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Abstract

Generalization, also called anti-unification, is the dual of unification. Given
terms t and t′, a generalization is a term t′′ of which t and t′ are substitution
instances. The dual of a most general unifier (mgu) is that of least general
generalization (lgg). In this work, we extend the known untyped generalization
algorithm to, first, an order-sorted typed setting with sorts, subsorts, and sub-
type polymorphism; second, we extend it to work modulo equational theories,
where function symbols can obey any combination of associativity, commuta-
tivity, and identity axioms (including the empty set of such axioms); and third,
to the combination of both, which results in a modular, order-sorted equational
generalization algorithm. Unlike the untyped case, there is in general no sin-
gle lgg in our framework, due to order-sortedness or to the equational axioms.
Instead, there is a finite, minimal set of lggs, so that any other generalization
has at least one of them as an instance. Our generalization algorithms are ex-
pressed by means of inference systems for which we give proofs of correctness.
This opens up new applications to partial evaluation, program synthesis, and
theorem proving for typed equational reasoning systems and typed rule-based
languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ, and Maude.

1. Introduction

Generalization is a formal reasoning component of many symbolic frame-
works, including theorem provers, and automatic program analysis, synthesis,
verification, compilation, refactoring, test case generation, learning, specialisa-
tion, and transformation techniques see, e.g., (Boyer and Moore, 1980a; Buly-
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chev et al., 2010; Gallagher, 1993; Kitzelmann and Schmid, 2006; Kutsia et al.,
2011; Lu et al., 2000; Muggleton, 1999; Pfenning, 1991). Generalization, also
called anti-unification, is the dual of unification. Given terms t and t′, a gen-
eralization of t and t′ is a term t′′ of which t and t′ are substitution instances.
The dual of a most general unifier (mgu) is that of a least general generalization
(lgg), that is, a generalization that is more specific than any other generaliza-
tion. Whereas unification produces most general unifiers that, when applied to
two expressions, make them equivalent to the most general common instance of
the inputs (Lassez et al., 1988), generalization abstracts the inputs by comput-
ing their most specific generalization. As in unification, where the most general
unifier (mgu) is of interest, in the sequel we are interested in the least gen-
eral generalization (lgg) or, as we shall see for the order-sorted, equational case
treated in this article, in a minimal and complete set of lggs, which is the dual
analogue of a minimal and complete set of unifiers for equational unification
problems (Baader and Snyder, 1999).

As an important application, generalization is a relevant component for en-
suring termination of program manipulation techniques such as automatic pro-
gram analysis, synthesis, specialisation and transformation, in automatic the-
orem proving, logic programming, typed lambda calculus, term rewriting, etc.
For instance, in the partial evaluation (PE) of logic programs (Gallagher, 1993),
the general idea is to construct a set of finite (possibly partial) deduction trees
for a set of initial function calls (i.e., generic function calls using logical vari-
ables), and then extract from those trees a new program P that allows any
instance of the initial calls to be executed. To ensure that the partially evalu-
ated program P covers all the possible initial function calls, most PE procedures
recursively add other function calls that show up dynamically during the pro-
cess of constructing the deduction trees for the set of calls to be specialized.
This process could go on forever by adding more and more function calls that
have to be specialized and thus it requires some kind of generalization in order
to enforce the termination of the process: if a call occurring in P that is not
sufficiently covered by the program embeds an already evaluated call, then both
calls are generalized by computing their lgg and the specialization process is
restarted from the generalized call, ensuring that both calls will be covered by
the new resulting partially evaluated program.

The computation of lggs is also central to most program synthesis and learn-
ing algorithms such as those developed in the area of inductive logic program-
ming (Muggleton, 1999), and also to conjecture lemmas in inductive theorem
provers such as Nqthm (Boyer and Moore, 1980b) and its ACL2 extension (Kauf-
mann et al., 2000a). In the literature on machine learning and partial evalua-
tion, least general generalization is also known as most specific generalization
(msg) and least common anti–instance (lcai) (Mogensen, 2000). Least general
generalization was originally introduced by Plotkin in (Plotkin, 1970), see also
(Reynolds, 1970). Actually, Plotkin’s work originated from the consideration
in (Popplestone, 1969) that, since unification is useful in automatic deduction
by the resolution method, its dual might prove helpful for induction. Anti-
unification is also used in test case generation techniques to achieve appropriate
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coverage (Belli and Jack, 1998). Applications of generalization to invariant gen-
eration and software clone detection are described in (Bulychev et al., 2010).
Suggestion for auxiliary lemmas in equational inductive proofs, computation of
construction laws for given term sequences, and learning of screen editor com-
mand sequences by using generalization are discussed in (Burghardt, 2005).

To the best of our knowledge, most previous generalization algorithms as-
sume an untyped setting ; two notable exceptions are the generalization in the
higher-order setting of the calculus of constructions of (Pfenning, 1991) and
the order-sorted feature term generalization of (Aı̈t-Kaci, 1983; Aı̈t-Kaci and
Sasaki, 2001). However, many applications, for example to partial evaluation,
theorem proving, and program learning, for typed rule-based languages such as
ASF+SDF (Bergstra et al., 1989), Elan (Borovanský et al., 2002), OBJ (Goguen
et al., 2000), CafeOBJ (Diaconescu and Futatsugi, 1998), and Maude (Clavel
et al., 2007), require a first-order typed version of generalization which does not
seem to be available: we are not aware of any existing algorithm. Moreover,
several of the above-mentioned languages have an expressive order-sorted typed
setting with sorts, subsorts (where subsort inclusions form a partial order and
are interpreted semantically as set-theoretic inclusions of the corresponding data
sets), and subsort-overloaded function symbols (a feature also known as subtype
polymorphism), so that a symbol, for example +, can simultaneously exist for
various sorts in the same subsort hierarchy, such as + for natural, integers, and
rationals, and its semantic interpretations agree on common data items. Be-
cause of its support for order-sorted specifications, our generalization algorithm
can be applied to generalization problems in all the above-mentioned rule-based
languages.

Also, quite often all the above mentioned applications of generalization may
have to be carried out in contexts in which the function symbols satisfy certain
equational axioms. For example, in rule-based languages such as ASF+SDF
(Bergstra et al., 1989), Elan (Borovanský et al., 2002), OBJ (Goguen et al.,
2000), CafeOBJ (Diaconescu and Futatsugi, 1998), and Maude (Clavel et al.,
2007) some function symbols may be declared to obey given algebraic laws
(the so-called equational attributes of associativity and/or commutativity and/or
identity in OBJ, CafeOBJ and Maude), whose effect is to compute with equiv-
alence classes modulo such axioms while avoiding the risk of non–termination.
Similarly, theorem provers, both general first-order logic ones and inductive
theorem provers, routinely support commonly occurring equational theories for
some function symbols such as associativity-commutativity. Again, our gen-
eralization algorithm applies to all such typed languages and theorem provers
because of its support for associativity and/or commutativity and/or identity
axioms.

Surprisingly, unlike order-sorted unification, equational unification, and or-
der-sorted equational unification, which all the three have been thoroughly in-
vestigated in the literature —see, e.g., (Baader and Snyder, 1999; Meseguer
et al., 1989; Schmidt-Schauss, 1986; Siekmann, 1989; Smolka et al., 1989)—
to the best of our knowledge there seems to be no previous, systematic treat-
ment of order-sorted generalization, equational generalization, and order-sorted
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equational generalization, although some order-sorted cases and some unsorted
equational cases have been studied (see below).

To better motivate our work, let us first recall the standard generalization
problem. Let t1 and t2 be two terms. We want to find a term s that generalizes
both t1 and t2. In other words, both t1 and t2 must be substitution instances
of s. Such a term is, in general, not unique. For example, let t1 be the term
f(f(a, a), b) and let t2 be f(f(b, b), a). Then t = x trivially generalizes the two
terms, with x being a variable. Another possible generalization is f(x, y), with y
being also a variable. The term f(f(x, x), y) has the advantage of being the most
‘specific’ or least general generalization (lgg) (modulo variable renaming). More-
over, if we have order-sorted information in such a way that constant a is of sort
A, constant b is of sort B, but symbol f has two definitions C×C→ C and D×
D→ D where A and B are subsorts of C and D, then there are four least general
generalizations f(f(x:C, x:C), y:C), f(f(x:C, x:C), y:D) f(f(x:D, x:D), y:C), and
f(f(x:D, x:D), y:D). If we have equational properties for symbol f , for instance f
being associative and commutative, and we disregard order-sorted information,
then there are two least general generalizations f(x, x, y) and f(a, b, y), which
are incomparable using associativity and commutativity. Finally, if we com-
bine order-sorted information and equational properties, then there are six least
general generalizations f(a, b, y:C), f(a, b, y:D), f(x:C, x:C, y:C), f(x:C, x:C, y:D)
f(x:D, x:D, y:C), and f(x:D, x:D, y:D).

The extension of the generalization algorithm to deal with order-sorted func-
tions and equational theories is nontrivial, because of two important reasons.
First, as we mentioned the existence and uniqueness of a least general gener-
alization is typically lost. There is a finite and minimal set of least general
generalizations for two terms, so that any other generalization has at least one
of those as an instance. Such a set of lggs is the dual analogue of a mini-
mal and complete set of unifiers for non-unitary unification algorithms, such as
those for order-sorted unification, e.g., (Meseguer et al., 1989; Schmidt-Schauss,
1986; Smolka et al., 1989), and for equational unification, see, e.g., (Baader
and Snyder, 1999; Siekmann, 1989). Second, similarly to the case of equational
unification (Siekmann, 1989), computing least general generalizations modulo
an equational theory E is a difficult task due to the combinatorial explosion.
Depending on the theory E, a generalization problem may be undecidable, and
even if it is decidable, may have infinitely many solutions.

This article develops several generalization algorithms: an order-sorted gen-
eralization algorithm, a modular E–generalization algorithm, and the com-
bined version of both algorithms. In this article, we do not address the E-
generalization problem in its fullest generality. Our modular E–generalization
algorithm works for a parametric family of theories (Σ, E) such that any bi-
nary function symbol f ∈ Σ can have any combination of the following ax-
ioms: (i) associativity (Af ) f(x, f(y, z)) = f(f(x, y), z); (ii) commutativity
(Cf ) f(x, y) = f(y, x), and (iii) identity (Uf ) for a constant symbol, say, e,
i.e., f(x, e) = x and f(e, x) = x. In particular, f may not satisfy any such
axioms, which when it happens for all binary symbols f ∈ Σ gives us the stan-
dard, syntactic (order-sorted) generalization algorithm as a special case. As it is
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usual in current treatments of different formal deduction mechanisms, and has
become standard for the dual case of unification algorithms since Martelli and
Montanari —see, e.g., (Jouannaud and Kirchner, 1991; Martelli and Montanari,
1982)— we specify each generalization process by means of an inference system
rather than by an imperative-style algorithm.

Our contribution and plan of the paper

After some preliminaries in Section 2, we recall in Section 3 a syntactic
unsorted generalization algorithm as a special case to motivate later extensions.
The main contributions of the paper can be summarized as follows:

1. An order-sorted generalization algorithm (in Section 4). If two terms are
related in the sort ordering (their sorts are both in the same connected
component of the partial order of sorts), then there is in general no single
lgg, but the algorithm computes a finite and minimal set of least general
generalizations, so that any other generalization has at least one of those
as an instance. Such a set of lggs is the dual analogue of a minimal and
complete set of unifiers for non-unitary unification algorithms, such as
those for order-sorted unification.

2. A modular equational generalization algorithm (in Section 5). Indeed, we
provide different generalization algorithms —one for each kind of equa-
tional axiom— but the overall algorithm is modular in the precise sense
that the combination of different equational axioms for different function
symbols is automatic and seamless: the inference rules can be applied to
generalization problems involving each symbol with no need whatsoever
for any changes or adaptations. This is similar to, but much simpler and
easier than, modular methods for combining E-unification algorithms, e.g.,
(Baader and Snyder, 1999). To the best of our knowledge, ours are the
first equational least general generalization algorithms in the literature.
An interesting result is that associative generalization is finitary, whereas
associative unification is infinitary.

3. An order-sorted modular equational generalization algorithm (in Section 6),
which combines and refines the inference rules given in Sections 4 and 5.

4. Formal correctness, completeness, and termination results for all the above
generalization algorithms.

5. In Section 7, we present an implementation of the order-sorted, modu-
lar equational generalization algorithm, which is publicly available in the
Maude system, followed by some conclusions and directions for future
work in Section 8.

This paper is an extended and improved version of (Alpuente et al., 2009a,b)
which unifies both, the order-sorted generalization of (Alpuente et al., 2009b)
and the equational generalization of (Alpuente et al., 2009a) into a novel and
more powerful, combined algorithm. The proposed algorithms should be of in-
terest to developers of rule-based languages, theorem provers and equational
reasoning programs, as well as program manipulation tools such as program
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analyzers, partial evaluators, test case generators, and machine learning tools,
for (order-sorted) declarative languages and reasoning systems supporting com-
monly occurring equational axioms such as associativity, commutativity and
identity in a built–in and efficient way. For instance, this includes many the-
orem provers, and a variety of rule-based languages such as ASF+SDF, OBJ,
CafeOBJ, Elan, and Maude. Since the many-sorted and unsorted settings are
special instances of the order-sorted case, our algorithm applies a fortiori to
those less expressive settings.

Related work

Generalization goes back to work of Plotkin (Plotkin, 1970), Reynolds
(Reynolds, 1970), and Huet (Huet, 1976) and has been studied in detail by
other authors; see for example the survey (Lassez et al., 1988). Plotkin (Plotkin,
1970) and Reynolds (Reynolds, 1970) gave imperative–style algorithms for gen-
eralization, which are both essentially the same. Huet’s generalization algorithm
(Huet, 1976), formulated as a pair of recursive equations, cannot be understood
as an automated calculus due to some implicit assumptions in the treatment
of variables. A deterministic reconstruction of Huet’s algorithm is given in
(Østvold, 2004) which does not consider types either. A many-sorted gener-
alization algorithm was presented in (Frisch and Jr., 1990) that is provided
with the so-called S-sentences, which can be seen as a logical notation for enco-
ding taxonomic (or ordering) information. Anti-unification for unranked terms,
which differ from the standard ones by not having fixed arity for function sym-
bols, and for finite sequences of such terms (called hedges) is investigated in
(Kutsia et al., 2011); efficiency of the algorithm is improved by imposing a
rigidity function that is a parameter of the improved algorithm. The algorithm
for higher-order generalization in the calculus of constructions of (Pfenning,
1991) does not consider order-sorted theories or equational axioms either, and
for any two higher-order patterns, either there is no lgg (because the types are
incomparable), or there is a unique lgg.

The significance of equational generalization was already pointed out by
Pfenning in (Pfenning, 1991): “It appears that the intuitiveness of generaliza-
tions can be significantly improved if anti–unification takes into account addi-
tional equations which come from the object theory under consideration. It is
conceivable that there is an interesting theory of equational anti–unification to
be discovered”. However, to the best of our knowledge, we are not aware of any
existing equational generalization algorithm modulo the combination of associa-
tivity, commutativity and identity axioms. Actually, equational generalization
has been absolutely neglected, except for the theory of associativity and com-
mutativity (Pottier, 1989) (in french) and for commutative theories (Baader,
1991). For the commutative case, (Baader, 1991) shows that all commutative
theories are of generalization type ‘unitary’, but no generalization algorithm
is provided. Pottier (Pottier, 1989) provides (unsorted) inference rules which
mechanize generalization in AC theories, but these rules do not apply to the
separate cases of C or A alone, nor to arbitrary combinations of the C, A, and
U axioms. Finally, (Burghardt, 2005) presented a specially tailored algorithm
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that uses grammars to compute a finite representation of the (usually infinite)
set of all E-generalizations of given terms, provided that E leads to regular con-
gruence classes, which happens when E is the deductive closure of finitely many
ground equations. However, as a natural consequence of representing equiva-
lence classes of terms as regular tree grammars, the result of the E-generalization
process is not a term, but a regular tree grammar of terms.

Least general generalization in an order-sorted typed setting was first in-
vestigated in (Aı̈t-Kaci, 1983). A generalization algorithm is proposed in (Aı̈t-
Kaci, 1983) for feature terms, which are sorted, possibly nested, attribute-based
structures which extend algebraic terms by relaxing the fixed arity and fixed
indexing constraints. This is done by adding features (or attribute labels) to a
sort as argument indicators. Feature terms (previously known as indexed terms
or Ψ-terms) were originally proposed as flexible record structures for logic pro-
gramming and then used to describe different data models, including attributed
typed objects, in rule-based languages which are oriented towards applications
to knowledge representation and natural language processing.

Since functor symbols of feature terms are ordered sorts, a feature term
can be thought of as a type template which represents a set-denoting sort. By
choosing to define types to be terms, and the type classification ordering to be
term instantiation, the resulting type system is a lattice whose meet operation
(i.e., greatest lower bound) w.r.t. the subsumption relation induced by the
subset ordering (term instantiation) is first-order unification, and whose join
operation (i.e., least upper bound) is first-order generalization. This model is
familiar to Prolog programmers but unlike any other type system available in
typed languages. Moreover, by considering a partial order on functors, the
set of sorts is also given a pre-order structure. Intuitively, a feature term S
is subsumed by a feature term T if S contains more information than T , or,
equivalently, S denotes a subset of T . Under this subsumption order, the set
of all feature terms is a prelattice provided the sort symbols are ordered as a
lattice. Generalization is then defined as computing greater lower bounds in
the prelattice of feature terms. The lgg of feature terms is also described in
(Plaza, 1995). We also refer to (Plaza, 1995) for an account of several variants
of feature descriptions, as used in computational linguistics and related areas,
where generalization is recast as the retrieval of common structural similarity.

A rich description level is achieved when types are viewed as constraints.
In this context, terms can be thought of as “crystallized” sintaxes that dis-
solve into a semantically equivalent conjunction of elementary constraints, best
defined as a “soup”, thanks to the conjuntion being associative and commuta-
tive. In the constraint setting, feature terms correspond to order-sorted feature
(OSF) constraints in solved form (a normal form). Generalization in the OSF
foundation is investigated in (Aı̈t-Kaci and Sasaki, 2001), where an axiomatic
definition of feature term generalization is provided, together with its opera-
tional realization. In the axiomatic definition, generalization is presented as an
OSF-constraint construction process: the information conveyed by OSF terms
is given an alternative, syntactic presentation by means of a constraint clause,
and generalization is then defined by means of OSF clause generalization rules.
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The lattice of partially ordered type structures of (Aı̈t-Kaci, 1983; Aı̈t-Kaci
and Sasaki, 2001) and the order-sorted equational setting of rewriting logic
(Meseguer, 1997) differ in several aspects and are incomparable, i.e., one is
not subsumed into the other. The differences, explained below, are based on
term representation, sort structure, and algebraic axioms. The order-sorted
type structure is much simpler and typically finite, whereas the association of
a type to each feature term makes the set of types infinite. In the much sim-
pler order-sorted setting, only the subsort relations between basic sorts need
to be explicitly considered, although implicitly each term with variables can
be interpreted set-theoretically as the set of its substitution instances. Obvi-
ously, by an encoding of first order terms as feature-terms —the features simply
being argument positions, e.g., the term f(t1, .., tn) if and only if the feature
term f(1 ⇒ t1, .., , n ⇒ tn)— the order-sorted syntactic algorithm presented
in (Alpuente et al., 2009b) could be seen as a special case of (Aı̈t-Kaci, 1983).
However, feature types can also be expressed as algebraic types if we supply
the missing constructors for attributes, which are called implicit constructors
in (Smolka and Aı̈t-Kaci, 1989). This encoding was used to develop a frame-
work, based on equational constraint solving, where feature term unification
and order-sorted term unification coexist. Thus, each term representations can
be encoded into the other.

On the other hand, as already hinted at above, the sort structure is different
in both approaches and, thus, the algorithm presented in (Aı̈t-Kaci, 2007) is
different of what we present here. In (Aı̈t-Kaci and Sasaki, 2001), least upper
bounds (lubs) are canonically represented as disjunctive sets of maximal terms:
if one wants to specify that an element is of sort A or B when no explicit type
symbol is known as their lub, then this element is induced to be of type A∨B.
Instead, in an order-sorted setting (Goguen and Meseguer, 1992; Meseguer,
1998) the sort structure is much simpler, namely a (typically finite) poset as
opposed to an infinite lattice. Yet, under the easily checkable assumption of
preregularity (or E-preregularity for equational axioms E of associativity and/or
commutativity and/or identity), each term (resp. each E-equivalence class of
terms) has a least sort possible, see (Goguen and Meseguer, 1992), and (Clavel
et al., 2007, 22.2.5). Furthermore, unlike in the feature term case, there is no
global assumption of a top sort, although each connected component in the poset
of sorts can be conservatively extended with a top sort for that component (the
so-called kinds, see (Clavel et al., 2007; Meseguer, 1998) and Section 2). This
means that certain generalization problems are regarded as incoherent and have
no solution. For example, there is no generalization for the terms x:Bool, and
y:Nat, assuming that the connected components of sorts for numbers (where Nat
is one of the sorts) and truth values (where Bool is another sort) are disjoint.
Thus, the sort structure contains different assumptions in each approach.

Finally, even if the comma (conjunction) is handled in the OSF as an
associative-commutative operator, the OSF does not support the definition of
operators with combinations of algebraic properties such as commutativity, as-
sociativity and identity, while each operator in our order-sorted setting can have
any desired combination of these algebraic properties.
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2. Preliminaries

We follow the classical notation and terminology from (TeReSe, 2003) for
term rewriting and from (Goguen and Meseguer, 1992; Meseguer, 1997) for
order-sorted equational logic.

We assume an order-sorted signature Σ with a finite poset of sorts (S,≤) and
a finite number of function symbols. We furthermore assume a kind-completed
signature such that: (i) each connected component in the poset ordering has
a top sort, and for each s ∈ S we denote by [s] the top sort in the connected
component of s, (i.e., if s and s′ are sorts in the same connected component,
then [s] = [s′]); and (ii) for each operator declaration f : s1 × . . .× sn → s in Σ,
there is also a declaration f : [s1]× . . .× [sn]→ [s] in Σ.

We assume pre-regularity of the signature Σ: for each operator declaration
f : s1× . . .× sn → s, and for the set Sf containing sorts s′ appearing in operator
declarations of the form f : s′1, . . . , s

′
n → s′ in Σ such that si ≤ s′i for 1 ≤ i ≤ n,

then the set Sf has a least sort. The unique least sort of each Σ-term t is denoted
by LS(t). Therefore, the top sort in the connected component of LS(t) is denoted
by [LS(t)]. Since the poset (S,≤) is finite and each connected component has a
top sort, given any two sorts s and s′ in the same connected component, the set
of least upper bound sorts of s and s′, although non necessarily a singleton set,
always exists and is denoted by LUBS(s, s′).

Throughout this paper, we assume that Σ has no ad-hoc operator overload-
ing, i.e., any two operator declarations for the same symbol f with equal number
of arguments, f : s1 × . . . × sn → s and f : s′1 × . . . × s′n → s′, must necessarily
have [s1] = [s′1], . . . , [sn] = [s′n], [s] = [s′].

We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. We write the sort associated to a variable explicitly
with a colon and the sort, i.e., x:Nat. A fresh variable is a variable that appears
nowhere else. TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣ(X ) and TΣ for the corresponding term algebras.
For a term t, we write Var(t) for the set of all variables in t. We assume that
TΣ,s 6= ∅ for every sort s.

The set of positions of a term t, written Pos(t), is represented as a sequence
of natural numbers, e.g. 1.2.1. The set of non-variable positions is written
PosΣ(t). The root position of a term is Λ. The subterm of t at position p is
t|p and t[u]p is the term t where t|p is replaced by u. By root(t) we denote the
symbol occurring at the root position of t.

A substitution σ is a mapping from a finite subset of X , written Dom(σ),
to TΣ(X ). The set of variables introduced by σ is Ran(σ). The identity sub-
stitution is id. Substitutions are homomorphically extended to TΣ(X ). The
application of a substitution σ to a term t is denoted by tσ. The restriction of
σ to a set of variables V is σ|V . Composition of two substitutions is denoted by
juxtaposition, i.e., σσ′(X) = σ′(σ(X)) for any variableX. We call a substitution
σ a renaming if there is another substitution σ−1 such that (σσ−1)|Dom(σ) = id.
Substitutions are sort–preserving, i.e., for any substitution σ, if X ∈ Xs, then
Xσ ∈ TΣ(X )s. We assume substitutions are idempotent, i.e., σ(X) = σ(σ(X))
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for any variable X.
A Σ-equation is an unoriented pair t = t′. An equational theory (Σ, E) is a

set of Σ-equations. An equational theory (Σ, E) is regular if for each t = t′ ∈ E,
we have Var(t) = Var(t′). Given Σ and a set E of Σ-equations, order-sorted
equational logic induces a congruence relation =E on terms t, t′ ∈ TΣ(X ), see
(Goguen and Meseguer, 1992; Meseguer, 1997).

The E-subsumption preorder ≤E (simply ≤ when E is empty) holds between
t, t′ ∈ TΣ(X ), denoted t ≤E t′ (meaning that t is more general than t′ modulo
E), if there is a substitution σ such that tσ =E t′; such a substitution σ is said
to be an E-matcher for t′ in t. The E-renaming equivalence t 'E t′ (or ' if E
is empty), holds if there is a renaming θ such that tθ =E t′. We write t <E t′

(or < if E is empty) if t ≤E t′ and t 6'E t′.

3. Syntactic Least General Generalization

In order to better present our work, in this section we revisit untyped gen-
eralization (Huet, 1976; Plotkin, 1970; Reynolds, 1970) and formalize the lgg
computation by means of a new inference system that will be useful in our sub-
sequent extension of this algorithm to the order–sorted setting given in Section
4 and to the equational setting given in Section 5. Throughout this section, we
assume unsorted terms, i.e., t ∈ TΣ(X ), with an unsorted signature Σ. This can
be understood as the special case of having only one sort.

Most general unification of a (unifiable) set M of terms is the least up-
per bound (most general instance, mgi) of M under the standard instantiation
quasi-ordering ≤ on terms given by the relation of being “more general” (i.e., s
is an instance of t, written t ≤ s, iff there exists θ such that tθ = s). Formally,

instances(M) = {t′ ∈ TΣ(X ) | ∀t ∈M, t ≤ t′}

and
mgi(M) = s ∈ instances(M) s.t. ∀t′ ∈ instances(M), s ≤ t′.

Least general generalization, lgg, of M corresponds to the greatest lower bound,
i.e.,

generalizations(M) = {t′ ∈ TΣ(X ) | ∀t ∈M, t′ ≤ t}

and

lgg(M) = s ∈ generalizations(M) s.t. ∀t′ ∈ generalizations(M), t′ ≤ s.

The non-deterministic generalization algorithm λ of Huet (Huet, 1976) is as
follows; also treated in detail in (Lassez et al., 1988). Let Φ be any bijection
between TΣ(X ) × TΣ(X ) and a set of variables V . The recursive function λ on
TΣ(X ) × TΣ(X ) that computes the lgg of two terms is given by:

• λ(f(s1, . . . , sm), f(t1, . . . , tm)) = f(λ(s1, t1), . . . , λ(sm, tm)), for f ∈ Σ

• λ(s, t) = Φ(s, t), otherwise.
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Central to this algorithm is the global function Φ that is used to guarantee
that the same disagreements are replaced by the same variable in both terms.
Different choices of Φ may result in different generalizations that are equivalent
up to variable renaming.

In the following, we provide a novel set of inference rules for computing the
(syntactic) least generalization of two terms, first proposed in (Alpuente et al.,
2009b), that uses a local store of already solved generalization sub-problems.
The advantage of using such a store is that, differently from the global repository
Φ, our stores are local to the computation traces. This non–globality of the
stores is the key for effectively computing a complete and minimal set of least
general generalizations in both, the order–sorted extension and the equational
generalization algorithm developed in this work. A different formulation by
means of inference rules is given in (Pottier, 1989), where the store is not explicit
in the configurations but is implicitly kept within the constraint and substitution
components, which is less intuitive and causes the accumulation of a lot of
bindings for many variables with the same instantiations.

In our formulation, we represent a generalization problem between terms s

and t as a constraint s
x

, t, where x is a fresh variable that stands for a tentative
generalization of s and t. By means of this representation, any generalization
w of s and t is given by a suitable substitution θ such that xθ = w.

We compute the least general generalization of s and t, written lgg(s, t), by
means of a transition system (Conf,→) (Plotkin, 2004) where Conf is a set
of configurations and the transition relation → is given by a set of inference
rules. Besides the constraint component, i.e., a set of constraints of the form

ti
xi

, ti′ , and the substitution component, i.e., the partial substitution computed
so far, configurations also include the extra constraint component that we call
the store.

Definition 1. A configuration 〈CT | S | θ〉 consists of three components: (i)

the constraint component CT, i.e., a conjuntion s1

x1

, t1∧ . . .∧sn
xn

, tn that rep-
resents the set of unsolved constraints, (ii) the store component S, that records
the set of already solved constraints, and (iii) the substitution component θ, that
consists of bindings for some variables previously met during the computation.

Starting from the initial configuration 〈t
x

, t′ | ∅ | id〉, configurations are trans-
formed until a terminal configuration of the form 〈∅ | S | θ〉, i.e., a normal form
w.r.t. the inference system, is reached. Then, the lgg of t and t′ is given by xθ.

As we shall see, θ is unique up to renaming. Given a constraint t
x

, t′, we call x
an index variable or a variable at the index position of the constraint. Given a

set C of constraints, each of the form t
x

, t′ for some t, t′, and x, we define the

set of index variables as Index(C) = {y ∈ X | ∃u
y

, v ∈ C}.
The transition relation→ is given by the smallest relation satisfying the rules

in Figure 1. In this paper, variables of terms t and t′ in a generalization problem

11



Decompose
f ∈ (Σ ∪ X )

〈f(t1, . . . , tn)
x

, f(t′1, . . . , t
′
n) ∧ CT | S | θ〉 →

〈t1
x1

, t′1 ∧ . . . ∧ tn
xn

, t′n ∧ CT | S | θσ〉
where σ = {x 7→ f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and n ≥ 0

Solve
root(t) 6= root(t′) ∧ @y : t

y

, t′ ∈ S

〈t
x

, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t
x

, t′ | θ〉

Recover
root(t) 6= root(t′)

〈t
x

, t′ ∧ CT | S ∧ t
y

, t′ | θ〉 → 〈CT | S ∧ t
y

, t′ | θσ〉
where σ = {x 7→ y}

Figure 1: Rules for least general generalization

t
x

, t′ are considered as constants, and are never instantiated. The meaning of
the rules is as follows.

• The rule Decompose is the syntactic decomposition generating new con-
straints to be solved.

• The rule Solve checks that a constraint t
x

, t′ ∈ CT with root(t) 6= root(s),

is not already solved. If not already there, the solved constraint t
x

, t′ is
added to the store S.

• The rule Recover checks if a constraint t
x

, t′ ∈ CT with root(t) 6=
root(t′), is already solved, i.e., if there is already a constraint t

y

, t′ ∈ S
for the same pair of terms (t, t′) with variable y. This is needed when the
input terms of the generalization problem contain the same generalization
subproblems more than once, e.g., the lgg of f(f(a, a), a) and f(f(b, b), a)
is f(f(y, y), a).

Example 1. Consider the terms t = f(g(a), g(y), a) and t′ = f(g(b), g(y), b).
In order to compute the least general generalization of t and t′, we apply the
inference rules of Figure 1. The substitution component in the final configuration
obtained by the lgg algorithm is θ = {x 7→ f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→
g(y), x5 7→ y, x3 7→ x4}, hence the computed lgg is xθ = f(g(x4), g(y), x4). The
execution trace is showed in Figure 2. Note that variable x4 is repeated, to
ensure that the least general generalization is obtained.

3.1. Termination and Confluence of the untyped, syntactic least general gener-
alization algorithm

Termination of the transition system (Conf,→) is straightforward.
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lgg(f(g(a), g(y), a), f(g(b), g(y), b))
↓ Initial Configuration

〈f(g(a), g(y), a)
x

, f(g(b), g(y), b) | ∅ | id〉
↓ Decompose

〈g(a)
x1
, g(b) ∧ g(y)

x2
, g(y) ∧ a

x3
, b | ∅ | {x 7→ f(x1, x2, x3)}〉

↓ Decompose

〈a
x4
, b ∧ g(y)

x2
, g(y) ∧ a

x3
, b | ∅ | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}〉

↓ Solve

〈g(y)
x2
, g(y) ∧ a

x3
, b | a

x4
, b | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}〉
↓ Decompose

〈y
x5
, y ∧ a

x3
, b | a

x4
, b | {x 7→ f(g(x4), g(x5), x3), x1 7→ g(x4), x2 7→ g(x5)}〉

↓ Decompose

〈a
x3
, b | a

x4
, b | {x 7→ f(g(x4), g(y), x3), x1 7→ g(x4), x2 7→ g(y), x5 7→ y}〉

↓ Recover

〈∅ | a
x4
, b | {x 7→ f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→ g(y), x5 7→ y, x3 7→ x4}〉

Figure 2: Computation trace for (syntactic) generalization of terms f(g(a), g(y), a) and
f(g(b), g(y), b)

Theorem 1 (Termination). Every derivation stemming from an initial con-

figuration 〈t
x

, t′ | ∅ | id〉 using the inference rules of Figure 1 terminates with a
configuration 〈∅ | S | θ〉.

Proof. Let |u| be the number of symbol occurrences in the syntactic object u.
Since the minimum of |t| and |t′| is an upper bound to the number of times that
the inference rule Decompose of Figure 1 can be applied, and the application of
rules Solve and Recover strictly decreases the size |CT | of the CT component of
the lgg configurations at each step, then any derivation necessarily terminates.

2

Note that the inference rules of Figure 1 are non–deterministic (i.e., they
depend on the chosen constraint of the set CT ). However, in the following we
show that they are confluent up to variable renaming (i.e., the chosen transition
is irrelevant for computation of terminal configurations). This justifies the well-
known fact that the least general generalization of two terms is unique up to
variable renaming (Lassez et al., 1988). In order to prove the confluence up
to renaming of the calculus, let us first demonstrate an auxiliary result stating
that only (independently) fresh variables y appear in the index positions of the
constraints in CT and S components of lgg configurations.

Lemma 1 (Uniqueness of Generalization Variables). Let t, t′ ∈ TΣ(X )

and x ∈ X . For every derivation 〈t
x

, t′ | ∅ | id〉 →∗ 〈CT | S | θ〉 stemming

from the initial configuration 〈t
x

, t′ | ∅ | id〉 using the inference rules of Fig-

ure 1, and for every u
y

, v ∈ CT (similarly u
y

, v ∈ S), the variable y does not
appear in any other constraint in CT or S, i.e., there are no u′, v′ ∈ TΣ(X )

such that u′
y

, v′ ∈ CT or u′
y

, v′ ∈ S.
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Proof. By induction on the length n of the sequence 〈t
x

, t′ | ∅ | id〉 →n

〈CT | S | θ〉. If n = 0, then the conclusion follows, since CT = t
x

, t′ and S = ∅.
If n > 0, then we split the derivation into 〈t

x

, t′ | ∅ | id〉 →n−1 〈CT ′ | S′ | θ′〉 →
〈CT | S | θ〉 and we consider each inference rule of Figure 1 separately:

• Decompose. Here CT ′ = f(t1, . . . , tn)
x

, f(t′1, . . . , t
′
n) ∧ CT ′′, S = S′,

CT = t1
x1

, t′1 ∧ . . . ∧ tn
xn

, t′n ∧ CT ′′, and θ = θ′σ where σ = {x 7→
f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and n ≥ 0. By induction
hypothesis, x does not appear in CT ′′ and S′. Thus, it folllows that
x1, . . . , xn do not appear in CT and S.

• Solve. Here CT ′ = t
x

, t′ ∧ CT ′′, CT = CT ′′, S = S′, θ = θ′, and the
conclusion follows by induction hypothesis, since x does not appear in CT ′

and S′.

• Recover. Here CT ′ = t
x

, t′ ∧ CT ′′, CT = CT ′, S′ = t
y

, t′ ∧ S′′, S = S′,
θ = θ′σ, σ = {x 7→ y}, and the conclusion follows by induction hypothesis,
since both x and y do not appear in CT ′ and S′. 2

Now we are ready to demonstrate the confluence of the lgg computations.

Theorem 2 (Confluence). The set of derivations stemming from any initial

configuration 〈t
x

, t′ | ∅ | id〉 using the inference rules of Figure 1 contain a
unique solution 〈∅ | S | θ〉 up to renaming.

Proof. Given a configuration 〈t
x

, t′ ∧ CT | S | θ〉, there is only one possible

transition step applicable to t
x

, t′ thanks to the non-overlapping inference rules
of Figure 1. Thus, we must consider the case of having two constraints with the
corresponding transitions.

Given any configuration 〈t1
y

, t2 ∧ t′1
y′

, t′2 ∧ CT | S | θ〉 stemming from the

initial configuration 〈t
x

, t′ | ∅ | id〉, we analyse each possible inference rule

application to both t1
y

, t2 and t′1
y′

, t′2; we underline the relation → with the
name of the inference rule used for transformation.

• If Decompose is applied to at least one of t1
y

, t2 and t′1
y′

, t′2, then there
is no interaction between the constraints, since the Decompose rule is not
recording information in the store S, and the conclusion follows from the
uniqueness of index variables (Lemma 1). That is, given two inference
steps

〈t1
y

, t2 ∧ t′1
y′

, t′2 ∧ CT | S | θ〉 → 〈t′1
y′

, t′2 ∧ CT1 | S1 | θ1〉
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and

〈t1
y

, t2 ∧ t′1
y′

, t′2 ∧ CT | S | θ〉 → 〈t1
y

, t2 ∧ CT2 | S2 | θ2〉,

then there are two configurations 〈CT12 | S12 | θ12〉 and 〈CT21 | S21 | θ21〉
such that

〈t′1
y′

, t′2 ∧ CT1 | S1 | θ1〉 → 〈CT12 | S12 | θ12〉,

〈t1
y

, t2 ∧ CT2 | S2 | θ2〉 → 〈CT21 | S21 | θ21〉,

and 〈CT12 | S12 | θ12〉 ' 〈CT21 | S21 | θ21〉. That is, there is a renam-
ing substitution between both configurations thanks to the uniqueness of
added index variables.

• If Recover is applied to at least one of t1
y

, t2 and t′1
y′

, t′2, we have the
same conclusion, since the Recover rule is not recording information in
the store S.

• If t1 = t′1 and t2 = t′2, then the application of the inference rule Solve to

t1
y

, t2 disables the application of the inference rule Solve to t′1
y′

, t′2 but

enables the application of the inference rule Recover to t′1
y′

, t′2. That is,
given the two inference steps

〈t1
y

, t2 ∧ t1
y′

, t2 ∧ CT | S | θ〉 →Solve 〈t1
y′

, t2 ∧ CT | S ∧ t1
y

, t2 | θ〉

and

〈t1
y

, t2 ∧ t1
y′

, t2 ∧ CT | S | θ〉 →Solve 〈t1
y

, t2 ∧ CT | S ∧ t1
y′

, t2 | θ〉,

we have that

〈t1
y′

, t2 ∧ CT | S ∧ t1
y

, t2 | θ〉 →Recover 〈CT | S ∧ t1
y

, t2 | θ〉

and

〈t1
y

, t2 ∧ CT | S ∧ t1
y′

, t2 | θ〉 →Recover 〈CT | S ∧ t1
y′

, t2 | θ〉.

Thus, 〈CT | S ∧ t1
y

, t2 | θ〉 ' 〈CT | S ∧ t1
y′

, t2 | θ〉 and the conclusion
follows. 2

3.2. Correctness and Completeness

Before proving correctness and completeness of the above inference rules, we
introduce the auxiliary concepts of a conflict position and of conflict pairs, and
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three auxiliary lemmas. Also, note that for a given constraint t
x

, t′, the variable
x is a valid generalization of t and t′, though generally not the least one.

The first lemma states that the range of the substitutions partially computed
at any stage of a generalization derivation coincides with the set of the index
variables of the configuration.

Lemma 2. Given terms t and t′ and a fresh variable x such that 〈t
x

, t′ | ∅ |
id 〉 →∗ 〈CT | S | θ〉 using the inference rules of Figure 1, then Index(S∪CT ) ⊆
Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction. 2

The following lemma establishes an auxiliary property that is useful for
defining the notion of a conflict pair of terms.

Lemma 3. Given terms t and t′ and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗

〈u
y

, v∧CT | S | θ〉 using the inference rules of Figure 1 iff there exists a position
p of t and t′ such that t|p = u, t′|p = v, and ∀p′ < p, root(t|p′) = root(t′|p′).

Proof. Straightforward by successive application of the inference rule Decom-
pose of Figure 1. 2

The notion of a conflict pair is the key idea for our generalization proof
schema.

Definition 2 (Conflict Position/Pair). Given terms t and t′, a position p ∈
Pos(t) ∩ Pos(t′) is called a conflict position of t and t′ if root(t|p) 6= root(t′|p)
and for all q < p, root(t|q) = root(t′|q). Given terms t and t′, the pair (u, v) is
called a conflict pair of t and t′ if there exists at least one conflict position p of
t and t′ such that u = t|p and v = t′|p.

The following lemma states the appropriate connection between the con-
straints in a derivation and the conflict pairs of the initial configuration.

Lemma 4. Given terms t and t′ and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗

〈CT | u
y

, v ∧ S | θ〉 using the inference rules of Figure 1 iff there exists a
conflict position p of t and t′ such that t|p = u and t′|p = v.

Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧CT1 |
S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v∧CT1 | S1 | θ1〉 → 〈CT2 | u
y

, v∧S2 | θ2〉 →∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 3, there exists a
position p of t and t′ such that t|p = u and t′|p = v. Since root(u) 6= root(v), p
is a conflict position.
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(⇐) By Lemma 3, there is a configuration 〈u
y

, v ∧ CT1 | S1 | θ1〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1, and root(u) 6= root(v).

Then, the inference rule Solve is applied, i.e., 〈u
y

, v ∧ CT1 | S1 | θ1〉 → 〈CT1 |
u
y

, v∧S1 | θ1〉 and the constraint u
y

, v will be part of S in the final configuration
〈∅ | S | θ〉. 2

The following lemma establishes the link between the substitution compo-
nent of a terminal configuration (simply called “computed substitution” from
now on) and a proper generalization term.

Lemma 5. Given terms t and t′ and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C |
S | θ〉 using the inference rules of Figure 1 iff xθ is a generalization of t and t′.

Proof. By structural induction on the term xθ. If xθ = x, then θ = id and
the conclusion follows. If xθ = f(u1, . . . , uk), then the Decompose inference
rule is applied and we have that t = f(t1, . . . , tk) and t′ = f(t′1, . . . , t

′
k). By

induction hypothesis, ui is a generalization of ti and t′i, for each i. Now, if
there is no variable shared between two different ui, then the conclusion follows.
Otherwise, for each variable z shared between two different terms ui and uj ,

there is a constraint w1

z

, w2 ∈ S and, by Lemma 4, there are conflict positions
pi in ti and t′i, and pj in tj and t′j such that ti|pi = tj |pj and t′i|pi = t′j |pj . Thus,
the conclusion follows. 2

Finally, correctness and completeness are proved as follows.

Theorem 3 (Correctness and Completeness). Given terms t and t′ and a

fresh variable x, u is the lgg of t and t′ iff 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using
the inference rules of Figure 1 and u ' xθ.

Proof. We rely on the already known existence and uniqueness of the lgg
of t and t′ (Lassez et al., 1988) and reason by contradiction. Consider the

normalizing derivation 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉. By Lemma 5, xθ is a
generalization of t and t′. If xθ is not the lgg of t and t′ up to renaming, then
there is a term u which is the lgg of t and t′ and a substitution ρ which is
not a variable renaming such that xθρ = u. By Lemma 2, Ran(θ) = Var(xθ),
hence we can choose ρ with Dom(ρ) = Var(xθ). Now, since ρ is not a variable
renaming, either:

1. there are variables y, y′ ∈ Var(xθ) and a variable z such that yρ = y′ρ = z,
or

2. there is a variable y ∈ Var(xθ) and a non-variable term v such that yρ = v.

In case (1), there are two conflict positions p, p′ for t and t′ such that u|p = z =
u|p′ and xθ|p = y and xθ|p′ = y′. In particular, this means that t|p = t|p′ and
t′|p = t′|p′ . But this is impossible by Lemmas 4 and 2. In case (2), there is a
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Decompose
f ∈ (Σ ∪ X ) ∧ f : [s1]× . . .× [sn]→ [s]

〈f(t1, . . . , tn)
x:[s]

, f(s1, . . . , sn) ∧ C | S | θ〉 →

〈t1
x1:[s1]

, s1 ∧ . . . ∧ tn
xn:[sn]

, sn ∧ C | S | θσ〉
where σ = {x:[s] 7→ f(x1:[s1], . . . , xn:[sn])}, x1:[s1], . . . , xn:[sn] are fresh vari-
ables, and n ≥ 0

Solve
root(t) 6= root(t′) ∧ s′ ∈ LUBS(LS(t), LS(t′)) ∧ @y @s′′ : t

y:s′′

, t′ ∈ S

〈t
x:[s]

, t′ ∧ C | S | θ〉 → 〈C | S ∧ t
z:s′

, t′ | θσ〉

where σ = {x:[s] 7→ z:s′} and z:s′ is a fresh variable.

Recover
root(t) 6= root(t′)

〈t
x:[s]

, t′ ∧ C | S ∧ t
y:s′

, t′ | θ〉 → 〈C | S ∧ t
y:s′

, t′ | θσ〉

where σ = {x:[s] 7→ y:s′}

Figure 3: Rules for order–sorted least general generalization.

position p such that xθ|p = y and p is neither a conflict position of t and t′ nor
it is under a conflict position of t and t′. Since this is impossible by Lemmas 4
and 2, the claim is proved. 2

Let us mention that the generalization algorithm can also be used to compute
(thanks to associativity and commutativity of symbol ∧) the lgg of an arbitrary
set of terms by successively computing the lgg of two elements of the set in the
obvious way.

4. Order–sorted Least General Generalization

In this section, we generalize the unsorted generalization algorithm presented
in Section 3 to the order-sorted setting.

We consider two terms t and t′ having the same top sort, i.e., [LS(t)] =
[LS(t′)]. Otherwise they are incomparable and no generalization exists. Starting

from the initial configuration 〈t
x:[s]

, t′ | ∅ | id〉 where [s] = [LS(t)] = [LS(t′)],
configurations are transformed until a terminal configuration 〈∅ | S | θ〉 is
reached. In the order–sorted setting, the lgg, in general, is not unique. Each
terminal configuration 〈∅ | S | θ〉 provides an lgg of t and t′ given by (x:[s])θ. A
substitution δ is called downgrading if each binding is of the form x:s 7→ x′:s′,
where x and x′ are variables and s′ ≤ s.

The transition relation → is given by the smallest relation satisfying the
rules in Figure 3. The meaning of these rules is as follows.
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lgg(f(x:A), f(y:B))
↓ Initial Configuration

〈f(x:A)
z:E

, f(y:B) | ∅ | id〉
↓ Decompose

〈x:A
z1:E

, y:B | ∅ | {z:E 7→ f(z1:E)}〉
↙ Solve ↘

〈∅ | x:A
z2:C

, y:B | {z:E 7→ f(z2:C), z1:E 7→ z2:C}〉 〈∅ | x:A
z3:D

, y:B | {z:E 7→ f(z3:D), z1:E 7→ z3:D}〉

Figure 4: Computation trace for order–sorted generalization of terms f(x) and f(y)

A

C D

E

B

Figure 5: Sort hierarchy

• The rule Decompose is the syntactic decomposition generating new con-
straints to be solved. Fresh variables are initially assigned a top sort,
which will be appropriately “downgraded” when necessary.

• The rule Recover reuses a previously solved constraint, similarly to to
the corresponding unsorted rule of Figure 1.

• The rule Solve checks that a constraint t
y

, t′ ∈ C, with root(s) 6= root(t),

is not already solved. Then the solved constraint t
y

, t′ is added to the store
S, and the substitution {x 7→ z} is composed with the substitution part,
where z is a fresh variable with sort in the LUBS of the least sorts of both
terms. Note that this is the only additional source of non-determinism
(besides the choice of the constraint to work on) in our inference rules,
in contrast to Figure 1. This extra non–determinism causes our rules to
be non–confluent in general. However, this is essential for our algorithm
to work, since different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉
correspond to different (least general) generalizations xθ1, . . . , xθn.

Example 2. Let t = f(x:A) and t′ = f(y:B) be two terms where x and y are
variables of sorts A and B, respectively, and assume the sort hierarchy that is
shown in Figure 5. The typed definition of f is f : E → E. Starting from the

initial configuration 〈f(x:A)
z:E

, f(y:B) | ∅ | id 〉, we apply the inference rules of
Figure 3 and the substitutions obtained by the lgg algorithm are θ1 = {z:E 7→
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f(z2:C), z1:E 7→ z2:C} and θ2 = {z:E 7→ f(z3:D), z1:E 7→ z3:D}. Note that θ1 and
θ2 are incomparable, so that we have two posible lggs where (z:E)θ1 = f(z2:C)
and (z:E)θ2 = f(z3:D). The computation of both solutions is illustrated in Figure
4.

4.1. Termination and Confluence

Termination of the transition system (Conf,→) is straightforward.

Theorem 4 (Termination). Every derivation stemming from an initial con-

figuration 〈t
x:s

, t′ | ∅ | id 〉 using the inference rules of Figure 3 where s =
[LS(t)] = [LS(t′)] terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1. 2

The transition system (Conf,→) is no longer confluent, as shown in Example
2. However, confluence can be recovered under appropriate conditions.

Definition 3 (Top-sorted Constant). Given an order-sorted signature Σ, we
say that a constant c : nil → s is top-sorted if s = [s].

Definition 4 (Top-sorted Variable). A variable x:s is called top-sorted if
s = [s].

Definition 5 (Top-sorted Term). A term t is called top-sorted if every vari-
able and every constant in t are top-sorted.

The following result uses the assumption of a kind-completed order-sorted
signature described in Section 2.

Lemma 6. Given a top-sorted term t, LS(t) = [LS(t)].

Proof. By structural induction on t. The cases when t is a variable or a
constant are straightforward. If t = f(t1, . . . , tn), then by induction hypothesis,
LS(t1) = [LS(t1)], . . . , LS(tn) = [LS(tn)], and given that f : [s1]× · · · × [sn]→
[s], we have that LS(t) = [LS(t)]. 2

Lemma 7. Given two top-sorted terms t, t′, LUBS(LS(t), LS(t′)) = LS(t) =
LS(t′) = [LS(t)] = [LS(t′)].

Proof. By Lemma 6, LS(t) = [LS(t)] and LS(t′) = [LS(t′)] and, since [LS(t)]
is the top sort in the connected component, we conclude that
LUBS(LS(t), LS(t′)) = {LS(t)} = {LS(t′)}. 2

Theorem 5 (Confluence). The set of derivations stemming from an initial

configuration 〈t
x:s

, t′ | ∅ | id 〉 using the inference rules of Figure 3 where t and
t′ are top-sorted terms and s = [LS(t)] = [LS(t′)], contain a unique solution
〈∅ | S | θ〉 up to renaming.

Proof. Similar to the proof of Theorem 2, but taking into account that Lemma 7
ensures that there is no non-determinism involved in the application of the in-
ference rule Solve. 2

20



4.2. Order-sorted lgg computation by subsort specialization

Even if the set of least general generalizations of two terms is not generally
a singleton, there is still a unique top-sorted generalization that can just be
specialized into the appropriate subsorts. This enables a different approach to
computing order-sorted least general generalizations by just removing sorts (i.e.,
upgrading variables to top sorts) in order to compute (unsorted) lgg’s, and then
obtaining the right subsorts by a suitable post-processing. Obviously, the set
of inference rules of Figure 3 has a better performance than this alternative
method of first upgrading variables, computing the standard lggs, and then
downgrading variables, since the inference rules of Figure 3 detect sort-based
failures much earlier. Indeed, we do not use this approach in practice, but we
only use it for the proofs of correctness and completeness of the inference rules
given in Section 4.3 below. Note that this proof schema for correctness and
completeness of inference rules is useful here for the order-sorted generalization
and also for the order-sorted E-generalization of Section 6 below.

To simplify our notation, in the following we write t[u]p1,...,pn instead of
((t[u]p1) · · · )[u]pn . The notion of conflict pair of Definition 2 can be extended
to the order-sorted case in the obvious way, since two variables of different sorts
having the same name, e.g. x:s1 and x:s2, are considered to be different.

Definition 6 (Top-sorted Generalization). Given terms t and t′ such that
[LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the conflict pairs of t and t′, and
for each such conflict pair (ui, vi), let pi1, . . . , p

i
ni

be the corresponding conflict
positions (i.e., t|pij = ui and t′|pij = vi for 1 ≤ j ≤ ni), and let si = [LS(ui)] =

[LS(vi)]. The top-sorted generalization of t and t′ is defined by

tsg(t, t′) = ((t[x1:s1]p11,...,p1n1
) · · · )[xk:sk]pk1 ,...,pknk

where x1:s1, . . . , xk:sk are fresh variables.

Example 3. Let us consider the terms t = f(x:A) and t′ = f(y:B) of Exam-
ple 2. We have that tsg(t, t′) = f(z:E), since there is only one conflict pair
(x:A, y:B) and [A] = [B] = E.

Once the unique top-sorted lgg is generated, the order-sorted lgg’s are ob-
tained by subsort specialization.

Definition 7 (Sort-specialized Generalization). Given terms t and t′ such
that [LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the conflict pairs of t and t′.
We define

sort-down-subs(t, t′) = {ρ | Dom(ρ) = {x1:s1, . . . , xk:sk}
∧ ∀1 ≤ i ≤ k, ρ(xi:si) = xi:s

′
i ∧ s′i ∈ LUBS(LS(ui),LS(vi))}

where all the xi:s
′
i are fresh variables. The set of sort-specialized generalizations

of t and t′ is defined as ssg(t, t′) = {tsg(t, t′)ρ | ρ ∈ sort-down-subs(t, t′)}.

Example 4. Continuing Example 3, we have that ssg(t, t′) = {f(z:C), f(z:D)},
with sort-down-subs(t, t′) = {{x:E 7→ z:C}, {x:E 7→ z:D}}.
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The following result establishes that sort-specialized generalization and the
order-sorted least general generalization do coincide.

Theorem 6. Given terms t and t′ such that [LS(t)] = [LS(t′)], it holds that 1)
tsg(t, t′) is a generalization of t and t′, and 2) ssg(t, t′) provides a minimal and
complete set of order-sorted lggs.

Proof. It is immediate that tsg(t, t′) is a generalization of t and t′, since for each
conflict pair (s, s′), the term tsg(t, t′) contains a variable at the corresponding
conflict position of t and t′ which has the top sort associated to s and s′.

We prove that sgg(t, t′) provides a minimal complete set of order-sorted lggs
by contradiction. First, let us prove that it is complete by assuming that there
is a generalization u of t and t′ s.t. there is no u′ ∈ ssg(t, t′) with u ≤ u′.
By definition of tsg(t, t′), we either have that u ≤ tsg(t, t′) or tsg(t, t′) ≤ u.
If u ≤ tsg(t, t′), there must be a term u′ ∈ ssg(t, t′) such that u ≤ u′. If
tsg(t, t′) ≤ u, then at least one of the variables xi:si of a conflict pair must have
been instantiated with a variable z:s such that s ≤ si, but then there must be a
term u′ ∈ ssg(t, t′) such that u ≤ u′. Thus, the conclusion follows.

Second, let us prove that it is minimal by assuming that there are two
generalizations u, u′ of t and t′ s.t. u ∈ ssg(t, t′), u′ ∈ ssg(t, t′), and u < u′. If
u < u′, then at least one of the variables xi:si of u corresponding to a conflict
pair (ui, vi) must have been instantiated with a variable x′i:s

′
i of u′ such that

s′i < si, which is impossible by definition of LUBS(LS(ui),LS(vi)). 2

4.3. Correctness and Completeness of the order-sorted lgg calculus

Before proving correctness and completeness of the order-sorted lgg calculus
given in Figure 3, we provide some auxiliary notions and lemmata.

The first lemma links the constraints with positions in terms t and t′ of a
generalization problem.

Lemma 8. Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)], and a fresh

variable x:[s], 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:[s′]

, v ∧ CT | S | θ〉 using the inference
rules of Figure 3 iff there exists a position p of t and t′ such that t|p = u and
t′|p = v, and [s′] = [LS(u)] = [LS(v)].

Proof. Straightforward by successive application of the Decompose inference
rule of Figure 3. 2

The following lemma links constraints already solved (and thus saved in the
store) with conflict positions of terms t and t′ of a generalization problem.

Lemma 9. Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)], and a fresh

variable x:[s] such that 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using the inference rules

of Figure 3, the constraint u
y:s′

, v belongs to S iff there exists a conflict pair
(u, v) of t and t′ such that s′ ∈ LUBS(LS(u),LS(v)).
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Proof. (⇒) If u
y:s′

, v ∈ S, then there must be a sort s′′ and two configurations

〈u
y:s′′

, v ∧ CT1 | S1 | θ1〉, 〈CT2 | u
y:s′

, v ∧ S2 | θ2〉 such that

〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:s′′

, v ∧ CT1 | S1 | θ1〉

→ 〈CT2 | u
y:s′

, v ∧ S2 | θ2〉 →∗ 〈∅ | S | θ〉,

u
y:s′′

, v 6∈ S1, u
y:s′

, v 6∈ CT2, s′ ≤ s′′, and root(u) 6= root(v). By Lemma 8, there
exists a position p of t and t′ such that t|p = u, t′|p = v, and s′′ = [LS(u)] =
[LS(v)]. Since root(u) 6= root(v), p is a conflict position. Then, by application
of the inference rule Solve, we have that s′ ∈ LUBS(LS(u),LS(v)).

(⇐) By Lemma 8, there exist a sort [s′′] and a configuration 〈u
y:[s′′]

, v∧CT1 |

S1 | θ1〉 such that 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈u
y:[s′′]

, v ∧ CT1 | S1 | θ1〉, u
y:s′′

, v 6∈ S1,

and root(u) 6= root(v). Then, the inference rule Solve is applied, i.e., 〈u
y:[s′′]

, v∧

CT1 | S1 | θ1〉 → 〈CT1 | u
y:s′

, v ∧ S1 | θ1〉, and s′ ∈ LUBS(LS(u),LS(v)). Thus,

the constraint u
y:s′

, v will be part of S in the final configuration 〈∅ | S | θ〉. 2

Lemma 10. Given terms t and t′ such that [s] = [LS(t)] = [LS(t′)], for all

S and θ such that 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using the inference rules of
Figure 3, there exists a downgrading substitution δ such that tsg(t, t′)δ = (x:[s])θ.

Proof. By successive application of the Decompose inference rule of Figure 3.
2

Theorem 7 (Correctness and Completeness). Given terms t and t′ such
that [s] = [LS(t)] = [LS(t′)], and a fresh variable x:[s], it holds that u is an

order-sorted lgg of t and t′ iff there exists S and θ such that 〈t
x:[s]

, t′ | ∅ | id〉 →∗
〈∅ | S | θ〉 using the inference rules of Figure 3 and u ' (x:[s])θ.

Proof. We reason by contradiction.
(⇒) Let us consider a store S and substitution θ such that there is no term

u and renaming ρ with uρ = (x:[s])θ. By Theorem 6, tsg(t, t′) ≤ u with a
downgrading substitution δu, i.e., tsg(t, t′)δu = u. By Lemma 10, tsg(t, t′) ≤
(x:[s])θ with a downgrading substitution δ, i.e., tsg(t, t′)δ = (x:[s])θ. Since
(x:[s])θ and u are not renamed variants and both terms are sort-specializations
of tsg(t, t′), there must be one binding x:[s] 7→ x′:s′ in δ and one binding x:[s] 7→
x′′:s′′ in δu s.t. either s′ < s′′, s′′ < s′, or [s′] 6= [s′′]. But all three possibilities
are impossible by construction, since s′ < s′′ contradicts the fact that u is a lgg,
s′′ < s′ contradicts Lemma 9, and [s′] 6= [s′′] contradicts both that u is a lgg of
t and t′ and Lemma 9.

(⇐) This case can be proven similarly. 2

23



5. Least General Generalizations modulo E

When we have an equational theory E, the notion of least general generaliza-
tion has to be broadened, because, there may exist E-generalizable terms that do
not have any (syntactic) least general generalization. Similarly to the dual case
of E-unification, we have to talk about a set of least general E-generalizations
(Baader, 1991).

For a set M of terms, we define the set of most specific generalizations
of M modulo E as the set of maximal lower bounds of M under <E , i.e.,
lggE(M) = {u | ∀m ∈M,u ≤E m ∧ @u′ (u <E u′ ∧ ∀m ∈M,u′ ≤E m)}.

Example 5. Consider terms t = f(a, a, b) and s = f(b, b, a) where f is asso-
ciative and commutative, and a and b are constants. Terms u = f(x, x, y) and
u′ = f(x, a, b) are generalizations of t and s but they are not comparable, i.e.,
no one is an instance of the other modulo the AC axioms of f .

5.1. Recursively enumerating the least general generalizations modulo E

Given a finite set of equations E, and two terms t and s, we can always
recursively enumerate the set that is by construction a complete set of gener-
alizations of t and s. For this, we only need to recursively enumerate all pairs
of terms (u, u′) with t =E u and s =E u′ and compute lgg(u, u′). Of course,
this set genE(t, s) may easily be infinite. However, if the theory E has the ad-
ditional property that each E-equivalence class is finite and can be effectively
generated, then the above process becomes a terminating algorithm, generating
a finite complete set of generalizations of t and s.

In any case, for any finite set of equations E, we can always mathemati-
cally characterize a minimal complete set of E-generalizations, namely the set
lggE(t, s) defined as follows. Roughly speaking, the minimal and complete set
lggE(t, s) is just the minimal set than can be obtained from a complete (gener-
ally non-minimal) set genE(t, s) by filtering only the maximal elements of the
set with regard to the ordering <E , as also noted in (Pottier, 1989).

Definition 8. Let t and s be terms and let E be an equational theory. A com-
plete set of generalizations of t and s modulo E, denoted by genE(t, t′), is defined
as follows:

genE(t, t′) = {v | ∃u, u′, t =E u, t′ =E u′, v ∈ lgg(u, u′)}.

The set of least general generalizations of t and s modulo E is defined as follows:

lggE(t, s) = maximal<E
(genE(t, s))

where maximal<E
(S) = {s ∈ S | @s′ ∈ S : s <E s′}. Lggs are equivalent modulo

renaming and, therefore, we remove from lggE(t, t′) renamed versions (modulo
E) of terms.
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Our modular E-generalization algorithm defined below computes a complete
set of generalizations, i.e., the set genE(t, t′), that must be filtered out to obtain
the least general generalizations, i.e., the set lggE(t, t′). Let us prove that the
set genE(t, t′) is a complete set of E-lggs.

Lemma 11. Given terms t and t′ in an equational theory E, if u is an lgg
modulo E of t and t′, then there exists u′ ∈ genE(t, t′) such that u′ 'E u.

Proof. By contradiction. Let u be a lgg of t and s modulo E and assume
that there is no u′ ∈ genE(t, t′) such that u′ 'E u. Since u ≤E t and u ≤E s,
there exist substitutions σt and σs such that uσt =E t and uσs =E s. But
then, u ∈ lgg(uσt, uσs) (i.e., without making use of the equations E) and, by
definition, u ∈ genE(t, s), which contradicts the assumption. 2

Now, the minimality and completeness result for lggE(t, t′) follows straight-
forwardly.

Theorem 8. Given terms t and t′ in an equational theory E, lggE(t, t′) is a
minimal, correct, and complete set of lggs modulo E of t and t′ (up to renaming).

Proof. Lemma 11 ensures that genE(t, t′) is a complete set of lggs. Minimality
of the set lggE(t, t′) is ensured by maximality of the relation <E . 2

However, note that in general the relation t <E t′ is undecidable, so that the
above set, although definable at the mathematical level, might not be effectively
computed. Nevertheless, when: (i) each E-equivalence class is finite and can be
effectively generated, and (ii) there is an E-matching algorithm, then we also
have an effective algorithm for computing lggE(t, s), since the relation t ≤E t′

is precisely the E-matching relation.
In summary, when E is finite and satisfies conditions (i) and (ii), the above

definitions give us a feasible, although horribly inefficient, procedure to compute
a finite, minimal, and complete set of least general generalizations lggE(t, s),
because the cardinality of the E-equivalence classes can be exponential in the
size of their elements, as in the case of associative-commutative theories (Pottier,
1989): for instance, if f is AC, then the class E for f(a1, f(a2, ..., f(an−1, an)...))
has (2n − 2)!!/((n − 1)! elements. This naive algorithm could be used when
E consists of associativity and/or commutativity axioms for some functions
symbols, because such theories (a special case of our proposed parametric family
of theories) all satisfy conditions (i)–(ii). However, when we add identiy axioms,
E-equivalence classes become infinite, so that the above approach no longer gives
us a lgg algorithm modulo E.

In the following sections, we do provide a modular, minimal, terminating,
sound, and complete algorithm for equational theories containing different ax-
ioms such as associativity, commutativity, and identity (and their combinations).
This algorithm computes the set genE(t, t′) modulo E and renaming. The set
lggE(t, s) of least general E-generalizations can be computed as in Definition 8.
That is: first a complete set of E-generalizations is computed by the inference
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rules given below, and then they are filtered to obtain lggE(t, s) by using the
fact that, for all theories E in the parametric family of theories we consider in
this paper, there is a matching algorithm modulo E that provides the relation
<E . We consider that a given function symbol f in the signature Σ obeys a
subset of axioms ax(f) ⊆ {Af , Cf , Uf}. In particular, f may not satisfy any
such axioms, i.e., ax(f) = ∅. Note that, technically, variables of the original
terms are handled in our rules as constants, thus without any attribute, i.e., for
any variable x ∈ X, we consider ax(x) = ∅.

Let us provide our inference rules for equational generalization in a stepwise
manner. First, ax(f) = ∅ in Section 5.2, then, ax(f) = {Cf} in Section 5.3,
then, ax(f) = {Af} in Section 5.4, then, ax(f) = {Af , Cf} in Section 5.5, and
finally, Uf ∈ ax(f) in Section 5.6. In each section, proofs of correctness and
completeness are very similar to the ones in Section 3.2 and, thus, we define
a key notion of conflict pair for each equational property (i.e., commutative
conflict pairs, associative conflict pairs, associative-commutative conflict pairs,
and identity conflict pairs) which is the basis for our overall proof scheme. For
readability, we have provided complete proofs, even if they are in several aspects
similar and differ mainly in the different conflict pair notions, which make it
impossible to structure the proof in a parametric way.

5.2. Basic inference rules for least general E–generalization

Let us start with a set of basic rules that are the equational version of the
syntactic generalization rules of Section 3. The rule DecomposeE applies to
function symbols obeying no axioms, ax(f) = ∅. Specific rules for decompos-
ing constraints involving terms that are rooted by symbols obeying equational
axioms, such as ACU and their combinations, are given below.

Concerning the rules SolveE and RecoverE , the main difference w.r.t. the
corresponding syntactic generalization rules given in Section 3 is in the fact that
the checks to the store consider the constraints modulo E: in the rules below,

we write (t
y

, t′) ∈E S to express that there exists u
y

, u′ ∈ S such that t =E u
and t′ =E u′.

Finally, regarding the rule SolveE , note that this rule cannot be applied to

any constraint t
x

, s such that either t or s are rooted by a function symbol f
with Uf ∈ ax(f). For function symbols with an identity element, a specially–
tailored rule ExpandU is given in Section 5.6 that gives us the opportunity to

solve a constraint (conflict pair) f(t1, t2)
x

, s, such that root(s) 6= f , with a
generalization f(y, z) more specific than x, by first introducing the constraint

f(t1, t2)
x

, f(s, e).
Termination, correctness and completeness of the basic algorithm are straight-

forward by reasoning similarly to the syntactic case of Section 3.

Theorem 9 (Termination). Given an equational theory (Σ, E), Σ-terms t
and t′ such that every symbol in t and t′ is free, and a fresh variable x, ev-

ery derivation stemming from an initial configuration 〈t
x

, t′ | ∅ | id〉 using the
inference rules of Figure 6 terminates with a configuration 〈∅ | S | θ〉.
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DecomposeE
f ∈ (Σ ∪ X ) ∧ ax(f) = ∅

〈f(t1, . . . , tn)
x

, f(t′1, . . . , t
′
n) ∧ CT | S | θ〉 →

〈t1
x1

, t′1 ∧ . . . ∧ tn
xn

, t′n ∧ CT | S | θσ〉
where σ = {x 7→ f(x1, . . . , xn)}, x1, . . . , xn are fresh variables, and n ≥ 0

SolveE
f = root(t) ∧ g = root(t′) ∧ f 6= g ∧ Uf 6∈ ax(f) ∧ Ug 6∈ ax(g) ∧ @y : t

y

, t′ ∈E S

〈t
x

, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t
x

, t′ | θ〉

RecoverE
root(t) 6= root(t′) ∧ ∃y : t

y

, t′ ∈E S

〈t
x

, t′ ∧ CT | S | θ〉 → 〈CT | S | θσ〉
where σ = {x 7→ y}

Figure 6: Basic inference rules for least general E–generalization

Proof. It follows directly from Theorem 1. 2

Theorem 10 (Correctness and Completeness). Given an equational the-
ory (Σ, E), Σ-terms t and t′ such that every symbol in t and t′ is free, and a

fresh variable x, then u ∈ genE(t, t′) iff there is u′ in {xθ | 〈t
x

, t′ | ∅ | id〉 →∗
〈∅ | S | θ〉} using the inference rules of Figure 6 such that u ' u′.

Proof. It follows directly from Theorem 3. 2

Note that the basic inference rules of Figure 6 are confluent when E = ∅, ac-
cording to Theorem 2, but the inference system of Section 6 combining free, com-
mutative, associative, and associative-commutative operators with and without
an identity element is not generally confluent, and different final configurations
〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉 correspond to different (least general) generaliza-
tions xθ1, . . . , xθn.

5.3. Least general generalization modulo C

In this section we extend the basic set of equational generalization rules
by adding a specific inference rule DecomposeC , given in Figure 7, for dealing
with commutativity function symbols. This inference rule replaces the syntactic
decomposition inference rule for the case of a binary commutative symbol f ,
i.e., the two possible rearrangements of the terms f(t1, t2) and f(t′1, t

′
2) are

considered. Just notice that this rule is (don’t know) non-deterministic, hence
all four combinations must be explored.

Example 6. Let t = f(a, b) and s = f(b, a) be two terms where f is com-
mutative, i.e., ax(f) = {Cf}. By applying the rules SolveE, RecoverE, and
DecomposeC above, we end in a terminal configuration 〈∅ | S | θ〉, where
θ = {x 7→ f(b, a), x3 7→ b, x4 7→ a}, thus we conclude that the lgg modulo C
of t and s is xθ = f(b, a).

Termination is straightforward.
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DecomposeC

Cf ∈ ax(f) ∧Af 6∈ ax(f) ∧ i ∈ {1, 2}

〈f(t1, t2)
x

, f(t′1, t
′
2) ∧ CT | S | θ〉 → 〈t1

x1

, t′i ∧ t2
x2

, t′(i mod 2)+1 ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, x2)}, and x1, x2 are fresh variables

Figure 7: Decomposition rule for a commutative function symbol f

Theorem 11 (Termination). Given an equational theory (Σ, E), Σ-terms t
and t′ such that every symbol in t and t′ is free or commutative, and a fresh

variable x, every derivation stemming from an initial configuration 〈t
x

, t′ | ∅ |
id〉 using the inference rules of Figures 6 and 7 terminates with a configuration
〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1 by considering the two possible
rearrangements of each term. 2

In order to prove correctness and completeness of the lgg calculus modulo
C, similarly to Definition 2 we introduce the auxiliary concept of commutative
conflict pair, and prove some useful results for this case.

First, we prove an auxiliary result stating that only (independently) fresh
variables y appear in the index positions of the constraints in CT and S com-
ponents of lgg configurations.

Lemma 12 (Uniqueness of Generalization Variables). Lemma 1 holds for

t
x

, t′ when the symbols in t, t′ are free or commutative, for the inference rules
of Figures 6 and 7.

The first lemma states that the range of the substitutions partially computed
at any stage of a generalization derivation coincides with the set of the index
variables of the configuration.

Lemma 13. Given terms t and t′ such that every symbol in t and t′ is free or

commutative, and a fresh variable x such that 〈t
x

, t′ | ∅ | id 〉 →∗ 〈CT | S | θ〉
using the inference rules of Figures 6 and 7, then Index(S∪CT ) ⊆ Ran(θ), and
Ran(θ) = Var(xθ).

Proof. Immediate by construction. 2

The following lemma establishes an auxiliary property that is useful for
defining the notion of a commutative conflict pair of terms. The depth of a
position is defined as depth(Λ) = 0 and depth(i.p) = 1 + depth(p); in other
words, it is the length of the sequence p. Given a position p with depth n, p|k is
the (prefix) position p at depth k ≤ n, i.e., p|0 = Λ, (i.p)|k = i.(p|k−1) if k > 0.
For instance, for p = 1.2.1.3, p|3 = 1.2.1.
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Lemma 14. Given terms t and t′ such that every symbol in t and t′ is free or

commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ CT | S | θ〉
using the inference rules of Figures 6 and 7 iff there exist a position p ∈ Pos(t)
and a position p′ ∈ Pos(t′) such that t|p = u, t′|p′ = v, depth(p) = depth(p′),
and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule Decom-
pose of Figure 1 and the inference rule DecomposeC of Figure 7. 2

Definition 9 (Commutative Conflict Pair). Given terms t and t′ such that
every symbol in t and t′ is free or commutative, the pair (u, v) is called a com-
mutative conflict pair of t and t′ iff u 6=E v and there exist at least one position
p ∈ Pos(t) and at least one position p′ ∈ Pos(t′) such that t|p = u, t′|p′ = v,
depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

The following lemma states the appropriate connection between the con-
straints in a derivation and the commutative conflict pairs of the initial config-
uration.

Lemma 15. Given terms t and t′ such that every symbol in t and t′ is free or

commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈CT | u
y

, v ∧ S | θ〉
using the inference rules of Figures 6 and 7 iff (u, v) is a commutative conflict
pair of t and t′.

Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧CT1 |
S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v∧CT1 | S1 | θ1〉 → 〈CT2 | u
y

, v∧S2 | θ2〉 →∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 14, there exists
a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that t|p = u, t′|p′ =
v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).
Therefore, (u, v) is a commutative conflict pair.

(⇐) By Lemma 14, there is a configuration 〈u
y

, v ∧CT1 | S1 | θ1〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1, and root(u) 6= root(v).

Then, the inference rule Solve is applied, i.e., 〈u
y

, v ∧ CT1 | S1 | θ1〉 → 〈CT1 |
u
y

, v ∧ S1 | θ1〉 and u
y

, v will be part of S in the final configuration 〈∅ | S | θ〉.
2

The following lemma establishes the link between the computed substitution
and a proper generalization term.

Lemma 16. Given terms t and t′ such that every symbol in t and t′ is free or

commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉, using the
inference rules of Figures 6 and 7 iff xθ is a generalization of t and t′ modulo
commutativity.
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Proof. By structural induction on the term xθ. If xθ = x, then θ = id and
the conclusion follows. If xθ = f(u1, . . . , uk) and f is free, then the inference
rule DecomposeE of Figure 6 is applied and we have that t = f(t1, . . . , tk)
and t′ = f(t′1, . . . , t

′
k). If xθ = f(u1, . . . , uk) and f is commutative, then the

inference rule DecomposeC of Figure 7 is applied and we have that either: (i)
t = f(t1, t2) and t′ = f(t′1, t

′
2), or (ii) t = f(t1, t2) and t′ = f(t′2, t

′
1), or (iii)

t = f(t2, t1) and t′ = f(t′1, t
′
2), or (iv) t = f(t2, t1) and t′ = f(t′2, t

′
1). By

induction hypothesis, ui is a generalization of ti and t′i, for each i. Now, if
for each pair of terms in u1, . . . , uk there are no shared variables, then the
conclusion follows. Otherwise, for each variable z shared between two different

terms ui and uj , there is a constraint w1

z

, w2 ∈ S and, by Lemma 15, there is
a commutative conflict pair (w1, w2) in ti and t′i. Thus, the conclusion follows.

2

Finally, correctness and completeness are proved as follows.

Theorem 12 (Correctness and Completeness). Given an equational the-
ory (Σ, E), Σ-terms t and t′ such that every symbol in t and t′ is free or
commutative, and x a fresh variable, then u ∈ genE(t, t′) iff there is u′ in

{xθ | 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference rules of Figures 6 and 7
such that u 'E u′.

Proof. By contradiction. By Lemma 16, xθ is a generalization of t and t′. If
xθ is not a generalization of t and t′ up to renaming, then there is a term u
which is a generalization of t and t′ and a substitution ρ which is not a variable
renaming such that xθρ =E u. By Lemma 13, Ran(θ) = Var(xθ), hence we can
choose ρ with Dom(ρ) = Var(xθ). Since ρ is not a variable renaming, either:

1. there are variables y, y′ ∈ Var(xθ) and a variable z such that yρ = y′ρ = z,
or

2. there is a variable y ∈ Var(xθ) and a non-variable term v such that yρ = v.

In case (1), there are two positions p, p′ in u such that u|p = z = u|p′ . Moreover,
there is a position q in xθ such that (xθ)|q = y and the pair (y, z) is a conflict
pair of xθ and u. Similarly there is a position q′ in xθ such that (xθ)|q′ = y′

and the pair (y′, z) is a conflict pair of xθ and u. But this also means that there
is a position qt in t such that t|qt = w1 and the pair (w1, z) is a conflict pair of t
and u; and there is a position q′t′ in t′ such that t|q′

t′
= w2 and the pair (w2, z)

is a conflict pair of t′ and u. But this is impossible by Lemmas 15 and 13. In
case (2), there is a position p such that (xθ)|p = y and, since yρ = v and v is
a non-variable term, then p is not involved in any conflict pair of t and t′. But
this is again impossible by Lemmas 15 and 13. 2

We recall again that in general the inference rules of Figures 6 and 7 together
are not confluent, and different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉
correspond to different generalizations xθ1, . . . , xθn.
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DecomposeA

Af ∈ ax(f) ∧ Cf 6∈ ax(f) ∧m ≥ 2 ∧ n ≥ m ∧ k ∈ {1, . . . , (n−m) + 1}

〈f(t1, . . . , tn)
x

, f(t′1, . . . , t
′
m) ∧ CT | S | θ〉 →

〈f(t1, . . . , tk)
x1

, t′1 ∧ f(tk+1, . . . , tn)
x2

, f(t′2, . . . , t
′
m) ∧ CT | S | θσ〉

where σ = {x 7→ f(x1, x2)}, and x1, x2 are fresh variables

Figure 8: Decomposition rule for an associative (non–commutative) function symbol f

5.4. Least general generalization modulo A

In this section we provide a specific inference rule DecomposeA for handling
function symbols obeying the associativity axiom (but not the commutativity
one). A specific set of rules for dealing with AC function symbols is given in
the next subsection.

The DecomposeA rule is given in Figure 8. We use flattened versions of the
terms which use poly-variadic versions of the associative symbols, i.e., being
f an associative symbol, with n arguments, and n ≥ 2, flattened terms are
canonical forms w.r.t. the set of rules given by the following rule schema

f(x1, . . . , f(t1, . . . , tn), . . . , xm)→ f(x1, . . . , t1, . . . , tn, . . . , xm) n,m ≥ 2

Given an associative symbol f and a term f(t1, . . . , tn) we call f -alien terms (or
simply alien terms) to those terms among t1, . . . , tn that are not rooted by f . In
the following, being f an associative poly-varyadic symbol, by convention f(t)
represents the term t itself, since symbol f needs at least two arguments. The
inference rule of Figure 8 replaces the syntactic decomposition inference rule for
the case of an associative function symbol f , where all prefixes of t1, . . . , tn and
t′1, . . . , t

′
m are considered. Note that this rule is (don’t know) non-deterministic,

hence all possibilities must be explored.
This inference rule for associativity is better than generating all terms in the

corresponding equivalence class, as explained in Section 5, since we will eagerly

stop the computation whenever we find a constraint t
x

, f(t1, . . . , tn) such that
root(t) 6= f without considering all the combinations in the equivalence class of
f(t1, . . . , tn).

We give the rule DecomposeA for the case when, in the generalization prob-

lem f(t1, ..., tn)
x

, f(s1, ..., sm), we have that n ≥ m. For the other way around,
i.e., n < m, a similar rule would be needed, that we omit since it is entirely sim-
ilar. The following example illustrates the least general generalization modulo
A.

Example 7. Let t = f(f(a, c), b) and t′ = f(c, b) be two terms where f is
associative, i.e., ax(f) = {Af}. By applying the rules SolveE, RecoverE, and
DecomposeA above, we end in a terminal configuration 〈∅ | S | θ〉, where θ =
{x 7→ f(x3, b), x4 7→ b}, thus we obtain that the lgg modulo A of t and t′ is
f(x3, b). The computation trace is shown in Figure 9.
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lggE(f(f(a, c), b), f(c, b)), with E = {Af}
↓ Initial Configuration

〈f(a, c, b)
x

, f(c, b) | ∅ | ∅〉
↙ DecomposeA ↘

〈a
x1
, c ∧ f(c, b)

x2
, b | ∅ | {x 7→ f(x1, x2)}〉 〈f(a, c)

x3
, c ∧ b

x4
, b | ∅ | {x 7→ f(x3, x4)}〉

↓ Solve ↓ Solve

〈f(c, b)
x2
, b | a

x1
, c | {x 7→ f(x1, x2)}〉 〈b

x4
, b | f(a, c)

x3
, c | {x 7→ f(x3, x4)}〉

↓ Solve ↓ Decompose

〈∅ | a
x1
, c ∧ f(c, b)

x2
, b | {x 7→ f(x1, x2)}〉 〈∅ | f(a, c)

x3
, c | {x 7→ f(x3, b), x4 7→ b}〉

↘ maximal<A
↙

{x 7→ f(x3, b), x4 7→ b}

Figure 9: Computation trace for A–generalization of terms f(f(a, c), b) and f(c, b)).

Note that in the example above there is a unique lgg modulo A, although
this is not true for some generalization problems as witnessed by the following
example.

Example 8. Let t = f(f(a, a), f(b, b)) and t′ = f(f(b, b), b) be two terms where
f is associative, i.e., ax(f) = {Af}. By applying the rules SolveE, RecoverE,
and DecomposeA above, we end in two terminal configurations 〈∅ | S1 | θ1〉 and
〈∅ | S2 | θ2〉, where θ1 = {x 7→ f(f(x, x), y)} and θ2 = {x 7→ f(f(y, b), b)}. Both
are more general terms.

Termination is straightforward.

Theorem 13 (Termination). Given an equational theory (Σ, E), Σ-terms t
and t′ such that every symbol in t and t′ is free or associative, and x a fresh

variable, every derivation stemming from an initial configuration 〈t
x

, t′ | ∅ | id〉
using the inference rules of Figures 6 and 8 terminates with a configuration
〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1 by simply considering the flattened
versions of the terms. 2

In order to prove correctness and completeness of the lgg calculus modulo A,
similarly to Definitions 2 and 9, we introduce the auxiliary concept of an asso-
ciative conflict pair, and prove some related, auxiliary results.

First, we prove an auxiliary result stating that only (independently) fresh
variables y appear in the index positions of the constraints in CT and S com-
ponents of lgg configurations.

Lemma 17 (Uniqueness of Generalization Variables). Lemma 1 holds

for t
x

, t′ when the symbols in t, t′ are free or associative, for the inference
rules of Figures 6 and 8.

The lemma below states that the range of the substitutions partially com-
puted at any stage of a generalization derivation coincides with the set of the
index variables of the configuration.
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Lemma 18. Given terms t and t′ such that every symbol in t and t′ is free or

associative, and a fresh variable x such that 〈t
x

, t′ | ∅ | id 〉 →∗ 〈CT | S | θ〉
using the inference rules of Figures 6 and 8, then Index(S∪CT ) ⊆ Ran(θ), and
Ran(θ) = Var(xθ).

Proof. Immediate by construction. 2

The following lemma establishes an auxiliary property that is useful for defin-
ing the notion of an associative conflict pair of terms. Note that the notation
p|i for accessing the symbol at depth i of the position p of a term t is still valid
for flattened terms.

Lemma 19. Given flattened terms t and t′ such that every symbol in t and t′ is

free or associative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v∧CT | S | θ〉
using the inference rules of Figures 6 and 8 iff there exists a position p ∈ Pos(t)
and a position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i);

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm, v1, . . . , vn, w
′
1, . . . , w

′
m′),

f is associative, depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i);

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′), t′|p′ =

v, f is associative, depth(p′) = depth(p) + 1, and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i); or

4. u = f(u1, . . . , uk), t|p = f(x1, . . . , xm1
, u1, . . . , uk), v = f(v1, . . . , vn),

t′|p′ = f(w1, . . . , wm2
, v1, . . . , vn), f is associative, depth(p) = depth(p′),

and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule Decom-
pose of Figure 1 and the inference rule DecomposeA of Figure 8. 2

Definition 10 (Associative Conflict Pair). Given flattened terms t and t′

such that every symbol in t and t′ is free or associative, the pair (u, v) is called an
associative conflict pair of t and t′ iff there exist at least one position p ∈ Pos(t)
and at least one position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, u 6=E v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm, v1, . . . , vn, w
′
1, . . . , w

′
m′),

f is associative, root(u) 6= f , depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤
depth(p′), root(t|p|i) = root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′), t

′|p′ = v,
f is associative, root(v) 6= f , depth(p′) = depth(p) + 1, and ∀1 ≤ i ≤
depth(p), root(t|p|i) = root(t′|p′|i).
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Note that the least general generalization of terms f(a, c, d, b) and f(a, e, e, b)
is f(a, x1, x2, b) instead of f(a, x1, b), which may seem the most natural choice.
Only when the number of elements is different, a variable takes care of one
element of the shortest list and the remaining elements of the longer list, e.g.,
the least general generalization of terms f(a, c, d, b) and f(a, e, e, e, e, b) is again
f(a, x1, x2, b), where x2 takes care of d and f(e, e, e).

The following lemma states the appropriate connection between the con-
straints in a derivation and the associative conflict pairs of the initial configu-
ration.

Lemma 20. Given flattened terms t and t′ such that every symbol in t and t′ is

free or associative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈CT | u
y

, v∧S | θ〉
using the inference rules of Figures 6 and 8 iff (u, v) is an associative conflict
pair of t and t′.

Proof. (⇒) If u
y

, v ∈ S, then there must be two configurations 〈u
y

, v∧CT1 |
S1 | θ1〉, 〈CT2 | u

y

, v ∧ S2 | θ2〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v∧CT1 | S1 | θ1〉 → 〈CT2 | u
y

, v∧S2 | θ2〉 →∗ 〈∅ | S | θ〉,

u
y

, v 6∈ S1, u
y

, v 6∈ CT2, and root(u) 6= root(v). By Lemma 19, there exist a
position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm, v1, . . . , vn, w
′
1, . . . , w

′
m′),

f is associative, depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′),
root(t|p|i) = root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm, u1, . . . , un, w
′
1, . . . , w

′
m′), t

′|p′ =
v, f is associative, depth(p′) = depth(p) + 1, and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i).

Note that, since root(u) 6= root(v), the fourth case of Lemma 19 is not possible.
Therefore, either (u, v) (or (u, f(v1, . . . , vn))) is an associative conflict pair.

(⇐) By Lemma 19, there is a configuration 〈u
y

, v ∧CT1 | S1 | θ1〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ CT1 | S1 | θ1〉, u
y

, v 6∈ S1, and root(u) 6= root(v).

Then, the inference rule Solve is applied, i.e., 〈u
y

, v ∧ CT1 | S1 | θ1〉 → 〈CT1 |
u
y

, v ∧ S1 | θ1〉 and u
y

, v will be part of S in the final configuration 〈∅ | S | θ〉.
2

Finally, the following lemma establishes the link between the computed sub-
stitution and a proper generalization term.

Lemma 21. Given flattened terms t and t′ such that every symbol in t and t′

is free or associative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉
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using the inference rules of Figures 6 and 8 iff xθ is a generalization of t and t′

modulo associativity.

Proof. By structural induction on the term xθ (or u). If xθ = x, then θ = id
and the conclusion follows. If xθ = f(u1, . . . , uk) and f is free, then the inference
rule DecomposeE of Figure 6 is applied and we have that t = f(t1, . . . , tk) and
t′ = f(t′1, . . . , t

′
k). If xθ = f(u1, . . . , uk) and f is associative, then the inference

rule DecomposeA of Figure 8 is applied and we have that t = f(u1, . . . , un),
t′ = f(v1, . . . , vm), and k = min(n,m). Let us consider the different values for
k, n and m.

• If k = n = m, then by induction hypothesis ti is a generalization of ui and
vi, for each i ∈ {1, . . . , k}. Now, if there are no shared variables among
all ti, then the conclusion follows. Otherwise, for each variable z shared

between two different terms ti and tj , there is a constraint w1

z

, w2 ∈ S
and, by Lemma 20, there is a conflict pair (w1, w2) in ti and t′i. Thus, the
conclusion follows.

• If k = n and ` = m− n, then there is an element j ∈ {1, . . . , k} such that
by induction hypothesis ti is a generalization of ui and vi for each i < j,
tj is a generalization of uj and f(vj , . . . , vj+`), and ti is a generalization
of ui and vi+` for each i > j. Now, if there are no shared variables among
all ti s.t. i 6= j, then the conclusion follows. Otherwise, for each variable
z shared between two different terms ti1 and ti2 s.t. i1 6= j and i2 6= j,

there is a constraint w1

z

, w2 ∈ S and, by Lemma 20, there is a conflict
pair (w1, w2) in ti and t′i. Thus, the conclusion follows. 2

Finally, correctness and completeness are proved as follows.

Theorem 14 (Correctness and Completeness). Given an equational the-
ory (Σ, E), and flattened Σ-terms t and t′ such that every symbol in t and t′ is
free or associative, and a fresh variable x, then u ∈ genE(t, t′) iff there is u′ in

{xθ | 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference rules of Figures 6 and 8
such that u 'E u′.

Proof. Similar to Theorem 12. 2

Recall that the inference rules of Figures 6 and Figure 8 together are not
confluent, so that different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉
correspond to different generalizations xθ1, . . . , xθn.

5.5. Least general generalization modulo AC

In this section we provide a specific inference rule DecomposeAC for handling
function symbols obeying both the associativity and commutativity axioms.
Note that we use again flattened versions of the terms, as in the associative
case of Section 5.4. Actually, by considering AC function symbols as varyadic
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DecomposeAC

{Af , Cf} ⊆ ax(f) ∧ n ≥ m ∧ {i1, . . . , im−1}]̄{im, . . . , in} = {1, . . . , n}

〈f(t1, . . . , tn)
x

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉 →

〈ti1
x1

, t′1 ∧ . . . ∧ tim−1

xm−1

, t′m−1 ∧ f(tim , . . . , tin)
xm

, t′m ∧ C | S | θσ〉

where σ = {x 7→ f(x1, . . . , xm)}, and x1, . . . , xm are fresh variables

Figure 10: Decomposition rule for an associative–commutative function symbol f

functions with no ordering among the arguments, an AC term can be repre-
sented by a canonical representative (Eker, 2003; Hullot, 1980) such that =AC

is decidable.
The new decomposition rule for the AC case is similar to the decompose

inference rule for associative function symbols, except that all permutations of
f(t1, . . . , tn) and f(s1, . . . , sm) are considered. As before, the AC generalization

of t and s are the maximal elements w.r.t. <AC of the normal forms of t
x

, t′

w.r.t. the new extended generalization calculus. Just notice that this rule is
(don’t know) non-deterministic, hence all possibilities must be explored.

Similarly to the rule DecomposeA, we give the rule DecomposeAC for the

case when, in the generalization problem f(t1, ..., tn)
x

, f(s1, ..., sm), we have
that n ≥ m. For the other way around, i.e., n < m, a similar rule would
be needed, that we omit since it is entirely similar. To simplify, we write
{i1, . . . , ik}]̄{ik+1, . . . , in} = {1, . . . , n} to denote that the sequence {i1, . . . , in}
is a permutation of the sequence {1, . . . , n} and, given an element k ∈ {1, . . . , n},
we split the sequence {i1, . . . , in} in the two parts, {i1, . . . , ik} and {ik+1, . . . , in}.

Example 9. Let t = f(a, f(a, b)) and s = f(f(b, b), a) be two terms where f
is associative and commutative, i.e., ax(f) = {Af , Cf}. By applying the rules
SolveE, RecoverE, and DecomposeAC above, we end in two terminal configura-
tions whose respective substitution components are θ1 = {x 7→ f(x1, x1, x3), x2 7→
x1} and θ2 = {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}, thus we compute that the lggs
modulo AC of t and s are f(x1, x1, x3) and f(x4, a, b). The corresponding com-
putation trace is shown in Figure 11.

Termination is straightforward.

Theorem 15 (Termination). Given an equational theory (Σ, E), Σ-terms t
and t′ such that every symbol in t and t′ is free or associative-commutative,
and x is a variable, every derivation stemming from an initial configuration

〈t
x

, t′ | ∅ | id〉 using the inference rules of Figures 6 and 10 terminates with a
configuration 〈∅ | S | θ〉.

Proof. Similar to the proof of Theorem 1. 2
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lggE(f(a, f(a, b)), f(f(b, b), a)), with E = {Cf , Af}
↓ Initial Configuration

〈f(a, a, b)
x

, f(b, b, a) | ∅ | id〉
↙ DecomposeAC (Other permutations are not shown) ↘

〈a
x1
, b ∧ a

x2
, b ∧ b

x3
, a |∅ |{x 7→f(x1, x2, x3)}〉 〈a

x4
, b ∧ a

x5
, a ∧ b

x6
, b |∅ |{x 7→f(x4, x5, x6)}〉

↓ Solve ↓ Solve

〈a
x2
, b ∧ b

x3
, a | a

x1
, b | {x 7→ f(x1, x2, x3)}〉 〈a

x5
, a ∧ b

x6
, b | a

x4
, b | {x 7→ f(x4, x5, x6)}〉

↓ Recover ↓ Decompose

〈b
x3
, a | a

x1
, b | {x 7→ f(x1, x1, x3), x2 7→ x1}〉 〈b

x6
, b | a

x4
, b | {x 7→ f(x4, a, x6), x5 7→ a}〉

↓ Solve ↓ Decompose

〈∅ | a
x1
, b ∧ b

x3
, a | {x 7→ f(x1, x1, x3), x2 7→ x1}〉 〈∅ | a

x4
, b | {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}〉

↘ maximal<AC
↙

{x 7→ f(x1, x1, x3), x2 7→ x1} and {x 7→ f(x4, a, b), x5 7→ a, x6 7→ b}

Figure 11: Computation trace for AC–generalizations of terms f(a, f(a, b)) and f(f(b, b), a).

In order to prove correctness and completeness of the lgg calculus modulo
AC, similarly to Definitions 2, 9, and 10, we introduce the auxiliary concept
of an associative-commutative conflict pair, and prove the appropriate auxiliary
results.

First, we prove an auxiliary result stating that only (independently) fresh
variables y appear in the index positions of the constraints in CT and S com-
ponents of lgg configurations.

Lemma 22 (Uniqueness of Generalization Variables). Lemma 1 holds

for t
x

, t′ when the symbols in t, t′ are free or associative-commutative, for the
inference rules of Figures 6 and 10.

The lemma below states that the range of the substitutions partially com-
puted at any stage of a generalization derivation coincides with the set of the
index variables of the configuration.

Lemma 23. Given terms t and t′ such that every symbol in t and t′ is free or

associative-commutative, and a fresh variable x such that 〈t
x

, t′ | ∅ | id 〉 →∗
〈CT | S | θ〉 using the inference rules of Figures 6 and 10, then Index(S∪CT ) ⊆
Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction. 2

The following lemma establishes an auxiliary property that is useful for
defining the notion of an associative-commutative conflict pair of terms.

Lemma 24. Given flattened terms t and t′ such that every symbol in t and t′

is free or associative-commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗

〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figures 6 and 10 iff there exist
a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i); or
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2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm), f is associative-com-
mutative, for each i ∈ {1, . . . , n} there is j ∈ {1, . . . ,m} s.t. vi =E wj,
depth(p) = depth(p′)+1, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) = root(t′|p′|i);
or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm), t′|p′ = v, f is associative-com-
mutative, for each j ∈ {1, . . . ,m} there is i ∈ {1, . . . , n} s.t. wj =E vi,
depth(p′) = depth(p)+1, and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule Decom-
pose of Figure 1 and the inference rule DecomposeAC of Figure 10. 2

Definition 11 (Associative-commutative Conflict Pair). Given flattened
terms t and t′ such that every symbol in t and t′ is free or associativ-com-
mutative, the pair (u, v) is called an associative conflict pair of t and t′ iff there
exist at least one position p ∈ Pos(t) and at least one position p′ ∈ Pos(t′) such
that either:

1. t|p = u, t′|p′ = v, u 6=E v, depth(p) = depth(p′), and ∀1 ≤ i ≤ depth(p),
root(t|p|i) = root(t′|p′|i); or

2. t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm), f is associative-com-
mutative, for each i ∈ {1, . . . , n} there is j ∈ {1, . . . ,m} s.t. vi =E wj,
u 6=E v, depth(p) = depth(p′) + 1, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) =
root(t′|p′|i); or

3. u = f(u1, . . . , un), t|p = f(w1, . . . , wm), t′|p′ = v, f is associative-com-
mutative, for each j ∈ {1, . . . ,m} there is i ∈ {1, . . . , n} s.t. wj =E vi,
u 6=E v, depth(p′) = depth(p) + 1, and ∀1 ≤ i ≤ depth(p), root(t|p|i) =
root(t′|p′|i).

The following lemma states the appropriate connection between the con-
straints in a derivation and the associative-commutative conflict pairs of the
initial configuration.

Lemma 25. Given flattened terms t and t′ such that every symbol in t and t′

is free or associative-commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗

〈CT | u
y

, v ∧S | θ〉 using the inference rules of Figures 6 and 10 iff (u, v) is an
associative-commutative conflict pair of t and t′.

Proof. Similar to the proof of Lemma 20 but using Lemma 24 instead of
Lemma 19 and Definition 11 instead of Definition 10. 2

The following lemma establishes the link between the computed substitution
and a proper generalization term.

Lemma 26. Given flattened terms t and t′ such that every symbol in t and t′ is

free or associative-commutative, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C |
S | θ〉 using the inference rules of Figures 6 and 10 iff xθ is a generalization of
t and t′ modulo associativity-commutativity.
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ExpandU
root(t) ≡ f ∧ Uf ∈ ax(f) ∧ root(t′) 6= f ∧ t′′ ∈ {f(e, t′), f(t′, e)}

〈t
x

, t′ ∧ CT | S | θ〉 → 〈t
x

, t′′ ∧ CT | S | θ〉

Figure 12: Inference rule for expanding function symbol f with identity element e

Proof. Similar to the proof of Lemma 21 but using Lemma 25 instead of
Lemma 20 and Definition 11 instead of Definition 10. 2

Finally, correctness and completeness are proved as follows.

Theorem 16 (Correctness and Completeness). Given an equational the-
ory (Σ, E), flattened Σ-terms t and t′ such that every symbol in t and t′ is free
or associative-commutative, and a fresh variable x, then u ∈ genE(t, t′) iff there

is u′ in {xθ | 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference rules of Figures 6
and 10 such that u 'E u′.

Proof. Similar to Theorem 12. 2

Recall that the inference rules of Figures 6 and 10 together are not confluent,
so that different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉 correspond to
different generalizations xθ1, . . . , xθn.

5.6. Least general generalization modulo U

Finally, let us introduce the inference rule of Figure 12 for handling function
symbols f which have an identity element e. This rule considers the identity
axioms in a rather lazy or on-demand manner to avoid infinite generation of all
the elements in the equivalence class. The rule corresponds to the case when

the root symbol f of the term t in the left–hand side of the constraint t
x

, s has
e as an identity element. A companion rule for handling the case when the root
symbol f of the term t′ in the right–hand side has e as an identity element is
omitted, since that is entirely similar.

Example 10. Let t = f(a, b, c, d) and s = f(a, c) be two terms where
ax(f) = {Af , Cf , Uf}. By applying the rules SolveE, RecoverE, DecomposeAC ,
and ExpandU above, we end in a terminal configuration 〈∅ | S | θ〉, where
θ = {x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→ c, x4 7→
f(x5, x6)}, thus we compute that the lgg modulo ACU of t and s is f(a, c, x5, x6).
The computation trace is shown in Figure 13.

Note that in the example above there is a unique lgg modulo U, although
this is not true for some generalization problems as witnessed by the following
example.
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lggE(f(a, b, c, d), f(a, c)), with E = {Cf , Af , Uf}
↓ Initial Configuration

〈f(a, b, c, d)
x

, f(a, c) | ∅ | id〉
↓ DecomposeAC (Other permutations are not shown)

〈a
x1
, a ∧ f(b, c, d)

x2
, c | ∅ | {x 7→ f(x1, x2)}〉

↓ Decompose

〈f(b, c, d)
x2
, c | ∅ | {x 7→ f(a, x2), x1 7→ a}〉
↓ ExpandU

〈f(b, c, d)
x2
, f(c, e) | ∅ | {x 7→ f(a, x2), x1 7→ a}〉

↓ DecomposeAC (Other permutations are not shown)

〈c
x3
, c ∧ f(b, d)

x4
, e | ∅ | {x 7→ f(a, f(x3, x4)), x1 7→ a, x2 7→ f(x3, x4)}〉

↓ Decompose

〈f(b, d)
x4
, e | ∅ | {x 7→ f(a, f(c, x4)), x1 7→ a, x2 7→ f(c, x4), x3 7→ c}〉

↓ ExpandU

〈f(b, d)
x4
, f(e, e) | ∅ | {x 7→ f(a, f(c, x4)), x1 7→ a, x2 7→ f(c, x4), x3 7→ c}〉
↓ DecomposeAC (Other permutations are not shown)

〈b
x5
, e ∧ d

x6
, e |∅ |{x 7→f(a, f(c, f(x5, x6))), x1 7→a, x2 7→f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉

↓ Solve

〈d
x6
, e | b

x5
, e | {x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉

↓ Solve

〈∅ |b
x5
, e ∧ d

x6
, e |{x 7→f(a, f(c, f(x5, x6))), x1 7→a, x2 7→f(c, f(x5, x6)), x3 7→c, x4 7→f(x5, x6)}〉

↓ maximal<ACU
{x 7→ f(a, f(c, f(x5, x6))), x1 7→ a, x2 7→ f(c, f(x5, x6)), x3 7→ c, x4 7→ f(x5, x6)}

Figure 13: Computation trace for ACU–generalization of terms f(a, b, c, d) and f(a, c).

Example 11. Let t = f(f(a, a), f(b, a)) and t′ = f(f(b, b), a) be two terms such
that {Af , Uf} ⊆ ax(f). We end in two terminal configurations 〈∅ | S1 | θ1〉 and
〈∅ | S2 | θ2〉, where θ1 = {x 7→ f(f(x, x), f(y, a))} and θ2 = {x 7→ f(y, f(b, a))}.
Both are more general terms.

Termination is slightly more difficult when there are symbols with identities.

Theorem 17 (Termination). Given an equational theory (Σ, E), Σ-terms t
and t′ such that every symbol in t and t′ is free or with identity element e,
and a fresh variable x, every derivation stemming from an initial configuration

〈t
x

, t′ | ∅ | id〉 using the inference rules of Figures 6 and 12 terminates with a
configuration 〈∅ | S | θ〉.

Proof. Let |u| be the number of symbol occurrences in the syntactic object
u. Let k be the minimum of |t| and |t′|. k is an upper bound to the number
of times that the inference rule DecomposeE of Figure 6 can be applied. Let
k be the maximum of |t| and |t′|. Since the inference rule ExpandU adds a
symbol f with an identity to one side of a constraint only when the other side
already has such a symbol, k − k is an upper bound to the number of times
that the inference rule ExpandU followed by a decomposing rule of Figure 6 (or
Figures 7, 8, and 10) can be applied. Finally, the application of rules SolveE
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and RecoverE strictly decreases the size |CT | of the CT component of the lgg
configurations at each step, hence the derivation terminates. 2

In order to prove correctness and completeness, we introduce the auxiliary con-
cepts of an identity conflict pair, similarly to Definitions 2, 9, 10, and 11, plus
some auxiliary results.

First, we prove an auxiliary result stating that only (independently) fresh
variables y appear in the index positions of the constraints in CT and S com-
ponents of lgg configurations.

Lemma 27 (Uniqueness of Generalization Variables). Lemma 1 holds for

t
x

, t′ when the symbols in t, t′ are free or with identity element e, for the infer-
ence rules of Figures 6 and 12.

The lemma below states that the range of the substitutions partially com-
puted at any stage of a generalization derivation coincides with the set of the
index variables of the configuration.

Lemma 28. Given terms t and t′ such that every symbol in t and t′ is free

or with identity element e, and a fresh variable x such that 〈t
x

, t′ | ∅ | id 〉 →∗
〈CT | S | θ〉 using the inference rules of Figures 6 and 12, then Index(S∪CT ) ⊆
Ran(θ), and Ran(θ) = Var(xθ).

Proof. Immediate by construction. 2

The following lemma establishes an auxiliary property that is useful for
defining the notion of an identity conflict pair of terms.

Lemma 29. Given terms t and t′ such that every symbol in t and t′ is free

or with identity element e, and a fresh variable x, then 〈t
x

, t′ | ∅ | id 〉 →∗

〈u
y

, v ∧ CT | S | θ〉 using the inference rules of Figures 6 and 12 iff there exist
a position p ∈ Pos(t) and a position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, ∀1 ≤ i ≤ min(depth(p), depth(p′)), root(t|p|i) =
root(t′|p′|i), and

• if p ≥ p′, then ∀i ∈ {depth(p′), . . . , depth(p)}, root(t|p|i) = f s.t. f
has identity element e, or

• if p′ > p, then ∀i ∈ {depth(p), . . . , depth(p′)}, root(t′|p′|i) = f s.t. f
has identity element e; or

2. t|p = u, v = e, p′ = p|depth(p)−1, root(t|p′) = f s.t. f has identity element
e, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) = root(t′|p′|i); or

3. u = e, t′|p′ = v, p = p′|depth(p′)−1, root(t′|p) = f s.t. f has identity
element e, and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

Proof. Straightforward by successive application of the inference rule Decom-
pose of Figure 1 and the inference rule DecomposeU of Figure 12. 2
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Definition 12 (Identity Conflict Pair). Given terms t and t′ such that ev-
ery symbol in t and t′ is free or with identity element e, the pair (u, v) is called
an identity conflict pair of t and t′ iff there exist at least one position p ∈ Pos(t)
and at least one position p′ ∈ Pos(t′) such that either:

1. t|p = u, t′|p′ = v, u 6=E v, ∀1 ≤ i ≤ min(depth(p), depth(p′)), root(t|p|i) =
root(t′|p′|i), and

• if p ≥ p′, then ∀i ∈ {depth(p′), . . . , depth(p)}, root(t|p|i) = f s.t. f
has identity element e, or

• if p′ > p, then ∀i ∈ {depth(p), . . . , depth(p′)}, root(t′|p′|i) = f s.t. f
has identity element e; or

2. t|p = u, v = e, u 6=E e, p′ = p|depth(p)−1, root(t|p′) = f s.t. f has identity
element e, and ∀1 ≤ i ≤ depth(p′), root(t|p|i) = root(t′|p′|i); or

3. u = e, t′|p′ = v, v 6=E e, p = p′|depth(p′)−1, root(t′|p) = f s.t. f has
identity element e, and ∀1 ≤ i ≤ depth(p), root(t|p|i) = root(t′|p′|i).

The following lemma states the appropriate connection between the con-
straints in a derivation and the identity conflict pairs of the initial configuration.

Lemma 30. Given terms t and t′ such that every symbol in t and t′ is free

or has an identity element, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈CT |
u
y

, v∧S | θ〉 using the inference rules of Figures 6 and 12 iff (u, v) is an identity
conflict pair of t and t′.

Proof. Similar to the proof of Lemma 20 but using Lemma 29 instead of
Lemma 19 and Definition 12 instead of Definition 10. 2

The following lemma establishes the link between the computed substitution
and a proper generalization term.

Lemma 31. Given terms t and t′ such that every symbol in t and t′ is free or

has an identity element, and a fresh variable x, 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉,
using the inference rules of Figures 6 and 12 iff xθ is a generalization of t and
t′ modulo identity.

Proof. Similar to the proof of Lemma 21 but using Lemma 30 instead of
Lemma 20 and Definition 12 instead of Definition 10. 2

Finally, correctness and completeness are proved as follows.

Theorem 18 (Correctness and Completeness). Given an equational the-
ory (Σ, E), Σ-terms t and t′ such that every symbol in t and t′ is free or has an
identity element, and a fresh variable x, then u ∈ genE(t, t′) iff there is u′ in

{xθ | 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the inference rules of Figures 6 and
12 such that u 'E u′.
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Proof. Similar to Theorem 12. 2

Recall that the inference rules of Figures 6 and Figure 12 together are not
confluent, hence different final configurations 〈∅ | S1 | θ1〉, . . . , 〈∅ | Sn | θn〉
correspond to different generalizations xθ1, . . . , xθn. Note that if the symbol f
has an identity element e and is commutative or associative-commutative, then
it is not necessary to consider both forms f(t′, e) and f(e, t′) in Figure 12.

5.7. A general ACU-generalization method

For the general case when different function symbols satisfying different as-
sociativity and/or commutativity and/or identity axioms are considered, we can
use the inference rules above all together (inference rules of Figures 6, 7, 8, 10,
and 12) with no need whatsoever for any changes or adaptations.

The key property of all the above inference rules is their locality : they are
local to the given top function symbol in the left term (or right term in some
cases) of the constraint they are acting upon, irrespective of what other function
symbols and what other axioms may be present in the given signature Σ and
theory E. Such a locality means that these rules are modular, in the sense that
they do not need to be changed or modified when new function symbols are
added to the signature and new A, and/or C, and/or U axioms are added to E.
However, when new axioms are added to E, some rules that applied before (for
example decomposition for an f which before satisfied ax(f) = ∅, but now has
ax(f) 6= ∅) may not apply, and, conversely, some rules that did not apply before
now may apply (because new axioms are added to f). But the rules themselves
do not change! They are the same and can be used to compute the set of lggs
of two terms modulo any theory E in the parametric family IE of theories of
the form E =

⋃
f∈Σ ax(f), where ax(f) ⊆ {Af , Cf , Uf}. Termination of the

algorithm is straightforward.

Theorem 19 (Termination). For an equational theory (Σ, E) with E ∈ IE,
two Σ-terms t and t′, and a fresh variable x, every derivation stemming from

an initial configuration 〈t
x

, t′ | ∅ | id〉 using the inference rules of Figures 6, 7,
8, 10, and 12 terminates with a configuration 〈∅ | S | θ〉.

The correctness and completeness of our algorithm is ensured by:

Theorem 20 (Correctness and Completeness). Given an equational the-
ory (Σ, E) with E ∈ IE, Σ-terms t and t′, and a fresh variable x, then u ∈
genE(t, t′) iff there is u′ in {xθ | 〈t

x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉} using the
inference rules of Figures 6, 7, 8, 10, and 12 such that u 'E u′.

6. Order-Sorted Least General Generalizations modulo E

In this section, we generalize the unsorted modular equational generalization
algorithm presented in Section 5 to the order-sorted setting.
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DecomposeE
f ∈ (Σ ∪ X ) ∧ ax(f) = ∅ ∧ f : [s1]× . . .× [sn]→ [s]

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
n) ∧ CT | S | θ〉 →

〈t1
x1:[s1]

, t′1 ∧ . . . ∧ tn
xn:[sn]

, t′n ∧ CT | S | θσ〉
where σ = {x:[s] 7→ f(x1:[s1], . . . , xn:[sn])}, x1:[s1], . . . , xn:[sn] are fresh vari-
ables, and n ≥ 0

SolveE

f = root(t) ∧ g = root(t′) ∧ f 6= g ∧ Uf 6∈ ax(f) ∧ Ug 6∈ ax(g)∧

∧s′ ∈ LUBS(LS(t), LS(t′)) ∧ @y @s′′ : t
y:s′′

, t′ ∈E S

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈CT | S ∧ t
z:s′

, t′ | θ〉
where σ = {x:[s] 7→ z:s′} and z:s′ is a fresh variable.

RecoverE
root(t) 6= root(t′) ∧ ∃y : t

y:s′

, t′ ∈E S

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈CT | S | θσ〉
where σ = {x:[s] 7→ y:s′}

Figure 14: Basic inference rules for least general E–generalization

First of all, we assume that a kind-completed, pre-regular, order-sorted sig-
nature (Σ,S, <) has the same equational attributes for overloaded symbols, i.e.,
for any two operator declarations of symbol f with arity n, f : s1× . . .× sn → s
and f : s′1 × . . . × s′n → s′ such that si ≤ si for 1 ≤ i ≤ n, if an equation
t = t′ is applicable to f : s1 × . . . × sn → s, it must also be applicable to
f : s′1 × . . .× s′n → s′.

As in Section 4, we consider two terms t and t′ having the same top sort,
otherwise they are incomparable and no generalization exists. Starting from the

initial configuration 〈t
x:[s]

, t′ | ∅ | id〉 where [s] = [LS(t)] = [LS(t′)], configura-
tions are transformed until a terminal configuration 〈∅ | S | θ〉 is reached. Also,
as in Section 5, when different function symbols satisfying different associativity
and/or commutativity and/or identity axioms are considered, we can use the
inference rules of Figures 14, 15, 16, 17, and 18 all together.

Note that we have just followed the same approach of Section 4 and extended
the inference rules of Figures 6, 7, 8, 10, and 12 to Figures 14, 15, 16, 17, and
18 provided below.

Termination is straightforward.

Theorem 21 (Termination). Given a kind-completed, pre-regular, order-sorted
equational theory (Σ, E) with the same equational attributes for overloaded sym-
bols, terms t and t′, and a fresh variable x, every derivation stemming from an

initial configuration 〈t
x

, t′ | ∅ | id〉 using the inference rules of Figures 14, 15,
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DecomposeC

f : [s]× [s]→ [s] ∧ Cf ∈ ax(f) ∧Af 6∈ ax(f) ∧ i ∈ {1, 2}

〈f(t1, t2)
x:[s]

, f(t′1, t
′
2) ∧ CT | S | θ〉

→ 〈t1
x1:[s]

, t′i ∧ t2
x2:[s]

, t′(i mod 2)+1 ∧ CT | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Figure 15: Decomposition rule for a commutative function symbol f

DecomposeA

f : [s]× [s]→ [s] ∧Af ∈ ax(f) ∧ Cf 6∈ ax(f) ∧
m ≥ 2 ∧ n ≥ m ∧ k ∈ {1, . . . , (n−m) + 1}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ CT | S | θ〉

→ 〈f(t1, . . . , tk)
x1:[s]

, t′1 ∧ f(tk+1, . . . , tn)
x2:[s]

, f(t′2, . . . , t
′
m) ∧ CT | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Figure 16: Decomposition rule for an associative (non–commutative) function symbol f

16, 17, and 18 terminates with a configuration 〈∅ | S | θ〉.

Proof. Similar to the proofs of Theorems 1 and 17. 2

In order to prove correctness and completeness, Definitions 9, 10, 11, and 12
for E-conflict pairs are extended to the order-sorted case in the obvious way;
recall that variables with the same name but different sorts, e.g. x:A and x:B,
are considered as different variables.

We follow the same proof schema of Section 4.2 and define order-sorted E-lgg
computation by subsort specialization. That is, to compute generalizations by
removing sorts (i.e., upgrading variables to top sorts), computing (unsorted) E-
lggs, and then obtaining the right subsorts by a suitable post-processing. This
approach is not used in practice, it is used only for the proofs of correctness and
completeness of the inference rules.

First, for generalization in the modulo case, we introduce a special notation
for subterm replacement when we have associative or associative-commutative
conflict pairs.

Definition 13 (A-SubTerm Replacement). Given two flattened terms t and
t′ and an associative conflict pair (u, v) with conflict positions p ∈ Pos(t) and
p′ ∈ Pos(t′) such that t|p = u, v = f(v1, . . . , vn), t′|p′ = f(w1, . . . , wm, v1, . . . ,
vn, w

′
1, . . . , w

′
m′), and f is associative, we write t[[x:s]]p and t′[[x:s]]p′ to denote

the terms t[[x:s]]p = t[x:s]p and t′[[x:s]]p′ = t′[f(w1, . . . , wm, x:s, w′1, . . . , w
′
m′)]p′ .

45



DecomposeAC

f : [s]× [s]→ [s] ∧ {Af , Cf} ⊆ ax(f) ∧ n ≥ m ∧
{i1, . . . , im−1}]̄{im, . . . , in} = {1, . . . , n}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉

→ 〈ti1
t′1:[s]

, t′1 ∧ . . . ∧ tim−1

xm−1:[s]

, t′m−1 ∧ f(tim , . . . , tin)
xm:[s]

, t′m ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], . . . , xm:[s])}, and x1:[s], . . . , xm:[s] are fresh vari-
ables

Figure 17: Decomposition rule for an associative–commutative function symbol f

ExpandU

f : [s]× [s]→ [s]∧
Uf ∈ ax(f) ∧ root(t) ≡ f ∧ root(s) 6= f ∧ t′′ ∈ {f(e, t′), f(t′, e)}

〈t
x:[s]

, t′ ∧ CT | S | θ〉 → 〈t
x:[s]

, t′′ ∧ CT | S | θ〉

Figure 18: Inference rule for expanding function symbol f with identity element e

Definition 14 (AC-Subterm Replacement). Given two flattened terms t
and t′ and an associative-commutative conflict pair (u, v) with conflict posi-
tions p ∈ Pos(t) and p′ ∈ Pos(t′) such that t|p = u, v = f(v1, . . . , vn),
t′|p′ = f(w1, . . . , wm), f is associative-commutative, for each i ∈ {1, . . . , n}
there is j ∈ {1, . . . ,m} s.t. vi =E wj, we write t[[x:s]]p and t′[[x:s]]p′ to de-
note the terms t[[x:s]]p = t[x:s]p and t′[[x:s]]p′ = t′[f(w′1, . . . , w

′
k, x:s)]p′ where

{w′1, . . . , w′k} = {w ∈ {w1, . . . , wm} | @i ∈ {1, . . . , n}, w =E vi}.

As in Section 4.2, we define order-sorted E-lgg computation by subsort
specialization using a top-sorted generalization (see Definition 6) and a sort-
specialized generalization (see Definition 16).

Definition 15 (Top-sorted Equational Generalization). Given a kind-
completed, pre-regular, order-sorted equational theory (Σ, E) with the same equa-
tional attributes for overloaded symbols, and flattened Σ-terms t and t′ such that
[LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the E-conflict pairs of t and t′, and
for each such conflict pair (ui, vi), let (pi1, . . . , p

i
ni
, qi1, . . . , q

i
ni

) be the correspond-
ing E-conflict positions, and let si = [LS(ui)] = [LS(vi)]. We define the term
denoting the top order-sorted equational least general generalization as

tsgE(t, t′) = ((t[[x1:s1]]p11,...,p1n1
) · · · )[[xk:sk]]pk1 ,...,pknk

where x1:s1, . . . , xk:sk are fresh variables.

The order-sorted equational lgg’s are obtained by subsort specialization.
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Definition 16 (Sort-specialized Equational Generalization). Given a
kind-completed, pre-regular, order-sorted equational theory (Σ, E) with the same
equational attributes for overloaded symbols, and flattened Σ-terms t and t′ such
that [LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the conflict pairs of t and t′.
We define

sort-down-subsE(t, t
′) = {ρ | Dom(ρ) = {x1:s1, . . . , xk:sk} ∧

∀1 ≤ i ≤ k, ρ(xi:si) = xi:s
′
i ∧ s′i ∈ LUBS(LS(ui),LS(vi))}

where all the xi:s
′
i are fresh variables. The set of sort-specialized E-generalizations

is defined as ssgE(t, t′) = {tsgE(t, t′)ρ | ρ ∈ sort-down-subsE(t, t′)}.

Now, we prove that sort-specialized E-generalizations are the same as order-
sorted E-lggs.

Theorem 22. Given a kind-completed, pre-regular, order-sorted equational the-
ory (Σ, E) with the same equational attributes for overloaded symbols, and flat-
tened Σ-terms t and t′ such that [LS(t)] = [LS(t′)], tsgE(t, t′) is a order-sorted
equational generalization of t and t′, and lggE(t, t′) provides a minimal complete
set of order-sorted equational lggs.

Proof. Similar to the proof of Theorem 6. 2

Finally, we prove the correctness and completeness of the order-sorted, equa-
tional generalization algorithm.

Theorem 23 (Correctness and Completeness). Given a kind-completed,
pre-regular, order-sorted equational theory (Σ, E) with the same equational at-
tributes for overloaded symbols, flattened Σ-terms t and t′ such that [s] = [LS(t)] =
[LS(t′)], and a fresh variable x:[s], u ∈ lggE(t, t′) is an order-sorted equational

lgg of t and t′ iff 〈t
x:[s]

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 using the inference rules of
Figures 14, 15, 16, 17, and 18 for some S and θ and u 'E (x:[s])θ.

Proof. Similar to the proof of Theorem 7. 2

7. Implementation

The different calculi proposed in this paper have been implemented in the
high-performance, rewriting logic language Maude (Clavel et al., 2007). The
whole implementation consists of about 700 lines of Maude code, and relies on
Maude’s powerful reflective capabilities to obtain a straightforward translation
of the inference system presented in this paper.

First, the module that contains the considered order-sorted theory1 and
the input terms are lifted to the meta-level, and an initial configuration is con-
structed. Then, an exhaustive search is conducted by using Maude’s metaSearch

1 More precisely, the module can be either an equational theory of the form fmod (Σ, E∪G)
endf with E ∈ IE (a functional module), or a rewrite theory of the form mod (Σ, E ∪ G,R)
endm with E ∈ IE (a system module).
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function, which executes the inference rules in the calculi described above as
meta-level rewrite rules in order to obtain the complete set of least general
generalizations. Since the computed set is not minimal, a final filtering step is
performed that allows us to get rid of those elements that do not satisfy the
maximality property given in Definition 8. This is done by pairwise comparison
of all elements in the set using the ordering <E , discarding any term u that
subsumes modulo E any other term v in the set, i.e., u <E v. We use Maude’s
metaMatch for this task, since it provides a simple and efficient means to check
the relation <E .

Finally, in order to improve the efficiency of the algorithm without compro-
mising its correctness, we implement the AC decomposition process by using a
next-permutation routine that is inspired in C++’s STL, rather than carrying
out a simpler, näıve generation of all permutations. The generation of unique
permutations exponentially reduces the cost of permuting the arguments, which
drastically improves performance for the case of heavily repeated subterms.

The front-end of the implementation is a new Full Maude function, get

lggs, which is publicly available at http://www.dsic.upv.es/grupos/elp/

FMlgg.html. For instance, consider the following Full Maude module (we refer
the reader to (Clavel et al., 2007) for Maude and Full Maude syntax):

(mod fACU-OS is

sorts E A B C D Empty .

subsort Empty < A B .

subsort A < C D .

subsort B < C D .

subsort C < E .

subsort D < E .

op a : -> A .

op b : -> B .

op c : -> C .

op d : -> D .

op e : -> Empty .

op f : Empty Empty -> Empty [assoc comm id: e] .

op f : A A -> A [assoc comm id: e] .

op f : B B -> B [assoc comm id: e] .

op f : E E -> E [assoc comm id: e] .

endm)

This module is automatically extended to its kind-complete version by Maude.
It defines five constants a, b, c, d, e and four binary symbols sharing the same
name f but with different signatures corresponding to the subsort structure of
Figure 5. All four versions of symbol f (plus its kind extension f : [E] → [E])
are associative-commutative and with identity symbol the constant e. Now, we
can type the following generalization problem in Full Maude obtaining the six
possible order-sorted E-lggs.

(get lggs in fACU-OS : f(b,b,a) =? f(a,a,b) .)
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Lgg 1

f(X1:C,b,a)

Lgg 2

f(X1:D,b,a)

Lgg 3

f(X1:C,X1:C,X3:C)

Lgg 4

f(X1:C,X1:C,X3:D)

Lgg 5

f(X1:D,X1:D,X3:C)

Lgg 6

f(X1:D,X1:D,X3:D)

No more lgg.

We have also made available a meta-level function metaGeneralize which is
useful for tools using generalization.

Additionally, a web-based facility for running the tool is available at http:

//www.dsic.upv.es/grupos/elp/weblgg.html. Figure 19 shows a screen cap-
ture for the E-lggs of terms f(b, b, a) and f(a, a, b) without sort information.

8. Conclusion and Future Work

We have presented an order-sorted, modular equational generalization al-
gorithm that computes a minimal and complete set of least general generaliza-
tions for two terms modulo any combination of associativity, commutativity and
identity axioms for the binary symbols in the theory. Our algorithm is directly
applicable to any many-sorted and order-sorted declarative language and equa-
tional reasoning system (and also, a fortiori, to untyped languages and systems
which have only one sort). As shown in the examples, the algorithms we pro-
pose are effective to compute E-generalizations, which would be unfeasible in a
näıve way.

In our own work, we plan to use the proposed order-sorted equational gener-
alization algorithm as a key component of a narrowing-based partial evaluator
(PE) for programs in order-sorted rule-based languages such as OBJ, CafeOBJ,
and Maude. This will make available for such languages useful narrowing–driven
PE techniques developed for the untyped setting in, e.g., (Albert et al., 1999;
Alpuente et al., 1998a,b, 1999). We are also considering adding this generaliza-
tion mechanism to an inductive theorem prover such a Maude’s ITP (Clavel and
Palomino, 2005) to support automatic conjecture of lemmas. This will provide a
typed analogue of similar automatic lemma conjecture mechanisms in untyped
inductive theorem provers such as Nqthm (Boyer and Moore, 1980b) and its
ACL2 successor (Kaufmann et al., 2000a).
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Figure 19: Screen capture of the Web application for ACU order-sorted lgg computations
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