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ABSTRACT 

Background: Previous functional and anatomical neuroimaging studies have reported 

physiological and structural differences in adults who stutter and children who stutter compared 

to fluent controls. However, a comparison of neuroanatomical differences between adult group 

and children group has not been reported in the literature. The current study examined 

neuroanatomical differences in groups of adults and groups of children separately. This study 

reported on the neuroanatomical changes in brains of people who stutter from childhood to 

adulthood by descriptively comparing the results of the adult data and child data. Using the same 

dataset, the present study also attempted to replicate the comparisons in Chang et al. (2008) 

study. Methods: High resolution MRI data from adult and children groups were analyzed 

separately with voxel-based morphometry (VBM), an unbiased, whole-brain based volumetric 

technique. Adult group comparisons consisted of adults who stutter (n=12) versus adult controls 

(n=25), and pediatric group comparisons included recovered children (n=7); children with 

persistent stuttering (n=8), and normally fluent children (n=7). Results: Our findings 

demonstrated significant gray and white matter volume differences in brain areas important for 

speech production in adults who stutter, children with persistent stuttering, and recovered 

children relative to controls. These areas included subcortical structures, cortical areas, as well as 

cerebellar regions. Conclusions: Developmental stuttering could be related to aberrant gray and 

white matter volumes in a widely distributed neural network which may lead to disrupted 

transmission of sensory or motor information among speech relevant areas in this neural 

circuitry. In addition, aberrant development pattern in these areas may present risk for the onset 

of stuttering.  
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CHAPTER I: INTRODUCTION 

Stuttering is a developmental speech production disorder whose etiology still remains 

unknown. Stuttering has an onset in early years of childhood, and has a hereditary component. 

The symptoms and epidemiology of stuttering are well-documented in the literature. However, 

investigations of the biological mechanisms underlying this disorder are relatively new. 

Recently, there have been several reports of specific chromosomes that are associated with 

liability to developmental stuttering. In addition, there have been efforts to investigate 

neurophysiological and neuroanatomical basis to stuttering. The functional neuroimaging studies 

of stuttering have reported atypical activation patterns in several regions of the brain involved in 

speech control in people who stutter. Following up on the evidence from functional studies, 

researchers have studied neuroanatomical basis to stuttering and they identified significant 

structural differences between people who stutter and fluent speakers. Of these structural 

neuroimaging studies, only Chang, Erickson, Ambrose, Hasegawa-Johnson & Ludlow (2008) 

reported on the neuroanatomical differences in the brains of a pediatric sample as opposed to an 

adult sample. A comparison of neuroanatomical differences between adult group and children 

group has not been reported in past research.  Therefore, in this study, we will conduct pair-wise 

comparisons of adults who stutter versus adult controls, children who stutter versus fluent 

controls, and persistent versus recovered children. We will then descriptively compare the 

patterns of results in our child data and adult data. This study will also attempt to replicate the 

comparisons in Chang et al. (2008) study.  
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CHAPTER II: LITERATURE REVIEW 

Definition and characteristics of stuttering 

Stuttering is a developmental speech production disorder, which can negatively impact 

several domains of a person‟s life, including communicative, psychological, sociological and 

emotional well being.  It has long been recognized that an agreeable definition of stuttering does 

not exist (Bloodstein & Ratner, 2008; Manning, 2009; Packman & Attanasio, 2004; Yairi & 

Ambrose, 2005). The World Health Organization (WHO) defines stuttering as “disorders in the 

rhythm of speech in which the person knows precisely what he wishes to say, but at the time is 

unable to say it because of an involuntary, repetitive prolongation or cessation of a sound” (as 

cited in Manning, 2009).  According to Wingate‟s (1964) operational definition, stuttering is “(a) 

Disruption in the fluency of verbal expression, which (b) characterized by involuntary, audible, 

or silent repetitions or prolongations in the utterance of short speech elements, namely: sounds, 

syllables, and words of one syllable. These disruptions (c) usually occur frequently or are marked 

in character and (d) are not readily controllable.” (as cited in Bloodstein & Ratner, 2008).  

Bloodstein & Ratner (2008) pointed out that conventional definitions of stuttering fall 

short when it comes to identifying the causal factors, as well as objectively differentiating 

stuttering from other forms of disfluency. The fact that all speakers experience disfluency in their 

speech calls for an objective and comprehensive definition of stuttering that differentiates the 

disorder of stuttering from disfluency. A more comprehensive definition of stuttering, would 

describe the types, frequency, length or repetition, and physical characteristics of disfluencies 

and stuttering, but to be a true definition of a disorder, it must extend beyond describing the 

disorder to include causal mechanisms, whether stuttering is a neurological, linguistic, 
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psychological or a psychiatric disorder. Causal mechanisms however remain undetermined. The 

purpose of the current project is to test for neurological differences associated with the presence 

of stuttering that could explain a range of factors related to causation, development, persistence, 

and recovery.  

Symptoms of Stuttering 

It is important to discuss the symptoms of stuttering because part of understanding 

stuttering involves determining whether the symptomatology differs from typical disfluencies 

that would support the inference that different mechanisms underlie different disfluencies. Yairi 

and Ambrose (2005) suggest two global disfluency classes: Stuttering-Like Disfluencies (SLD) 

and Other Disfluencies (OD). SLD's include part-word repetitions, single-syllable word 

repetitions, and disrhythmic phonation while OD‟s consist of interjections, multiple-syllable 

word and phrase repetitions, and revision or abandoned utterance. Yairi and Ambrose suggest 

SLD‟s are statistically most common, but not exclusive, in the speech of people who stutter 

(2005). Yairi and Ambrose (2005) consider the frequency distribution of the types of disfluencies 

is a central factor in differentiating stuttering as a disorder and qualitatively distinguishing 

disfluency types.  

In their large scale normative disfluency study, Yairi and Ambrose found statistically 

significant differences between children who stutter and control group in stuttering-like 

disfluencies (part-word repetitions, single-syllable word repetitions, disrhythmic phonations). 

The results indicated that children who stutter had a mean frequency of 11.30 total SLD per 100 

syllables (SD= 6.64) while children in the control group had a mean of 1.41 (SD= .96). Yairi and 

Ambrose (2005) reported that the mean frequency of other disfluencies (OD) were more similar 
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for both groups (5.79 for children who stutter and 4.48 for control group). In the same normative 

study, Yairi and Ambrose (2005) found that besides types and frequency of disfluencies, the 

mean number of repetition units per instance also discriminate between children who stutter and 

control group (3.12 multiple unit repetitions per 100 syllables for stuttering group and 0.19 for 

control group. This information is also important in differentiating stuttering from normal 

disfluencies. 

A second differentiation is that SLD are can be accompanied by a number of physical 

behaviors as well as psychological concomitants are observed to accompany stuttering behavior 

in children and adults. Eyeblinks, wrinkling of the forehead, frowning, visible tension in the face, 

and jerking of the head are listed as some of the most common behaviors (Bloodstein & Ratner, 

2008), but other concomitants such as vocal abnormalities, sharp shifts in pitch and loudness 

level, perspiration, respiratory difficulties, increase in the heart and pulse rate are documented. 

Mulligan, Anderson, Jones, Williams & Donaldson (2001) found that adults who stutter had 

more involuntary movements accompanying disfluencies than those in the control group (24.4% 

vs. 4.5%). Disfluencies and physical concomitants can further be accompanied by negative 

patterns of attitudes in order to cope with stuttering such as finding speech unpleasant and 

threatening, feeling embarrassed and trying to avoid speaking, low self-esteem and poor self-

concept (Bloodstein & Ratner, 2008). These accompanying behaviors are not seen in disfluencies 

of normally fluent speakers, therefore they differentiate stuttering from other disfluencies. 

Whether these behaviors are secondary to this disorder or characteristics related to neurological 

or genetic causes remains unknown.   
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Epidemiology of Stuttering 

The distribution of stuttering in the population suggests this disorder has specific 

characteristics that are consistent with biological causation. Craig, Hancock, Tran, Craig & 

Peters (2002) conducted a telephone interview study with 12,131 participants in order to 

investigate the prevalence and incidence of stuttering. Craig et al. (2002) estimated the 

prevalence of stuttering for the whole population is .72 cases per 100 people with at least a 50% 

higher prevalence rate of stuttering in males. They found stuttering is more prevalent among 

young children (1.44 cases per 100 children) than adults with younger children having a higher 

prevalence of stuttering among male children compared to female children (2.3- 3.3:1). The 

stuttering prevalence was .53% in adolescents with (4:1 male-to-female ratio) and .37 % for 

older adults over the age of 51 (1.4:1 ratio).  Their results clearly indicated that stuttering is most 

prevalent among young children and that males have greater risk of stuttering. In line with 

Mansson‟s finding, Bloodstein and Ratner (2008)‟s review of six epidemiology studies showed 

that approximately 5% of the population has ever stuttered in life. Along with the incidence and 

prevalence rates reported in the literature, using similar longitudinal methods, Yairi and Ambrose 

(2005; Ambrose and Yairi, 1999) also showed that there was 74% recovery and 26% persistence 

rate in children even when measured conservatively. 

Strong empirical evidence for this general distribution was reported in a longitudinal 

study by Mansson (2000) studied the incidence of stuttering in the island of Bornholm 

(Denmark) in all children born in the island in 1990 and 1991 before they turned 3 years old. Of 

the 1,021 children who participated, 53 were identified as stuttering. In the surveys conducted at 

age 3, 5 and age 9, the total incidence over 9 year period was estimated to be 5.19%. Among the 

53 children who stuttered, the male-to-female ratio was 1.65:1. Two years after the first 
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screening (at age 5), Mansson re-evaluated the 53 children who stutter and identified only 15 of 

them as still stuttering. Based on this finding, he concluded that the recovery rate of stuttering 

was 71.4%, while the persistency rate was 28.4%. As Bloodstein & Ratner (2008) pointed out, 

the fact that more than 70% of the cases recovered by age five would lower the prevalence rate 

among school-aged children. This study showed that distribution of stuttering is highly specific. 

The study also indicated that stuttering is a developmental disorder which is most common in 

males. This distribution was significantly lower by age five. 

Onset of Stuttering 

The pattern of stuttering is important to consider because it provides some clues as to 

whether stuttering is a learned behavior or a developmental disorder. Under a learning 

perspective, stuttering should have a gradual onset, but the evidence is contrary to this 

presumption because stuttering can have a sudden onset in the early years of life. It is clear that 

stuttering is not accompanied by apparent brain damage or co-occurring pathology but neither 

are necessary attributes of stuttering. What is more likely is that the current metrics for 

neurological or biological involvement are not sensitive to developmental speech disorders. 

The early and frequently rapid onset argues against simple predisposing factors. Based on 

163 children, the mean age of stuttering onset  33 months ranging from 20 to 48 months with 

more than 85% beginning before 42 months and 59% occurring during the third year of life 

(Yairi and Ambrose, 2005). There seems to be a greater risk of onset in the lower half of the 

sample age range. In the same study, Yairi and Ambrose (2005) reported relatively few new 

onsets occurred after the age of 3 or 4, which agrees with Mansson‟s (2000) findings.  
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Stuttering: A developmental disorder with a genetic basis 

 Given the evidence that developmental stuttering emerges at a young age without 

accompanying brain damage, emotional disorder, speech/language disorder or any other known 

cause, but remains specific to development and a higher male susceptibility, many thinkers have 

posited a genetic basis. Several research groups have provided accumulating evidence that 

persistent developmental stuttering (PDS) has a hereditary component (Andrews, Morris-Yates, 

Howie & Martin, 1991; Dworzynski , Remington, Rijsdijk, Howell & Plomin, 2007; Felsenfeld, 

Kirk, Zhu, Statham, Neale & Martin, 2000; Riaz et al., 2005; Shugart et al., 2004; Suresh et al., 

2006; Viswanath, Hee & Chakraborty, 2004; Wittke-Thompson et al., 2007).  

 In order to identify the relative importance of environmental and genetic influences on 

stuttering, researchers conducted twin studies. Andrews et al. (1991) and Felsenfeld et al. (2000) 

conducted twin studies, comparing fraternal and identical twins, in order to investigate hereditary 

components of PDS. Among 50 monozygotic same-sex, and 37 dizygotic same-sex nonclinicial 

pairs with PDS Andrews et al. (1991) identified that 20% of the monozygotic pairs (10 pairs; 4 

female and 6 male) were concordant compared with 2 pairs (1 male and 1 female) in the 

dizygotic pairs (5.4%). Out of the 48 dizygotic opposite-sex pairs, only one pair was concordant. 

Andrews et al. tested behavioral models attributing the variance in expression of stuttering to 

shared environmental factors, genetic variance, unique or non-shared environmental factors. 

Their model attributing 71% of the variance in susceptibility to stuttering to additive genetic 

variance with the remaining 29% attributed to individual‟s unique environmental factors. In a 

larger study, Felsenfeld et al. (2000) screened 1567 twins and 634 individuals using 

questionnaires and phone interviews. They identified 17 monozygotic and eight dizygotic pairs 

who were concordant for stuttering. Statistical analyses identified that additive genetic effects 
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accounted for approximately 70% of the variance and the remaining 30% were attributed to the 

individual‟s unique environment, which are highly similar to the findings of Andrews et al. 

(1991).  

Family-based studies were also used to disentangle the issue of stuttering as a disorder 

caused by hereditary versus environmental factors. These studies have been used to identify the 

degree of risk of relatives developing stuttering when a member of the family is a person who 

stutters. Ambrose, Yairi and Cox (1993) studied the incidence of stuttering among relatives of 

preschool-age children who stutter to avoid the undersampling of females due to their higher 

tendency for spontaneous recovery and to avoid the any bias obtained from only studying adults. 

They obtained detailed pedigrees (including first, second and third-degree relatives) for 69 

children from one or both of their biological parents. 49 of the 69 probands (71% of the sample) 

had a positive family history of stuttering. Of the 49 positive history probands, 37 (76%) were 

male and 12 (24%) were female. Their segregation analyses found statistical evidence for 

transmission of a single major locus in the inheritance of susceptibility for stuttering. Janssen and 

colleagues found similar results in their 1996 study with 106 adult probands.   

 A different variation on previous twin studies was conducted by Dworzynski and 

colleagues in 2007 to identify if genetic factors contributed to persistence and recovery from 

stuttering. Using data from the Twins Early Development study, which consisted of parental 

reports regarding stuttering collected at ages 2, 3, 4 and 7, Dworzynski et al.(2007) identified 

children who had recovered and those who persisted. Out of 12,892 children, 950 children had 

recovered by the age of seven and 135 persisted.  They performed logistic regression analysis to 

test whether stuttering at early ages were predictive of stuttering in following years. They found 

that reports of stuttering at ages 3 and 4 predicted stuttering at age 7; while reports of stuttering 



9 

at age 2 did not. Dworzynski and colleagues again identified that concordance rates for stuttering 

were consistently higher for monozygotic twins for all ages and for both recovery and 

persistency than for dizygotic twins. Their conclusions are that significant genetic influences but 

“no shared environmental influences” influence susceptibility to stuttering at ages 3, 4, and 7, but 

did not identify significant differences in heritability for persistence and recovery groups.  

 Following up on the strong evidence for genetic inheritance in epidemiology studies, 

more recent work has focused on identifying specific genes that may be responsible for liability 

to stuttering through DNA linkage analysis. Shugart et al. (2004) conducted a genome-wide 

linkage analysis using 392 markers across the genome in 226 individuals in 68 families, 188 of 

whom with a history of stuttering. They identified several moderate signals across chromosome 

18 and weak signals from chromosomes 1, 2, 10 and 13. Riaz et al. (2005) performed a genome-

wide linkage analysis in 44 Pakistani families with a history of stuttering that included 

individuals with a history of stuttering as well as their parents (a total of 199 genotyped 

individuals, 144 affected and 55 unaffected). They identified linkage evidence on chromosomes 

1, 5, and 7 with a very strong signal on chromosome 12.  

Suresh et al. (2006) reported findings of a genome-wide scan analysis in 100 families 

with at least two relatives affected with stuttering. The families included 252 individuals with 

persistent stuttering, 45 who recovered from stuttering, and 19 individuals who were too young 

to be identified as recovered or having persistent stuttering. Genome-wide linkage analysis of 

100 families indicated evidence for linkage (largest signal) on chromosome 9, and modest signal 

on chromosomes 2 and 7. They identified modest evidence for linkage with persistent stuttering 

on chromosomes 15 and 13. Suresh et al. further found genome-wide significant evidence for 

linkage of stuttering in the female-only subgroup on chromosome 21; but as for the male-only 
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subgroup, they found moderate evidence for linkage of stuttering on chromosomes 7 and 20. 

Together with other studies (e.g. Wittke-Thompson et al., 2007), consistent evidence of genetic 

linkage in PDS has emerged. Definitive evidence for a single major gene locus is not available 

yet, but several candidate genes of varying influence appear to increase a liability to stuttering. 

Identifying the candidate genes is only part of the process though, because the role that candidate 

genes have in development and in speech-language production still have to be understood.  

Influence of genes on the neuroanatomy 

 We predict the genetic disposition to stuttering is expressed at least partly in the neural 

control of speech production. It is likely that a genetic predisposition to stuttering could be 

expressed as difference in the brain development in speech production system because it has 

been shown that genetic differences present themselves as differences in the brain anatomy. The 

initial work by Thompson et al. (2001) demonstrated that individual genetic differences have 

significant impact on brain structure. Genetic relationships show increasingly similar 

neuroanatomy, more specifically, Thompson et al. found that the genetic factors significantly 

influenced important speech and language regions, Broca‟s and Wernicke‟s areas, as well as 

other frontal regions in the cortex.  Peper, Brouwer, Boomsma, Kahn & Hulsoff Pol (2007) 

reviewed brain imaging studies in twins and identified that human brain structure is genetically 

influenced. They revealed high heritability estimates of neural structures for gray matter density 

in important speech and language related regions such as medial frontal cortex, Heschl‟s gyrus, 

Broca‟s area, anterior cingulate, and hippocampus. Various other researchers have looked at the 

relationship between genes and brain structure in adults, children and monozygotic and dizygotic 

twins and they identified that the variation in gray matter and white matter volume of human 

brain is primarily genetically determined (Gilmore et al., 2010; Hulshoff Pol et al., 2006; Wright, 
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Sham, Murray, Weinberger & Bullmore, 2002).  Along with the accumulating evidence 

regarding the genetic basis for stuttering, the strong evidence for the genetic and 

neuroanatomical relationship can shed light on the heritability of linguistic skills and the genetic 

predisposition for disorders that affect the anatomy of the human brain.  

Neuroimaging studies and Stuttering- Evidence from functional brain imaging 

The strong evidence supporting stuttering as a disorder that is in part genetically 

determined and that genes have significant influence to brain structure has been influential in 

shifting the focus of research away from environmental and psychological theories toward ways 

of conceptualizing and identifying the biological mechanisms that can explain stuttering. 

Accumulating evidence points to prominent neural differences in people who are affected by 

stuttering that additionally support a biological explanation.  

Acquired stuttering due to a brain injury or stroke presents evidence that brain systems 

may mediate stuttering. Van Borsel, Van Lierde, Van Cauwenberge, Guldemont & Van 

Orshoven (1998) presented a case report of a 69- year-old right handed male with no history of 

speech or language disorders. He began complaining about “stutter-like speech” 1 month after a 

stroke that was accompanied by speech deterioration. Four months post-stroke, he showed severe 

stuttering. Van Borsel et al. claimed that a lesion to the left supplementary motor region may 

have caused the severe stuttering. Van Borsel et al. presented another case report about a 38-year 

old right handed male who did not have a history of speech and language deficits (2003), but 

developed cognitive problems, language problems and severe stuttering in propositional speech 

six months after an ischemic lesion to the left thalamus. Franco et al. (2000) also presented a 

case report of a 53-year-old right handed male who had a cortical infarct on the left pre-central 
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circumvolution. The lesion did not induce aphasia or any neurological deficits other than 

stuttering characterized by blocks, repetitions at word-initial level. 

Case studies of lesions reveal patterns of deficits that can lend evidence to theories of 

brain function and disorders but cannot be studied prospectively and are not replicable. Modern 

brain imaging that includes both whole-brain anatomical and functional imaging now allows for 

inferential studies of brain structure and function in healthy and disorder populations.  

Positron Emission Tomography (PET) and Functional Magnetic Resonance Imaging 

(fMRI). PET technology relies on the assumption that an increase in the brain activity is reflected 

by increased blood flow to the active area. Injection of radioactively tagged isotope enables 

detection of increased blood flow in a given area as the PET scanner can track the radioisotope‟s 

concentration in a brain region. fMRI is a later developed variant of MRI which measures 

changes in blood oxygenation. Increased neuronal activity leads to changes in oxygen 

metabolism that invokes higher blood flow to the active region and changes the balance of 

oxygenated and deoxygenated blood. fMRI has better resolution than PET and is non-invasive, 

so, it represents much less risk to participants than PET. Now, fMRI paradigms have been 

developed that are less sensitive to movement artifacts, which permits functional imaging of 

ongoing speech production.  

Fox et al. (1996) investigated neural systems of stuttering by a PET study in 10 male 

AWS and 10 male controls matched for age and handedness. They had three separate PET scans 

(40 seconds each) in the following conditions: chorus reading, solo reading, and eyes-closed rest. 

Prominent differences between solo reading and choral reading conditions were found for the 

AWS in terms of increased activation and deactivation in both hemispheres. During solo reading 
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condition, AWS had widespread overactivation of motor system areas in right hemisphere, rather 

than left, in both cerebrum and cerebellum as opposed to left hemisphere activity in controls. In 

addition, AWS showed relative deactivation of left hemisphere auditory areas, which are related 

to auditory self-monitoring. Further deactivation in frontal-temporal regions that are typically 

activated in speech tasks was also noted in AWS during solo reading. During choral reading on 

the other hand, Fox et al. observed these abnormal patterns of overactivation and deactivation 

were significantly decreased. The authors concluded that stuttering results from a right 

dominance of the cerebral speech motor system, a lack of self-monitoring of speech production, 

and an over-activation of the speech motor system. This early paper may have over-estimated the 

causal relationships between the findings and the cause of stuttering, but it confirmed there are 

neurological correlates of this disorder. 

Soon after the Fox et al. study, Braun et al. (1997) reported PET results in 18 AWS and 

20 controls during speech and language tasks. They found that during structured sentence 

production and conversational speech tasks, AWS demonstrated either absent, bilateral or right-

lateralized activation patterns as opposed to left-hemisphere activation in controls. These 

significant differences were present even though the stuttering participants produced these 

utterances fluently. Therefore, the authors speculated that cerebral hemispheric regions related to 

speech production may be different in AWS even in the absence of stuttering. When they 

compared activity in this fluent speech condition with conditions where speech was more 

disfluent, AWS demonstrated over-activation of the anterior forebrain region. This over-activity 

was expressed in motor areas which contrasted with relatively depressed in post rolandic regions 

which are associated with perception and decoding of auditory information.  Braun et al. 

concluded that left-hemisphere activity might have a significant role in the production of 
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stuttered speech, while the activity in the right hemisphere may be due to a compensatory 

process to avoid stuttering.  

Fox et al. (2000) later investigated neural correlates of fluent speech and stuttering by 

comparing disfluency counts and syllable rate in oral reading and choral reading tasks. They re-

analyzed the PET scans from the earlier study (Fox et al., 1996). The results indicated stuttered 

speech was significantly lateralized to the right cerebral and left cerebellar hemispheres; while 

stutter-free speech was biased towards the left cerebral and right cerebellar hemispheres. They 

identified that stuttered speech occurred in speech-related regions, involving the mouth 

representation in motor cortex, Broca‟s area, supplementary motor area, anterior insula and the 

cerebellum. 

Stager, Jeffries & Braun (2003) investigated the neural mechanisms with PET that are 

involved when fluency is induced in people who stutter. 17 adults with persistent developmental 

stuttering and 17 controls were scanned during two fluency evoking conditions, two disfluency-

evoking conditions and rest. The results showed that activation in auditory association areas 

involved in speech processing and motor regions involved in control of speech articulators was 

greater during fluency inducing tasks than during typical speech that is more susceptible to 

disfluency. Stager et al. concluded that fluent speech might require more effective auditory 

motor coupling.  

Chang, Kenney, Loucks & Ludlow (2009) conducted an fMRI study in 20 AWS (9 

females) and 20 controls (11 females). They investigated activation patterns in perception, 

planning, and fluent production of both speech and non-speech gestures and also between 

females and males. The results indicated that during perception and planning, people who stutter 
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had less activation in the frontal and temporoparietal regions than controls for both speech and 

non-speech tasks. Whereas during production of speech and non-speech gestures, participants 

who stutter had less activation in the left superior temporal gyrus and left pre-motor areas, but 

greater activation in the right superior temporal gyrus and greater activation in Heschl‟s gyrus, 

insula, putamen, and precentral motor regions bilaterally.  Chang et al. reported that these 

atypical brain activity patterns in the stuttering group were greater in adult females.  Because the 

aberrant activation in the stuttering group could be observed in both tasks, Chang et al. 

concluded this activation might not be speech specific.  

Brown, Ingham, Ingham, Laird, and Fox (2005) reported an important meta-analysis of 

brain imaging studies of adults with persistent developmental stuttering. This analysis directly 

used imaging data from the relatively numerous previous studies to isolate areas that are most 

consistently associated with stuttering. They performed two parallel analyses; one investigating 

stuttered production in people who stutter and the other looking at brain activation patterns of 

fluent speech in controls. The results revealed that typically fluent subjects show significant 

activation patterns in primary motor-cortex, premotor cortex, Rolandic operculum, 

supplementary motor area, auditory areas and lateral cerebellum. Even though roughly similar 

brain areas were activated in people who stutter, the activation patterns were significantly 

different from controls in several aspects. AWS showed significantly higher activity in motor 

areas including primary motor cortex, cingulate motor area, cerebellar vermis and supplementary 

motor area (SMA). They also demonstrated aberrant right-lateralization in Rolandic operculum 

and anterior insula. The other very significant finding was the absence of significant bilateral 

activations in auditory areas in AWS when hearing their own speech.  
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Neuroimaging studies and Stuttering- Evidence from structural brain imaging studies 

The accumulating evidence from functional imaging studies showing aberrant activity 

patterns in language-related brain regions of AWS has been followed up by investigations of 

structural differences in the brains of people who stutter. A number of researchers have identified 

significant anatomical and structural differences between people who stutter and fluent speakers 

(Beal, Gracco, Lafaille & De Nil, 2007; Chang et al., 2008; Cykowski et al., 2008; Foundas, 

Bollich, Corey, Hurley & Heilman, 2001; Foundas et al., 2003; Jancke, Hanggi & Steinmetz, 

2004; Lu et al., 2010; Sommer et al., 2002). Refer to Table 1 for a summary of the findings of 

these studies. Foundas and colleagues (2001) investigated anatomical differences in AWS by 

manually tracing anatomical regions in MRI scans and comparing these regions with controls. 

Foundas et al. measured frontal areas including pars triangualris and pars opercularis; and 

temporo-parietal areas including planum temporale and posterior ascending ramus in both 

hemispheres. They found that AWS had significantly larger planum temporale in both 

hemispheres. The planum temporale is typically larger in the left hemisphere and is considered a 

marker of language laterality. AWS showed reduced asymmetry which provided some evidence 

for the hypothesis of reduced language lateralization in stuttering. In addition, they found 

significantly more gyri along the superior bank of the sylvian fossa in people who stutter. 

Foundas et al. (2001) concluded that anomalous anatomy in the perisylvian speech and language 

areas might “put an individual at risk for the development of stuttering”.  

In a follow-up study, Foundas and colleagues (2003) used structural MRI to measure 

prefrontal and occipital lobe volumes and compare whether these measures were associated with 

stuttering severity and language abilities in 16 AWS and 16 matched controls. In this blinded 

study, Foundas et al. did not find significant hemispheric and total brain volume differences 
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between the two groups. However, the results indicated larger right prefrontal and larger right 

occipital lobe volume in controls while AWS did not have these asymmetries.  

More recently, Cykowski and colleagues (2008) reported that perisylvian sulcal 

morphology showed a small but significant increase in the number of sulci which connects the 

second segment of the Sylvian fissure in the right hemisphere in people who stutter. In addition, 

people who stutter had a similar increase in the number of the “suprasylvian gyral banks” along 

the Sylvian fissure in the right hemisphere, while no such differences were noted in the left 

perisylvian region. Their findings differed from Foundas et al. (2003), in that cerebral anatomy 

measures did show asymmetry differences in frontal and occipital lobe, planum temporal and 

Sylvian fissure regions among AWS compared to controls. These morphometric analysis studies 

required manual tracing of a few regions in the brain which is labor-intensive and may be 

difficult to replicate, which then leads to low intra- and inter-rater reliability (Watkins et al., 

2001).  

Diffuse Tensor Imaging (DTI) Findings 

Sommer and colleagues (2002) investigated the neuroanatomical basis of PDS in 15 

AWS and 15 matched controls with a form of MRI known as diffusion tensor imaging (DTI). 

Diffusion tensor imaging is also a popular method to investigate the neuroanatomical 

differences. White matter fascicle can be visualized and characterized in two and three 

dimensions using diffusion tensor imaging (Assaf and Pasternak, 2008). They found reduced 

fractional anisotropy of white matter in the left rolandic operculum (an area close to the portion 

for laryngeal and tongue representation in the motor strip) in AWS. This finding is significant 

because the arcuate fasciculus the linking Broca‟s and Wernicke‟s areas pass through this region. 

Sommer et al. concluded that the reduced white matter anisotropy in these areas in the left 
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hemisphere might cause decreases in signal transmission and a disruption in sensorimotor 

integration for fluent speech production.  

Chang et al. (2008) also used DTI method to compare white matter volumes in 3 groups 

of children: 8 with persistent stuttering, 7 recovered children and 7 fluent control children. The 

DTI results indicated that both the persistent stuttering and recovered groups had reduced white 

matter volume in the left rolandic operculum, which is proximal to and may include orofacial 

motor representations. In addition, DTI results suggested there was reduced left white matter 

anisotropy underlying motor regions for face and larynx in the persistent stuttering group. This 

study is important as it was the first to document neurological differences in children with 

persistent stuttering and those who have recovered. 

Voxel-Based Morphometry (VBM) as a Method 

In contrast to manual tracing, other structural analysis methods, such as diffusion tensor 

imaging and voxel-based morphometry (VBM), allow automate, and reproducible whole-brain 

structural imaging (Ashburner & Friston, 2000). Investigation of the whole-brain; as opposed to 

a few regions of interest (ROIs); can allow an unbiased analysis where one can compare each 

point in the brain at equally high-spatial resolution. VBM analysis procedures are discussed in 

Methods chapter. Both DTI and VBM have identified differences in persons who stutter.  

VBM Investigations of stuttering  

Before reviewing VBM studies of stuttering, it is relevant to note that the VBM has  

identified significant brain volume changes in various studies including investigations of  aging 

differences (Good et al., 2001) and developmental disorders such as autism (Craig et al., 2007), 

and schizophrenia (Di, Chan & Gong, 2009; Kubicki et al., 2002). VBM has also been used to 
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investigate the neuroanatomical underpinnings of various speech and language disorders such as 

dyslexia (Steinbrink et al., 2008), specific language impairment (SLI) (Watkins et al., 2002), and 

aphasia (Gorno-Tempini et al., 2006). 

Jancke and colleagues (2004) were the first to report use of VBM to test for structural 

markers of stuttering in 10 AWS and 10 controls, comparing gray and white matter volume. An 

increased volume of white matter was found in the right hemisphere including the superior 

temporal gyrus (including the planum temporale), the inferior frontal gyrus (including the pars 

triangularis), the precentral gyrus close to the regions for face and mouth movement 

representation, and the anterior middle frontal gyrus in people who stutter. In contrast, the 

control group had greater white matter asymmetry favoring the left auditory cortex as opposed to 

the greater symmetry across the left and right auditory cortices in AWS. Jancke et al. reported 

that the anatomical differences between AWS and controls were more widespread (in perisylvian 

speech and language areas as well as in prefrontal and sensorimotor areas) than had been 

reported in previous studies of structural neural differences in people who stutter. The authors 

suggested that the question of whether these anatomical differences are the cause or result of 

stuttering yet remained unanswered.  

Beal and colleagues (2007) conducted a similar VBM study in 28 male AWS and 28 

controls. They found AWS expressed significantly increased gray matter volumes in widespread 

areas: right and left superior temporal gyri, left inferior frontal gyrus, right precentral gyrus, left 

middle temporal gyrus and at the level of right cerebellar tonsil. No areas of increased gray or 

white matter density were reported for the control group. They concluded that their findings 

presented evidence for acquired or congenital brain differences in gray and white matter volumes 
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in people who stutter, similar to findings from previous studies (Foundas et al., 2001, 2003; 

Sommer et al., 2002). 

Chang et al. (2008) used VBM to compare gray matter volumes in 3 groups of children: 

persistent stuttering, recovered children and fluent controls. Chang et al. noted reduced gray 

matter volume in speech-related regions including the left inferior frontal gyrus and bilateral 

temporal regions in both the persistent stuttering and recovered groups. A comparison of the 

persistent stuttering and recovered stuttering groups revealed that the children with persistent 

stuttering had greater gray matter volume in both the left and right superior temporal gyrus 

(STG). They speculated that the increased gray matter volume in the STG bilaterally for children 

with persistent stuttering might be due to chronic stuttering. Unlike previous studies, Chang et al. 

did not find evidence of greater right-left asymmetry in these groups. They presumed that the 

right-hemisphere structures of adults may account for neuroplasticity resulting from long term 

chronic stuttering.  

Another VBM study investigating anatomical differences between PWS and fluent 

speakers was conducted by Lu et al. (2010) with 12 AWS and 12 matched controls.  AWS had 

increased gray matter volume in areas that are responsible for motor-speech coordination. AWS 

demonstrated decreased gray matter volume in the vicinity of Broca‟s region, left superior 

temporal gyrus, right middle temporal gyrus, and right cerebellum. In addition, Lu et al. reported 

that AWS had greater white matter volume in areas underlying the right inferior and superior 

temporal gyri, and left cerebellum and they demonstrated less white matter concentration in the 

right precentral gyrus, left superior temporal gyrus, and bilateral cerebellum. The authors 

proposed that disrupted communications among a widely distributed neural network in the left 

hemisphere and basal ganglia circuits might result in developmental stuttering. 
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Statement of purpose and hypotheses:  

The evidence from functional imaging and structural imaging studies suggests that PWS 

appear to differ from PWNS in both brain function and anatomy in areas involved in 

sensorimotor integration for speech production. PWS demonstrated unusual activation patterns 

during speech in areas encompassing the temporal-parietal and frontal speech motor regions, 

with a tendency for more activation in the right hemisphere. Anatomically, these areas 

correspond to auditory association cortices and the perisylvian / inferior frontal regions, which 

have also been reported to have more variable neuroanatomy in PWS. Studies of anatomical 

morphometry and white matter diffusion properties suggest there are morphological and 

structural connectivity differences between PWS and PWNS within and between these regions 

also.  

Therefore, the purpose of this study is to investigate whether volumetric measures of 

neural tissue in speech relevant brain regions differentiate AWS and CWS from normally fluent 

speakers and whether brain structure differences in children who stutter are related to adult 

patterns. A comparison of AWS and CWS using VBM has not been reported previously. Figures 

1 and 2 illustrate, in a schematic format, the general pattern of differences that have been 

reported between control speakers, children who stutter and adults who stutter (for simplicity 

control speakers are not separated into age groups). Following these reports, we predict that brain 

areas involved in speech sensorimotor integration for speech production will be structurally 

different in persons who stutter in terms of both gray matter and white matter volume 

concentration and may follow the patterns in Figures 1 and 2.  
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However, the data from the single comparison of children (Chang et al., 2008) and the 

adult studies present conflicting evidence regarding the volumetric density of the structures 

involved. Clearly, previous studies indicate adults who stutter show increased gray matter and 

white matter volumes in speech areas compared to fluent controls. On the other hand, children 

who stutter showed reduced gray and white matter volumes as opposed to controls. It is possible 

these conflicting findings are due to factors such as different MRI scanning protocols and 

different data processing approaches, but these are still unlikely to account for the different 

direction of group differences in these previous VBM studies. Are these differences possibly 

related to development or subject selection? Certainly, recovery is not an issue because the 

children in Chang et al. study (2008) showed persistent stuttering. The process that leads from 

reduced volume of gray and white matter in childhood to increased tissue density in adulthood 

remains enigmatic. We expect that the current study may resolve the conflict between previous 

reports by comparing the brain volume of gray and white matter between children and adults.  

Although there is concern that the brains of children are too variable in size and shape to be 

compared directly with the adult brain, previous reports which assessed the feasibility of such a 

comparison demonstrated that pediatric brains (6 years of age and older) and adult brains can be 

placed into a standard stereotactic space with comparable reliability (Burgund et al., 2002; Kang, 

Burgund, Lugar, Petersen, Schlaggar, 2003; Muzik, Chugani, Juhasz, Shen, Chugani, 2000; 

Schlaggar et al., 2002). Evidence on the feasibility of comparison of child brain with adult brain 

will be discussed in the Methods section.  

Following Chang et al. (2008), we might expect to find reduced gray and white matter 

density in children and adults who stutter compared to controls. Since children are included 

along with adults in the present study, we aim to test the hypothesis of whether there is indeed a 
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differential pattern of change in relative tissue proportions from childhood to adulthood in 

persons who stutter – i.e., less gray matter than normally fluent in childhood increasing to more 

gray matter in adulthood compared to normally fluent. It is important to mention that the MRI 

data from the children was collected as part of a previous dissertation and reported by Chang et 

al., (2008). This study differs considerably as comparisons between adults and children will be 

the focus rather than comparisons of children, although we will attempt to replicate the analyses 

reported by Chang et al (2008). We also note that Chang et al did not report a comparison of 

white matter volume which will be completed in this study.  
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CHAPTER III: METHODS 

Participants 

The data used in this study come from the participant pool of the Stuttering Research 

Project, an on-going longitudinal study in the Department of Speech and Hearing Science. The 

children data has also been presented in a previous dissertation in the same department. 

Adults: A total of 11 male AWS and 25 male AWNS between 20-35 years of age were 

recruited as part of an ongoing study using advertisements or by referral from the University of 

Illinois Speech and Hearing Language Pathology Clinic. All participants were right-handed 

according to the Edinburgh Handedness Inventory (Oldfield, 1971). A diagnosis of persistent 

stuttering was confirmed in the experimental group by a clinically certified speech-language 

pathologist with expertise in stuttering.  In all cases, overt stuttering was observed by one of the 

investigators.  

The mean score of self-reported stuttering severity among the AWS was 3.66, (sd 1.61) 

on a scale from 0 (no stuttering) to 7 (very severe stuttering), indicating severity ranged from 

mild to moderate.  Each AWS reported previous therapy for stuttering, but only two individuals 

were receiving therapy at the time of the study. Eight of the AWS showed greater than 3% 

stuttering-like disfluencies (SLD) (Yairi & Ambrose, 1992) during reading and conversational 

speech and reported a history of stuttering since early childhood. The remaining stuttering 

participants could not return for disfluency analyses, but each was observed to stutter by a 

speech-pathologist experienced in stuttering. Otherwise, the stuttering and normally fluent 

participants reported a negative history for neurological, psychiatric, speech, hearing and/or other 
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language disorders. The methods of this study were approved by the Institutional Review Board 

at the University of Illinois at Urbana-Champaign. 

Children: All subjects were right-handed males between 8 and 13 years of age. One 

group consisted of children (n=7) who had once stuttered but had recovered naturally (CWRS), 

another group of children (n=8) with persistent stuttering (CWPS), and a control group (n=7) of 

normally fluent children (CWNS). All subjects were matched in age. Inclusion criteria required a 

negative history for speech and language deficits based on standardized speech and language 

testing including: Expressive Vocabulary test (EVT) (Williams, 1999), Peabody Picture 

Vocabulary test (PPVT) (Dunn, 1959), Test of Oral Language Development (TOLD-I:3) 

(Newcomer and Hammill, 1992). In addition, the rigorous subject-selection criteria included not 

presenting with any type of behavioral, cognitive, or neurological disorders (i.e. learning deficit, 

attention deficit hyperactivity disorder, and dyslexia). The mean score of stuttering severity of 

children with persistent stuttering was 2.38 (sd 0.74). Recovered children had stuttered between 

the ages of 2 and 3 years and participated in a longitudinal study of early preschool childhood 

stuttering at the University of Illinois and were followed every 6 months until the time of 

recovery, usually 2-3 years post-onset (Ambrose and Yairi, 1999).  

Imaging 

All images were collected on a 3T Siemens Magnetom Allegra MR Headscanner at the 

Biomedical Imaging Center of the Beckman Institute at the University of Illinois, Urbana-

Champaign. High resolution anatomical volumes encompassing the cerebrum and cerebellum 

were collected using a T1-weighted MPRAGE (magnetization-prepared rapid acquisition 

gradient echo) sequence (sagittal slice volume=196, TR=1600ms, TE=2.22ms). To minimize 
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head movements, participants‟ heads were padded with foam and lightly held in place with a 

strap across the forehead. Participants were asked to hold their head still during the scan. Some 

of the adult participants and all children viewed a movie of their choice though MRI compatible 

goggles. They wore earplugs to mask scanner noise and headphones to hear the movie.  

VBM Analysis Procedures 

Voxel-based morphometry (VBM) involves a voxel-wise comparison of the local 

concentrations of white and gray matter between groups of subjects under consideration. All the 

structural images were checked for artifacts and images with poor resolution; or low-contrast 

were eliminated. Some images were adjusted to have the center point on the anterior commissure 

for all images (Good et al., 2001). Ashburner and Friston (2000) described VBM analysis 

procedures in detail. See Figure 3 for VBM processing steps. The VBM processing steps 

involving spatial normalization, segmentation, smoothing, and statistical analysis were 

conducted using MATLAB 5.3 (Mathworks, Natrick, MA) and SPM5 (statistical parametric 

mapping) (Wellcome Trust Center for Neuroimaging, London; (Ashburner & Friston, 2000). A 

detailed description of these steps is also available in the SPM5 manual 

(http://www.fil.ion.ucl.ac.uk/spm/) (Ashburner, 2006).The first step in the VBM  involved 

spatial normalization to the same template in which individual volumes  were co-registered to a 

common stereotactic space (template) to accommodate for individual differences in brain size. 

Spatial normalization is a computer-based, automated procedure (Abell et al., 1999).  

In the current study the images from both adults and children groups were registered to 

the same adult template. Previous reports have demonstrated that  comparing  child brains (older 

than 6 years of age) to adult brain is feasible because the only small anatomical differences do 

http://www.fil.ion.ucl.ac.uk/spm/
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not preclude registration to a common stereotactic space (Muzik et al., 2000; Burgund et al., 

2002; Schlaggar et al., 2002; Kang et al., 2003). Muzik et al. (2000) assessed the use of and 

reliability of SPM for child brain to adult brain comparisons and concluded that even though the 

error associated with spatial normalization of pediatric brains (ages 6 to 14 years) to an adult 

template was higher than in adults, this error did not result in artifacts in the SPM analysis. 

Various studies have proven the feasibility of direct statistical comparisons of school-age 

children brain (7 years and older) to adult brain by spatial normalization to the same stereotactic 

space.  

Following spatial normalization, the images were segmented into three tissue classes 

(gray matter, white matter, and cerebrospinal fluid (CSF) using an automated Bayesian algorithm 

(Ashburner & Friston, 2000). During the segmentation procedure, voxel intensities that match 

that of the three different tissue types are identified and continuous probability maps are created 

(Salmond et al., 2002). This tissue-segmentation procedure is automated and is free from 

subjective identification of tissue boundaries, which has been suggested as a problem in methods 

where tissue boundaries are identified though manual tracking (Watkins et al., 2001). While 

during spatial normalization some brain regions are expanded or contracted, during modulation 

step the images are scaled by the amount of contraction, in order to enable the total amount of 

white matter or gray matter in the modulated gray or white matter remains the same as in the 

original images. The segmentation and modulation are actually processed simultaneously in SPM 

5 using a unified segmentation algorithm (Ashburner & Friston, 2005). 

The segmentation of the images into three different tissue types was followed by a 

smoothing procedure which created individual three dimensional intensity maps of the three 

tissue types (Good et al., 2001). The smoothing procedure utilized an 8 mm FWHM isotropic 
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Gaussian smoothing model kernel, which leads the data to conform more closely to the Gaussian 

field model underlying the statistical procedures used for making inferences about regionally 

specific effects. In addition, the data is conditioned to be more normally distributed (by the 

central limit theorem) as a result of smoothing procedure (Good et al., 2001).  The smoothing 

procedure produces voxel values derived from the weighted values of the signal in each voxel 

and its neighbors, which reflects the amount of particular tissue type, its regional density, within 

the smoothing kernel (the size of the region is defined by the size of the smoothing kernel; 12-

mm, or 8-mm (Ashburner & Friston, 2001; Watkins et al., 2001).  

Following the completion of the automated smoothing procedure, the voxel values of 

each tissue type (gray matter or white matter) are compared separately. A statistical comparison 

of individual tissue densities results in a statistical parametric map (SPM) in which each voxel 

has an associated inferential statistic and distribution (Abell et al., 1999).  

The whole brain group comparison was conducted with two sample t-tests with an 

absolute threshold mask of p< 0.005 (uncorrected) and a threshold of >30 voxel clusters. For 

these pair-wise comparisons, the factor was group (stuttering vs. control in adults; and 

persistency vs. recovery vs. control in children). Ashburner and Friston (2000) reported that 

uncorrected values do not severely compromise the statistical analysis. Uncorrected statistical 

values have been reported in previous VBM studies for stuttering (Chang, et al., 2008; Beal et 

al., 2007) and in reports of normal population (Wilke, Krageloh-Mann, Holland, 2007) and 

various clinical populations such as Alzheimer‟s disease (Thomann, Toro, Santos, Essig, 

Schroder, 2008), Parkinson‟s disease (McKeith, Burn, Williams, O‟Brien, 2004), and 

schizophrenia (Mane et al., 2009).   
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CHAPTER IV: RESULTS 

Pair-Wise Contrasts  

Individual pair-wise t-tests were carried out to assess gray and white matter regions that 

differ in volume between two groups. A voxel cluster threshold size of >30 was applied to all the 

resultant statistical parametric maps (SPMs) at a p value of 0.005 (uncorrected). Each pair-wise 

contrast produced two SPMs; in adults, for example, one SPM indicates clusters where AWS > 

AWNS and the second SPMs indicates where AWNS > AWS for a whole brain contrast of gray 

matter volume. A corresponding comparison of white matter generated a similar set of contrasts. 

The lists of regions of gray and white matter that differed significantly between the adult groups 

based on pair-wise contrasts are presented in Tables 2-3. The tables showing contrasts between 

the child groups are numbered 4-11 in Tables section. 

AWS versus AWNS 

Gray Matter 

  Figure 4 shows the pair-wise gray matter contrasts between AWS and AWNS. Many of 

these areas showed group differences bilaterally (see Table 2).The bilateral areas where AWS 

group showed significantly more gray matter volume than AWNS include putamen and 

thalamus, postcentral gyrus, superior frontal gyrus and middle frontal gyrus. Particular unilateral 

areas where AWS showed increased gray matter volume than AWNS include the left middle 

temporal gyrus and right precentral gyrus. There were relatively fewer regions in which the 

AWNS had significantly higher gray matter volume, which included the right inferior parietal 

lobule, left postcentral gyrus, and the left cerebellar hemisphere.  
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White Matter 

The AWS only had significantly greater white matter volume in the left anterior cingulate 

(Table 3, Figure 5). AWNS group showed significantly greater white matter volume than the 

AWS group in the bilateral middle temporal gyrus, bilateral STG, bilateral precentral gyrus, right 

supramarginal gyrus (SMG), right inferior parietal lobule, and right postcentral gyrus. Other 

regions involved the cerebellum including posterior cerebellar tonsil on both hemispheres, left 

posterior cerebellar tuber, and left posterior cerebellar pyramis.  

VBM Comparison of Gray Matter and White Matter in Children 

The same pair-wise contrast approach and threshold (> 30 voxels at p< 0.005) was used 

to compare the three groups of school-age children. 

Ever Stuttered versus CWNS 

The first contrast included children who were persistent in (CWPS) and recovered from 

stuttering (CWRS) groups within a single group of „ever stuttered‟ to compare whether a history 

of stuttering altered gray and white matter volumes in comparison with normally fluent children 

group (CWNS) (see Tables 4 and 5).  

Gray matter 

Ever stuttered children only showed significantly more gray matter volume than normally 

fluent children in the right parahippocampal gyrus. Other relevant regions for speech production 

and perception did not reach the cluster size of 30 voxels but did show significantly higher gray 

matter volume. These regions encompassed the left middle temporal gyrus (MTG), right 

precentral gyrus (PrCg), and right temporal lobe regions. The Ever Stuttered group had 
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significantly less gray matter volume than CWNS in regions such as the bilateral superior and 

middle frontal gyri, left supramarginal gyrus (SMG), and right cingulate gyrus (See Table 4).  

White Matter 

Regions with significantly more white matter volume in the Ever Stuttered child group 

included regions such as the left inferior parietal lobule, left parahippocampal gyrus, and right 

precuneus, as well as the left inferior semi-lunar lobule, and right uvula in the cerebellum. Other 

clusters proximal to language relevant regions such as the left insula, , left cingulate gyrus and 

right middle temporal gyrus had higher white matter volume but did not reach significance the 

>30 voxel cluster threshold (See Table 5). The Ever Stuttered group exhibited significantly less 

white matter volume than normally fluent children in the right postcentral gyrus, right inferior 

temporal gyrus, and right middle frontal gyrus.  

CWPS versus CWNS 

Gray Matter 

Children with persistent stuttering showed significantly more gray matter than their 

normally fluent peers (CWNS) in areas such as left postcentral gyrus, left inferior frontal gyrus, 

and right cuneus (see Table 6 and Figure 6). Areas with significantly less gray matter volume in 

CWPS group compared to CWNS include the left precentral gyrus, left paracentral lobule 

(supplementary motor area), left caudate, right inferior parietal lobule, left superior frontal gyrus 

and bilateral middle frontal gyrus. Other areas including the posterior cerebellar tonsil, and left 

middle temporal gyrus did not reach the significance criteria of >30 voxel cluster size but had 

significantly higher volume (p< 0.005).  
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White Matter 

CWPS group had significantly more white matter volume than their normally fluent peers 

(CWNS) in a number of regions proximal to the right middle temporal gyrus, right posterior 

cerebellar declive, left inferior parietal lobule, and bilateral precuneus (see Table 7). Children 

with persistent stuttering exhibited significantly less white matter volume than CWNS proximal 

to the left precentral gyrus, right middle frontal gyrus, and right superior parietal lobule. Other 

areas with significantly less white matter volume, including white matter close to the right 

middle temporal gyrus, right postcentral gyrus and anterior cerebellar culmen, did not meet the 

30 voxel cluster threshold (Table 7).  

CWPS versus CWRS 

Overall, children with persistent stuttering showed significantly less gray and white 

matter volume compared to children who recovered from stuttering. 

Gray Matter 

CWPS only had significantly more gray matter volume than CWRS in the left cingulate 

gyrus (Table 8). The CWRS group, in contrast, showed increased gray matter volume in 

numerous areas. This set of regions included left anterior cingulate, left posterior cerebellar 

declive, right middle temporal gyrus, right fusiform gyrus, right inferior frontal gyrus, and 

bilateral left middle frontal gyrus, (See Table 8 and Figure 7). Other regions which approached 

the 30 voxel cluster threshold were the left superior temporal gyrus, left supramarginal gyrus, 

right anterior cerebellar culmen, and right postcentral gyrus.  
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White Matter 

Regions with significantly more white matter volume in the CWPS group compared to 

CWRS group only include cerebellar regions such as the posterior cerebellar declive, and 

posterior cerebellar tonsil. CWPS showed significantly less white matter volume than CWRS in 

areas such as left inferior frontal gyrus, left cerebellum, right posterior cerebellar tonsil, right 

medial frontal gyrus and bilateral superior frontal gyrus (See Table 9 and Figure 7). 

CWRS versus CWNS 

Gray Matter 

Areas of significantly more gray matter volume in CWRS than CWNS included the left 

middle temporal gyrus, left inferior occipital gyrus, right middle frontal gyrus, and bilateral 

posterior cerebellar declive, (See Table 10). The CWRS had significantly less gray matter 

volume than their normally fluent peers in areas including the left middle frontal gyrus, and right 

cingulate gyrus (Table 10). 

White Matter 

The CWRS group exhibited significantly less white matter volume than CWNS in 

regions such as the right precentral gyrus, left posterior cerebellar uvula, and right posterior 

cerebellar tuber (Table 11). Some of the regions where CWRS had significantly more white 

matter volume than CWNS included right superior temporal gyrus, right inferior parietal lobule, 

right superior frontal gyrus, right medial frontal gyrus, and cerebellar regions such as right 

posterior cerebellar tonsil and right posterior cerebellar pyramis (Table 11).  
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Similarities and Differences between Child Data and Adult Data in the present study 

 Our analysis focused on statistical differences between the children groups as we 

continue to resolve problems in comparing the adult and children groups. However we will 

descriptively compare the patterns of results in our child data and adult data (See Figures 8 & 9).  

Gray Matter Findings  

The overall finding from gray matter comparisons was that compared to normally fluent 

children, the combination of persistent and recovered groups showed significantly less gray 

matter volume in areas such as middle frontal gyrus in right and left hemispheres, left 

supramarginal gyrus, right  cingulate gyrus, right and left superior frontal gyrus, and right 

postcentral gyrus. Compared to controls and persistent group, the recovered group had 

intermediate levels of gray matter volume. An interesting finding was that AWS showed 

significantly increased gray matter volume compared to AWNS in all of these regions whereas 

the ever-stuttered children group had less gray matter volume than normally fluent children (See 

Figure 8).  

The finding that the areas where persistent group had significantly less gray matter 

volume than the recovered and control groups are the regions where AWS have increased 

volume compared to adult controls is very much in agreement with our initial hypothesis that for 

people who stutter, there seems to be a process that leads from reduced volume of gray matter in 

childhood to increased tissue density in adulthood. The gray matter volume results in various 

regions in the cerebellum were an exception to this prediction. AWS showed reduced gray matter 

volume in cerebellum (left hemisphere), and similarly, children with persistent stuttering 

exhibited significantly less volume in left cerebellum compared to CWRS and CWNS groups. 
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On the other hand, recovered children showed significantly more gray matter volume than 

CWNS in the left cerebellum regions. Implications of these findings will be discussed in a 

separate section on recovery and persistence.  

The recovered group showed more gray matter than CWPS and CWNS in regions such as 

left and right middle frontal gyrus, bilateral superior frontal gyrus, right and left middle temporal 

gyrus, and right inferior frontal gyrus, but reduced gray matter volume compared to the other 

groups in bilateral cingulate gyri. Contrary to the reduced volume in cingulate gyrus in CWRS 

and CWPS groups, AWS had significantly more gray matter volume than AWNS in left 

posterior cingulate gyrus and right anterior cingulate gyrus.  

Another interesting finding was that the balance of structural differences in adults and 

children differed. The gray matter volume differences in subcortical regions between AWS 

versus AWNS were more prominent than the differences found in cortical regions.  In children 

however, differences in cortical areas between stuttering and non-stuttering children comparisons 

were greater for the cortex.  Compared to controls, while AWS showed increased gray matter in 

subcortical areas such as bilateral putamen, bilateral thalamus and cingulate gyrus; CWPS and 

CWRS had reduced gray matter volume in subcortical areas including caudate nucleus.  

White Matter Findings  

White matter data point to unexpected findings which were not parallel with the gray 

matter results (See Figure 9). White matter data revealed that for the stuttering group, increased 

volume of white matter in childhood years presented itself as significantly less white matter 

volume in adulthood. Overall, CWPS group and CWRS showed more areas of increased white 

matter volume than normally fluent children, while AWS group had significantly more areas of 
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reduced white matter volume than normally fluent adults. The regions where the recovered group 

and the persistent group had more white matter volume than normally fluent children included 

right inferior frontal gyrus, right middle temporal gyrus, right and left middle frontal gyrus, as 

well as cerebellum regions such as right cerebellar tonsil, right cerebellar declive, and right 

cerebellar pyramis. Both CWPS and CWRS showed less white matter volume than CWNS in 

precentral gyrus (left and right hemispheres, respectively). Compared to the persistent group, the 

recovered group showed more areas of increased white matter such as left cerebellum, right 

cerebellar tonsil, left inferior frontal gyrus, right inferior temporal gyrus, and right middle frontal 

gyrus.  

 All in all, the results of the current data suggest that compared to normally fluent 

children, children with persistent stuttering showed abnormal structure in cortical regions such as 

precentral gyrus, postcentral gyrus and subcortical regions such as caudate nucleus. Consistent 

with the discussion about the findings of AWS, these structural abnormalities that are located in 

the central areas or basal ganglia region may lead to disrupted communication between various 

regions of the brain involved in sensory and motor control of speech (Ludlow and Loucks, 

2003).  
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CHAPTER V: DISCUSSION 

Overview 

Anatomical and functional brain differences between people who stutter and those who 

are normally fluent have been found in certain areas of the brain (Beal et al, 2007; Brown et al., 

2005; Chang et al, 2008; Foundas et al., 2001, 2003; Jancke et al., 2004; Lu et al, 2010; Sommer 

et al., 2002; Watkins et al., 2008). The present study is a first attempt to investigate structural 

neural bases of stuttering in both children and adults who stutter. The imaging data for both 

children and adult population were collected with the same scanner and processed in an identical 

manner with the same threshold. This approach provides a basic way to understand 

developmental changes in stuttering. However, differences between the adult and child brains 

proved challenging to normalize, which still needs to be resolved in a future statistical 

comparison. Consequently, the current study took the first step in comparing groups of adults 

and groups of children separately followed by a descriptive comparison of the adult and child 

groups. In addition, the present study attempted to replicate the structural neuroimaging study in 

children study by Chang and colleagues (2008). The current study is the first VBM study to 

report voxel-based based morphometry (VBM) differences in white matter among children who 

stutter, children who have recovered from stuttering and normally fluent children.   

 The present data correspond to findings from several recent structural neuroimaging 

studies of adults and children who stutter. In parallel with the previous findings, widely 

distributed areas of gray and white matter volume increases and decreases were found in persons 

who stutter relative to normally fluent speakers (Beal et al., 2007; Chang et al., 2008; Lu et al., 

2010). Particular regions of gray and white matter difference between AWS and normally fluent 



38 

controls include basal ganglia structures (i.e. putamen, caudate), thalamus, cerebellum structures, 

cingulate gyrus, as well as other speech-relevant motor and sensory regions in the frontal lobe, 

parietal and temporal regions. Particular regions of gray and white matter differences between 

children who stutter and fluent controls include inferior frontal gyrus, precentral gyrus, anterior 

cingulate, postcentral gyrus and other areas related to sensory and motor control of speech in 

frontal and temporal lobe regions. These regions have been documented as comprising a possible 

neural signature of stuttering by previous anatomical neuroimaging studies of adults and children 

(Beal et al., 2007; Chang et al., 2008; Jancke et al., 2004; Lu et al., 2010).  

Gray Matter Differences between AWS and AWNS 

The gray matter findings for the adult comparisons indicated that stuttering speakers had 

increased volume in particular subcortical structures such as the bilateral putamen and thalamus; 

and cortical structures including cingulate gyrus, postcentral gyrus, precentral gyrus, 

supramarginal gyrus, middle and superior frontal gyri.  

Subcortical Differences 

The largest clusters of increased gray matter in AWS were found in the bilateral putamen 

and thalamus. The basal ganglia is known to be involved in choosing, initiating and carrying out 

voluntary movements (Brown et al., 2005; Fabbro, Clarici & Bava, 1996; Pickett, Kuniholm, 

Protopapas, Friedman, Lieberman, 1998). Deviations in the anatomy and function of the basal 

ganglia structures (i.e., putamen, caudate nucleus, substantia nigra, or subthalamic nucleus) have 

been associated with the presence of stuttering in previous reports (Alm, 2004; Fox et al., 1996; 

Giraud et al., 2008; Lu et al., 2010; Wu et al., 1995).  Specific differences in the putamen in 

AWS were reported in several functional neuroimaging studies (Braun et al., 1997; Fox et al., 
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2000). Watkins et al. (2008) reported increased neural activity in the left putamen in people who 

stutter that was not related to the fluency of speech or the type of auditory feedback received. 

Chang et al. (2009) also found that compared to controls, AWS showed increased neural 

activation in bilateral putamen and precentral motor regions during speech and non-speech 

production. In a combined functional (fMRI and SEM) /anatomical (VBM) study, Lu et al. 

(2010) found heightened neural activation in the bilateral putamen accompanied by increased 

gray matter volume in left putamen of AWS compared to fluent controls. There have also been 

case reports of acquired stuttering showing the involvement of focal lesions of putamen in 

neurogenic stuttering (Ciabarra, Elkind, Roberts & Marshall, 2000; Soroker, Bar-Israel, 

Schechter, Solzi, 1990; Van Borsel, 2003). Ludlow & Loucks (2003) reported that putamen is 

the most frequently reported basal ganglia structure in case reports of acquired stuttering. Based 

on this evidence for alterations in the basal ganglia, Alm (2004) suggested that a basal ganglia-

thalamocortical motor circuit running through the putamen to the supplementary motor area is 

involved in stuttering. Lu et al. (2010) also suggested that atypical anatomy compromises the 

basal ganglia-thalamocortical motor circuit of AWS.   

Cortical Differences 

  AWS had increased cortical volume in the left posterior cingulate, right anterior 

cingulate, bilateral postcentral gyri, right precentral gyrus, left supramarginal gyrus, bilateral 

middle frontal gyrus and superior frontal gyrus on both hemispheres, which follows recent 

reports (Beal et al., 2007; Lu et al., 2010).   

Anterior cingulate and posterior cingulate differences have been associated with 

stuttering in previous PET and fMRI studies (Braun et al., 1997; Brown et al., 2005; De Nil, 
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Kroll, Kapur, Houle, 2000; De Nil, Kroll, Lafaille, Houle, 2003). According to De Nil et al. 

(2003), increased activation in bilateral anterior cingulate of people who stutter might be 

indicative of heightened anticipatory reactions to stuttering. A similar pattern, where stuttering 

subjects showed increased activation in bilateral anterior cingulate gyrus, was also observed by 

Braun et al. (1997). De Nil et al. (2003) reported reduced activation in the left anterior cingulate 

in people who stutter following treatment.  

Current results showed that in contrast to increased gray matter volume in postcentral 

gyrus in right hemisphere, AWS showed less gray matter volume in left postcentral gyrus. The 

difference in the postcentral gyrus may be relevant because it is involved in somatosensory and 

proprioceptive inputs to speech relevant oral structures (such as lip and tongue) as well as higher 

integration of these sensory modalities. The left supramarginal gyrus difference is important 

because this structure is involved in phonological processing of words, and integration of 

auditory and somatosensory inputs for speech production (Celsis et al., 1999; Damasio & 

Damasio, 1980; Guenther, 2001). Differences in anatomy and functioning of these parietal lobe 

structures in people who stutter have been reported previously (Kell, et al., 2009; Lu et al., 2010; 

Watkins et al., 2008).  

Numerous frontal lobe anatomical differences have been reported in previous findings. 

Present data showed increased gray matter volume in bilateral superior frontal and middle frontal 

gyri, as well as right precentral gyri in AWS. Precentral gyrus has been well-documented as an 

important structure where the motor representations of articulators are located (Pulvermuller et 

al., 2006). In contrast to the increase in gray matter volume in right precentral gyrus in the 

current study, Lu et al. (2010) and Beal et al. (2007) reported increased gray matter volume in 

left precentral gyrus in AWS. Although the developmental mechanism behind this structural 
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change is still unclear, Chang et al. (2008) also found increased gray matter volume in right 

precentral gyrus in persistent stuttering children compared to recovered children group. These 

atypical anatomical findings may be related to functional studies in which  heightened activation 

levels were detected in the right precentral gyrus, as well as right superior and middle frontal 

regions during a reading task in people who stutter as opposed to fluent controls (De Nil et al., 

2003; Lu et al., 2010; Preibisch et al., 2003). 

AWS showed decreased gray matter volume in parietal lobe regions such as bilateral 

superior parietal lobule, right inferior parietal lobule, and bilateral precuneus. While specific 

roles of these structures in speech production are unclear, functional and structural differences in 

AWS have been previously reported in the literature (Lu et al., 2010; Ingham, Fox, Ingham & 

Zamarripa, 2000; Watkins et al., 2008).  

Cerebellum Differences  

Multiple reports have implicated aberrant function in right and left cerebellum structures 

in AWS (Brown et al., 2005; Fox et al., 1996; Howell, 2004; Lu et al., 2010). The present data 

suggested that cerebellar functional differences in AWS could be related to reduced gray matter 

volume in the left cerebellum.  The cerebellum has been associated with motor control of speech 

articulators, timing and coordination of speech gestures, and temporal organization of internal 

speech (Ackermann, 2008). Recently, Lu et al. (2010) reported that AWS showed higher 

activation in right cerebellum but less gray matter volume in the same region. Beal et al. (2007) 

reported that AWS showed increased gray matter volume in right cerebellum. Chang et al. 

(2008) also found decreased gray matter in the left cerebellum of children who stutter compared 
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to recovered children. Taken together, it is possible that overactivation in the right cerebellum of 

AWS might compensate for reduced gray matter volume on the left side.  

White Matter Differences in Adults  

Our white matter results showed that adults who stutter tended to have significantly more 

volume only in left anterior cingulate gyrus compared to adults who are normally fluent. In 

contrast, AWS exhibited decreased white matter in numerous cortical and cerebellar areas. The 

areas included white matter proximal to left superior temporal gyrus, bilateral middle temporal 

gyrus, bilateral precentral gyrus, right postcentral gyrus, right supramarginal gyrus, left 

cerebellar pyramis, left posterior cerebellar tuber, and bilateral posterior cerebellar tonsil. Some 

of these white matter areas likely connect speech production regions while others have 

questionable connections to speech production regions. Some of the previous structural 

neuroimaging studies have not reported decreased white matter volume in these brain regions of 

adults who stutter (Beal et al., 2007; Foundas et al., 2001; Jancke et al., 2004), while other 

studies support some of the current findings (Lu et al., 2010; Sommer et al., 2002; Watkins et al., 

2008). Lu et al. (2010) reported reduced white matter volume in right precentral gyrus, left 

superior temporal gyrus right cerebellar tonsil, right cerebellar pyramis, and left cerebellar tuber 

of people who stutter. Other studies used DTI method to analyze white matter integrity or 

connectivity. Although the connection between white matter FA values and volume has not been 

documented in the literature, the increased FA might be related to increased white matter volume 

as increased FA levels imply a higher degree of myelination. Parallel with the current findings, 

Sommer et al. (2002) reported lower fractional anisotropy (FA) in adults who stutter than 

normally fluent adults in left rolandic operculum above the Sylvian fissure. Watkins et al. (2008) 

also found that people who stutter had lower FA values than normally fluent participants in white 
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matter areas underlying bilateral precentral gyrus, right supramarginal gyrus, bilateral posterior 

cerebellar lobes, and right anterior cerebellar lobe. On the other hand, in contrast with the 

findings of the current study, some VBM studies reported increased white matter volume in right 

hemisphere regions of AWS (Beal et al. 2007; Jancke et al., 2004).  

Disrupted connection between subcortical and cortical structures 

Taking the gray matter and white matter differences together, the current results indicate 

a neural signature for persistent stuttering in adults might be aberrant white matter connections 

that connect subcortical (basal ganglia, thalamus) and cortical structures (frontal, temporo-

parietal). This inference is related to the postulate of a deviant basal ganglia-thalamo-cortical-

circuit (BGTC) discussed in Lu et al. (2010) study and the EXPLAN theory predictions 

discussed in Watkins et al. (2008) study. EXPLAN theory assumes that motor processes (EX) 

and language (PLAN) are critical in fluent speech control (Howell, 2010). Therefore, 

connections among structures involved in motor control, articulatory planning, sensory feedback 

are critical for fluent speech. Disrupted connections accompanying deviant subcortical and 

cortical anatomy could explain altered neural activation patterns in subcortical and cortical motor 

and sensory structures.  

The basal ganglia-thalamo-cortical motor circuits that pass through the putamen have 

been proposed to play an important role in stuttering (Alm, 2004). The thalamus receives sensory 

input from almost all parts of the body and it is a final relay station for sensory information being 

transmitted to the cortical structures. Sensory-motor information from the cerebral cortex enters 

the basal ganglia from the putamen, which transmits important timing and sequencing signals for 

minute to minute modulation of speech relevant brain structures. In addition, the thalamus 
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receives continuous timing and sequencing from the cerebellum. Therefore, it becomes clear that 

if a sensory-motor circuit for speech production that passes through the putamen, thalamus, and 

cerebellum is compromised by insufficient white matter connectivity, neural coordination of 

speech could be subject to disruption. Disruption of transmission of information to and from the 

putamen could lead to stuttering-like disfluencies. For instance, if the timing cue is disrupted, 

then the speakers might repeat the first sound of word „fuh- fuh- friend‟, prolong it as in 

„fffffriend‟ or pause after producing the first sound „f-riend‟ (Howell, 2010). In line with this 

idea, Fox et al. (1996) reported hyperactivity of the cerebellum, thalamus, and basal ganglia 

structures in people who stutter during a reading task compared to fluent controls.  

Our data suggest AWS have decreased white matter volume underlying the sensory- 

motor structures of this loop (precentral gyrus, postcentral gyrus, superior temporal gyrus, 

supramarginal gyrus and putamen. This reduction in white matter fiber coherence projecting 

from cortical structures might result in compensatory „overactivation‟ of putamen and the 

cortical structures involved. On the other hand, the increase in gray matter volume in these areas 

could be due to this „overactivation‟ pattern as it has been well documented in the literature that 

practice or training over an extended period of time can lead to an increase in gray matter 

volume (Gaser & Schlaug, 2003; Ilg et al., 2008). Therefore, increased gray matter volume in 

bilateral putamen, as well as in cortical regions such as bilateral superior frontal gyrus, bilateral 

medial frontal gyrus, right precentral gyrus, bilateral postcentral gyrus could be conceived as 

compensation for disrupted connectivity between cortical and subcortical regions due to reduced 

white matter volume. This explanation is also parallel with the previous functional neuroimaging 

findings which indicated overactivation in putamen of adults who stutter (Chang, Kenney, 

Loucks & Ludlow, 2009; Lu et al., 2010; Watkins et al., 2008) as this evidence supports the 
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results of the current study where increased gray matter volume putamen could be due to 

„overactivation‟ to compensate for reduced white matter volume.  

Similarly, the current data showed reduced gray and white matter volume in the 

cerebellum of adults who stutter compared to normally fluent adults. This suggests that 

information or transmission of information important for minute to minute motor control for 

speech from the cerebellum to the thalamus could be disrupted. This could also be related to 

increased gray matter volume observed in the bilateral thalamus of adults who stutter since 

overactivation of the thalamus as a compensatory mechanism for disrupted signal transmission 

from the cerebellum used over a lifetime of stuttering is a factor that might lead to increased gray 

matter volume in these structures of adults with persistent stuttering (Gaser & Schlaug, 2003; Ilg 

et al., 2008).  

Ludlow and Loucks (2003) proposed that stuttering is likely caused by a dysfunction in 

cortical structures such as postcentral sensory areas, premotor and motor areas or subcortical 

structures such as corpus callosum, basal ganglia (i.e. putamen and caudate), thalamus because 

these structures have connections to a wide range of areas of the brain. They suggested that 

dysfunction in these regions of the brain may interfere with the rapid and precise timing 

requirements of accurate speech production. Our VBM evidence pointing to widespread 

anatomical differences in the present study is consistent with this proposal by Ludlow and 

Loucks (2003).  

Replication Results (Chang et al., 2008) 

The present study offered an opportunity to replicate the gray matter results of Chang et 

al. (2008). In this section, we will discuss whether we were able to reproduce the results reported 
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by Chang et al. (2008). We will then relate our results to selected studies of AWS to evaluate 

how childhood neuroananatomical correlates of stuttering differ from that of adults. Recovery 

from stuttering is treated as a specific section. 

The same children subjects were used in the current study, but Chang and colleagues 

used a pediatric template for spatial normalization of images in contrast to the adult template 

used in the current study. The Gaussian smoothing kernel size used in the current study was 8 

mm as opposed to 12 mm in Chang et al. (2008) study. It is possible that the smoothing kernel in 

Chang et al. (2008) study was too large to detect the structural differences that we identified in 

the current study. Also our analyses were conducted using SPM 5 software, while Chang et al. 

used the tools of FSL program. In our statistical parametric maps, a voxel cluster threshold size 

of >30 was applied to all the resultant statistical parametric maps (SPMs) at a p value of 0.005 

(uncorrected) as opposed to p< 0.001 (uncorrected) used by Chang et al. (2008).  Chang et al. 

(2008) did not report a comparison of white matter volume using VBM and this has been 

completed in this study. Instead our white matter volume results will be compared to Chang et 

al.‟s DTI findings. 

Differences between CWS and CWNS 

Cortical Differences 

The findings of the current study are similar to the results of Chang et al. (2008) study in 

that CWPS group had less gray matter volume than controls in sensory-motor cortical areas such 

as left precentral gyrus, left superior frontal gyrus, left paracentral lobule and bilateral medial 

frontal gyrus. In terms of differences, our findings showed that CWPS had more gray matter than 

their normally fluent peers in left inferior frontal gyrus, and left postcentral gyrus. On the other 
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hand, Chang et al. (2008) reported less gray matter volume in left inferior frontal gyrus in 

children who stutter than fluent controls. Our analysis of CWPS showed decreased gray matter 

volume in left caudate nucleus compared to controls but was not reported by Chang et al. (2008). 

Considering white matter patterns, our analysis of CWPS showed less white matter 

volume than normally fluent children in important areas for speech sensory and motor control 

such as left precentral gyrus, right superior parietal lobule, and right middle frontal gyrus. This 

may relate to Chang et al. (2008) DTI findings of reduced FA levels in white matter tracts 

including superior longitudinal tract, arcuate fasciculus, corticospinal/posterior thalamic 

radiation in stuttering group compared to controls. 

The children with persistent stuttering group had more white matter volume than control 

group in regions including right middle temporal gyrus, right superior frontal gyrus, right 

posterior cerebellar declive, right inferior frontal gyrus, bilateral precuneus, and left cuneus. 

Chang et al. (2008) reported higher FA values in two white matter tracts, right uncinate 

fasciculus and right inferior longitudinal fasciculus of children who stutter compared to fluent 

controls. Certain white matter areas in our analysis could involve these tracts so perhaps the 

increased FA in our subjects is related to increased white matter volume.  

Overall, even though there were many similarities, our results did not fully replicate the 

findings of Chang et al. (2008) study, which might be due to the methodological differences 

between the two studies (i.e. different normalization templates, software to analyze). However, 

this implies that further studies with a larger pediatric sample are needed to confirm the results of 

Chang et al. (2008) study and the current study.  
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Differences in CWRS versus CWPS and CWNS 

Gray matter differences 

Children who recovered from stuttering showed significantly more gray matter than 

children with persistent stuttering and children who are normally fluent across a wide range of 

regions including right and left middle temporal gyrus, bilateral cerebellar declive, bilateral 

medial frontal gyrus, bilateral superior frontal gyrus, left anterior cingulate, and right inferior 

frontal gyrus. On the other hand, the recovered group showed less gray matter than persistent 

group in only left cingulate gyrus, and they had less gray matter than the control group only in 

left medial frontal gyrus and right cingulate gyrus. Interestingly, gray matter volume in left and 

right cingulate gyrus was consistently reduced in the recovered group as opposed to persistent 

and control groups. However, the findings regarding cingulate gyrus were not consistent with 

Chang et al. (2008), as they found that recovered group had more gray matter in cingulate gyrus 

than children with persistent stuttering.  Reduced gray matter volume in the cingulate gyrus of 

children who recovered from stuttering may be explained by neuroplasticity. Reduction in gray 

matter volume in cingulate gyrus could be due to pruning of dendrites in this region to allow for 

organization of new networks of dendrites.  

Another interesting finding in the results of the current study was that the areas where the 

persistent stuttering group had less gray matter volume than controls, such as in superior frontal 

gyrus and medial frontal gyrus, were significantly increased in the recovered group compared to 

persistent group and fluent controls. Although Chang et al. (2008) also reported gray matter 

volume differences in all of these regions, some of the results are inconsistent with their findings. 

They reported that compared to the recovered and persistent groups, normally fluent controls had 



49 

significantly more gray matter in almost all of these regions and they found no areas of gray 

matter where fluent controls had less gray matter than the stuttering group.  In addition Chang et 

al. (2008) reported decreased gray matter volume in bilateral cerebellar declive in recovered 

children compared to persistent group while the results of the current study showed increased 

gray matter in these areas in recovered group compared to both persistent and control groups. 

The failure to replicate the results of Chang et al. (2008) study might be due to use of different 

templates to normalize images, and other differences in methods of these two studies. However, 

given that the prediatric sample in the current study is the same as in Chang et al. (2008) study, 

the limitations of the use of VBM method with this age group should also be acknowledged.  

 Increase in cerebellum gray matter volume (as well as white matter volume, to be 

discussed in the next section) could be another marker for recovery from persistent stuttering. As 

discussed previously, the cerebellum is well documented to be a crucial structure for motor 

control of speech articulators, timing and coordination of speech gestures, and temporal 

organization of internal speech (Ackermann, 2008). The results of the current study exhibited 

that children with persistent stuttering showed significantly less gray matter volume in cerebellar 

regions than recovered children. Similarly, AWS also had significantly less gray matter volume 

in cerebellum than normally fluent controls. Increase in cell size or neural or glial cell genesis in 

cerebellum could be a crucial marker for natural recovery from developmental stuttering. The 

gray and white matter results of recovered children group in the current study are consistent with 

such an idea.  
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White Matter Differences  

Current results of changes in white matter volume in children who recovered from 

stuttering were very similar to the gray matter findings. Children who recovered from stuttering 

showed significantly more areas of increased white matter volume than both the persistent group 

and normally fluent controls such as right medial frontal gyrus, right and left superior frontal 

gyrus, right superior temporal gyrus, right inferior temporal gyrus, as well as cerebellum regions 

(right posterior cerebellar pyramis, right posterior cerebellar tonsil, and left cerebellum). The 

only regions where recovered group showed less white matter volume than the persistent group 

and control group were right precentral gyrus and cerebellum regions such as right posterior 

cerebellar declive, left posterior cerebellar tonsil, right cerebellar tuber, and left cerebellar uvula.  

The current results, which showed that compared to control and persistent groups, 

recovered group showed more white matter volume, are not consistent with the results of Chang 

et al. (2008) study. Chang et al. (2008) found that the control group had higher FA values than 

the combined recovered and persistent groups. On the other hand, parallel with the findings of 

the current study, Chang et al. (2008) also reported that recovered group had higher FA values 

than persistent group in white matter tracts such as right superior longitudinal fasciculus.  

In terms of white matter volume, children who recovered from stuttering showed both 

more and less volume in several cerebellar regions. Mechanisms that might explain reduced 

white matter volume is pruning of neurons. Mechanisms that could increase white matter volume 

are increased and extensive dendritic arborization of gray matter. These ideas cannot be verified 

with in-vivo imaging but these are basic mechanisms that account for brain tissue changes in 

animal models. 
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Explaining stuttering persistence and recovery in the light of contemporary theories or models of 

stuttering 

The current literature in stuttering lacks a comprehensive, yet simple, theory or model 

which can explain the complex nature of stuttering. Contemporary theories or models of 

stuttering fail to account for all aspects of stuttering including biological, behavioral and 

psychological factors that can lead to stuttering. Here I will discuss the findings of the current 

study in the light of the DIVA model (Directions into velocities of articulators), which is one of 

the major contemporary models of speech production, which has considerable relevance for 

understanding stuttering (Civier, Tasko & Guenther 2010; Max, Guenther, Gracco, Ghosh & 

Wallace, 2004). Our current neuroanatomical data can potentially inform the stuttering 

simulation currently modeled by DIVA.   

 The DIVA model is a neural network model proposed by Guenther and his colleagues to 

explain motor, somatosensory, and auditory processes involved in the acquisition and control of 

speech movements (Guenther, 2006; Guenther, Ghosh & Tourville, 2006). According to 

Guenther (2006), the speech production process starts by activating a “speech sound map” cell 

located in the frontal operculum, followed by the transmission of motor commands to motor 

cortex via a feedforward control system and a feedback control system (See Figure 10). The 

feedback control system is further divided into auditory target region and somatosensory target 

region.  

Feedback control system 

According to DIVA model, the left frontal operculum, which hosts speech sound map 

cells, has axonal projections to auditory cortical areas where the auditory target region for the 
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speech sounds that are being produced is located. Guenther (2006) did not specify which cortical 

areas house the auditory target region. As a person is producing speech, their speech is compared 

to the target via the auditory feedback from the periphery. Upon receiving auditory information 

that is outside the target region, the “auditory error cells” in the superior temporal gyrus and 

planum temporale are activated in order to send “corrective motor commands” to the motor 

cortex. The Chang et al. (2008) finding that CWS had more gray matter volume than normally 

fluent controls in superior temporal gyrus and planum temporale may indicate these corrective 

regions follow a different developmental course in CWS that could suggest atypical function. 

Replication did not find significantly increased gray matter volume in superior temporal gyrus 

and planum temporale of either AWS or CWS compared to normally fluent controls. Instead, our 

analysis indicated AWS had less white matter volume in the bilateral superior temporal gyrus, 

which following the DIVA model logic, might disrupt connections with the auditory error map 

area or disrupt the transmission of corrective motor commands from superior temporal gyrus to 

the motor cortex. Because the replication did not find differences in gray or white matter volume 

in these auditory corrective regions in children, it is possible that dysfunction of these region in 

stuttering arises after the school age period. 

  According to DIVA model, somatosensory feedback control system also operates along 

with the auditory feedback control system. In this model, “somatosensory state maps”, which 

correspond to the representation of tactile and proprioceptive information, are located in the 

postcentral gyrus and supramarginal gyrus, while the “somatosensory error map” is located in the 

supramarginal gyrus. When the tactile or proprioceptive cues from speech structures are outside 

the somatosensory target region, the cells in this map are activated. The results of the current 

data suggest differences in somatosensory regions. The AWS and CWPS had significantly 



53 

increased gray matter volume in the postcentral gyrus compared to normally fluent controls, 

which could signal a tendency towards aberrant activation of the somatosensory map cells in this 

region. In addition, we found that the ever-stuttered group had significantly less gray matter 

volume than CWNS group in left supramarginal gyrus, which may suggest that there are fewer 

“somatosensory error map cells” in that region, and this may result in a breakdown in the 

somatosensory feedback transmission to the motor cortex. While a breakdown at the 

somatosensory feedback control level of the DIVA model may be a marker for stuttering 

persistence, it fails to explain the mechanisms behind recovery because the results of the current 

study indicated no difference in gray or white matter volume in these areas between recovered 

children and children with persistent stuttering.  

Feedforward Control System 

According to the DIVA model, feedforward motor commands area correspond to 

projections from premotor cortex (left frontal operculum), and cerebellum to primary motor 

cortex. The cerebellum is well-known to be involved in motor control of speech articulators, 

timing and coordination of speech gestures, and temporal organization of internal speech 

(Ackermann, 2008). And according to Middleton and Strick (2001), cerebellum receives input 

from auditory and somatosensory areas and has strong feedforward connections with the primary 

and premotor cortices.  Therefore, as discussed previously, dysfunction of the cerebellum might 

lead disruptions of feedforward commands and subsequently stuttered speech. The data from the 

current study found that AWS had significantly less gray matter volume than AWNS in left 

cerebellum. In addition, CWPS had more white matter volume than control group in right 

cerebellum. Recovered group showed significantly more and less white matter volume than the 

persistent group in various cerebellar regions. These results support the idea that dysfunction of 
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the cerebellum in the feedforward control system in DIVA model might be a marker of 

stuttering, but the developmental trajectory remains unclear.  

 As emphasized previously, the results of the current study showed large clusters of 

increased gray matter in bilateral putamen, bilateral thalamus, and sensory-motor cortical areas 

of AWS compared to normally fluent controls. But CWPS showed less gray matter volume than 

normally fluent children in left caudate nucleus and some cortical regions involved in sensory 

and motor control for speech production. Recently, a new formulation of the DIVA model, called 

GODIVA (Gradient Order DIVA) has been proposed (Civier et al., 2010). According to 

GODIVA model, the integrity of the basal ganglia - thalamus - left ventral premotor cortex loop 

is crucial for properly conducting feedforward commands for speech production. Civier et al. 

(2010) proposed that this circuit may be disrupted by aberrant neural structure and function due 

to white matter impairment in the corticostriatal projections involved in transmission of motor 

commands to the muscles or due to increased dopamine in the striatum causing a ceiling effect in 

the thalamus. We found reduced white matter volume in this circuit in AWS relative to fluent 

controls, which supports the first hypothesis of the GODIVA model. The second hypothesis 

could explain increased gray matter volume in bilateral thalamus of AWS.  

  Overall, the results of the current study are consistent with the idea that stuttering might 

be caused by a breakdown at single or multiple levels in the DIVA model. This may potentially 

explain different phenomena of stuttering. For instance if a person‟s stuttering is caused by a 

breakdown in the auditory control feedback subsystem, then treatment could be developed to 

address this. Such an idea may also explain why delayed or altered auditory feedback leads to 

fluent speech in some people who stutter but not all. It is likely that a person who has 

dysfunction at multiple levels in this model might have more severe stuttering than another 
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person who has a breakdown at a single level in this system.  However, caution is needed that 

these are all speculations and empirical evidence is necessary to test the validity of the DIVA 

model in larger groups of adults and children who stutter. In addition, future research needs to 

differentiate the mechanism that leads to stuttering from other speech disorders such as 

dysarthria, which might as well be explained by a breakdown at a level in the DIVA model.  

Limitations of the current study and future directions 

A major limitation of the current study is that despite using the same dataset, we did not 

replicate the results of Chang et al. (2008) study fully. Even though we could replicate some of 

the results, opposite findings also frequently occurred. These differences might be attributed to 

differences in methodology of these two studies, and specifically differences in the preprocessing 

(i.e. normalization using different brain templates, different kernel size for smoothing) of these 

images for analysis. Yet, these limitations of VBM should be acknowledged and future studies 

using a larger pediatric sample are needed to confirm the results of which study are more valid.  

Certain limitations that are similar to the Chang et al. (2008) study should be acknowledged. 

Children in this study were between 9 and 12 years of age, and this age range is several years 

past the stuttering onset. Therefore, it is difficult to make a statement whether the structural 

differences in stuttering children group are due to compensatory behaviors associated with 

stuttering or not. However, studying the neuroanatomy of pediatric brains is challenging because 

the brains of younger children (6 years of age of younger) are too variable in size and shape to be 

compared directly (Muzik et al., 2000; Burgund et al., 2002). The small size for the pediatric 

group is also a limitation since it impacts the statistical power of the pairwise comparisons in 

VBM. Structural studies need to be conducted with a larger children and adult sample. The VBM 

method also has some limitations. For example, if the volume differences are subtle or if they are 
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located in small brain regions, which might be affected by imaging artifacts, VBM might fail to 

identify these differences. VBM also does not provide information about connections between 

white matter regions. Therefore, future structural studies will need to employ other methods such 

as DTI to understand white matter changes and white matter connections in adult and children 

groups. Current study was designed to assess structural differences in adults and children who 

stutter relative to fluent controls. Therefore we are limited in proposing claims about function, 

and functional studies need to confirm speculations regarding functional aspects of the structures 

discussed in children and adult groups.   

Clinical implications of the current study 

The results of the current study can help clinicians understand that neuroanatomical 

differences in children and adults who stutter could be involved in stuttering. This study alone is 

not sufficient to make statements about prediction of onset of developmental stuttering, or 

therapy techniques for the treatment of stuttering. However, if further functional and structural 

studies confirm current results, clinicians can gain a better understanding in predicting onset of 

stuttering, and identification of „at-risk‟ children. In addition, they may develop individualized 

treatment for people who stutter or defer to alternative intervention techniques such as 

pharmaceuticals to assist in the functioning of structures in basal ganglia-thalamocortical 

circuitry, or biofeedback for children with disrupted connectivity between sensory and motor 

structures involved in speech production.    

Conclusions 

The purpose of the current project was to identify neurological differences associated 

with the presence of stuttering that could explain a range of factors related to causation, 



57 

development, persistence, and recovery. Using the VBM method, the present study demonstrated 

significant gray and white matter volume differences in brain areas important for speech 

production in adults who stutter, children with persistent stuttering, and recovered children 

relative to controls. These areas included subcortical structures, cortical areas, as well as 

cerebellar regions. Taken together the results of adult group and pediatric group, we proposed 

that developmental stuttering could be related to aberrant gray and white matter volumes in a 

widely distributed neural network which may lead to disrupted transmission of sensory or motor 

information among speech relevant areas in this neural circuitry. In addition, aberrant 

development pattern in these areas may present risk for the onset of stuttering.  Further 

functional and structural studies are needed to confirm and sort out the effect of different 

analytical approaches for understanding brain development in stuttering.   
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CHAPTER VI: TABLES 

Tables 1-11 

Table 1: Structural Neuroimaging studies of stuttering 

Study Subjects Tissue 

Type 

Method Direction of change Region 

Foundas et 

al. (2001) 

16 AWS 16 

Controls 

GM Manual 

Tracing- 

ROI 

Volume of 

tissue in 

ROI  

AWS> Controls  

AWS -Reduced magnitude 

of the planar asymmetry 

AWS- more gyral variants 

AWS> in Bilateral 

Planum temporale 

(PT), prefrontal 

cortex, L occipital 

lobe 

AWS -anomalous 

anatomy in 

perisylvian speech 

and language areas 

Sommer, et 

al.  (2002) 

15 AWS, 15 

controls 

WM DTI:  

Variable: 

Fractional 

anisotropy 

(FA) 

AWS<Controls – Reduced 

FA 

 

FA in AWS< 

Controls in LH 

Rolandic Operculum 

(RO) near PMA and 

inferior arcuate 

fasciculus linking 

temporal and frontal 

areas  

Jancke et al. 

(2004) 

10 AWS; 10 

Controls 

WM 

 

GM (no 

difference)  

VBM 

Variable: 

tissue 

volume 

AWS> Controls within four 

clusters on the RH 

 

 

Controls> AWS in auditory 

cortex LH 

  

AWS> in RH STG 

including planum 

temporale (PT); RH 

PrCG, IFG 

comprising pars 

opercularis; MFG 

Controls> in LH 

Heschl‟s gyrus, PT 

Beal et al. 

(2007)  

26 AWS; 28 

Controls 

GM  

 

WM 

VBM  

Tissue 

volume 

AWS>Controls in 5 

significant GM clusters 

 

AWS>Controls in 3 

significant WM clusters 

 

GM: 1) RH STG 2) 

RH Cerebellum 3) 

LH STG 4) LH  IFG 

5) LH STG  

WM: 1) RH Insula 2) 

RH IFG 3) LH MTG 

Chang et al. 

(2008) 

8 CWS 

(persistent), 7 

Recovered, 7 

Controls 

GM 

 

WM 

VBM 

Tissue 

Volume 

 DTI 

FA 

Controls >Persistent & 

Recovered GMV 

 

 

Controls >Persistent & 

Recovered: reduced FA in 

left WM tracts. 

 

GM: 1) bilateral IFG 

2) left anterior CG 3) 

bilateral SMA 4) left 

SMG 5) right 

temporal regions 

WM: 1) Reduced 

WM tracts in left RO 

for PDS and 

recovered group  

Lu et al. 

(2010)  

12 AWS, !2 

Controls 

GM 

 

WM 

 

VBM 

Tissue 

volume 

Controls> AWS 

 

AWS> Controls 

Controls> GM in 

Left MFG, ASTG; 

WM underlying L 

PSTG 

AWS> GM in L 

Putamen 
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Table 2 

List of Gray Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Adults Who Stutter (S) and Adults Who Do Not Stutter (NS) On a 

Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S>NS 

 

Subcortical 

Regions 

Putamen Left 2263 4.57 -18, -2, 10 

Putamen,  Right 2134 4.32 30, -8, 4 

Thalamus Left 223 3.34 -20, -32, 0 

Thalamus Right 116 3.15 20, -30, 0 

 

 

 

 

 

Cortical 

Regions 

Frontal 

Superior Frontal Gyrus Left 288 4.23 -20, 14, 40 

Middle Frontal Gyrus Right 102 3.90 38, 40, 22 

Superior Frontal Gyrus Right 55 3.70 10, 44, 42 

Superior Frontal Gyrus Right 43 3.58 20, 56, 18 

Medial Frontal Gyrus Left 165 3.49 -12, -28, 56 

Middle Frontal Gyrus Right 160 3.42 28, 28, 38 

Superior Frontal Gyrus Left 49 3.33 -10, 6, 62 

Precentral Gyrus Right 89 3.12 16, -20, 58 

Anterior Cingulate Right 31 3.07 12, 34, 24 

Superior Frontal Gyrus Left 48 3.01 -8, 20, 56 

Medial Frontal Gyrus Left 30 2.84 -8, 40, 38 

 

 

 

Cortical 

Regions 

Temporal-

Parietal 

Precuneus Right 46 3.65 22, -56, 50 

Inferior Parietal Lobule Right 136 3.61 48, -36, 44 

Postcentral Gyrus Left 58 3.26 -58, -12, 24 

Posterior Cingulate Left 194 3.11 -10, -50, 8 

Supramarginal Gyrus Left 36 3.09 -46, -44, 36 

Postcentral Gyrus Right 31 3.01 54,-18, 24 

 

 

 

 

NS>S 

 

 

Cortical 

Regions 

Temporal-

Parietal 

 

 

Superior Parietal 

Lobule 

Left 

 

299 

 

4.00 

 

-24, -64, 64 

 

Postcentral Gyrus Left 51 3.38 -32, -42, 68 

Precuneus Right 59 3.14 8, -76 ,48 

Inferior Parietal Lobule Right 39 3.13 52, -38, 58 

Superior Parietal 

Lobule 

Right 34 3.11 36, -66, 58 

Precuneus Left 31 2.91 -12, -88, 42 

Superior Parietal 

Lobule 

Left 

 

41 

 

2.90 

 

-46, -62, 54 

 

Inferior Temporal 

Gyrus 

Right 46 2.84 58, -6, -36 

Cerebellar 

Regions 

Cerebellum Left 114 3.11 -2 ,-86, -28 
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Table 3 

List of White Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Adults Who Stutter (S) and Adults Who Do Not Stutter (NS) On a 

Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

S>NS 

Cortical 

Regions 

Frontal 

Anterior Cingulate Left 49 
 

3.11 
 

-2,  30, 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

NS>S 

 

Cortical 

Regions 

Frontal 

 

Precentral Gyrus 
 

Left 
 

128 
 

3.66 
 

-26, -12, 66 
 

 

 

 

 

 

 

 

 

 

Cortical 

Regions 

Parietal-

Temporal 

Middle Temporal Gyrus Left 505 4.22 -70, -32, -6 

Superior Parietal 
Lobule 

Right 
 

825 
 

3.93 
 

36, -66, 56 
 

Inferior Temporal  Right 153 3.88 62, -42, -18 

Postcentral Gyrus Right 218 3.62 2, -46, 64 

Middle Temporal Gyrus Right 160 3.55 68, -28, -10 

Superior Temporal  Left 73 3.48 -60, 6, 0 

Precuneus Right 77 3.36 32 -82 40 

Inferior Parietal Lobule Right 91 3.33 52 -38 54 

Supramarginal Gyrus Right 41 3.27 58, -54, 36 

Middle Temporal Gyrus Right 38 3.23 52, 10, -26 

Precentral Gyrus Right 115 3.20 68, -4, 26 

Superior Temporal Right 99 3.17 34, 6, -42 

Parahippocampal G. Left 36 2.83 -28, -50, 10 

Middle Temporal Gyrus Left 88 3.14 -68, -58, 4 

Superior Temporal  Left 134 3.04 -30, 4, -46 

Postcentral Gyrus Right 69 2.93 60, -26, 48 

Cortical 

Regions 

Occipital 

Middle Occipital Gyrus Left 57 3.07 -56, -74, 10 

Middle Occipital Gyrus Right 63 3.06 8, -96, 16 

Cuneus (Occipital L) Left 90 3.05 -14, -88, 40 

Cerebellar 

Regions 
Posterior Cerebellar 
Pyramis 

Left 
 

2873 
 

3.84 
 

-10 -80 -30 
 

Posterior Cerebellar 
Tuber 

Left 
 

46 
 

3.09 
 

-46 -90 -18 
 

Cerebellar Tonsil Right 195 2.92 38, -42, -46 

Cerebellar Tonsil Left 
 

115 
 

2.89 
 

-46 -42 -42 



61 

Table 4 

List of Gray Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Ever Stuttered Children (S) and Normally Fluent Children (NS) 

On a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

S>NS 

Cortical 

Regions 

Temporal 

Parahippocampal 

Gyrus 

Right 

 

88 

 

3.21 

 

28, -24, -28 

 

 

 

 

 

NS>S 

 

Cortical 

Regions 

Frontal 

 

Middle Frontal Gyrus Left 72 3.24 -28, 26, 26 

Superior Frontal Gyrus Right 31 3.08 18, 16, 58 

Cingulate Gyrus Right 33 3.78 24, -14, 40 

Medial Frontal Gyrus Right 60 3.57 16, 52, 6 

Superior Frontal Gyrus Left 69 3.57 -16, 46, -12 

Cortical 

Regions 

Parietal 

Supramarginal Gyrus Left 

 

107 

 

3.50 

 

-44 -40 30 

 

 

Table 5 

List of White Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Ever Stuttered Children (S) and Normally Fluent Children (NS) 

On a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

NS>S 

Cortical 

Regions 

Frontal 

Middle Frontal Gyrus Right 

 

65 

 

4.77 

 

42, 16, 42 

 

Cortical 

Regions 

Parietal-

Temporal 

Inferior Temporal 

Gyrus 

Right 

 

177 

 

3.44 

 

64, -34, -26 

 

Postcentral Gyrus Right 35 2.98 52, -12, 50 

 

 

 

 

S>NS 

 

Cortical 

Regions 

Parietal-

Occipital 

Inferior Parietal Lobule Left 72 3.83 -40, -62, 44 

Cuneus Left 92 3.61 0, -88, 8 

Precuneus Right 51 3.56 2, -66, 42 

Inferior Semi-Lunar L Left 32 3.40 -8 ,-60, -46 

Parahippocampal Gyrus Left 36 3.34 -16, -50, 4 

Cerebellar 

Regions 

Cerebellar Uvula Right 54 2.87 18, -68, -32 
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Table 6 

List of Gray Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children with Persistent Stuttering (S) and Normally Fluent 

Children (NS) On a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

S>NS 

Cortical 

Regions 

Parietal-

Occipital 

Precuneus Right 42 3.36 18, -70, 42 

Middle Occipital Gyrus Left 72 3.13 -40, -68, 0 

Postcentral Gyrus Left 47 3.38 -46, -26, 48 

Precuneus Right 34 2.85 2, -82, 42 

Cortical 

Regions 

Frontal 

Inferior Frontal Gyrus Left 46 3.44 -40, 4, 26 

Orbital Gyrus Right 54 3.06 22, 26, -26 

 

 

 

 

NS>S 

Cortical 

Regions 

Frontal 

Medial Frontal Gyrus Right 99 4.13 14, 52, 2 

Superior Frontal Gyrus Left 80 3.79 -14, 46, -14 

Superior Frontal Gyrus Left 109 3.71 -14, 28, 46 

Precentral Gyrus Left 53 3.59 -12, -18, 68 

Medial Frontal Gyrus Left 82 3.59 -12, 52, 14 

Medial Frontal Gyrus Right 30 3.40 14, 34, 28 

Middle Frontal Gyrus Right 53 3.33 32, 24, 26 

Medial Frontal Gyrus Right 34 3.29 12, 24, 40 

Middle Frontal Gyrus Left 54 3.21 -30, 32, 22 

Medial Frontal Gyrus Left 55 3.14 -14, 30, 30 

Cortical 

Regions 

Parietal 

Inferior Parietal Lobule Right 54 3.68 46, -28, 28 

Paracentral Lobule Left 44 3.12 -14, -32, 52 

Subcortical 

Regions 

Caudate Left 94 3.01 -8, 18, 14 
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Table 7 

List of White Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children with Persistent Stuttering (S) and Normally Fluent 

Children (NS) On a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

S>NS 

Cortical 

Frontal 

Regions 

Superior Frontal Gyrus Right 125 4.29 6, 68, 20 

Inferior Frontal Gyrus Right 50 3.54 24, 26, -24 

Middle Frontal Gyrus Right 42 3.09 

 

52, 36, 16 

Cerebellar 

Regions 

Posterior Cerebellar 

Declive 

Right 

 

63 

 

3.61 

 

46, -56, -18 

 

Cortical 

Parietal- 

Temporal 

Regions 

Inferior Parietal Lobule Left 70 4.24 -40, -62, 44 

Middle Temporal 

Gyrus 

Right  92 3.84 50, -74, 16 

Parahippocampal 

Gyrus 

Left 

 

43 

 

3.50 

 

-14, -50, 4 

 

Inferior Parietal Lobule Left 41 3.37 -48, -40, 28 

Precuneus Left  45 3.36 0, -56, 36 

Precuneus Right 37 3.31 2, -66, 20 

Precuneus Right 51 3.17 10, -50, 30 

Precuneus Left 44 3.12 -12, -50, 32 

Occipital 

Regions 

Cuneus Left 136 4.00 0, -88, 8 

 

 

NS>S 

Cortical 

Frontal 

Regions 

Middle Frontal Gyrus Right 52 4.39 40, 14, 44 

Precentral Gyrus Left 85 3.76 -32, 0, 32 

Cortical 

Regions 

Parietal-

Occipital 

Superior Parietal 

Lobule 

Right 

 

45 

 

4.67 

 

34, -60, 54 

 

Middle Occipital Gyrus Right 55 3.89 48, -54, -6 

Inferior Occipital Gyrus Left 48 3.69 -34 -92 -12 
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Table 8 

List of Gray Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children who Recovered from Stuttering (R) and Children with 

Persistent Stuttering (PS) On a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

PS>R 

Subcortical 

Regions 

Cingulate Gyrus Left 31 2.83 -20, -22, 34 

 

 

 

 

R>PS 

 

 

 

 

Cortical 

Regions 

Frontal 

Medial Frontal Gyrus Left 168 4.63 -12 , 34, 30 

Medial Frontal Gyrus Left 78 4.58 -8, -22, 52 

Medial Frontal Gyrus Right 322 4.29 14, 34, 26 

Superior Frontal Gyrus Right  2645 4.11 12, 30, 48 

Middle Frontal Gyrus Left 111 3.93 -30, -2, 46 

Superior Frontal Gyrus Left 39 3.73 -38, 18, 46 

Superior Frontal Gyrus Left 85 3.69 -14, 62, -16 

Anterior Cingulate Left 66 3.61 -8, 22, 18 

Inferior Frontal Gyrus Right 139 3.53 20, 20, -16 

Superior Frontal Gyrus Left 53 3.35 -14, 6, 62 

Superior Frontal Gyrus Right 246 3.21 8, 70, 0 

Inferior Frontal Gyrus Right 31 3.11 38, 26, -12 

Cortical 

Regions 

Occipital-

Temporal 

Fusiform Gyrus Right 2256 4.79 42, -78, -14 

Middle Temporal 

Gyrus 

Right 308 3.94 70, -54, 2 

 

Cerebellar 

Regions 

Middle Temporal 

Gyrus 

Right 70 3.55 44, 2, -24 

Uncus Left 79 3.08 -40 -14 -30 

Middle Temporal 

Gyrus 

Right 32 3.06 44, -58, 6 

Cerebellar Declive Left 3887 4.08 -28 -70 -12 
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Table 9 

List of White Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children who Recovered from Stuttering (R) and Children with 

Persistent Stuttering (PS) on a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

PS>R 

Cerebellar 

Regions 

Posterior Cerebellar 

Declive 

Right 

 

54 

 

3.71 

 

46, -56, -20 

 

Posterior Cerebellar 

Tonsil 

Left 

 

38 

 

3.25 

 

-38 -38 -44 

 

 

 

 

 

R>PS 

 

 

 

Cortical 

Regions 

Frontal 

Medial Frontal Gyrus Right 95 4.14 14, 64, -2 

Superior Frontal Gyrus Left 133 4.07 -20, -12, 62 

Medial Frontal Gyrus Right 101 3.95 6, 54, 10 

Superior Frontal Gyrus Right 58 3.32 32, 32, 52 

Inferior Frontal Gyrus Left 57 3.31 -50, 8, 26 

Medial Frontal Gyrus Right 31 3.20 8, 20, 46 

Medial Frontal Gyrus Right 40 3.08 8, 38, 38 

Cortical 

Regions 

Occipital-

Temporal 

Parietal 

Cuneus Right 394 3.78 12, -100, 8 

Inferior Occipital Gyrus Left 126 3.42 -46, -92, -6 

Inferior Parietal Lobule Left 36 3.22 -52, -28, 44 

Cuneus Right 43 3.17 24, -84, 14 

Cuneus Left 79 3.10 -24, -78, 6 

Inferior Temporal 

Gyrus 

Right 

 

53 

 

3.07 

 

60, -8, -34 

 

Lingual Gyrus Left 64 3.05 -14, -64, -2 

Cerebellar 

Regions 

Cerebellar Tonsil Right 102 4.00 52, -56, -38 

Cerebellum Left 199 3.33 -12 -76 -40 
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Table 10 

List of Gray Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children who Recovered from Stuttering (R) and Normally 

Fluent Children (NS) on a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

R>NS 

Cortical 

Regions 

Frontal 

Middle Frontal Gyrus Right 81 3.41 42, 66, 12 

Cerebellar 

Regions 

Cerebellar Declive Left 41 3.25 -30 -68 -14 

Cerebellar Declive Right 89 3.17 34, -80, -20 

Cortical 

Regions 

Occipital- 

Temporal 

Inferior Occipital 

Gyrus 

Left 

 

88 

 

3.51 

 

-24 -90 -10 

 

Middle Temporal 

Gyrus 

Left 40 3.47 -44, 6, -32 

 

NS>R 

Cortical 

Regions 

Frontal 

Middle Frontal Gyrus 

 

Left 

 

48 

 

3.81 

 

-28, 22, 26 

 

Cingulate Gyrus Right 34 3.47 22, -10, 38 
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Table 11 

List of White Matter Regions, Cluster Size, Coordinates, and Peak Z-scores of Locations Found 

Significantly Different Between Children who Recovered from Stuttering (R) and Normally 

Fluent Children (NS) on a Two-Sample t-test (p< 0.005) uncorrected 

  Location  Laterality Cluster 

Size in 

Voxels 

Z-Score Talairach 

Coordinates 

(x, y, z) 

 

R>NS 

Cortical 

Regions 

Frontal 

Medial Frontal Gyrus Right  132 5.16 8, 56, 8 

Superior Frontal Gyrus Right 296 4.69 16, 26, 66 

Middle Frontal Gyrus Left 49 3.44 -30, 18, 48 

Orbital Gyrus Right 84 3.37 24, 38, -28 

Cerebellar 

Regions 

Cerebellar Tonsil Right 117 3.74 44, -58, -40 

Cerebellar Pyramis Right 157 3.41 28, -60, -28 

Cortical 

Regions 

Occipital- 

Temporal 

Parietal 

Superior Temporal 

Gyrus 

Right 

 

124 

 

4.27 

 

20, 20, -40 

 

Cuneus Right 144 3.80 16, -100, 8 

Inferior Parietal Lobule Right 38 3.46 54, -36, 24 

Lingual Gyrus Left 74 3.56 -24, -72, 4 

Precuneus Right 67 3.41 2, -64, 40 

 

NS>R 

Cortical 

Regions 

Frontal 

Precentral Gyrus Right 34 4.17 40, 16, 40 

Cerebellar 

Regions 

 

Posterior Cerebellar 

Uvula 

Left 

 

79 

 

3.57 

 

-10 -94 -24 

 

Posterior Cerebellar 

Tuber 

Right 

 

70 

 

3.37 

 

52, -90, -30 
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CHAPTER VII: FIGURES 

Figures 1-10 

 

 

Figure 1: A schematic of gray matter volume differences among children who stutter (CWS), adults 

who stutter (AWS), and normally fluent control groups (Control) as reported in the literature. Overall, 

previous structural studies reported that children who stutter had less gray matter volumes than 

normally fluent children, while adults who stutter had increased gray matter volume compared to 

normally fluent adult controls in superior temporal gyrus (STG), inferior frontal gyrus (IFG), planum 

temporale, supplementary motor area (SMA), and supramarginal gyrus (SMG).  

Figure 2: A schematic of white matter volume differences among children who stutter (CWS), adults 

who stutter (AWS), and normally fluent control groups (Control) as reported in the literature. Based on 

the previous reports of structural studies, children who stutter had less white matter volume than 

normally fluent children, while adults who stutter had more gray matter volume than normally fluent 

adult controls in planum temporale, inferior frontal gyrus (IFG), insula, and supplementary motor area 

(SMA).  
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Figure 3: Processing steps involved in voxel-based morphometric analyses used in this study. 

All processing steps were carried out using the default options in SPM5. Segmentation step 

produces three different tissue classes: gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF). Detailed description is available in SPM5 manual 

(http://www.fil.ion.ucl.ac.uk/spm/). 

  

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 4: Gray matter volume differences between adults who stutter (AWS) and normally fluent 

controls (AWNS). AWS>AWNS: a) Axial view of bilateral putamen, bilateral basal ganglia, and 

left posterior cingulate. b) Sagittal view of right anterior cingulate gyrus, thalamus, superior 

frontal gyrus, parietal lobule subgyral AWNS>AWS : a) Top view of left postcentral gyrus, b) 

sagittal view of left cerebellum, c) axial view of bilateral precuneus and right superior parietal 

lobule 
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Figure 5: White matter volume differences between adults who stutter (AWS) and normally 

fluent controls (AWNS). AWS> AWNS: a) Sagittal view of left anterior cingulate gyrus. 

AWNS> AWS: b) Coronal view of bilateral middle temporal gyri, right precentral gyrus, left 

precentral gyrus c) Axial view of bilateral cerebellar tonsil d) Sagittal view of right supramarginal 

gyrus, right postcentral gyrus e) Axial view of posterior cerebelllar pyramis, left parahippocampal 

gyrus f) Axial view of left and right superior temporal gyri 
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Figure 6: Gray matter volume differences between children with persistent stuttering (CWPS) 

and normally fluent children (CWNS). CWNS>CWPS: a) Top view of left precentral gyrus b) 

Axial view of left paracentral gyrus, and left medial frontal gyrus c) Sagittal view of left caudate 

nucleus. CWPS>CWNS: a) Coronal view of left inferior frontal gyrus b) Axial view of left post 

central gyrus and right precuneus 
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Figure 7: Gray and white matter volume differences between recovered children (CWRS) and 

persistent stuttering children (CWPS) groups. Gray matter (GM) Volume: a) 

Persistent>Recovered- Axial view of increased gray matter volume in left cingulate gyrus b) 

Recovered> Persistent- Sagittal view of left anterior cingulate, superior frontal gyrus c) 

Recovered>Persistent- Coronal view of right middle temporal gyrus, left superior and middle 

frontal gyri. White matter (WM) Volume: d) Persistent> Recovered- Sagittal view of left 

posterior cerebellar tonsil e) Recovered>Persistent- Axial view of left inferior frontal gyrus f) 

Recovered> Persistent- Axial view of left cerebellum and right posterior cerebellar tonsil.  
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PrCG Subcortical Regions SFG MFG SMG

Gray Matter Volume Differences

AWS

Controls

CWS

Cerebellum MTG PrCG STG

White Matter Volume Differences

AWS

Controls

CWS

Figure 8: A schematic of gray matter volume differences among children who stutter (CWS), 

adults who stutter (AWS), and normally fluent control groups (for simplicity control speakers 

are not separated into age groups). Overall, the results of the current study showed that children 

who stutter had less gray matter volumes than normally fluent children, while adults who stutter 

had increased gray matter volume compared to normally fluent adult controls in precentral gyrus 

(PrCG), subcortical regions such as putamen and thalamus in adults and caudate nucleus in 

children; superior frontal gyrus (SFG), middle frontal gyrus (MFG), and supramarginal gyrus 

(SMG). 

Figure 9: A schematic of gray matter volume differences among children who stutter (CWS), 

adults who stutter (AWS), and normally fluent control groups (for simplicity control speakers 

are not separated into age groups). Overall, the results of the current study showed that adults 

who stutter had reduced white matter volume in cerebellum, middle temporal gyrus (MTG), 

precentral gyrus (PrCG), and superior temporal gyrus (STG) compared to normally fluent adult 

controls. CWS showed more white matter than normally fluent children controls in cerebellum, 

and MTG. CWS showed less white matter in PrCG, but no difference in white matter volume in 

STG compared to controls. 
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Figure 10: Schematic of the DIVA (Directions into Velocities of Articulators) model of speech 

production.  
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