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A theory of stationary particle size distributions in coagulating systems with particle injection at

small sizes is constructed.  The size distributions have the form of power laws.  Under rather

general assumptions, the exponent in the power law is shown to depend only on the degree of

homogeneity of the coagulation kernel.  The results obtained depend on detailed and quite sensitive

estimates of various integral quantities governing the overall kinetics.  The theory provides a

unifying framework for a number of isolated results reported previously in the literature.  In

particular, it provides a more rigorous foundation for the scaling arguments of Hunt, which were

based purely on dimensional analysis.

1. INTRODUCTION
Aggregation phenomena are generally modeled using the kinetic equation first formulated by

Smoluchowski in 1916 [1-2]:

 dcm
dt  = 1

2

  
Σ
n = 1

m – 1

Km – n,n cm – n cn – cm

  
Σ
n = 1

∞
Km,n cn. (1)

Equation (1) has been used to model aggregating colloidal particles, coagulating drops in clouds,
reacting polymers, growing gas bubbles in solids and liquids, fuel mixtures in engines, and star
formation.  For our purposes it will generally be more convenient to work with the continuous
version of (1), due to Müller [3]:

  ∂c t,v
∂t

= 1
2

K v – u,u c t,v – u c t,u du
0

v
 – 

  
c t,v K v,u c t,u du

0

∞
. (2)

We shall refer to either (1) or (2) as the Smoluchowski equation  (henceforth abbreviated SCE).
The equation is intended to describe an ensemble of particles, uniformly distributed in space,

that remain uncorrelated for all time.  The quantity cm(t) in (1) gives the number density of particles
made up of m monomers.  The quantity c(t,v) in (2) is the density at time t of particles of ‘size’ v,
where ‘size’ may mean ‘mass’ or ‘volume’ or any other quantity conserved in the binary
interactions.  Henceforth, we shall refer to v simply as mass, but the broader interpretation of this
quantity should be kept in mind since it is important for specific applications.

The key quantity identifying the type of coagulation process is the coagulation kernel or
collision frequency, Kmn in the discrete case, and K(u,v) in the continuous case, respectively.
This quantity models the physics of the coagulation process through its dependence on its
arguments.  Particles are implicitly assumed to move in some deterministic or stochastic way.
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When two come into contact, they coalesce into a single particle with a mass equal to the sum of
the constituent masses.  The density of particles is assumed to be sufficiently low that one may
restrict attention to binary collisions.  The first term on the right hand side of (2) gives the rate of
change of particles of mass v due to particles of mass v – u and u coagulating.  The second term
counts the depletion of particles of mass v by those particles coagulating with particles of any other
mass.  The coagulation kernel is always assumed to be symmetric in its arguments (or indices).
Because of its physical interpretation as a probability, it is non-negative.

There is an extensive literature on the different mechanisms that govern collisions of particles
in various disperse systems, and on the derivation of the appropriate form of the coagulation kernel
for each one.  Kernels for coagulation via Brownian motion, coagulation of spherical particles in a
laminar shear or pure straining flow, coagulation due to advection by a turbulent flow, coagulation
in a turbulent flow taking account of particle inertia, coagulation due to differential sedimentation,
and kernels representing yet other physical mechanisms have been derived [4-5].

In the discrete case one explicitly recognizes the existence of a smallest particle mass (a
‘monomer’).  In the continuous case we allow arbitrarily small particles, although we shall find it
useful to consider (2) with a smallest particle size cutoff.  It is clear from (2) that if at t = 0 the
particle distribution is such that c(0,v) = 0 for all v < v0, then c(t,v) remains zero for v < v0 for all
time.

By choosing a particular mechanism, i.e., a certain coagulation kernel, and giving an initial
distribution of particle sizes, various exact analytical solutions of SCE have been found [4], [6-7].
However, the study of an isolated case, by analysis or numerical simulation, cannot, of course,
address the key question of how typical such a solution is or of how it is related to the evolution of
real aggregating systems, where the kernel may not be precisely the one chosen for study.  Our
approach is aimed at these more global issues and so aims to work only with rather generic
properties of the SCE, such as the degree of homogeneity of the coagulation kernel (discussed
next), and the convergence of various integral quantities associated with SCE.

Many of the coagulation kernels proposed for various processes have the property that they
are homogeneous functions of their arguments [4], i.e., that

K(λu, λv) = λαK(u, v), (3)

for any positive real number λ with a fixed exponent α.  In particular, Smoluchowski studied the

case of Brownian motion for which the kernel has α = 0.  For coagulation in a laminar flow α = 1.

For coagulation due to differential sedimentation α  = 4/3.  And so on.  Homogeneity of the

coagulation kernel is the formal statement that the coagulation process does not have a characteristic
scale, i.e., that aggregation of particles at different scales is assumed to happen similarly except for
a possible change in the rate of the process.

In turn, this suggests either that asymptotic solutions of (1) or (2) should display a similarity
form or that steady-state solutions – which would arise by, somehow, ‘feeding’ the coagulating
mix so as to maintain the steady state – should be power-laws.  That is, one is led either to the
suggestion that the initial value problem has solutions of the form
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c(t,v) = ƒ(t)–2 Ψ(v/ƒ(t)), (4)

where ƒ(t) is to be determined.  (The exponent in the pre-factor guarantees that the mean cluster

size, <v> = ∫vc(v,t) dv, is constant.)  Or one is led to suggest that for a ‘forced’ version of (2) the
steady state solutions are of the form

c(v) = const. × v – τ, (5)

where τ is another exponent, appeared to us to be more analytically tractable.  At issue, then, is the

problem of ascertaining when (5) is, indeed, the steady-state solution (given some physically

reasonable model of the ‘forcing’), and how the exponent τ depends on the coagulation kernel, in

particular through its homogeneity exponent, α (but, possibly, in other ways as well).

The possibility (4) was pursued in the work of Friedlander [8].  To have a clear terminology
we shall refer to this approach as the self-preservation theory and to the approach summarized
by (5) as the self-similarity theory.  The possibility of power-law solutions of the form (5) was
raised by Hunt [9] in an important paper that, however, seems to have been somewhat overlooked
in the literature on coagulation.  Hunt patterned his reasoning on the Kolmogorov scaling theory
for turbulent flow [10].  Thus, he enunciated four assumptions, similar to those made for the
turbulent ‘cascade’, that allowed him to apply dimensional analysis arguments to the problem, and

thus predict the exponent τ for various kernels.  Because of the analogy to turbulence theory, we

shall often refer to a power-law distribution for the mass density in coagulation as a ‘mass
spectrum’.  The similarity solutions (4) have also been explored with the objective of identifying
when this form will lead to power-law solutions asymptotically.  For the most far-reaching work in
this direction see the papers by van Dongen and Ernst [11-12].

There are important differences between the approaches summarized by Eqs.(4) and (5).  A
self-preserving distribution (4) presumes the existence of a single characteristic size in the system,
which can be chosen equal to the average cluster size.  Accordingly, the self-preserving
distribution should have a shape with a single hump, similar to a log-normal distribution.  The
theory aims at the case when <v> is finite and so excludes what in polymer science is called the
gelating case for which the average cluster size diverges after a finite time.  The self-similarity
theory explored in this paper, on the other hand, predicts scale-free power-law distributions that
arise due to forcing. The average cluster size does not need to be finite.  If it is not, the influx of
mass into the system equals the mass flux to the infinite size cluster.  There is no restriction to
kernels that give finite average cluster size, i.e., both gelating and non-gelating cases are covered
by the theory (modulo the restrictions identified later in the analysis).

Unfortunately, Hunt’s assumptions [9] seem overly restrictive.  For example, he assumed
that collisions between particles of very different size would not contribute significantly to the flux
of mass through the distribution and so could be ignored.  This is similar to the assumption in
turbulence theory that eddies very different in size do not contribute substantially to the flow of
energy through the ‘cascade’, i.e., that the energy ‘cascade’ is ‘local’.  However, in the case of a
constant kernel in (1), where the collision frequency is independent of particle size, one can solve
for the steady-state mass spectrum analytically and one finds that it obeys Hunt’s scaling
predictions even though the key assumption of ‘locality’ underlying his analysis appears to be
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violated (see Appendix).  This observation led us to re-examine the conditions under which (2) had
steady-state solutions of the form (5).  The main purpose of this paper is to report on the results of
this re-examination.  The remainder of the paper is thus set out as follows:

First, in Sec.II, we discuss what we mean by ‘forced’ Smoluchowski kinetics, and how
such a notion of ‘forcing’ leads us to substitute for the initial-value problem for SCE a boundary-
value problem for the ‘forced’ kinetics.  It is this boundary value problem that has steady-state,
power-law solutions of the form (5).  In Sec.II we also introduce the mass flux through the
‘spectrum’ of coagulating particles.

Next, in Sec.III, we study the equations to be satisfied by a steady-state solution to the
‘forced’ problem, and we establish a very useful representation of these solutions which is the

basis for our further analysis.  A relationship, Eq.(20), between the power-law exponent, τ, in (5)

and the homogeneity exponent, α, in (3) is found, but at this stage this relation contains an as yet

undetermined, additive, ‘anomalous’ exponent θ.

In Sec.IV we introduce the additional assumption that K(u,v) becomes just a product of two
powers when u >> v or, because of the symmetry, when u << v.  The exponents of these powers,

which we call µ and ν, respectively, must, of course, add to α.  One can view this extension of the

homogeneity condition (3), an extension that is satisfied by many of the best known examples in
applications, as our counterpart of Hunt’s locality assumption.  With it we can show that various
inequalities must be obeyed by the various scaling exponents we have introduced.  Establishing
these relations by asymptotic analysis is the main subject of Sec.IV.  The main results can be found
in Eqs.(23) and (27).

In Sec.V we return to the equation for the mass flux from Sec.II.  It turns out that the full
integral expression can be substantially reduced in the case of a steady-state, power-law solution,
and this reduction is important for further analytical progress.

Much of the work in Secs.IV-V is preparatory to Sec.VI where, having stripped down the

expression for the mass flux, we are able to show, finally, that the anomalous scaling exponent, θ,

must vanish.  This leads to our main result stated in Eq.(37).  Our concluding Sec.VII contains
discussion of the results obtained.

The main results of this work were first reported at the annual meeting of the American
Physical Society, Division of Fluid Dynamics in New Orleans, November 1999 [13].  While this
paper was being prepared, we became aware of the work of Davies, King and Wattis [14-15] in

which analytical results are obtained for coagulation kernels Kmn = 1
2

(m µn ν + m νn µ), with µ + ν =

α .  Their exact results agree with key aspects of our more general arguments and thus provide

important points of validation for the theoretical ideas advanced in this paper.

2. FORCED SMOLUCHOWSKI KINETICS
As indicated in Sec.I it is convenient to study (2) subject to the following modifications: (i)

we assume there is a smallest particle mass v0 in the system for all times, and (ii) we posit a
‘forcing mechanism’ that constantly replenishes particles.  We may take this ‘forcing’ to be quite
general, i.e., define a quantity j(t,v) that gives the influx of particles of mass v into the system at
time t, and stipulate this function more or less freely.  We shall focus on the case when j(t,v) is
concentrated at the small particle end of the spectrum and acts to maintain the density of the
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smallest particles constant.  In the discrete case we would simply stipulate that c1(t) be constant,
but this is awkward in the continuous case, so we allow j(t,v) to be spread over a range of
particles, say particles with mass v0 ≤ v ≤ 2v0, such that c(t,v) is maintained constant in this
interval.  The precise nature of the forcing is immaterial.

While these assumptions are most helpful to the analysis, we argue that they are also quite
realistic physically in a variety of situations.  Thus, the smallest particles in a chemical or
combustion process, e.g., in a stirred tank reactor or in smoke, may be assumed to exist in a
largely time-independent density.  The counterpart to the notion that the initial-value problem has a
similarity solution is then that the boundary-value problem has a steady-state solution that ‘forgets’
the smallest particle size, v0, for v>>v0.

We shall refer to (2) with the stipulations that c(t,v) = 0 for v < v0 and a particle injection
term j(t,v) on the right hand side as the forced Smoluchowski equation, henceforth abbreviated
FSCE.  Modifications to SCE wherein a mechanism for particle addition to the system is included
have been considered previously by several authors, see [14] and references therein.

A general form of the FSCE is, then,

  ∂c t,v
∂t

 = j(t,v) – s(t,v) (6a)

where j(t,v) is to be specified, and s(t,v) is the right hand side in (2) suitably modified to take
account of the small-size cutoff.  In particular, for v0 ≤ v ≤ 2v0:

s(t,v) = 
  

c t,v K v,u c t,u du
v0

∞
, (6b)

and for 2v0 ≤ v:

s(t,v) = 
 

– 1
2

du vK v – u,u c t,v – u c t,u
v0

v – v0
 + 

  
c t,v K v,u c t,u du

v0

∞
. (6c)

Just as the energy flux plays a key role in Kolmogorov’s theory of turbulent flow, so does
the flux of mass, E, play a key role in the self-similar solutions of coagulation kinetics.  Indeed,
these solutions are characterized by having a constant flux of mass through the spectrum of particle
sizes.  The rate of change of the total mass in the system is

 dM
dt

 = 
  ∂c t,v

∂t
dv

v0

∞
 = 

  
v j t,v – s t,v dv

v0

∞
 = J(t) – S(t), (7a)

where J(t) is the total influx of mass,
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J(t) = 
  

v j t,v dv
v0

∞
, (7b)

and S(t) is the total efflux of mass ‘at infinity’,

S(t) = 
  

v s t,v dv
v0

∞
. (7c)

We should think of these integrals initially as limits of integrals over a finite range of masses,

v0 ≤ v ≤ V, and then let V → ∞.  Since j(t,v) is assumed to be concentrated at small v, the integral
J(t) poses no convergence issues – its range could be truncated to v0 ≤ v ≤ 2v0.  The integral S(t),
however, merits closer examination.  We have

S(t) = 
  

lim
V → ∞

v s t,v dv
v0

V
 =   lim

V → ∞
[   

dv
v0

V
du vK v,u c t,v c t,u

v0

∞

(8)

                                                
 

– 1
2

dv
2v0

V
du vK v – u,u c t,v – u c t,u

v0

v – v0 ].

In the second double-integral we write v as v – u + u.  The integrand is then symmetric in the
variables u and v – u.  The integration domain is easily seen also to be symmetric in terms of these
variables.  Hence, the integral may be written as

 
– dv

v0

V – v0
du v K u,v c t,u c t,v

v0

V – v
.

Taken together with the first integral we obtain

S(t) =   lim
V → ∞

S V
(1) t + S V

(2) t , (9a)

where

 S V
(1) t  = 

  
dv

v0

V – v0
du v K u,v c t,u c t,v

V – v

∞
, (9b)

 S V
(2) t  = 

  
dv

V – v0

V
du v K u,v c t,u c t,v

v0

∞
. (9c)
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We shall see in Sec.V that for the solutions (5) of interest here,  S V
(2) t  will, not surprisingly, tend

to zero as V → ∞, but  S V
(1) t  will have a finite limit.  Of course, for the steady-state solutions both

integrals are time-independent.
We note that if the integral

  
dv

v0

∞
du v K u,v c t,u c t,v

v0

∞
(10)

converged, then  S V
(1) t  and  S V

(2) t , and thus S(t), would vanish in the limit V → ∞.   However, to

describe a stationary distribution sustained by a constant influx of mass, E, we have J(t) = E, and
since the total mass of the system is to remain constant, we must have S(t) = J(t) = E according to
(7a).  Thus, assuming convergence of (10), which is sometimes done in analytical investigations
of SCE, is an additional assumption that rules out the solutions we are after!  In the literature on
coagulation applied to polymers it is realized that (10) should diverge in certain cases, and this
divergence is associated with the phenomenon of gelation [11].

3.  STEADY-STATE SOLUTIONS OF FSCE
Consider a steady-state solution of (6a) for v ≥ 2v0 and assume the forcing is confined to

smaller particles so that the balance of interest is

 1
2

du K v – u,u c v – u c u
v0

v – v0
 = 

  
c v K v,u c u du

v0

∞
. (11)

We have omitted the time dependence since we are seeking a steady-state solution.  We introduce
the quantities k(u,v;v0) by

k2(u,v;v0) = E–1 K(u,v) c(u) c(v) u3/2 v3/2, (12)

where E is the mass flux through the system.  The 3/2 powers of u and v have been factored out
for two reasons.  First, this makes k dimensionless.  Second, for u = v we have the representation

c(v) = 
 E

K v,v

1/2

 v – 3/2 k(v;v0), (13)

where the repeated argument in k has been dropped, and the spectrum c(v) = const. × v – 3/2  turns

out to be the solution for a constant kernel (see Appendix).  Indeed, for this case (13) follows
essentially by dimensional analysis.  In general, Eq.(13) provides a representation of c(v) that
consists of two factors, one involving the mass flux E, the other involving the small scale cut-off
v0.

So far we have accomplished nothing but to write one unknown quantity, c(v), in terms of
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another, k(v;v0).  However, due to the scale invariance of the coagulation kernel, it turns out that
k(v;v0) in (13) must, in fact, have the form k(v/v0).

To see this we substitute (13) into both sides of (11).  We scale the variables u and v by v0,
introducing new variables x = v/v0, and y = u/v0.  Then we use the homogeneity of the kernel,

Eq.(3), to factor out v0 as follows: K(v – u, u) = K((x – y)v0, yv0) =   v0
α K(x – y, y), and so on.

In this way we obtain:

 
1
2

dy
K x – y,y

K x – y,x – y K y,y1

x – 1

 (x – y) – 3/2 y – 3/2 k(x – y) k(y) =

(14)

                                  
  

dy
K x,y

K x,x K y,y1

∞
 x – 3/2 y – 3/2 k(x) k(y)

where k(x) = k(xv0;v0).  Both E and, more remarkably, v0 drop out of equation (14)!  Setting

Q(x,y) = 
 K x,y
K x,x K y,y

(15)

we have the following integral equation for determining the function k:

 1
2

dy
1

x – 1
 Q(x – y, y) (x – y) – 3/2 y – 3/2 k(x – y) k(y) =

(16)

                                                
  

dy
1

∞
 Q(x, y)  x – 3/2 y – 3/2 k(x) k(y).

Assuming (16) has a solution, k(x), we have k(v; v0) = k(xv0; v0) = k(v/v0).  We now have
the more substantial version of (13) that

c(v) = 
 E

K v,v

1/2

v – 3/2 k(v/v0), (17)

where k(x) is a solution of (16).
We see that (16) will only determine k up to a multiplicative factor.  This is consistent with

(17) which must be augmented by the condition that E is, indeed, the mass flux.  Recalling (9),
and the definition (15), we have
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  lim
N → ∞

[(
  

dx
1

N – 1
dy

N – x

∞
 +

  
dx

N – 1

N
dy

1

∞
)

 Q x,y
x y3

  k(x) k(y)] = 1 (18)

as the ‘normalization condition’ on the function k.  Solutions of the pair of equations (16) and (18)
produce steady-state solutions of the FSCE with kernel K(u,v) via (17).  These solutions have a
constant mass flux, E, which enters as a coefficient.

If c(v) in (17) is to behave as a power law when v>>v0, as envisioned in Eq.(5), i.e., if we

demand that c(λv) = λ– τ c(v), then we must have

c(λv) = 
  E

K λv,λv

1/2

(λv) – 3/2 k(λv/v0) = λ– τ  
 E

K v,v

1/2

v – 3/2 k(v/v0)

or, since K(λv,λv) = λα K(v,v),

k(λx) = λ– τ  + 3/2 +  α/2 k(x), (19)

i.e., k must itself be a power, k(x) = k0 x–θ (for x >> 1), where τ and θ are related by

τ = 
  3 +α
2

 + θ. (20)

If k goes to a constant for large arguments, i.e., if θ = 0, then the system does, indeed,

‘forget’ the small size v0, and scale invariance is fully restored at large particle masses.  This is

referred to as similarity of the first kind [16].  If, on the other hand, θ ≠ 0, we have similarity

of the second kind [16], or in the language of critical phenomena, an anomalous exponent.
The next section explores these issues further.

4.  INEQUALITIES FOR SCALING EXPONENTS
We now augment the homogeneity condition (3) slightly by requiring, in addition, that

K(u,v) ≈ u µ  v ν    for    v >> u, (21a)

where, of course, µ + ν = α.  Due to symmetry, (21a) also implies that K(u,v) = K(v,u) ≈ u µ  v ν

for v >> u, i.e., that

K(u,v) ≈  u ν v µ     for    u >> v. (21b)

This conditions (21) are satisfied by many of the kernels used in common applications of the
SCE.  Thus, for coagulation due to Brownian motion the kernel is
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KB(u,v) ∝  (u1/3 + v1/3)2 /(uv)1/3, (22a)

i.e., α = 0, µ = –ν = – 1/3.  For coagulation due to laminar shear

Ksh (u,v) ∝  (u1/3 + v1/3)3, (22b)

so α = ν = 1, µ = 0,.  And for coagulation due to differential sedimentation

Kds (u,v) ∝  (u1/3 + v1/3)2 |u2/3 – v2/3|, (22c)

which gives α = µ = 4/3, ν = 0.

4.1 The inequality α – 2ν + 2θ + 1 > 0

The conditions (21) give a nuance to the homogeneity condition (3) that allows us to obtain
useful asymptotic estimates of various integrals and thus to write inequalities for the exponents we
have introduced.  As an easy example, from the discussion in Sec.II, particularly Eqs.(9), we see
that

  
du v K u,v c t,u c t,v

v0

∞

must exist.  Substituting (5) and (21b) we see that the integrand for large u varies as uν – τ.  Thus,

for convergence we must have ν – τ < –1 or

τ – ν – 1 > 0. (23a)

or, using (20),

α – 2ν + 2θ + 1 > 0. (23b)

4.2 The inequality α – 2µ + 2θ + 1 > 0

We turn next to Eq.(11) itself.  We may reason as follows:  Let vc be such that with sufficient

accuracy c(v) = Av – τ, with A a constant, for v > vc.  Split the integral on the left hand side of (11)
into a sum of three integrals, the first from v0 to vc, the second from vc to v – vc, the third from v –
vc to v – v0.  The first and third integral are identical as is seen by the substitution u′ = v – u.

Consider Eq.(11) for a large value of v, say v >> 2vc + v0.  In an integral where v0 ≤ u ≤ vc, we

see that v – u >> vc.  Hence, c(v – u) = A(v – u) – τ  with sufficient accuracy.  In an integral where

vc ≤ u ≤ v – vc we have c(u) = Au – τ but also v – u ≥ vc so that c(v – u) = A(v – u) – τ.  Thus, we
get the asymptotic estimate
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 1
2

du K v – u,u c v – u c u
v0

v – v0
 = 

   A
 

du
v0

vc
 K(v – u,u) c(u) (v – u) – τ + 1

2
A2 

 
du

vc

v – vc
 K(v – u,u) u – τ (v – u) – τ

Now from (21′) use the estimate K(v – u,u) = B (v – u) ν u µ, where B is another constant, in the

first of these integrals.  As v → ∞ we then have for this integral

AB
 

du
v0

vc
 (v – u) ν – τ u µ  c(u) ≈ [AB

 
du

v0

vc
u µ  c(u)] v ν – τ.

This is the mass influx due to that part of of the mass spectrum that has not achieved power-law
form.  If we look on the right hand side of (11), we see immediately that the integral from v0 to vc
there, which describes the mass efflux due to the non-power law portion of the mass spectrum,
will asymptotically exactly balance the influx!

We are left to consider the balance

1
2

A2 
 

du
vc

v – vc
 K(v – u,u) u – τ (v – u) – τ = 

  
c v K v,u c u du

vc

∞
(24)

or, substituting in the asymptotic forms for the distributions

1
2

 
 

du
vc

v – vc
 K(v – u,u) u – τ (v – u) – τ = v – τ   

du
vc

∞
 K(v,u) u – τ

We substitute u = ξ v in the integrals and, using the homogeneity of the kernel, obtain

1
2

  
dξ

ξc

1 – ξc
 K(1 – ξ, ξ) ξ – τ (1 – ξ) – τ = 

  
dξ

ξc

∞
 K(1, ξ) ξ – τ

where ξ  c = vc /v.  Because of the symmetry of the integrand on the left hand side, this balance

equation may also be written

  
dξ

ξc

1 / 2
 K(1 – ξ, ξ) ξ – τ (1 – ξ) – τ = 

  
dξ

ξc

∞
 K(1, ξ) ξ – τ (25)

As v → ∞, we have that ξ c → 0.  Thus, close to the lower limit both integrands vary as B ξ µ – τ,

which diverges for τ ≥ µ + 1 and converges for τ < µ + 1.  Since the divergences are similar, and
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with the same coefficient, we obtain a balance in these cases to leading order.  In the convergent
case, however, we only obtain a balance if

  
dξ

0

1 / 2
 K(1 – ξ, ξ) ξ – τ (1 – ξ) – τ = 

  
dξ

0

∞
 K(1, ξ) ξ – τ. (26)

In general, this relation for K is not satisfied.  Therefore, in the convergent case the necessary
condition for a power-law spectrum is not satisfied (except possibly for exceptional cases).

We conclude from these considerations that in order to have a power-law steady-state
distribution, we should insist that

τ – µ – 1 ≥ 0. (27a)

This relation looks deceptively similar to (23a), but the arguments given can leave no doubt that it
is a deeper result.  Note that equality is allowed in (27a), whereas (23a) is a strict inequality.  As in

(23) we may write (27a) in terms of the exponents α and θ:

α – 2µ + 2θ + 1 > 0. (27b)

Adding (23b) and (27b) we have the easy result that θ ≥ – 1/2.

5.  NORMALIZATION REVISITED
In this subsection we pursue estimates similar to those of Sec.IV for the normalization

condition, Eq.(18).  As a lead-in we show the result mentioned in Sec.II that for the steady-state,

power-law solutions  S V
(2) , Eq.(9c), will tend to zero as V → ∞, while  S V

(1) , Eq.(9b), will have a

finite limit.
In the outer integral of

 S V
(2)  = 

  
dv

V – v0

V
du v K u,v c u c v

v0

∞
, (9c)

we substitute v = ξV to obtain

 S V
(2)  = V2   

dξ
1 – v0/V

1
 ξ c(ξV) 

  
du

v0

∞
 K(u, ξV) c(u) ≈

(28)

                 V v0 c(V)
  

du
v0

∞
 K(u, V) c(u) = Av0V 1 – τ   

du
v0

∞
 K(u, V) c(u).

The remaining integral is split into two, the first from v0 to vc, the second from vc to ∞.  In the
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first we can set K(u,V) = Bu µ  V ν  according to (21a).  It then varies asymptotically as Vν.  In the

second we can set c(u) = Au– τ, and then

  
du

vc

∞
 K(u, V) Au– τ = AV1 + α –  τ   

dξ
vc/V

∞
 K(ξ, 1) ξ– τ.

At the large-ξ limit the integral converges because K(ξ,1) varies as Bξν by (21a) and we have

inequality (23a).  At the small-ξ limit K(ξ,1) varies as Bξµ by (21b) and the leading order term is

of order V1 + α –  τ (vc/V)µ  – τ + 1 or Vν (vc)
µ  – τ + 1, i.e., of the same order as the first integral, Vν, as

V → ∞.  Multiplying both these asymptotic results by V 1 – τ, as in (28), we see that

 S V
(2)   ∝  V ν – τ + 1 → 0     as     V → ∞ (29)

because of (23a).

As anticipated, we are therefore left with  S V
(1)  in (18).  But this statement may be refined

further.  Indeed, we will now show that only the integral over the mass range where both c(u) and

c(v) can be adequately approximated by power-law forms contributes to  S V
(1)  in the large-V limit.

We start from

 S V
(1) = 

  
dv

v0

V – v0
du

V – v

∞
v K(u,v) c(u) c(v) (9b)

and split the outer integral into three, the first from v0 to vc, the second from vc to V – vc, and the

third from V – vc to V – v0.  In the first integral, then, c(u) = Au – τ  to sufficient accuracy, and

K(u,v) = Bu ν v µ by (21b).  In the third c(v) = Av – τ.  In the second, which describes the

contribution of the self-similar part of the distribution, both c(u) = Au – τ and c(v) = Av – τ. to
sufficient accuracy.  Now we have an easy order of magnitude estimates for the first integral:

  
dv

v0

vc
du

V – v

∞
 v K(u,v) c(u) c(v) ≈ AB

 
dv

v0

vc
 v µ + 1 c(v)

  
du

V – v

∞
u ν – τ

(30)

                                    = 
  AB

ν – τ + 1
 

dv
v0

vc
 v µ + 1 (V – v)ν – τ + 1 c(v)  ∝   Vν – τ + 1

so that it vanishes in the V → ∞ limit.

For the third integral we reason as follows:
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dv

V – vc

V – v0
du

V – v

∞
 v K(u,v) c(u) c(v) ≈ A

 
dv

V – vc

V – v0
 v 1 – τ   

du
V – v

∞
 K(u,v) c(u)

                        = A
 

dw
v0

vc
 (V – w) 1 – τ   

du
w

∞
 K(u,V – w) c(u)

                        =  A
 

dw
v0

vc
 (V – w) 1 – τ [  

du
w

vc
 + 

  
du

vc

∞
] K(u,V – w) c(u)

In the first u-integral we can set K(u, V – w) = Bu µ  (V – w) ν by (21a) and it then becomes

AB
 

dw
v0

vc
 (V – w) ν – τ + 1  

du
w

vc
 u µ  c(u)  ∝   Vν – τ + 1. (31)

The second u-integral requires further work:

A
 

dw
v0

vc
 (V – w) 1 – τ   

du
vc

∞
 K(u,V – w) c(u) ≈

                      A2 Vα – τ + 1  
dw

v0

vc
 (V – w) 1 – τ   

dz
vc/V

∞
 K(z,1 – w/V) z – τ

The inner integral converges at the upper limit because of (21b) and (23a).  From the lower limit
using (21a) we obtain the leading order term in V as

A2 B Vµ – τ + 1  
dw

v0

vc
 (V – w) ν – τ + 1   

dz
vc/V

∞
 z µ – τ. (32a)

For τ > µ + 1 this varies as (v0 – vc)   vc
µ – τ + 1 V ν – τ + 1 and, thus, also vanishes in the limit

V → ∞.  It is interesting to note that even if vc decreases, i.e., the distribution becomes self-similar

at a small value of the mass, the integral increases!  Thus, a short range of masses before the
distribution becomes self-similar does not imply that this range makes a negligible contribution to
the mass flux E.

For τ = µ + 1 we get

– A2 B V ν – µ log(vc/V)
 

dw
v0

vc
 (1 – w/V) ν – µ. (32b)

Since by (23a) ν < τ – 1 = µ, this expression will also tend to zero in the V → ∞ limit.

In summary, assuming we have a power-law distribution (and the coagulation kernel satisfies
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(21)), the mass flux  must satisfy

A2   lim
V → ∞

 
 

dv
vc

V – vc   
du

V – v

∞
 K(u,v) u – τ v1 – τ  = E (33)

where we have omitted terms that can be shown to vanish independently in the large-V limit.

6.  ABSENCE OF ANOMALOUS SCALING
We now want to consider the limit in (33) more closely.  We rescale u and v by setting u =

yV, v = xV and obtain

A2   lim
V → ∞

[V3 + α  – 2τ
 

dx
vc/V

1 – vc/V   
dy

1 – x

∞
 K(y,x) y – τ x1 – τ] = E. (34)

Recalling (20), we see that if θ ≠ 0, then the prefactor V3 + α – 2τ will either diverge (if θ < 0) or go

to zero (if θ > 0).  Let us pursue the latter case – the former case can be handled similarly.  For

(34) to hold, the double integral must then diverge, so that the product of the prefactor and the
integral will have a finite limit.  Writing V as (1/V) –1 the limit

  lim
1/V → 0

[
  ƒ 1/V

1/V 3 + α – 2τ ], (35a)

where

ƒ(1/V) = 
 

dx
vc/V

1 – vc/V   
dy

1 – x

∞
 K(y,x) y – τ x1 – τ, (35b)

yields an indeterminacy of the type that can be resolved by L’Hôspital’s rule [19], i.e., we need
the ratio of the derivatives with respect to 1/V of the integral (35b) and the denominator.

The derivative of the denominator is trivial.  It scales as (1/V)2 + α – 2τ.  The derivative of the
integral is

ƒ′(1/V) = – vc
 [   

dy
vc/V

∞
 K(y,1 – vc/V) y – τ (1 – vc/V)1 – τ +

                                       
  

dy
1 – vc/V

∞
 K(y,vc/V) y – τ (vc/V)1 – τ].

The two integrals on the right hand side converge at their upper limits because of (21b) and (23a).
From the lower limits (and from the upper limit of the second integral) we get, using (21a), that the
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integrals scale as  (vc/V) µ – τ + 1.

L’Hôspital’s rule, and our insistence on a finite limit, now shows that the assumption θ > 0

implies the exponent relation

µ – τ + 1 = 2 + α – 2τ,

or, since α = µ + ν,

τ = ν + 1.

But this contradicts (23a) according to which τ > ν + 1.  A similar contradiction arises if we

assume θ < 0.

Thus, we conclude that the anomalous exponent θ must, in fact, vanish, and that the simple

relation,

τ = 
  3 +α
2

, (36)

must hold for the steady-state, power-law solutions.  The scaling function k(x) (see Sec.III) is a
constant, and the final form of (17) is

c(v) = 
  E

κ

1/2

v – (3 + α)/2, (37a)

where α is the homogeneity index of the coagulation kernel, E is the mass flux (an independent

parameter) and the constant κ arises from the normalization condition

κ = 
 

dx
0

1   
dy

1 – x

∞
 K(x,y) x1 – τ   y – τ. (37b)

Equations (37a-b) summarize our main result.

Let us also revisit (23) and (27) in light of the conclusion θ = 0.  These inequalities now

provide necessary conditions for a power-law solution (37) to arise.  Combining (36) with (23) we
have

τ = 
  3 +α
2

 > ν + 1,

or
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α – 2ν + 1 > 0. (38a)

Similarly from (27) and (36)

α – 2µ + 1 ≥ 0. (38b)

Since µ + ν = α, we may also state these inequalities in the form

  α – 1
2

 ≤ ν < 
  α + 1
2

, (39a)

  α – 1
2

 < µ ≤ 
  α + 1
2

. (39b)

Any one of (38)-(39) is a necessary condition for the theory developed here to apply.

7.  DISCUSSION
It will come as no surprise that at the level of Eqs.(36) and (37) our results reproduce those

of Hunt [9].  Thus, for coagulation due to Brownian motion Hunt found τ = 3/2 in accordance

with (22a) which shows that α = 0 for that process.  Inequalities (39) are satisfied, since µ = – ν =

–1/3 as noted already in Sec.IV.  Note that τ = 3/2 arises both for a constant kernel (see Appendix)

and for the kernel (22a).  Both kernels have α = 0 but, of course, different values of µ and ν.

For coagulation in a laminar shear flow we find τ = 2 since α = 1.  However, inequalities

(39) are violated, albeit barely, since µ = 0 and ν = 1, so our theory does not apply.  Coagulation

due to differential sedimentation is ‘even worse’.  The relation (36) gives τ = 13/6 since α = 4/3,

and this spectrum was also obtained by Hunt who states that it is corroborated by observations [9].

However, inequalities (39) are now violated since µ = 4/3 and ν = 0.  These results suggest that

the present theory needs to be extended further to cover cases where an infinite flux of mass
through the system is required.  In reality, of course, the mass influx is always finite, but the
system may be trying to approach solutions that arise analytically when E is infinite and another
relation takes the place of our normalization condition (18).  Thus, similarity solutions satisfying
(36) where (39) are violated have been observed experimentally.

Having justified Hunt’s results, at least in part, our theory also shows that his assumptions
are largely superfluous.  Collisions between particles of very different sizes are, ordinarily, not to
be considered improbable and they do contribute to the coagulation process.  Indeed, for
coagulation kernels with the properties assumed here, K(u,v), with u and v very different in size,
varies as a product of powers of u and v, and both powers may be positive.  ‘Locality’ of the flux
is not a necessary condition for achieving self-similar coagulation spectra.

Hunt’s theory is very similar to theories of cluster-cluster aggregation as opposed to particle-
particle aggregation.  In other words, the assumptions of Hunt presume cluster-cluster aggregation
to prevail over particle-particle aggregation.  Such theories are known to provide a satisfactory
description of aggregation kinetics in many cases.  The present paper reveals strong reasons for
this behavior.
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APPENDIX
In the body of the paper we have used the continuous formulation of SCE, Eq.(2).  In this

Appendix we collect various detailed results concerning the discrete SCE for the particular case of a
coagulation kernel Kmn independent of its indices.

(i) Smoluchowski’s solution
We set the common value of all the Kmn equal to 2, which simply amounts to a rescaling of

time, and are thus considering the equations

 dcm
dt  = 

  
Σ
n = 1

m – 1

cm – n cn – 2 cm

  
Σ
n = 1

∞
cn (A1)

in the unforced (initial value problem) case.  Designating the total mass at time t = 0 by

  
Σ
n = 1

∞
cn(0) = c0, (A2)

and introducing the generating function

G(z,t) = 
  

Σ
n = 1

∞
cn(t) zn, (A3)

we have the following obvious formulae:

G(1,t) = 
  

Σ
n = 1

∞
cn(t); (A4a)

G(1,0) = c0; (A4b)

  ∂G z,t
∂t

 = 
  

Σ
n = 1

∞
 dcn

dt  zn; (A4c)

G2(z,t) = 
  
Σ

m = 2

∞
zm

  
Σ
n = 1

m – 1

cm – n cn. (A4d)

Thus, multiplying (A1) by zm and summing over m produces the following PDE for G(z,t):
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  ∂G z,t
∂t

 = G2(z,t) – 2G(z,t)G(1,t). (A5)

To solve (A5) we first note that for z = 1 it reduces to

 dG 1,t
dt

 = – G2(1,t), (A6)

which, in view of (A4b) has the solution

G(1,t) = 
  c0

1 + c0t
. (A7)

When this is substituted into (A5), we find

  ∂G z,t
∂t

 = G2(z,t) – 
  2c0

1 + c0t
 G(z,t),

or

  ∂
∂t

1
G

 = – 1 + 
  2c0

1 + c0t
 

 1
G

, (A8)

a linear differential equation that can, in turn, be solved to give

G(z,t) = 
  G z,0

1 + c0t 1 + c0 – G z,0 t
. (A9)

By expanding the right hand side in powers of z, individual cn(t) may be read off as coefficients of
zn.  The initial distribution is embodied in G(z,0).  Otherwise the solution depends only on c0.

Smoluchowski considered the particular case c1(0) = c0, cn(0) = 0 for n ≥ 2, for which
G(z,0) = c0z.  The expansion in powers of z is straightforward and the result is that

cn(t) = c0 
  c0t n – 1

1 + c0t n + 1 . (A10)

For large t we have cn(t) = 1/c0t2  for all n.
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(ii) Forced Smoluchowski kinetics
We now consider the discrete version of Eqs.(6), viz

 dc1
dt  = 0, (A11a)

 dcm
dt  = 

  
Σ
n = 1

m – 1

cm – n cn – 2 cm

  
Σ
n = 1

∞
cn;   m ≥ 2. (A11b)

We assume that (A11a) is maintained by continuous injection of monomers.  Thus, we set c1(t) =
C, a constant, and we assume cn(t) = 0 for n ≥ 2.

Introducing the generating function G(z,t) again, defined as in (A3), we now have

G(1,0) = C; (A12a)

in place of (A4b) and

  ∂G z,t
∂t

 = 
  

Σ
n = 2

∞
 dcn

dt  zn; (A12b)

in place of (A4c).  In place of (A5) we now obtain

  ∂G z,t
∂t

 = G2(z,t) – 2[G(z,t) – Cz]G(1,t). (A13)

Setting z = 1 we again obtain an ODE for G(1,t), the counterpart of (A6):

 dG 1,t
dt

 = – G2(1,t) + 2CG(1,t). (A14)

The solution is

G(1,t) = 
  2C

1 + e– 2Ct . (A15)

This leads to

  ∂G z,t
∂t

 = G2(z,t) – 2[G(z,t) – Cz]
  2C

1 + e– 2Ct (A16)
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in place of (A13).
Solving (A16) is somewhat tedious.  We substitute G = – Wt/W, where the subscript

indicates partial differentiation with respect to time.  We also introduce a new independent variable

ξ = – exp(2Ct).  These substitutions produce a version of Gauss’ hypergeometric equation to be

solved for W:

ξ(ξ – 1)Wξξ – (ξ + 1)Wξ + zW = 0. (A17)

The solution

W(z,t) = F(– 1 +  1 – z , – 1 –  1 – z , 1, – exp(2Ct)) (A18)

then needs to be differentiated to produce G =  – Wt/W, and the result expanded in powers of z to
produce the individual cn(t)!

All this, however, is unnecessary since we can go directly to the steady-state equation, which
at the level of the generating function simply means finding G(z,∞).  In turn, this function satisfies
a simple algebraic equation, obtaining by setting the time derivative in (A16) to zero and replacing
the decaying exponential by 0:

G2(z,∞) – 4C[G(z,∞) – Cz] = 0 (A19)

with the (physical) solution

G(z,∞) = 2C(1 –  1 – z ). (A20)

From the binomial formula we find the steady-state values of cn as

cn = – 2C (–1)n  1
2
n  = 

 2C
2n – 1

2n !

2n n! 2 . (A21)

Applying Stirling’s formula to the factorials in this expression we find

cn ≈ 
  C
π  n–3/2. (A22)

This is the –3/2 steady-state power law solution that is mentioned several times in the body of the
paper.
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