Multimedia Analysis and Retrieval System (MARS) Project*

To address the emerging needs of applications that require access to, and retrieval of, multimedia objects, we have started a Multimedia Analysis and Retrieval System (MARS) project at the University of Illinois. The project brings together researchers interested in the fields of computer vision, compression, information management, and database systems with the singular goal of developing an effective multimedia database management system. As a first step toward the project, we have designed and implemented an image retrieval system. This discussion describes the novel approaches toward image segmentation, representation, browsing, and retrieval supported by the developed system. Also described are the directions of future research we are pursuing as part of the MARS project.

INTRODUCTION

Advances in high performance computing, communication, and storage technologies, as well as emerging large-scale multimedia applications, has made multimedia data management one of the most challenging and important directions of research in computer science. Such systems will support visual data as “first-class” objects that are capable of being stored and retrieved based on their rich internal contents. Applications of multimedia databases include, among others:

- government and commercial uses of remote sensing images, satellite images, air photos, etc.;
- digital libraries, including digital catalogs, product brochures, training and education, broadcast and entertainment, etc.;
- medical databases, such as X-rays, MRI, etc.;
- special-purpose databases, e.g., face/fingerprint databases for security, business directories, maps, etc.

While current technology allows generation, scanning, transmission, and storage of large numbers of digital images, video and audio, existing

* This work was supported in part by the NSF/DARPA/NASA Digital Library Initiative Program under Cooperative Agreement 94-11318, in part by the U.S. Army Research Laboratory under Cooperative Agreement No. DAAL01-96-2-0003, in part by NASA under the Cooperative Agreement No. NASANAG 1-613, and in part by the University of Illinois Research Board.
practices of indexing, access, and retrieval of visual data are still very primitive. Most current systems rely on manual extraction of content information from images. Such information is stored using text annotations and indexing, and retrieval is then performed using these annotations. Although useful in some domains, such techniques are severely limited since manual indexing is inherently not scalable and, furthermore, textual descriptors are inadequate for describing many important features based on what users wish to retrieve as far as visual data (e.g., color, texture, shape, and layout). Also, textual descriptions are ineffective in supporting unanticipated user queries.

Development of multimedia database management systems requires an integrated research effort in the fields of image analysis, computer vision, information retrieval, and database management. Traditionally, these research areas have been studied in isolation with little or no interaction among the respective research communities. Image analysis and computer vision researchers have developed effective algorithms for image representation and segmentation. However, on the one hand, incorporation of these algorithms into the data management system in order to support effective retrieval is largely an open problem. On the other hand, research on information retrieval has focused on developing effective retrieval techniques to search for information relevant to users' queries. Effectiveness is measured using the precision of the information retrieved (i.e., how relevant is the retrieved information to the user?) and the recall (i.e., how much of the relevant information present in the database was retrieved?) (Salton & McGill, 1983). Efficient processing of user queries, as well as support for concurrent operations which are important for scalability, has been relatively ignored. Furthermore, research has primarily focused on textual data. Finally, database management research has concentrated on efficiency of storage and retrieval as well as on support for concurrent users and distributed processing. However, the techniques have been developed in the context of simple record-oriented data, and little has been done to extend the techniques to either textual, image, or multimedia data.

To address the challenges in building an effective multimedia database system, we have started the Multimedia Analysis and Retrieval System (MARS) project. MARS brings together a research team with interest in image analysis, coding, information retrieval, and database management. As part of the MARS project, we are addressing many research challenges including automatic segmentation and feature extraction, image representation and compression techniques suitable for browsing and retrieval, indexing and content-based retrieval, efficient query processing, support for concurrent operations, and techniques for seamless integration of the multimedia databases into the organization's information infrastructure. As a first step, we have developed a prototype image
MARS IMAGE RETRIEVAL SYSTEM

MARS/IRS is a simple prototype image retrieval system that supports similarity and content-based retrieval of images based on the properties of color, texture, shape, and layout. The distinguishing features of the current implementation include a novel approach toward segmentation, shape representation, support for complex content-based queries, as well as compression techniques to support effective browsing of images. In this section, we describe the current implementation of MARS/IRS.

System Architecture

The major components of MARS/IRS are shown in figure 1 and are discussed below.
MARS Project

- **User interface:** written using Java applets and accessible over the World Wide Web using the Netscape browser. The user interface allows users to graphically pose content-based and similarity queries over images. Using the interface, a user can specify queries to retrieve images based on a single property or a combination of properties. For example, a user can retrieve images similar in color to an input query image. A more complex query is to retrieve images that are similar in color to an input image I_1 and contain a shape similar to a specified shape in image I_2. The interface also allows users to combine image properties as well as text annotations (e.g., name of the creator, title of a painting, etc.) in specifying queries. The user interface is accessible over the WWW at PURL (<http://quirk.ifp.uiuc.edu:2020/mars/mars.html>).

- **Image Indexer:** The image indexer takes as input an image as well as its text annotation. With the help of the image analyzer, it extracts image properties (e.g., color, texture, shape). Furthermore, it extracts certain salient textual properties (e.g., name of the artist, subject of the painting, etc.) and stores these properties into the feature database.

- **Image Analyzer:** The image analyzer extracts salient image properties like the global color and texture as well as the shape. The global color is represented using a color histogram over the hue saturation value (HSV) space. At each image pixel, three texture features—coarseness, contrast, and directionality—are computed and the set of feature vectors forms a 3-D global texture histogram. Furthermore, images are segmented and the shape features of the objects in the image are represented using a modified Fourier Descriptor of the object boundary.

- **Feature Database:** An image in the feature database is represented using its image as well as textual properties. An image consists of global color histogram; a texture histogram; shape features; textual features like name of artist, subject of painting, etc. as well as color and texture layout properties. The feature database is currently implemented using POSTGRES (Stonebraker & Kemnitz, 1991). Furthermore, users can associate a full-text description with the images.

- **Query Processor:** The query processor is written on top of POSTGRES in C. It takes the query specified at the user interface, evaluates the query using the feature database, and returns to the user images that are best matches to the input query. The query language supported allows users to pose complex queries that are composed using image as well as textual properties. First, the query processor ranks the images based on individual properties. It then combines the ranking on
individual properties to determine the overall ranking of the images based on the complex query. Techniques are developed to efficiently identify the best N matches without requiring that every image be ranked based on each property.

As mentioned previously, currently MARS/IRS uses as a test bed a set of images of paintings and photographs of artifacts made available to us by the Getty Museum Foundation (Museum Educational Site Licensing [MSL] Project [see Trant in these proceedings]).

Image Representation

In MARS/IRS, an image I consists of a set of global properties as well as a set of objects O'_1, O'_2, \ldots, O'_n. Global properties are either:

- fixed descriptors like the artist's name, title, and museum to which the image belongs;
- free-text description of the image; or
- low-level image properties like color, texture, and layout.
MARS Project

Objects within an image are identified using automatic segmentation (described later in this section) and associated with each object are local properties which could include description of shape, average color, texture, centroid, area, as well as textual annotations. This section describes the representation of the low-level image features used in modeling an image.

Color

While color features could be represented in many color spaces, we use the hue saturation value color space since it approximates a perceptually uniform color space, making it easier for the user to specify colors. The global color histogram of an image is computed and stored. A histogram intersection method is used to compare the overall color content of an image with the colors specified in the user query. With respect to changes in image background colors, the histogram intersection similarity measure is more robust than the Euclidean histogram distance or matrix-weighted histogram distance. Using the histogram intersection method, a user may retrieve images in a database that contain a specific color or set of colors. For example, a user may retrieve all images that contain red and green but no blue.

Color Layout

While the color histogram is useful for queries on the relative amount of each color in an image; it is not useful for queries on the spatial location of colors. For example, it is not possible to retrieve all images that contain a red region above and to the right of a large blue region based solely on the color histogram. Such queries can be answered correctly only if an image can be accurately segmented into regions of different color, which is difficult to achieve. But for queries relating to simple spatial relationships between colors, a relatively nonideal segmentation may still be sufficient.

To represent spatial arrangement of colors in an image, we do a simple k-means clustering on the hue saturation value (HSV) histogram of an image to produce a rough segmentation. For each region in the segmentation, we store the following information for color indexing: centroid, area, eccentricity, average color, and maximum bounding rectangle. Images will be searched by comparing the relative locations and colors of the indexed regions to see if they matched the color layout query.

Texture

Texture is another important feature of images, and researchers have done a great deal of work in this area. We have implemented texture measures based on coarseness, contrast, and directionality, which are generally considered to be fairly good measures for texture. At each image pixel we compute these three texture features from the pixel's local neigh-
borhood. The set of feature vectors from all image pixels forms the 3-D global texture histogram. We compute these measures for each image and use a weighted Euclidean distance function as the matching criteria. The method described by Hideyuki Tamura (used by QBIC) uses three scalar measures and does not consider the relationship between texture components. Our method includes this texture information and thus returns better matches (i.e., the textures are perceptually more similar).

Shape

Although shape is a very important feature that a human can easily extract from an image, reliable automatic extraction and representation of shapes is a challenging open problem in computer vision.

Some simple shape features are the perimeter, area, number of holes, eccentricity, symmetry, etc. Although these features are easy to compute, they usually return too many false positives to be useful for content-based retrieval, thus they are excluded from our discussion. Advanced methods that can represent more complex shapes fall into two categories. The first category is region-based methods. These methods are essentially the Moment-Invariants Methods (MIM). The disadvantage of the MIM is its high computational cost (features are computed using the entire region including interior pixels) and low discriminatory power. The descriptors also tend to return too many false positives.

Boundary-based methods are the second category, which include the Turning Angle Method (TAM) and Fourier Descriptors (FD). These methods provide a much more complete description of shape than MIM; however, they suffer the disadvantage of being dependent on the starting point of the shape contour, and they can recover parameters (rotation, scale, starting point) only by solving a nonlinear optimization problem, which is not feasible in a real-time content-based retrieval system. Furthermore, to the extent of our knowledge, no research has been done on how to deal with the spatial discretization problem when using these methods.

We proposed the Modified Fourier Descriptor (MFD) (Rui et al., 1996b), which satisfies the four conditions:

1. Robustness to transformation—the representation must be invariant to translation, rotation, and scaling of shapes, as well as the starting point used in defining the boundary sequence.

2. Robustness to noise—shape boundaries often contain local irregularities due to image noise. More importantly, spatial discretization introduces distortion along the entire boundary. The representation must be robust to these types of noise.

3. Feature extraction efficiency—feature vectors should be computed efficiently.
MARS Project

4. Feature matching efficiency—since matching is done online, the distance metric must require a very small computational cost.

Image Segmentation

Our image segmentation is based on clustering and grouping in spatial-color-texture space. For a typical natural image, there is a high number of different colors and textures. C-means clustering is one way to reduce the complexity while retaining salient color and texture features.

1. randomly pick \(c \) starting points in the color-texture space as the initial means;
2. cluster each point as belonging to the nearest neighbor mean;
3. compute the new mean for each cluster; and
4. repeat 2 and 3 until all the clusters converge (i.e., when the number of pixels and mean value of each cluster does not change).

After this procedure, we have \(c \) clusters, each of which may correspond to a set of image pixels. We define cluster as a natural group which has similar features of interest. The image pixels corresponding to a particular cluster may or may not be spatially contiguous. We define a region as one of the spatially connected regions corresponding to a cluster.

The c-means clustering generally produces regions of various sizes; some of the regions are very small (containing only a few pixels). We consider these regions as speckle noise and set a minimum region size threshold to filter out these small regions. The deleted regions are merged with the largest neighboring region. After c-means clustering, we have \(c \) clusters, each corresponding to several spatial regions. The next step is to extract the desired object from the regions.

One way to do this is to define a threshold in color-texture space. If a region’s color-texture feature is above the threshold, then this region is considered as the object; otherwise, it is considered as the background. One obvious disadvantage of this thresholding method is that the threshold is image-dependent. We propose an attraction-based grouping method (ABGM) to overcome this disadvantage (Rui et al., 1996a). The method is motivated by the way the human visual system might do the grouping.

As defined in physics,

\[
F_{12} = G \frac{M_1 M_2}{d^2}
\]

reflects how large the attraction is between the two masses \(M_1 \) and \(M_2 \) when they are of distance \(d \). In ABGM, we use the similar concept, but now \(M_1 \) and \(M_2 \) are the size of the two regions, and \(d \) is the Euclidean
distance between the two regions in 6-D spatial-color-texture space. The ABGM method is described as follows:

1. choose attractor region A_s from the clustered regions according to the knowledge of the application at hand;
2. randomly choose an unlabeled region R_j. Find the attractions F_{ij} between A_i and R_j;
3. associate region R_j with the attractor A_i that has the largest attraction to R_j;
4. repeat steps 2 and 3 until all the regions are labeled; and
5. form the output segmentation by choosing the attractor of interest and its associated regions.

Note that if the attractor is bigger or closer (in 6-D space) to an unlabeled region, its attraction will be larger, and thus the unlabeled region will be labeled to this attractor with higher probability. This is what a human visual system might do in the labeling process.

USER INTERFACE AND QUERY LANGUAGE

The user interface of MARS/IRS allows users to browse images sequentially (or in a random order), as well as to graphically pose content-based queries over the database of images. Queries supported are a Boolean combination of query terms. The semantics of the query is to retrieve images ranked on the degree to which the image satisfies the input query. A query term is either simple or complex. A simple term corresponds to textual annotations or image properties like color and texture. For example, a query:

```
containing_color(color identifier) ^
similar_texture_to_image(image id=4000)
```

is a Boolean combination of the following two query terms combined using a conjunction operator:

- `containing_color(color identifier)`, and
- `similar_texture_to_image(image id=4000)`.

The first term refers to images that contain a given color (possibly chosen from a color pallet). The second refers to images whose texture matches the texture of the image with the identifier 4000. The system will retrieve images containing the specified color that also have a texture similar to the image 4000.
The user interface supports many ways in which users can specify query terms. Colors can be chosen from a color pallet or from the images that are currently being displayed in the MARS/IRS display window. To specify a color using an image, a user first loads the image from the display into the work space (by clicking on the image). The user can then choose either the global color of the loaded image as a query term (in which case the query term specifies retrieval of images whose global color histogram is similar to that of the loaded image), or alternatively, the user can choose the average color of some object within the image as a query term by clicking on the object (the objects within an image are highlighted when the image is loaded into the work space for this purpose). Mechanisms similar to those used for specifying color query can be used for specifying texture query terms as well. Furthermore, MARS/IRS supports mechanisms for both specifying color layout query terms as well as selecting a color layout similar to the layout of a given image.

In contrast to the simple query terms, a complex query term is of the form:

\[
\text{contains_object}(\text{object description query})
\]

The complex query term refers to images that contain an object that matches the object description query. The object description query may itself be a Boolean combination of image-based, as well as textual, features associated with the objects. The user interface also supports graphical mechanisms for composing object description queries.

The query mechanism supported by MARS/IRS provides a versatile tool for content-based retrieval. Using Boolean operators, users can form very complex queries. One special complex query is the similarity query when a user wishes to retrieve all the images similar to a given input image. Such a query is interpreted to mean images similar to the input image based on all the features and objects associated with the input image (obviously, such queries are reasonably inefficient). We are currently exploring information retrieval techniques including the query refinement mechanism of relevance feedback (Salton & McGill, 1983) to meaningfully answer similarity queries effectively and efficiently.

Query Processing

A query processor takes a query and retrieves the best \(N \) images that satisfy the query. Associated with the query is a query tree. Leaf nodes of the tree correspond to simple query terms based on a single property—e.g., global color similar to that of an input image \(I_i \). Internal nodes in the tree correspond to Boolean operators—\(\text{and} \), \(\text{or} \), and \(\text{not} \)—as well as to complex query terms corresponding to objects contained in the image. The query tree is then evaluated as a pipeline from the leaf to the root. The leaf node \(n_j \) returns a ranked list of \(I, \text{sim}(I, Q_p) \) to its parent,
where I is an image and $\text{sim}(I, Q_n)$ is a measure of match between the image I and the query represented by the leaf node n_j. For example, a leaf node n_j corresponding to the query term representing the global color of an image I returns a ranked list of I, $\text{sim}(I, Q_{n_j})$, where $\text{sim}(I, Q_{n_j})$ is the measure of the intersection of color histograms corresponding to images I and I'.

The internal nodes n_p receive such ranked lists from each child and then combine to compute a ranked list of I, $\text{sim}(I, Q_{n_p})$, where $\text{sim}(I, Q_{n_p})$ is a measure of similarity between the image I and the query represented by the internal node n_p. This list is then input to the higher nodes in the pipeline which use it to compute their best matches. To rank the images according to the query represented by parent nodes, first the similarity measures associated with child nodes are normalized. Normalized similarity measures of different child nodes are then used to rank the images based on the degree of match to the query represented by the parent node. In our current implementation, a simple approach to normalization and ranking of images is adopted. Let an internal node n_p consist of child nodes n_{p_1}, n_{p_2}, ..., n_{p_m}. The normalized similarity of an image I to the query corresponding to the child node n_j (represented by $\text{sim}(I, n_j)$) is taken to be the inverse of the rank of I based on its similarity to the query represented by node n_j (notice that the range of the normalized similarity lies between 0 and 1). The similarity of the image I to the query represented by node n_p is computed as follows:

$$\text{sim}(I, Q_{n_p}) = \min(\text{sim}(I, Q_{n_1}), \text{sim}(I, Q_{n_2}), ..., \text{sim}(I, Q_{n_m})), \text{where } Q_{n_p} = Q_{n_1} Q_{n_2} ... Q_{n_m})$$

$$\text{sim}(I, Q_{n_p}) = \max(\text{sim}(I, Q_{n_1}), \text{sim}(I, Q_{n_2}), ..., \text{sim}(I, Q_{n_m})), \text{where } Q_{n_p} = Q_{n_1} Q_{n_2} ... Q_{n_m})$$

An advantage of such a simple normalization and ranking algorithm is that it can be implemented very efficiently and does not require that every image be ranked based on each property in order to compute the best N matches. However, the resulting retrieval is not very effective. We are currently exploring usage of more complex retrieval models (e.g., vector space models, inference network retrieval model) used in information retrieval to improve retrieval effectiveness. Effective and efficient retrieval techniques for feature-based queries is one of our primary research concerns in the near future.

Representation and Compression for Fast Browsing Using Wavelets

Due to the obvious volume of data being stored and processed in the database, it is important to address efficient ways to represent and compress these data. A key goal here is not just to achieve a substantial compression ratio in order to reduce the amount of storage needed but, even more important, to do so in a framework that supports some of the important database tasks like browsing and object-based retrieval—i.e., to have a representation data structure that lends itself to these tasks without
needing to completely decompress the data. Toward this end, we propose a novel representation and compression data structure that is based on wavelets. Wavelets represent a mathematical tool based on multiresolution analysis that permits a natural decomposition of a signal or image into a hierarchy of increasing resolutions, thereby making them very suitable candidates for browsing applications.

Since their introduction, wavelets have become increasingly popular within the image coding community as an effective decorrelating transform to be used in the de facto standard architecture of loss coders, consisting of a linear transform followed by a quantization stage, and final entropy coding of the quantized symbol stream. Although initially the performance of wavelet based coders was only marginally better than that of previous existing subband coders, with the introduction of Shapiro's embedded zerotree wavelet (EZW) coder that is based on the zerotree data structure, an entire new avenue of research was started, with coders exploiting, in different forms, the fact that, even after decorrelation, significant structure remains in the subbands. Careful studies of the statistics of image subbands led to many improvements over the standard zerotree algorithm; however, this increased efficiency in coding often came at the expense of high computational complexity.

There are a number of ways to go about the complexity problem. One possibility, very appealing for the Image Databases application because of the simplicity with which transform domain data are represented, is that of fixing the quantization strategy to something reasonable (e.g., choose a single uniform quantizer for all subbands) and optimizing the entropy coder instead. Probably one of the simplest techniques of lossless data compression is that of run lengths. Zero run lengths have been very successfully applied a few years ago to the JPEG standard; surprisingly, none of the existing high performance wavelet-based coders make use of these. To test how useful one such representation can be for our purposes, we took two typical test images and computed the entropy of such a representation:

<table>
<thead>
<tr>
<th>Image</th>
<th>Lena</th>
<th>Barbara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distortion (PSNR)</td>
<td>33.58</td>
<td>36.67</td>
</tr>
<tr>
<td>Entropy (bpp)</td>
<td>0.2501</td>
<td>0.5042</td>
</tr>
<tr>
<td>Distortion (PSNR)</td>
<td>33.17</td>
<td>36.28</td>
</tr>
<tr>
<td>Zerotrees (bpp)</td>
<td>0.2500</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

It is clear from these numbers that any decent entropy coding scheme will do a good job at compressing this symbol stream, since by taking
such a straightforward approach we are obtaining performance improvements over the standard zerotrees (it is conceivable that some work along these lines will yield further improvements). Besides, if low complexity implementations are sought, there are computationally more efficient entropy coders than the adaptive arithmetic coder. We are currently exploring this approach. Preliminary versions of a coder based on these ideas show that performance comparable to that achieved by much more complex schemes can be accomplished while taking less than five seconds to run on a PC-like machine. Our encoder/decoder requires only one floating point multiplication/division per pixel, does not require an arithmetic coder (only static Huffman coding, no run-time adaptation), and is entirely based on table lookup operations with tables computed at the encoder and encoded in the bitstream, thus avoiding hard-to-justify choices of pre-stored parameters. Yet, under such stringent complexity constraints, its coding performance on typical test images is superior to that of the state-of-the-art zerotree wavelet-based algorithm, and less than 1dB lower than that of the absolute best coders published in the literature, while drastically outperforming them in terms of speed.

This substantial speedup basically enables the incorporation of high performance wavelet based image coding techniques into applications which, like in the Image Databases case, no hardware implementations are possible. Furthermore, our coder supports a key requirement of the databases application—i.e., progressive mode transmission. This feature is important for browsing since low resolution images are encoded at the beginning of the compressed bitstream; if network delays occur, the user can view partial reconstructions of his query, and if it turns out that the retrieved image is not the one he was looking for, then transmission can be aborted before the whole image is received, thus making the interactive process much faster.

FUTURE RESEARCH

The MARS project was started to address the growing need for developing an effective multimedia database management system. Such an effort requires an integrated approach encompassing the fields of image analysis and coding, computer vision, information management, and database systems. As a first step toward MARS, we have developed an image retrieval system which incorporates some novel approaches to image segmentation, object representation, image coding, and query processing. However, the prototype system built is only in its infancy and further investigation is required before we come close to our goals of developing an effective multimedia database management system. Below we discuss future research directions within the MARS project.
Coding for Retrieval

Work in the coding aspects will focus on making evaluations of content-based queries on images possible directly on the compressed domain without having to fully decompress the image. The coding methods being explored for this application make use of a feature unique to the wavelet transform—i.e., the structure in the transform domain is related to the spatial structure in the image. Unlike in other transforms, this makes it feasible to obtain easy access to shape representations directly in the wavelet domain. Research will be done to determine to what extent this is feasible and/or practical. It has been observed empirically that object structure can be clearly recognized in the wavelet domain. However, heavy use will need to be made of the semantic content of the scene being coded to make the task of identifying shapes feasible.

Automated Image Feature Extraction

Automated feature extraction is one of the most important requirements for a scalable multimedia database system. We will focus our attention primarily on automated texture feature extraction. Methods dealing with texture extraction fall into two main categories. The first one is a statistics-based method, such as the Markov Random Field model, the Co-occurrent Matrix, Fractal Model, etc. The second one is the transform-based method, including Discrete Fourier Transform (DFT), Gabor Filter, DWT models, etc. The statistics-based methods are normally computationally expensive, and the accuracy is lower than that of transform-based methods. Therefore, the transform-based methods are preferred.

Among the transform-based methods, DFT cannot achieve localization in the transformed domain and the Gabor Filter involves a complex number computation whereas the DWT is both localized in the transformed domain and easy to compute. Almost all of the existing DWT models use quad-tree decomposition in the spatial domain (pyramid and tree structures in the transformed domain). An obvious disadvantage of quad-tree-based methods is that the segmentation that they can perform must be of square shape (Egger et al., 1996; Gever & Kajcovski, 1994). However, the majority of the natural images contain texture regions of arbitrary shapes. It is almost impossible to find a square texture region inside a natural image. Besides, rotation-invariance is also an almost ignored research issue (Haley & Manjunath, 1995). We will explore a DWT model which can achieve the following goals:

- automated feature extraction;
- a texture region of arbitrary shape;
- a texture feature that is rotation-invariant.
Efficient Feature Indexing

A primary retrieval technique in multimedia databases is to use features extracted from the images. Hence, efficient indexing and retrieval of the features is very crucial for scalability of the system. The feature space normally is very high dimensional and, therefore, usage of conventional multidimensional and spatial indexing methods (e.g., R-trees, quad trees, grid files) is not feasible for feature indexing. Existing multidimensional index methods are only useful when the number of dimensions are reasonably small. For example, the R-tree based methods, which are among the most robust multidimensional indexing mechanisms, work well only for multidimensional spaces with dimensionality around 20. Other methods do not even scale to 20 dimensions. An approach used by the QBIC to overcome the dimensionality curse of the feature space is to transform the high dimensional feature space to a lower dimensional space using, for example, a K-L transform. An R^* tree is then used for indexing and retrieval in a lower dimensional space. The retrieval over the index provides a superset of the answers which can then be further refined in the higher dimensional space. While the approach is attractive and the QBIC authors report good retrieval efficiency over small image databases, it is not clear whether it will scale to large databases and complex feature spaces that are very highly multidimensional. In such situations, the high number of false hits in the lower dimensional space might make the approach unusable. We will explore extensions to the QBIC approach and/or alternate methods to overcoming the dimensionality curse. One important direction of research is methods for selecting optimal ways to map a high dimensional feature space to a lower dimensional space based on the nature of commonly occurring queries and the nature of the feature vectors.

Effective Retrieval Models

As discussed earlier, the retrieval model used to implement complex Boolean queries in our current implementation is very simple. The choice of the retrieval model has been dictated by issues of efficiency, simplicity, and quick prototyping. We are now examining more complex retrieval models developed in the information retrieval literature for supporting Boolean queries over the image feature database. Among the models being examined is the inference network model used by the INQUERY system (Callan et al., 1992). We will also explore how index structures can be used to support the developed retrieval model efficiently.

Integration with SQL

An important consideration in the design of the multimedia database system is its integration with the organization’s existing databases. This requires integration of the query language developed for the
MARS Project

multimedia database (which allows content-based and similarity retrieval) with SQL (a popular database query language). Such an integration will allow users to develop complex applications in which images as well as other multimedia data can be considered simply as another data type and the applications have a mechanism for retrieving information based on both visual as well as traditional nonvisual properties of data in the same query. Another related concept that we will explore is the correlation of concepts from one media to another.

Support for Concurrent Access

Scalable design requires that concurrent operations (indexing new images, retrievals, updates) be supported over the multimedia database. Supporting concurrent operations over the feature database is challenging since it contains multidimensional data and uses multidimensional access structures (e.g., R-trees) for efficient retrieval. Concurrent access of multidimensional access methods is an important open research problem. A common requirement for concurrent access in database systems is to provide phantom protection to achieve degree three consistency or repeatable read (RR) (Gray & Reuter, 1993). Key-range locking employed in B-tree, a mature dynamic indexing mechanism in a single attribute database system, is a well-known and robust solution. The major issue is that this scheme depends on the linear order of keys. However, in R-tree—a dynamic index structure used in multidimensional space—the linear order of keys does not exist. As a result, new mechanisms to overcome the phantom problem for multidimensional data need to be developed. One promising direction is to use two versions of R-tree where all operations can concurrently run in the new version’s R-tree after they set the locks on the proper entry in the old version’s R-tree. The old version R-tree is essentially used as a partitioning of the space into lockable granules. The old version can either be used to provide static partitioning of the multidimensional space, which will result in a simpler solution but will result in lower concurrency, or could be updated by a periodic version switch resulting in a dynamically changing space partitioning. This technique will support higher concurrency but will be significantly more complex.

Supporting Concept Queries

In a large number of applications of multimedia retrieval systems, users seldom use low-level image features (i.e., shape, color, texture) directly to query the database. Instead, the user interacts with the system using high-level concepts (e.g., a beach, forest, yellow flowers, a sunset) in specifying a particular image content. These concept queries, in turn, need to be translated into queries over the low-level features so as to be answered using the feature database. Such a translation results in a complex query over the low-level feature space.
Providing capability to support concept queries over the feature database is one of the prime reasons we chose to implement support for complex Boolean queries in MARS/IRS. However, in the current implementation, the MARS/IRS system does not provide any help to the user in mapping a high-level concept query into an equivalent query over the low-level feature space. We are currently investigating user interface extensions that can (partially) automate such a translation. In the approach being investigated, the system uses relevance feedback from users to learn concepts.

ACKNOWLEDGMENT

The authors would like to acknowledge Yong Rui’s help in writing this paper.

NOTES

1 Psychophysical studies suggest that the human visual system uses these three measures as primary features for texture discrimination.

2 Identified using the segmentation method described in the section on Image Segmentation.

REFERENCES

the ICIP.