexes, such as B-tree and multidimensional

indexes, are pre-computed data structures that map a key to corresponding tuples. They enable efficiently

accessing a subset of tuples with a key. Selection and join operations can be efficiently computed with

indexes. Similarly, a materialized view pre-computes results for some operations and stores the results as a

concrete table on a disk. Queries containing those operations can be answered efficiently via accessing the

view directly.

Although indexes and materialized views are different concepts, an index, which maps a key to a subset

of tuples associated with that key, can be conceptually considered as a set of materialized views [1], each

of which pre-computes and stores results for a selection with a possible key on a single table. A “view”

defined on a SQL template, also represents a set of materialized views, each of which pre-computes and

stores results for a query instance of the template.

In this paper, we use parameterized view to represent both index and a view for a template.

Definition 3. Parameterized View is a virtual view, View({T1.Ar = X1...}..., {Tk.As = Xi...}), with parame-

ters. It is defend by a SQL query template Q({T1.Ar = X1...}..., {Tk.As = Xi...})

A parameterized view represents a set of view instances. Each of view instance is corresponding to a

view which materialize a query instance of the template with each parameter instantiated to a specific value

in the corresponding attribute.

7



To represent an index over a table T using a parameterized view, the view materializes a selection

operation on the table, where the selection condition is a parameter and the parameter can be instantiated to

any possible key value. Specifically, it can be denoted as σKey = KT .

Example 3. A parameterized view View(K) = σKey=K(T2) with a parameter K represents a set of view

instances, each of which materializes the selection operation with K instantiated to a possible keyword.

Conceptually, each view instance stores documents associated with a particular keyword. This parameter-

ized view can be viewed as an inverted index for a document collection.

Based on the definition, a view that materializes operations is also a parameterized view, where param-

eters can be instantiated to any possible value of attribute used in those operations.

Thus, to search an execution algorithms with indexes, can be viewed as search plans that use parameter-

ized views. Views used in the selected plans can be materialized as indexes for a CTS system. In the rest of

paper, we use parameterized views and views interchangeably.

2.2.3 Problem Constraints

Based on the above discussion, the original problem becomes selecting a set of efficient execution plans with

and without views for a query template. However, not all the views can be used to construct plans, and not

all the plans can be selected. Otherwise, the most efficient way to execute a template is materializing a view

for each query and using it to answer the corresponding query. It is unpractical because it costs too much

space to materialize results for every query. Considering the setting of the original problem, we abstract two

constraints in the new problem.

The first constraint, denoted as CV , specifies that a view View({T1.Ar = X1...}..., {Tk.As = Xi...}) can

not have variable parameters. many view instances. Specifically, |D(p1, ..., pn)| < N, where D is domain of

parameters and N is a predefined threshold. When the domain of parameters of View(p1, ..., pn) is large, a

lot of instance views need to be materialized. It takes a lot of space to materialize so many views and it is

inefficient to locate a specific instance view from them. In the original problem, the query space consists

of different keyword combinations. It is impossible to materialize views for all different keyword combina-

tions, so the first constraint limits the number instances that needed to be materialized for a parameterized

view. It is similar to a document search system, where an inverted list is built for each single term.
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The second constraint, denoted as CP, specifies that a selected plan uses at most B space and at most K

plans can be selected. A plan with views requires additional space cost for storing the views. The disk space

is not an unlimited resource in any system. Thus, a plan cannot take too much space. Furthermore, we can

not select a lot of plans. If many plans are selected, the online selector will take a lot of time to search the

most efficient one. It also takes additional space to store views used in them.

Based on the above discussion, we can formally define our problem in the following way.

Definition 4. Query Template Optimization with Materialized Views Problem: The input of the problem

is a template Q on a relational schema for a CTS system. Let V = {v1, v2, ..., vn} be all the materialized

views that satisfy view constraints CV , our problem is to search P = {p1, p2, ..., pm}, which contains all the

plans with and without views in V for executing Q, and to output a subset EP of P, such that the efficiency

of answering all the queries of the given template, denoted as E(EP, T ), is the maximized among all the

subsets EPi ⊂ P that satisfy the constraint CP.

With the above problem definition, we formally transfer the problem of deriving an online algorithm

and indexes as a problem of optimizing a SQL template with views under the constraints. With this view of

the problem, we can adopt the traditional query optimization idea to solve the problem efficiently.

2.3 Problem Setting Review

To help reader to understand our problem setting, Figure 2.2 gives an overview of our approach. . Via taking

a relation view, we view data model and queries of a CTS system as a relation schema and a SQL template

respectively. Then the problem of searching efficient online algorithm becomes the problem of optimizing

a SQL template with views offline. The output of the query template optimization problem is a set of plans

with and without views.

The selected plans are implemented as online execution routines. The views used by the selected plans

are materialized as indexes. The execution engine uses a plan selector and those routines to answer queries.

When a query comes, the engine uses the selector to select the most efficient routine, and then uses the

selected routine to execute the query.

There are several advantages for modeling the original problem as optimizing an query template with

views. First, the approach is general. Different CTS systems are captured by different SQL templates. It
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Figure 2.2: The Overview of Our Problem Setting

may be extended to other complex text search systems. Second, query optimization have been well studied

in the database literature. Mature database technologies may be adopted to solve a solution.

Furthermore, we emphasize that our template optimization approach works offline. It is different from

the traditional online query optimization, where an optimizer enumerates different plans and selects the most

efficient plan for a query during the online execution stage. Comparing with online query optimization, our

offline template optimization approach has the following reasons: (1) It can enumerate candidate plans

extensively without worrying about the limited online optimization time. (2) It can enumerate plans with

views, which can further be materialized to support online execution. (3) It directly prunes a large set of

unselected plans for the online algorithm. The online algorithm can select the most efficient plan efficiently.
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Chapter 3

Query Template Optimization

3.1 Solution Overview

In the database area, different query optimization [10, 19, 4] algorithms have been proposed to derive the

most efficient execution plan for a SQL query. Generally, a query optimizer systemically enumerates a set

of plans, which are formed by examining different execution orders, possible access methods and various

execution methods. Then it attempts to select the most efficient one according to an estimated “cost” for

each plan. However, those algorithms can not directly be applied to our problem because of the following

challenges:

The first challenge is that an optimizer for our problem needs to enumerate execution plans with all

possible materialized views. The traditional query optimizer can enumerate plans with available indexes,

but it cannot enumerate plans with views. Although some optimization algorithms [4] can search efficient

plans with views, they assume that views are given. Thus they only search plans with the given views. In

our problem, no view is given beforehand. The optimizer needs to search plans with all the materialized

views in additional to plans without views. Given a schema, numerous views can be defined; and even more

plans can be derived with those views for a query. The search space of candidate plans is much larger than

the search space of a traditional optimizer. For example, given a query σKey=kiT2 on T3, V1 : T2 on T3,

V2 : σKey=ki(T2), and V3 : σKey=ki(T2) on T3, are some of possible views. P1 : σKey=ki(V1), P2 : (V2 on T3),

P3 : σKey=kiV2 on T3, P4 : σKey=ki(T2) on V2, and P5 : V3 are some of candidate plans. Obliviously, we can

not enumerate all the materialized views and all the plans with views. Our optimizer needs to find a way to

systematically search only efficient plans with materialized views.

The second challenge is that an optimizer for our problem needs to select the most efficient plan set

under the constraint for a given template, while a traditional optimizer can only select the most efficient

plan for a single query. In our problem, the optimizer needs to define and estimate the efficiency for a set
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plans for a template first; then selects the most efficient set in an efficient way. If the optimizer enumerates

every possible set and selects the most efficient one, it will not be efficient because there are exponential

number of candidates to be examined. For example, given N candidate plans, there are NK candidate sets to

be examined. Thus, our optimizer needs to find a way to efficiently select K plans that answer the template

most efficiently.

Therefore, we need to design a new optimization framework, which can deal with the above two chal-

lenges. Although the traditional optimization algorithms can not solve our problem directly, we can adopt

their framework to our problem. Specifically, our optimization algorithm works in two stages as a tradi-

tional query optimizer. First, it enumerates all the candidate plans with and without views. In this step,

we identify a set of new transformation rules, which can derive efficient plans with views systematically.

Second, It selects the best plan set from candidate plans in a cost estimation based approach. In this step,

we implement an efficient selection strategy, so that the most efficient plan set can be constructed step by

step. We will discuss both modules in detail. Through this section, we use the PTS schema and a query

Q : (σKey=ki(T2)) on T3 as a toy example to illustrate our idea.

3.2 Preliminaries

We develop our query optimization algorithm based on an existing query optimization framework, called

Volcano [10], because new transformation rules can be easily plugged into the Volcano optimization frame-

work. The Volcano uses a compact data structure to represent different candidate plans and uses a set of

transformation rules to enumerate different plans. We briefly descries the compact structure and general

steps of a Volcano based optimizer.

An AND-OR DAG is a compact data structure to represent different plans. An AND-OR DAG is a

directed acyclic graph whose nodes can be divided into AND-nodes and OR-nodes. An AND-node presents

an algebra operation such as join or selection, or an access method. There are two types of AND-nodes: (1)

a logical AND-node, that maps to a relational algebraic operation (e.g., join), and (2) a physical AND-node,

that represents a particular execution method of an algebra operation (e.g., hash join or sorted-merge join)

or an access method (e.g., sequential access). An OR-node is either a table, called table OR-node, or a

parent of a set of logical equivalent AND-nodes, called intermediate OR-node. The intermediate OR-node

represents a sub-goal of a query plan. Each AND-node represents an execution plan for the OR-Node.
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Based on the AND-DAG structure, an Volcano based optimizer works in the following way: First, the

optimizer parses the query into a logical tree, which is an AND-OR DAG form. For example, the initial

DAG for σKey=′a′(T3) on T2, is shown in Figure 3.1(a). OR-nodes are shown as boxes, and AND-nodes are

shown as circles. An empty circle represents a logical AND-node, while a black circle represents a physical

AND-node. AccS means a sequential access method for a table.

Once the initial DAG is constructed, the optimizer applies transformation rules to derive new alternative

nodes for each node in a bottom up fashion. A transformation rule transfers a DAG structure rooted at an

AND-node into an equivalent DGA structure rooted at another AND-node. The new AND-node is a sibling

of the original AND-node under the same OR-node. It represents a new execution plan. For example, the

commutative law for join can be represented as ORNl on ORNr → ORNr on ORNl, where ORN represents

an OR-Node, and the right arrow means creating a new AND-node as an sibling of the original AND-

Node. The physical plan also be generated via transformation rules. For instance, σC(ORN)→ σscan
C (ORN)

specifies that a new physical plan with the scan-based selection can be created based on a logical selection.

Figure 3.1(b) shows a partially expanded DAG structure for the DAG in 3.1(a) with the above rules. It

contains additional plans, such as T2 on σKey=′a′(T3) or T2 on σscan
Key=′a′(T3), for the query.

When the optimizer applies transfer rules to generate a new plan, it checks whether a rule can be applied

to a node or not , and whether the new plan has been generated or not. After applying rules to the DAG, the

expanded DAG structure represents all the different execution plans.

Then, the optimizer estimates costs of each node in a bottom up fashion, and prunes inefficient AND-

nodes in each OR-node. The optimal query plan can be directly selected via recursively choosing the most

efficient plan from its children. The detail of the approach can be found in [10].
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3.3 Generating Plans with Materialized Views

We first discuss the enumeration module, which enumerates all the possible plans without and with views

for a template.

As discussed before, the search space of all the possible plans without and with views is much larger

than the search space of plans without views. To avoid searching such a large space and maintain the

correctness of our solution, our enumeration algorithm only enumerates plans without views and plans with

views that can improve efficiency of those without views. Plans that are less efficient than the plans without

materialized views, or plans that are less efficient than the plans with the same set of views will be directly

pruned from the enumeration space.

Based on the above idea, our optimizer can enumerate candidate plans without and with views in the

following way. First, the optimizer enumerates all the plans without materialized views. Then, for each

derived plan, the optimizer recursively derives all the plans that can improve the plan with additional views.

Since plans without views can be enumerated by a traditional query optimizer, we will focus on enumerating

plans that can improve a plan with different views.

In order to identify different ways of improving a plan with views, we examine factors that affect

efficiency of a plan. They are the execution order of operations in a plan (e.g., σKey=ki(T2) on T3 or

σKey=ki(T2 on T3), execution methods of each operation (e.g., hash join or sorted-merge join), and accessing

methods of each table (e.g., sequential scan or random index scan). A plan can be possibly improved if any

of those factors is changed. Given a plan, its execution order is determined, and can not changed by using

a view. Thus, ways of improving a plan with views are: (1) providing additional execution methods with

views for any operation, (2) providing additional accessing methods with views for any table in the plan.

Considering a simple case, where a plan contains a single operation and a table, a plan can be improved

with views in the following three ways.

1. The first way is using a materialized view to replace the operation. Thus, an additional execution

method for the operation is obtained. The new method materializes the operation directly with a view.

The cost of computing the operation could be saved via accessing the view directly.

2. The second way is using materialized views to access the table randomly instead of scanning the table

sequentially. Cost of scanning a table sequentially could be saved by randomly accessing subsets of
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a table. Specifically, the plan can access a set of materialized views, each of which is a subset of a

table. It can be logically considered as randomly accessing the table with an index.

3. The third way is sequentially accessing a view instead of the original table. The plan can be improved

if the view is smaller than the table and can produce the same results as the original table.

The above three ways then can be generalized as transformation rules to generate improved plans with

views for each plan. With those additional rules, we extend the Volcano based optimizer to enumerate

efficient plans without and with views. Next, we discuss those rules in detail.

3.3.1 Materializing operation with a view

The first way to improve an execution plan with a view is materializing an operation with a view. Material-

izing an operation as a view provides an additional execution method. The new plan can directly access the

view to obtain results of the operation. The cost for computing an operation online is saved by materializing

the operation offline. In this way, the view used in the plan is the view that materializes the operation. We

formalize the above idea as the following transformation rules.

Rule1 : (AccS (Tl))OPa(AccS (Tr))→ AccS (View((T1)OPa(Tr))) (3.1)

Rule2 : OPu(Accs(T ))→ AccS (View(OPu(T ))) (3.2)

where OPa represents an associated operator such as join or intersection; and OPu represents a unary op-

erator such as selection or projection. Tl, Tr, or T represents a table OR-node, which could be a table or a

view. AccS means a sequential access method for a table. View means materializing as a view.

When our optimizer applies these rules, there are two constraints. The first one is that an operation

can not be materialized if any of its children OR-nodes does not contain the AND-node that is accessing a

table. It is because we can not materialize an operation, if any of its operands depends on results from some

online operations. The second constraint is that an intersection operation can not be materialized due to the

constraint CV defined in our problem.

Example 4. Figure 3.1(c) shows the expanded DAG after applying the above rules to the toy example.
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Specifically, the second rule is applied to the selection. A new physical AND-node, which sequentially

accesses View(σA=′a′(T1)), is generated as a sibling of the original selection node. The first rule is applied

to the join. A new AND-node, which sequentially accesses View(σKey=ki(T2) on T3), is generated as a sibling

of the join node. The DAG now contains additional plans with views.

3.3.2 Random accessing with views

The second way to improve a plan with views is to provide a random access method for a table. Traditionally,

indexes are used to enable random accessing a subset of a table with keys. The cost of a plan is saved by

random accessing a subset of a table directly instead of sequential accessing the entire table.

Inspired by the idea of an index, we can use views to function as an index and to enable random accessing

a table. Specifically, any index can be viewed as a structure that maps a key to a subset of tuples associated

with that key. Given a table, a set of tuples associated with a key can be defined as a view containing a

selection operation on the table where a key is the selection condition. Then a set of views, each of which

materializes results for a possible key value, can be conceptually viewed as an index. Given a set of keys,

a plan will sequentially access views associated with each key. It can be conceptually viewed as random

accessing the original table.

To represent the random access method with views, we use σKey(T ) to represent views associated with

key values, and use ΠKey(T ) to denote all the values for the key attribute. Thus, the random accessing

method for a table T with some attributes as the key can be represented as

AccR(AccS (View(Πkey(T )), AccS (View(σKey = ki(T )); (3.3)

AccR presents the random access method. To random access the entire table T , a plan needs to fetch every

possible key value for the table by sequentially accessing View(πkey(T )). For each key value, the plan

accesses tuples associated with it by sequentially accessing View(σKey(T ). Furthermore, there are multiple

choices for keys. Any subset of attributes of a table could be a candidate. For example, either Topic or Doc

can be used as the key to randomly access T3. Thus, there are different random access methods for a table.

Each method uses a different key.

According to the above discussion, with a set of views, additional random methods can be obtained. We
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formalize this idea as the following rule.

Rule3 : AccS (T )→ AccR(AccS (View(Πkeyi⊂att(T )(T ))), AccS (View(σkeyi⊂Att(T )(T )))); (3.4)

where Att(T ) represents attributes of T . The rule creates a set of new And-nodes. Each node represents a

new random access method for the original table T with keyi.

Example 5. Figure 3.1(d) shows the DAG after applying the rule to the toy example. It generates a new

access method for T3, which randomly accesses T3 using Topic as the key. Two views are used. ΠTopic(T3)

is to get each possible value of the key; and ΣTopic(T3) is to get tuples with each key.

In addition, since those views play a role as an index. Our optimizer will further enumerate plans with

indexes based execution methods (e.g., index selection, index join) when those views are available.

For this rule, we emphasize some points here. First, this rule is different from the rule that generates

the index-based execution method. They are different because they generate different plans. For exam-

ple, (σkey=ki(T2) on AccR(AccS (View(ΠTopic(T3))), AccS (View(σTopic(T3)))), which access tuples in the T3

with each topic, is not any index based hash join method. Although this plan seems inefficient at first, the

plan can be further improved with combining other rules. Second, we assume the tuples associated with a

key is sequentially stored in a materialized views, because this will minimize the cost of accessing the data

in a view. This will be equal to the case where index files are clustered. And with this representation, we do

not model how to point the view for a key. This depends on the specific index structure used for storing the

pointers, such as B-tree or hash-index. We will assume the optimal case, where the pointer can be obtained

with a random read. This rule can be easily extended to model different index structures.

3.3.3 Sequential Accessing with Filter Views

Intuitively, some tuples in a table may not satisfy conditions of some operations in a query, those tuples will

not be used to compute the final results. A view filters out those tuples from the table can still generate

correct tuples for the query. For example, a view View(T2 X T3) can replace T2 to compute the query

correctly, since all the tuples that can join with T3 are kept in V . Thus, a plan can be improved if the new

plan accesses this kind of views instead of the original table. Since the view is smaller than the table, the

cost of the plan will be reduced.
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In this way, a view plays a role as a filter for a table. We name it as a filter view. Formally, we can define

a view V is a filer view of a table T for a query Q as a view satisfies V ⊂ T and Res(Q(V |T ) = Res(Q(T ));

where Q(V |T ) denotes a new query, which replaces T in Q with V . Res(Q) denotes the result of Q.

Based on the definition, there are many filter views of a table for a given query. We use T X Res(Q)

to represent all the tuples in T that are kept in the result of Q. Any view V that satisfies V ⊃ T X Res(Q)

and V ⊂ T , is a filter view. For example, views, such as View1(T2 X T3), View2(T2 X σKey=′k′i (T2)) and

View3(T2 X σKey=′k′i |Key=′k′j(T2)), are all filter views for T2.

However, some of candidate filter views are not easy to derive. It requires additional logical inferences

to determine whether a view is a superset of T X Res(Q). For example, determining View3 is a filter view

for T2 requires additional logical inferences. But those views may not be as useful as views that can be

directly derived from operations in the query. View3 is not as useful as V2 since V2 contains less tuples than

V3. In this paper, we use a closed world assumption. Specifically, we only consider filter views that can be

defined by operations in the query. In the previous example, View1, View2 are considered as filter views of

T2. Under this assumption, filter views of a table T are defined as

FilterView(T,Q) = {V |V = T X Res(Q′);∀Q′ ⊂ Q}; (3.5)

where Q′ is a sub query of Q. A filter view V of a table T is a view that contains tuples that at least match

some operations of the given query.

Based on the definition, filter views for a table can be generated accordingly. Specifically, given a query,

the algorithm uses a traditional query optimizer to enumerate different plans of a query. The sub queries

can be directly obtained as subtrees as those plans. Filters views of a table can be derived by semi-joining

the table and each sub query. Duplicate or redundant views are removed in the end. In the toy example, sub

queries of the query are: T2, T3 σKey=′k′i (T2) (T2) on T3, σA=′k′i (T2) on (T3), the corresponding filter views

for T3 after removing duplicates are: Viiew1(T3 X T2), View2(T3 X σKey=′k′i (T2)). If a view contains the

same set of tuples as the table, the view is pruned.

Given a set of filter views for a given table, the original plan can be improved by replacing the table with

one its filter view. Specifically, a set of new plans can be generated with the following rules.

Rule4 : AccS (T )→ AccS (V);∀V ∈ FilterViews(T,Q). (3.6)
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where FilterViews(T,Q) are the set of filter views of T for Q. The rule creates a set of new AND-nodes

as additional sequential accessing methods for the table.

Due to the constraint of our problem, we can not materialize any intersection in a view. A filter view

can not contain an intersection either. However, intersection may help to filter out a lot of tuples. In order

to preserve the filter idea, we add a rule to deal with a filter view containing an intersection operation.

Specifically, the optimizer transfers the filter view into an AND-Node which intersects a set of filter views

without the intersection operation.

Example 6. Figure 3.1(e) shows the DAG after applying the rule. Specifically, the rule is first applied to

AccS (T2) and generates a new access method with a filter view View(T2 X T3). The rule is then applied to

AccS (T3) and generates AccS (View(T3 X σ(T2)).

3.3.4 Summary

With the above transformation rules, we extend the Volcano based optimizer to enumerate improved plans

with views for a plan. The following theorem shows the completeness of those rules in searching improved

plans with materialized views for a plan when the closed world assumption is not used.

Theorem 3.3.1. Given a plan P with a determined execution, if the plan only contains on, Σ, ∩, and π,

the rules are complete in generating improved plans that have the same execution order with materialized

views.

To prove the theorem, we use a tree structure to represent a plan. Based on the tree structure, we prove

this theorem with the structure induction technique. The detail of the proof can be found in 7.1.

The theorem states that the rules are complete in generating improved plans with materialized views for

a plan with the determined execution order. To generate all the efficient plans with views, our optimizer

can generate all the plans that have different execution orders by a traditional query optimizer without

considering views. Then the additional rules are applied to generate all the efficient plans with materialized

views for the template. The detail of implementation of the optimizer is discussed in Appendix 3.5.

We briefly emphasis several points here: (1) Some other additional rules are plugged into the traditional

query optimizer, so that it can fully search the plans with different execution orders. (2) All the rules are

recursively applied to the DAG in order to generate all the candidate plans. A newly generated plan can be
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further improved with views. (3) Some rules may generate the same plan. The duplication can be handled

in two ways. First, we always check whether the plan has been generated or not. Second, several heuristics

can be applied to avoid generating duplicates.

3.4 Selecting Plans with Constraint

After enumerating all the possible plans, the optimizer needs to select the most efficient plan set from them

to answer the template. Although selecting a set of plans is different from selecting a single plan in the

traditional query optimization setting, we can still adopt a cost estimation based approach, which selects the

most efficient candidate according to its estimated efficiency. In this subsection, we discuss how to estimate

the efficiency of a set of plans for the template, and how to efficiently select the most efficient set according

to the estimated efficiency efficiently.

3.4.1 Cost Estimation

We need to first define the efficiency of a set of plans for a template. Intuitively, it can be defined as average

efficiency of a set of plans for all the query instances of the template. Let E(S ,Q) be the efficiency of a

set of plans S for the template Q. E(S ,Q) =
∑

q j∈Q E(S ,q j)

|Q| ; where the template Q represents a set of query

instances; q j is a query instance; and E(S , q j) is the efficiency of using S to answer q j. Intuitively, when a

set of plans is used to answer a query, the most efficient plan from the set is selected. Therefore, E(S ,Q) is

defined as the following equation.

E(S ,Q) =

∑
q j∈Q(maxpi∈S e(pi, q j))

|Q| ; (3.7)

where pi is a plan in S ; and e(pi, q j) is the efficiency of using pi to answer q j. e(pi, q j) can be measured

as the reduced estimated cost, if pi is selected to answer q j instead of a baseline method (e.g., the inverted

index based execution method described in Section 1). Specifically, e(pi, q j) = ec(base, q j) − ec(pi, q j).

ec(pi, q j) is the cost of using pi to answer q j. It can be estimated by a cost model used in a traditional

optimization approach.

According to the above definition, the efficiency of a set of plans for a template is measured based on all

the query instances of the template. However, it is impractical to enumerate all the queries for a template,
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because a template may represent millions of queries. In order to measure E(S ,Q) efficiently, we use a

sampling idea to estimate E(S ,Q) based on a set of query samples. The estimated efficiency of a set of plans

S for a template Q is defined as:

Ẽ(S ,Q) =

∑
q j∈Q̃⊂Q(maxpi∈S e(pi, q j))

|Q̃|
; (3.8)

where Q̃ is a set of samples of query instances represented by a template Q. It can easily be obtained from

query logs of a system.

We also need to estimate space costs of a plan, denoted as Cost(pi). Specifically, it can be measured as

the total space that are taken by views used in a plan Pi. The size of a parameterized view is the sum of the

space of each view instance of the parameterized view.

S ize(View(A1 = X1, ..., Ai = Xi) = Σx1,...,xn∈D(A1,...,Ai)S ize(View(A1 = x1, ..., An = xn)); (3.9)

where S ize(View(A1 = x1, ..., An = xn)) is the size of a view, which materializes a SQL query. The size of

the result of a SQL query can be estimated by an traditional cost model or be computed by an execution

engine.

3.4.2 Greedy Plan Selection

According to estimated efficiency and space costs of a set of plans, the optimizer outputs the most efficient

plan set under the cost constraint. It can be defined as the following optimization problem.

Definition 5. Best Plan Set Selection Problem is to select a subset of plans S from a set of candidate plans

P for the template Q such that the efficiency of S is maximized subject to constraints that S contains at most

K plans and each plan’s space cost Cost(pi) is less than a budget space B. Specifically,

maximize E(S ,Q);

sub ject to |S | ≤ K, ∀S ⊂ P

Cost(pi) ≤ B, ∀pi ∈ S

In the above problem, the second constraint is easy to satisfy. The optimizer can easily prune all the plans
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whose costs are larger than B first. The first constraint makes the problem be a combinatorial optimization

problem, which can not be efficiently solved. The following theorem suggests the problem is a NP-hard

problem.

Theorem 3.4.1. Best Plan Set Selection Problem is a NP-hard problem.

We can prove it by reducing the K set cover problem to our problem. Detail of the proof is in Appendix

7.2.

According the above theorem, there is no polynomial algorithm that can find the optimal solution for the

problem. An exponential algorithm for finding the optimal solution works as follows. First, it prunes plans

that are larger than the budget B from all the candidate plans. Then, it enumerates all the subsets that contain

at most K plans; and evaluates their efficiency. Finally, it outputs the most efficient set. The complexity of

the algorithm is O(NK), where N is number of candidate plans. Since there are many candidate plans, the

algorithm is inefficient.

In order to find the best plan set efficiently, we use a greedy selection strategy shown in Algorithm 3.4.2

in our selection module. The greedy algorithm starts with an empty plan set S 0 = ∅, and iteratively adds the

plan pi, which maximizes the marginal efficiency, defined as E(S k1 ∪{pk},Q)−E(S k1 ,Q) at the ith step, and

stops once the constraint does not be satisfied or the efficiency function can not be improved. The running

time of Algorithm 3.4.2 is O(K|P|), where |P| is the number of candidate plans. It is much more efficient

than the previous exponential algorithm.

Algorithm 1 Greedy Selection Strategy
Input: A Set of Execution Plan P, ∀pi ∈ P, cost(pi) < B
Output: A Set of Execution Plans S
S = ∅
for i = 1; i <= k; k + + do

pk = maxpk∈P−S k−1 E(S k1 ∪ {pk},Q) − E(S k1 ,Q)
if maxpk∈P−S k−1 E(S k1 ∪ {pk},Q) − E(S k1 ,Q) == 0 then

break;
S = S + Pk

return S

Intuitively the selected plans based on the above strategy will perform well because the optimizer always

selects the most efficient plan at each step. We can actually prove that this greedy strategy achieves a

guaranteed approximation rate, (1 − 1/e) for the optimal solution.

In order to prove that the greedy strategy solves our problem with a guaranteed approximation rate.
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We model our problem as maximizing a submodular function under a cardinality constraint. In literature,

the maximization of a monotone submodular function under a cardinality constraint problem can be solved

near-optimally in polynomial time [15].

In order to prove that the best plan selection problem is a instance of the maximization of a mono-

tone submodular function under a cardinality constraint problem, we have to prove that the target func-

tion E(S ,Q) in our problem satisfies the following properties. Firstly, the target function E for a empty

set of plans is zero. Specifically, E(∅,Q) = 0. Since the set is empty and no plan can be used to im-

prove the baseline method, the statement is true. Secondly, E is a nondecreasing function. Specifically,

E(S 1,Q) ≤ E(S 2,Q) for all S 1 ⊂ S 2 ⊂ P. Since adding a new plan to a set of plans only increases the

efficiency of the set, the statement is also true. Thirdly, and most importantly, E is a submodular function.

This can be proved by the following theorem.

Theorem 3.4.2. For all subset plans S 1 ⊂ S 2 ⊂ P and plan p ∈ P S 2, it holds that E(S 1 ∪ {p},Q) −

E(S 1,Q) ≥ E(S 2 ∪ {p},Q) − E(S 2,Q), A set function E with this property is called submodular.

Intuitively, if a plan is added to a small set of plans S 1, the efficiency is improved at least as much as if

it is added to a larger set, where S 2 ⊃ S 1. Detail of the proof is in Appendix 7.3.

Based on the above discussion, we prove that our problem is an instance of the maximization of a

monotone submodular function under a cardinality constraint problem. Theorem 3.4.3 presented in [15]

shows that the greedy strategy can find a solution which achieves at least a constant fraction (1− 1/e) of the

optimal efficiency.

Theorem 3.4.3. If F is a submodular, nondecreasing set function and F(∅) = 0, then the greedy algorithm

finds a set S
′
, such that F(S ′) ≤ (1 − 1/e)max|S |=K F(S ).

In summary, our selection module works as follows: It first prunes candidate plans according to their

space costs. Then, it evaluates efficiency of remained plans over a sample of queries and selects K plans

step by step. Additional pruning heuristics can be used to prune candidate plans to be estimated. The detail

of pruning heuristics can be found in Section
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Figure 3.2: Architecture of our optimizer

3.5 Implementation Detail

In this section, we discuss the implementation detail of our query optimizer. The optimizer is based on

Volcano query optimization framework. Figure 3.2 shows its overall architecture. It contains a parser, an

enumeration module, and a selection module. Given a template, the parser parses it into a DAG structure.

Given the DAG structure, the enumeration module systematically enumerates new plans by applying trans-

formation rules to expand the DAG. The enumeration module contains a set of transformation rules and an

enumeration algorithm, which controls how rules are applied. The output of the enumeration module is an

expanded DAG, which contains all the plans with and without views. Given the expanded DAG, the selec-

tion module selects the most efficient plan set for the template. Specifically, the selection module contains a

selection strategy, which determines how plans can be selected efficiently, and a cost model, which estimates

efficiency of a candidate plan set based on statistics. Next, we discuss the detail of the enumeration module

and the selection module.

3.5.1 Enumeration Algorithm

Algorithm 3.5.1 shows the enumeration algorithm. The input of the algorithm is the root node of a DAG, and

a set of transformation rules. The output is the root node of the expanded DAG. The algorithm enumerates

plans by applying rules to nodes in a recursive way. It first checks the base case (line 1-4). Next, it initializes

a queue ToExapnd, which stores nodes that haven’t been transformed, and a set Created, which stores all

the created plans (line 5-6). Given a node, the algorithm first enumerates plans for its child (line 9-10). Then

it applies rules to the node to derive alternative nodes (line 11-13). When an alternative node is created, the

algorithm checks created to avoid duplication(line 14). Since additional new plans can be generated based

on the new node, the new node is added into Created and ToExpand. Transformation rules will be applied

24



to it in later iterations to generate new nodes.

Algorithm 2 Enumeration Algorithm
Enumerate(root, Rules)

1: if root.expanded = true then
2: return root
3: if root is a table-OR-Node then
4: return root
5: Initialize a queue ToExpand with root.children
6: Initialize a set Created with root.children
7: while ToExpand is not empty do
8: AND-NODE node = ToExpand.pop();
9: for OR-NODE child in node do

10: Enumerate(child)
11: for Rule rule in Rules do
12: if rule can be applied to node then
13: newNode = rule.apply(node)
14: if newNode not in created then
15: Created.add(newNode)
16: ToExpand.add(newNode);
17: root.children = created;
18: root.expanded = true
19: return root

3.5.2 Additional Transformation Rules

Our enumeration module is based on a set of transformation rules. The rule set contains rules that enumerate

plans with views, and rules that enumerate plans with different execution orders and execution methods. The

first set of rules are discussed in Section 3.3. We briefly describe the second set of rules.

A standard query optimizer can enumerate plans with different execution orders; but plans with different

execution orders are partially enumerated due to the limits of online optimizing time. For instance, join

orders are partially enumerated; and execution orders of other operations are determined with heuristics

(e.g., an optimizer always push down a selection operation). Since some efficient plans may be based on

the execution orders that are not enumerated, we add additional rules to a Volcano optimizer. Specifically,

associative and commutative rules (e.g., T1 on T2 → T2 on T1, T1 on T2 on T3 → T1 on (T2 on T3)) are added

to enumerate plans with all the join orders. Other additional rules, such as (OPu(Tl)) on Tr → OPu(Tl on Tr),

(on OPu(Tr)) → OPu(Tl on Tr), and OP′u(OPu(T1)) → OPu(OP′u(T1)) are added to enumerate orders of

other operations. Note that there are an undetermined number of intersections in a template, the optimizer

views the intersections as a single intersection group. It does not enumerate the order of intersections in

the group. As we will discuss later, the sort-merge intersection method is always used. Thus, the order of
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intersections in the group does not affect the efficiency.

A standard query optimizer can also enumerate execution methods for each operation in a plan. When

enumerating execution methods, the optimizer considers whether indexes are available or not and whether

tuples are ordered or not to prune inefficient methods. Our optimizer also use those heuristics. In addition,

in our setting the optimizer can assume that some desired properties exist in tables or views, since tables

and views can be stored as the optimizer wants. Specifically, we assume: 1. Tuples of a table or a view are

sequentially stored on a disk. 2. Tuples are ordered according a global order. With those properties, the

optimizer can select the most efficient method for an operation. For intersection, the sort-merge algorithm,

which is also used in document search systems, is selected. For selection, the index-based selection is

selected if a corresponding index is available. For projection, the scan method is used. For join, sort-merge

join or index-join performs best in different cases, so both of them are enumerated.

3.5.3 Additional Selection Rules

Although the greedy algorithm is efficient, it still needs to evaluate the efficiency of all the candidate plans

in each step. We propose several heuristic rules to prune the candidate plans to be evaluated.

First, the space constraint can be applied to prune candidates plans. Specifically, if views used in a

subplan of the DAG structure are larger than the space budget B, then all the plans based on this subplan are

pruned directly.

Second, a traditional query optimization task, the best plan is directly constructed by via selecting the

most efficient plan of its children nodes recursively. Those plans that are based on inefficient sub-plans

would be pruned directly. Similarly, when the optimizer selects the most efficient plan, it can select the most

effluent subplan from its children.

Third, among candidate plans, a plan may be more efficient than another plan for all the queries, while

it requires more spaces than the other. When the efficient one satisfies the space constraint, the inefficient

one can be directly pruned.
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Chapter 4

Experiment

4.1 Experiment Setting

To evaluate our proposed approach, we apply our approach to two different CTS systems. One is the

EntitySearch task, and the other is TopicSearch task. The input and output of both systems are described in

Section 1. Specifically, for a search system, we first apply our approach to derive an execution algorithm

and indexes. Then, we built a prototype system based the execution algorithm and indexes. Finally, we

evaluate the performance of the execution algorithm and compare with other baseline methods.

For each search task, we use our optimization framework to derive plans and views in three different

settings. In the first setting, the optimizer outputs only one plan without any space constraint. We use

Plan@1 to denote it. In the second setting, the optimizer outputs 3 plans without any space space constraint.

We use Plan@3 to denote this setting. In the third setting, the optimizer outputs 3 plans with a space

constraint. We use Plan@S to denote this setting. Here, we set the space constraint as the size views used

in a plan should be less than 4 times of the size of original data. In each setting, the final online execution

algorithm always selects the most efficient plan from the derived plans to answer a query.

For each search task, we also compare the performance of the derived algorithm with a baseline method.

The baseline algorithm is based on an inverted index, which maps a keyword to a list of documents asso-

ciated with the keyword, and an forwarding index, which maps a document to a list of topics or entity

instances in the document. The detail of the baseline algorithms for both search tasks can be found in 4.2

For the entity search system, we also implement the algorithm used in [7] as another baseline method.

Since we focus on search efficiency, we evaluate the performance as average query response time.
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4.2 Baseline Algorithms

Algorithm 3 shows the baseline algorithm for the EntitySearch task. The algorithm is based on an inverted

index, which maps a keyword to a list of documents associated with the keyword, and an forwarding index,

which maps a document to a list of entity instances in the document. Specifically, From step 1 to 3, the

algorithm first retrieves a list of relevant documents. DL, by intersecting inverted lists of each keyword.

From step 4 and 5, the algorithm retrieve entities from each relevant document based on the forwarding

index. From step 6 to 7, the algorithm determines whether a retrieved entity is the given type.

Algorithm 3 Baseline Algorithm for EntitySearch
Input: Query K = {k1, ki, }, Type #Type
Output: S core(EJ) for all entities E j

1: for ki in K do
2: fetch the hit list Hki for ki

3: List DL = Hk1 ∩ Hk2 , ... ∩ Hki

4: for di in DL do
5: fetch dE = {E1, ...En} from di with a forward index.
6: for E j in dE

i do
7: if E j is #Type then
8: Update S core(E j)

Algorithm 4 shows the baseline algorithm for the TopicSearch task. The baseline algorithm is similar to

Algorithm 3. It is also based on an inverted index and a forward index.

Algorithm 4 Baseline Algorithm for TopicSearch
Input: Query K = {k1, ki, }, Time Period p
Output: T j} for all topics T j

1: for ki in K do
2: fetch the hit list Hki for ki

3: List DL = Hk1 ∩ Hk2 , ... ∩ Hki

4: for di in DL do
5: if di ∈ p then
6: fetch dT = {T m, ...T n} from di with a forward index.
7: for T j in dT

i do
8: Update Score(T j)

4.3 Entity Search System Result

We build a prototype EntitySearch system on two different data sets. Specifically, a small data set, denoted

as S et1, contains 10000 web pages, and a large data set, containing 100000 web pages, denoted as S et2. In
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both data sets, we annotate entity types and entity instances from web pages in a dictionary based approach.

The dictionary contains 42 entity types, such as “computer software” and “computer scientist”, and 32900

different entity instances in computer related domains. We random select 1000 queries, such as “database,

#computer scientist”, or “search, #computer software”, as testing queries to evaluate the performance of an

algorithm.

4.3.1 Generated Plans

For each setting, we first use our optimizer to derive plans. Then, we implement an execution algorithm and

its indexes based the derived plans.

Figure 4.2 shows the plans derived by our optimization framework for three settings. Specifically, Plan

A is derived for the setting Plan@1. Plan A, B, and C are derived for the setting Plan@3. Plan D and E are

derived for the setting Plan@S . We note that the optimizer outputs only two plans for Plan@S even the K

is 3. It is because there is no other plan that is more efficient than those two plans for any query. Next, we

describe those plans and views in each plan.

Plan A computes a query in 4 steps. First, it scans a view, View(πDID(σKey=ki,type=ti(T1 on T2 on T3))

(denoted as V1), to get a list of DIDs that are associated with a keyword ki and contains entities of type ti.

Second, it computes a list of DIDs that contain all the keywords and entities of the given type by intersecting

DID lists of different keywords. Third, it scans a view, View(πDID,Entity(σKey=ki,Type=ti(T1 on T3 on T4))

(denoted as V2), to get a list of DID and Entity pairs associated with a keyword ki and the type ti. Forth, the

plan uses the sort-merge join to join the DID list from the second step and the DID and Entity pair list from

the third step to get the result.

Plan A uses two parameterized views. Specifically, V1 represents a set of views, each of which materi-

alizes DIDs that are associated with a keyword, ki, and contain entities for a type ti. We can implement V1

as a typed inverted index, where it uses a keyword ki and a type ti as the key to retrieve a list of associated

documents. V2 represents a set of views, each of which materializes DID and Entity pairs for a keyword

ki and a type ti. We can implement V2 as a contextualized inverted index. The index uses a keyword ki

and a type ti as the key. An inverted list of a key is a contextualized list, which contains a list of DIDs and

contextual information of each DID, specifically, Entities of the given type in each DID. This index can be

viewed as a generalization of the neighborhood index in [2], where the inverted list contains a list of DIDs
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and neighbor words of the given keyword in each DID.

Plan B computes a query in 2 steps. First, it scans V2 to get a list of DID and Entity pairs of a keyword

ki and the type ti for different keywords. It is similar to the third step in Plan A. However, Plan B access a

set of views for different keywords. Second, it intersects the DID and Entity pair lists of different keyword

and type pairs to compute the result. Plan B only uses V2 to compute the query. Its implementation has been

discussed in the previous paragraph.

Plan C computes a query in 3 steps. The first two steps are the same with those in Plan A. It computes a

list of DIDs that contain all the keywords and entities of the given type. In the third step, Plan C computes

the join operation with an index based join method. Specifically, for each document in the DID list, it

accesses a view View(πDID,Entity(σDID=di,Type=ti(T3 on T4)) (denoted as V3) to get entities that are in the

document di and belong to the type ti.

Plan C uses two parameterized views. One is V1, which is discussed in Plan A. The other is V3. It

represents a set of views, each of which records entities that belong to a type ti and are in a document di.

We can implement it as a typed forward index. It uses ti and di as a key. For each key, it records entities that

belong to ti and are in di.

Plan D compute a query in four steps. First, for each keyword ki, it scans a view, View(πDID(σKey=ki(T1)

(denoted as V4), to get a list of DIDs associated with ki. Second, it intersects DID lists for different key-

words to get a list of DIDs associated with all the query keywords. Third, it scans a view, View(πDID,Entity

(σType=ti(T3 on T4) (denoted as V5), to get a list of DID and Entity pairs of a type ti. Fourth, it uses the

sort-merge join method to join the DID list from the second step and the DID and Entity pair list from in

the third step to get the result.

Plan D uses two parameterized view. Specifically, V4 represents a set of views, each of which mate-

rializes DIDs associated with a keyword ki. We can view V5 as a traditional inverted index, which uses a

keyword ki as a key to retrieve a list of DIDs associated with the keyword. V5 represents a set of views, each

of which materializes DID and Entity pairs for a type ti. It can be viewed as the entity index discussed in

[6]. Specifically, the key of the index is a type ti. The list associated with a key contains a list of DID and

Entity pairs.

Plan E is similar to Plan C. The only difference is that Plan E scans V4 instead of V1 to retrieve a list of

DIDs with a keyword ki.
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Table 4.1: Derived Plans for Entity Search

From the derived plans, we can see that our query optimization approach is able to derive efficient plans

with views for efficiently computing the template. It can enumerate and output plans and indexes that are

manually optimized for a system, such as entity index, or neighborhood index, in a principled way.

4.3.2 Efficiency of Derived Plans

Table 4.2: Average Query Performance
Baseline Entity Plan@S Plan@1 Plan@3

Set1 6928 5424 713 640 171
Set2 34663 15273 3132 2870 770

We evaluate the performance of each algorithm over testing queries. Table 4.2 shows the average query

response time in term of millisecond over testing queries. From the results, we find that all the three

algorithms can significantly improve the baseline algorithm. The algorithm Plan@3 is the most efficient. It

is significantly better than Plan@1. It justify our assumption that a single plan can not answer every query
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the most efficiently. From the results for different data sets, we find that although all the algorithms take a

longer time to answer queries, Plan@3 can still answer queries within a reasonable time period.

Table 4.1 shows the space used by views used in each plan for S et2. The baseline method, which uses

only an inverted index and a forward index, costs least space. Plan@1 and Plan@3, which improve the

performance based on different views, cost around 20 30 times of the original space. It is an affordable cost

considering that the gain of efficiency is large. Plan@S generated by the optimizer with a space constraint,

costs a small amount of additional space, while it still improves the performance. It shows that our optimizer

can output efficient plans with different constraints, which control the tradeoff between space and efficiency.

Figure 4.1: Space Usage
Baseline Entity Plan@S Plan@1 Plan@3
1.58GB 1.68GB 2.26GB 26.8GB 42.6 GB

4.4 Popular Topic Search System Results

We build a prototype TopicSearch system on a collection of twitter status. Specifically, the collection con-

tains 16175673 tweets in 30 days. We use a dictionary based approach to annotate topics from tweets.

Specifically, we use Wikipedia titles as our dictionary. It contains 6139418 titles and we identifies 93212

different topics in our collection. We random select 1000 queries including trending topics in Twitter (e.g.,

“Jennifer Lope”) and Fortune 100 company names (e.g., WalMart) as testing queries to evaluate the per-

formance of an algorithm. For this scenario, we do not list plans we generated due to the space limitation.

We give the performance of each algorithm over testing queries in Figure ??. From the results, we find that

similar results as in EntitySearch scenario, all the three algorithms can improve the baseline algorithm. The

algorithm Plan@3 is the most efficient.
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Figure 4.2: Average Query Performance
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Experiments show that: (1) The derived algorithm and indexes significantly improve the efficiency the

keyword-based baseline. (2) Our framework can automatically derive plans and indexes that are manually

optimized for a system. (3) Our approach is capable to derive plans for different search systems.
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Chapter 5

Related Work

We are now witnessing an emerging research trend on searching fine granularity units, such as entities,

objects or topics from text data. Many systems have been proposed and studied [6, 2, 7, 16, 3, 17] for this

kind of search tasks. Some of those works [7, 16, 3] almost exclusively focus on effectiveness of retrieve

models. However, we focus on the efficiency aspect and improve the efficiency of those systems with a new

execution algorithm with additional indexes.

Some new index structures have already been proposed and studied for those search systems [6, 2, 9].

For example, Cheng [6] builds an entity index for searching entities; and Cafarella [2] builds a neighborhood

index for searching linguistic phrases. Those indexes are selected according to some heuristics and are task-

dependent. In this paper, we propose a framework to automatically derive indexes and execution algorithms

for those systems in a principled approach. By viewing those indexes as views, our framework will consider

those proposed indexes when it enumerates different kinds of views that can be used.

Besides indexes, there are also existing other optimization techniques, such as caching [13] and sampling

based intersection [17], to improve the efficiency of a search system. Such techniques are orthogonal to

our problem and can be directly applied to a system, which is based on indexes and plans derived by our

framework.

Our solution is most related with the works on query optimization in the database area. Our approach

adopts a cost estimation based approach used in the traditional query optimization to select plans and views.

However, a classical query optimizer only searches plans without materialized views [19, 10] for a single

query. There are research works [4, 12, 14, 11, 8], which study the problem of using materialized views

to optimizing queries. However, their solution solve the problem in a setting different from ours. Works in

[4, 12] focus on exploring how views can be used in answering a query; and they assume a set of materialized

views are given. In our problem views are not given; and our optimizer needs to enumerate all the possible

views in order to find an optimal solution. Works in [11, 8] focus on solving the view selection problem,
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which efficiently selects a subset of views that minimizes a cost function under constraints from a set of

views. The solution explicitly assume views are given and they do not explore how a view can be used by a

plan.

Our problem can also be viewed as an index configuration problem for a database. In the DB setting,

some systems [1, 5, 18] have been proposed to solve this problem. The proposed systems enumerate different

configurations with indexes or views for a workload and select the most efficient one. Their focuses are

generating a small set of candidate indexes for optimizing the workload. Since the workload contains

different kinds of queries, they do not fully explore all the useful views for each query. The most efficient

configuration may not be enumerated. Our work innovates upon these works in a rather different setting: a

complex text search system, where all the queries can be represented by a single template. With the concept

of the template, our optimizer can extensively enumerate all the possible indexes(views) as well as plans for

the template, and output a set of plans for the template.
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Chapter 6

Conclusion

In this paper, we presented the dual-optimization framework, which optimizes execution plans and indexes

at the same time for a search system. Extensive experiments show our optimization framework is able to

derive efficient plans with indexes for different CTS systems.
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Chapter 7

Additional Proof

7.1 Proof of Theorem 3.3.1

Before we prove the theorem, we first describe our assumptions and notations about a plan. We use the a tree

structure to represent a plan, where leaves represent physical tables or views and internal nodes represents

relation operators, denoted as op, or access operators, denoted as Acc. There are two access operators, which

are the sequential access method and the random access method. The sequential access method, denoted

as AccS (T ), sequential accesses the table T to fetch tuples of T into memory. The random access method,

denoted as AccR(Accl, Accr), takes two access operands as inputs. The left operand Accl fetches a set tuples

used as keys, and the right operand Accr fetch tuples associated with each key. The execution order of a

plan is determined by the tree structure.

To prove the theorem, we first prove the following lemma, which shows that our rules can generate plans

with different access methods for a table T used in a plan P to compute a query Q.

Lemma 1. Let P be an execution plan for a query Q, and uses the sequential access method AccS (T ) to

access a table T . Rule 3 and Rule 4 are complete in generating different efficient accessing methods for T

with materialized views.

Proof. Let Access∗(T ) denote all the access methods to access T by a plan, and Access(AccS (T )) denote

all the access methods generated by our rules based on Accs(T ) used in the plan. We prove Access∗(T ) =

Access(AccS (T )) by induction on the number of attributes in a table. Let T be any arbitrary table used in a

plan and has N attributes. We assume that Access∗(T ′) = Access(AccS (T ′)) is true for T ′ has less than N

attributes.

Base case: In the basic case T only contains one attribute. Access∗(T ) contains the following methods:

1. AccS (T ): Obviously, AccS (T ) ∈ Access(AccS (T )).
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2. AccS (T ′): Since T ′! = T and T ′ can replace T to answer Q correctly, T ′ ⊂ T or T ⊂ T ′. If T ⊂ T ′, T ′

is larger than T , Acc(T ′) should be pruned from Access∗(T ). Since T ′ ⊂ T , T ′ ∈ FilterView(T,Q).

Rule 4 will generate AccS (T ′) based on AccS (T ). Thus, AccS (T ′) ∈ Access(AccS (T )).

There is no random access methods for T . If the only attribute is used as the key in the random access

method, the method will load all the tuples into the memory when it accesses all the possible keys. It doesn’t

need to access tuples with associated with each key. In this case it is equal to AccS (T ). If no attribute is

used as key, it is also equal to AccS (T ). There is no random access method for a view V . Because V can

correctly answer the query, V must have only one attribute as T . Similarly, we can prove there is no random

access method for V .

In summary, for the base case, Access∗(T ) = Accsee(AccS (T )).

Induction: In the general case, T contains N attributes. Access∗(T ) contains methods in the following

forms:

1. AccS (T ): Obviously, AccS (T ) ∈ Access(T ).

2. AccS (T ′): Similar to the second method in the base case, we can prove AccS (T ′) ∈ Access(AccS (T )).

3. AccR(Accl, Accr): Let V denote the tuples fetched by the random access method AccR. V must be

T or a filter view of T . If V = T , AccR must use some attributes, denoted as Key, of T as keys to

access tuples in T . To fetch all the possible keys, Accl must be in Access∗(ViewKey
l ), where ViewKey

l =

πKey(T ). To fetch tuples with keys, Accr must be in Accr ∈ Access∗(ViewKeyr), where ViewKey
r =

πAtt(T )−KeyσKey=K(T ). According to Rule 3, AccR(AccS (ViewKey
l ), AccS (ViewKey

r )); ∀Key ⊂ Att(T )

are in Access(T ). Since both AccS (ViewKey
l ) and AccS (ViewKey

r ) have less than N attributes; by induc-

tion hypothesis, Access∗(ViewKey
l ) = Access(AccS (ViewKey

l )) and Access∗(ViewKey
r ) = Access(AccS

(ViewKey
r (K))). Thus, Accl ∈ access(AccS (ViewKey

l )), Accr ∈ Access(AccS (ViewKey
r (K))), and

AccR(Accl, Accr) ∈ Access(AccS (T )).

If V ∈ FilterView(T,Q), as discussed in the second form of this case, AccS (V) ∈ Access(AccS (T )).

Similar to the case V = T , we can prove any random access method for V will be derived.

In summary, for a general case, Access∗(T ) = Access(AccS (T )). �

Now we prove the theorem.
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Proof. Let J be an execution plan for Q, and P be an arbitrary subtree of J. We use S ∗(P) to denote all the

improved plans that are based on views and have the same execution order with P; and use S (P) to denote

all the plans generated by our rules. We prove that for any P our rules are complete. Since P is any subtree

of J, if theorem holds for P, it also holds for J.

Since a plan is a tree structure, we prove the theorem using the structure induction technique. Assume

that for any proper subtree Ps of P, S (Ps) = S ∗(Ps). There are several cases to consider.

Base case: P accesses a table node Acc(S )(T ). We prove S (P) = S ∗(P) by contradiction. Let P′ be a

counter example, where P′ ∈ S ∗(P) and P′ < S (P). P′ is a plan, it must be one of the following forms:

• P′ uses a different access operator to access the table. According to the lemma, all the efficient access

methods are generated by our rules. Thus P′ ∈ S .

• P′ = OP′(T ′). P′ uses an addition relational operator. It has a different execution order with P. Since

S (P) only contains efficient plans that have the same execution order with P. Thus, P′ < S ∗(P).

In summary, for the base case, S (P) = S ∗(P).

General Case 1: In a general case, P could be in a form of op(Ps), where op is a unary operator, and Ps

is a subtree structure. Let S ∗(Ps) be the set of all the efficient plans based on the execution order of Ps.

The inductive hypothesis implies that S (Ps) = S ∗(Ps). According to our rules, S (P) = {op(psi)|∀psi ∈

S (Ps)} ∪ S (AccS (View(op(Ps)))). {op(psi)|∀psi ∈ S (Ps)} is constructed via directly using op and any sub

plan of S (Ps). S (AccS (View(opu(Ps)))) is constructed by with Rule 1, 3 and 4. Specifically, Rule 1 derives a

new plan P′′ = AccS (View(opu(Ps)), Rule 4 and 5 derives S (P′′). We prove S (P) = S ∗(P) by contradiction.

Let P′ be the counter example, P′ < S (P) and P′ ∈ S ∗ (P). P′ must be in one of the fellow forms:

• P′ = OP′(p′s): OP′ is different from OP and p′s is a tree structure. Because OP′ is different from OP,

P′ has a different execution order with P. According to the definition of S ∗(P), P′ < S ∗(P).

• P′ = AccS (P′s). It uses a sequential access method Acc to access a table. Let V ′ be a view storing

all the tuples returned by the access method. AccS (V ′) can also correctly answer the query, so V ′ is a

filter view of View(op(Ps)). Since AccS (View(op(Ps))) ∈ S (P), AccS (V ′) ∈ S (P) according to Rule

4. Since AccS (V ′) ∈ S (P), based on the lemma, Thus P′ ∈ S (P)).
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• P′ = AccR(Psl, Psr). As the previous case, we can prove P′ ∈ S (P)).

General Case 2:P is a plan with a K-nary operation node op operating on a set of subtrees. We can use the

similar inferences in case 1 to prove our rules are complete for this case.

In all three cases, S (P) = S ∗(P). We conclude that our rules are complete. �

7.2 Proof of Theorem 3.4.1

Proof. To prove that the problem is a NP-hard problem, we reduce the K set cover problem to it.

Since the original problem is maximization problem, we covert it to an equivalent deterministic problem.

The deterministic problem is whether there is a set of plans, S , which contains less K than plans and E(S ,Q)

is larger than or equal to a predefined value C.

Given a set cover problem, which has a ground elements U = {u1, u2, ..., un} and subsets S 1, S 2, ..., S k ⊂

U, we map each element u j to a query q j, and each subset S i to a plan pi. If the element u j is contained in

S i, then e(pi, q j) = 1; otherwise e(pi, q j) = 0. The original set cover problem can be reduced as whether

there exists a best plan set such that |S | is less than K and efficiency is equal to |U |.

If the original set cover problem has a cover of K sets, then there is a best plan set S that satisfies the

constraint and E(S ,Q) is equal to |U |. To obtain the solution, we select K plans corresponding to K sets.

Since every element is covered by at least one set, each query can be answered by at least one of selected

plans. E(S ,Q) =
∑

q j∈Q 1 = |Q| = |U |.

If there is a best set S that satisfies the constraint and E(S ,Q) is equal to |U |, then there is a cover of K

sets. We can construct the solution by selecting K sets corresponding to plans in the best set. Since E(S ,Q)

is equal to |U |, which means every query can be answered by one plan in the set. Then every element will

be covered by the set corresponding the plan. The K sets are a cover.

�

7.3 Proof of Theorem 3.4.2

Proof. Let E(S , qi) = maxp j∈S e(p j, qi) be the efficiency on a certain query qi. From Eq. (3.8) we have

E(S ,Q) =
∑

qi∈Q Ei(S ,qi)
|Q| . When a plan p is added into the plan set S 1, the efficiency for some queries increase

while other queries are not affected. We denote the subscript set for these two kinds of queries as U1 and
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V1, i.e., U1 = {qu|E(S 1 ∪ {p}, qu) > E(S 1, qu)},V1 = {qv|Ev(S 1 ∪ {p}, qv) = Ev(S 1, qv)}. We do the same

for S 2, and use U2,V2 as the subscript sets. Then we have E(S 1 ∪ {p},Q) − E(S 1,Q) =
∑

i∈U1 (e(p,qi)−E(S 1,qi))
|Q|

and E(S 2 ∪ {p},Q) − E(S 2,Q) =
∑

i∈U2 (e(p,qi)−Ei(S 2,qi))
|Q| . Since S 1 ⊂ S 2, it is not hard to see by definition that

U1 ⊃ U2 and E(S 1, qi) ≤ E(S 2, qi). Thus we have

E(S 1 ∪ {p},Q) − E(S 1,Q) =
∑

i∈U1(e(p, qi) − E(S 1, qi))
|Q|

≥
∑

i∈U2(e(p, qi) − E(S 1, qi))
|Q|

≥
∑

i∈U2(e(p, qi) − E(S 2, qi))
|Q|

= E(S 2 ∪ {p},Q) − E(S 2,Q)

�
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