The person charging this material is responsible for its renewal or its return to the library from which it was borrowed on or before the Latest Date stamped below. **You may be charged a minimum fee of $75.00 for each lost book.**

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

TO RENEW CALL TELEPHONE CENTER, 333-8400
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

APR 29 1998
AUG 03 1998

When renewing by phone, write new due date below previous due date.

L162
Nonparametric Kernel Estimation of Econometric Parameters

A. Ullah
H.D. Vinod

College of Commerce and Business Administration
Bureau of Economic and Business Research
University of Illinois, Urbana-Champaign
Nonparametric Kernel Estimation of Econometric Parameters

A. Ullah, Visiting Professor
Department of Economics

H.D. Vinod
Fordham University
NONPARAMETRIC KERNEL ESTIMATION OF ECONOMETRIC PARAMETERS

by

A. Ullah and H. D. Vinod*
University of Western Ontario, London, Ontario, and
Fordham University, Bronx, New York

ABSTRACT

We propose Nadaraya-Watson type nonparametric estimation of the conditional expectation of the dependent variable as a means of computing analytical partial derivatives (e.g., response coefficient, elasticity) with respect to appropriate variables. An illustrative example concerns the effect of age on earnings.

*Research support to A. Ullah from the NSERC is gratefully acknowledged. The authors thank Paul Rilstone and J. Racine for computational assistance and comments. They are also grateful to a referee for useful comments and suggestions.
1. INTRODUCTION AND THE MODEL

Let us consider an amorphous specification

\[y = R(x_1, \ldots, x_p) + u = E(y|x_1, \ldots, x_p) + u \] \hspace{1cm} (1)

where \(y \) is an \(n \times 1 \) vector of observations on the dependent variable, \(x_1, \ldots, x_p \) are each \(n \times 1 \) vector of observations on \(p \) regressors, \(u \) is an \(n \times 1 \) vector of errors and the regression function \(R = R(\cdot) \) is an unspecified expectation of \(y \) conditional on \(x_1 \) to \(x_p \) denoted by \(E(y|x_1, \ldots, x_p) \). In the usual parametric econometrics, one considers \(R \) as a linear function of \(x_1 \) to \(x_p \), \(R = x_1 \beta_1 + \ldots + x_p \beta_p \) where \(\beta_j \), \(j = 1, \ldots, p \), is interpreted as the partial derivative (regression coefficient) of \(y \) with respect to \(x_j \). Recent research has focused on achieving greater economic realism by using flexible functional forms, see e.g., Barnett (1984) and Elbadawi et. al., (1983).

In this paper we directly estimate the conditional expectation \(R = E(y|x_1, \ldots, x_p) \) while its partial derivatives with respect to \(x_j \) for \(j = 1, \ldots, p \). The conditional expectation is estimated by the nonparametric Kernel method, and the estimation of the analytic partial derivatives appears to be new. This nonparametric approach to calculating partial derivatives has several advantages compared to the usual parametric approach. First, it does not require any \textit{a priori} assumption about the functional form. Second, \(x \)'s are considered to be stochastic as is the case in the nonexperimental subject like economics. Third, it does not require any assumption about the data generating process (joint density of \(y, x_1, \ldots, x_p \)).
2. ESTIMATION OF PARTIAL DERIVATIVES

Let \(x_t, t = 1, \ldots, n \) be \(n \) independent and identically distributed random vectors generated from an unknown \(m \)-variate density function \(f(x_1, \ldots, x_m) \). Consider \(K \) to be a class of all Borel-measurable real valued bounded functions \(k \) on the \(m \)-dimensional Euclidean space \(\mathbb{R}^m \) such that

\[
\int k(w) \, dw = 1, \quad \int |k(w)| \, dw < \infty
\]

\[
\|w\|\, |k(w)| \to 0 \text{ as } \|w\| \to \infty \quad (2)
\]

where \(\|w\| \) is the usual Euclidian norm of \(w \) in \(\mathbb{R}^m \). Cacoullos (1966) estimated the joint density \(f(x_j, j=1, \ldots, m) \) at point \(x_{jo} \) by

\[
f_n(x_{10}, \ldots, x_{mo}) = n^{-1} \left(\prod h_j^{-1} \right) \frac{n}{\prod \sum_{1}^{m} k(w_{1t}, \ldots, w_{mt})} \quad (3)
\]

where \(h_j \) is a sequence of positive numbers ("window widths") tending to zero as \(n \) tends to infinity and

\[
w_{it} = (x_{jt} - x_{jo})/h_j. \quad (4)
\]

Following Singh (1981) and Ullah and Singh (1985) we use, without the loss of generality, a joint kernel function \(k \) in (3) which is a product of \(m \) kernel functions \(k(w_j) \), where each \(k(w_j) \) satisfies (2). The particular choice of such kernel considered in Section 2.1 below is

\[
k(w_{jt}) = (2\pi)^{-1/2} \exp\left(-\frac{1}{2}w_{jt}^2 \right), \quad (5)
\]

which is proportional to the normal density.
Let \(y \) be denoted by \(x_m \) with \(m = p + 1 \). Then the estimate of the marginal density \(f(x_1, \ldots, x_p) \) at \(x_{10}, \ldots, x_{po} \), can be obtained by integrating out the variable \(y = x_m \). Further, the estimate of the conditional mean \(E(y|x_1, \ldots, x_p) \) or the regression function \(R \) in (1), at \(x_{10}, \ldots, x_{po} \), is

\[
R(x_{10}, \ldots, x_{po}) = \frac{\int_x f(x_{10}, \ldots, x_{po})/f(x_{10}, \ldots, x_{po}) \, dx}{\int_x f(x_{10}, \ldots, x_{po}) \, dx}
\]

where \(k(w_t) = k(w_{1t}, \ldots, w_{pt}) = \Pi k(w_{jt}) \). Note that \(\Sigma r_t = 1 \). This is the Nadaraya (1964) and Watson (1964) type estimator. The consistency, asymptotic properties of this estimator have been analyzed in Singh et al. (1987) and Bierens (1987); also see Schuster (1972) and Rao (1983), Ch. 4 for the special case \(p = 1 \).

We turn next to the nonparametric estimation of the partial derivatives of \(R \) with respect to \(x_j \). The analytical expression for these derivatives follows from (6) as

\[
\frac{\partial R}{\partial x_{jo}} = \frac{\sum_{t=1}^{p} y_t (K_{1t} - K_{2t})}{\sum_{t=1}^{n} K_{1t}^{'}(w_t) K_{2t}}
\]

where

\[
K_{1t} = k'(w_t)/\sum_{t=1}^{n} k(w_t)
\]

\[
K_{2t} = k(w_t) k'(w_t)/\left(\sum_{t=1}^{n} k(w_t)\right)^2
\]

\[
k'(w_t) = \frac{\partial k(w_t)}{\partial x_{jo}} = w_{jt} h^{-1} k(w_t)
\]
where the second equality in (10) is true only for the normal kernel and $k(w)$ is as given in (6). The asymptotic properties of the estimator in (7) follow directly from the asymptotic results in Singh et al., (1987) and Schuster (1972), and they are not reproduced here for the sake of space. The interested reader may see the unpublished reports by Vinod and Ullah (1987), and Rilstone (1987) and Rilstone and Ullah (1987) which use numerical derivative instead of analytical expressions used in (7). We do, however, briefly outline the main results.

Using (1) in (6) we observe that

$$
\frac{n}{R_n} = \sum_{t=1}^{n} R(x_{1t}, \ldots, x_{nt}) + \frac{n}{\Sigma_t u_t r_t} = R + \Sigma_t u_t r_t + o(1)
$$

(11)

and, therefore, for large n

$$
\frac{\partial R_n}{\partial x_{jt}} - \frac{\partial R_n}{\partial x_{jt}} = \Sigma_t (K_{1t} - K_{2t})
$$

(12)

where the second equality in (11) follows by using the Taylor series expansion of $R(x_{1t}, \ldots, x_{nt})$ around x_{1t}, \ldots, x_{nt}; $o(1)$ represents terms tending to zero in probability. Since the expectation of u conditional on x's is zero according to (1), the consistency of the estimator in (7) follows from (12). For the asymptotic distribution we note that, conditional on x's

$$
Z = \left(\frac{\partial R}{\partial x_{jt}} - \frac{\partial R}{\partial x_{jt}} \right) / \Lambda^{1/2} (x_{o}) \sim N(0,1)
$$

(13)

where, from (12), $\Lambda (x_{o}) = \sum_{t=1}^{n} \sigma^2_{u_t} (x_{1t} - K_{1t} - K_{2t})^2$ is the asymptotic variance of $\partial R/\partial x_{jt}$ conditional on x's and $\sigma^2_{u_t}$ is the conditional variance of u. Since the conditional distribution of Z in (13) is
free from x's, the unconditional distribution of Z is also N(0,1). Note that Vinod and Ullah (1987) and Rilstone and Ullah (1987) have considered unconditional variance in the denominator of (13).

2.1 Numerical Example

As an illustration we analyze the response of earnings with respect to age. The partial derivative of the following semi-log non-parametric regression model provides the desired answer. Note that economists are specifically interested in the estimates of the partial derivatives, not the regression coefficients on a linear model, per se.

Suppose y_t is the logarithm of earnings and x_t is the age of the tth individual. For simplicity in illustration, we assume schooling to be constant. Now the nonparametric specification of the model is

$$y_t = R(x_t) + u_t = E(y_t|x_t) + u_t$$ \hspace{1cm} (14)

which is a special case of (1) for $p = 1$. Note that the estimate of R and its partial derivative with respect to x can be calculated by using (6) and (7), respectively. For the calculations the kernel used was as given in (5), and following Singh et. al., (1987) and Rao (1983, pp. 65-67) the window-width h taken was $sn^{-1/5}$ where $s^2 = \frac{\sum (x_t - x)^2}{n}$. Further, the conditional variance of the partial derivative $A(x_0)$ in (13) was obtained by using its consistent estimator

$$\sum \sigma^2(x_t)(K_{1t} - K_{2t})^2$$

where $\sigma^2(x_t) = \sum \hat{u}^2_{t_t}$ is the weighted residual sum of squares (RSS) based on the nonparametric residual $\hat{u} = y - R_n$.

In the extensive labor econometrics literature the parametric specification of the model is

\[R = E(y_t | x_t) = \alpha + \beta x_t + \gamma x_t^2, \]

(15)

see Heckman and Polachek (1974) and Mincer (1974) among others. In this model the estimate of the partial derivative is

\[\hat{\beta} + 2\hat{\gamma}x_t \]

(16)

and its variance, conditional on \(x \)'s, is given by

\[V(\hat{\beta}) + 4x_t^2V(\hat{\gamma}) + 4x_t\text{cov}(\hat{\beta}, \hat{\gamma}), \]

(17)

where \(\hat{\beta} \) and \(\hat{\gamma} \) are the respective estimates of \(\beta \) and \(\gamma \).

For the purpose of calculations, we considered Canadian data (1971 Canadian Census Public Use Tapes) on 205 individuals' ages and their earnings. These individuals were educated to grade 13. Below we present the parametric estimates based on ordinary least squares (OLS) and our nonparametric estimates of the partial derivatives.

<table>
<thead>
<tr>
<th>Partial Derivative</th>
<th>St. Error</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonparametric Estimation</td>
<td>.0162</td>
<td>.002</td>
</tr>
<tr>
<td>Parametric OLS Estimation</td>
<td>.0189</td>
<td>.003</td>
</tr>
</tbody>
</table>

The OLS estimation of the parametric model (15) is

\[y = 10.041 + .173x - .002x^2 \]

\[(.518) (.027) (.003) \]

(18)

where the numbers in parentheses are standard errors.
The nonparametric and parametric partial derivative estimates given above are the means of the respective partial derivative estimates at various ages. These estimates and their corresponding RSS are quite similar, although the nonparametric standard error is smaller. This is not surprising since for the data under consideration the quadratic parametric specification in (15) is fairly close to the true nonparametric specification, see Ullah (1985). The nonparametric specification in Ullah (1985), however, indicates a "dip" around the mean age with the result that when the nonparametric partial derivative was calculated at the mean age of 39, it gave the value -.008, while the parametric estimate remained the same as expected.

Another point to be noted is that if an investigator incorrectly specifies the parametric model (15) as \(R = \alpha + \beta x_t + u_t \), then the partial derivative estimate will be approximately .011 which will be away from the OLS value above of .0189. Since this bias problem due to the misspecification of the functional form does not arise in the nonparametric approach, applied econometricians may find nonparametric estimation attractive in a variety of other problems. Of course, certain modern "tests" on specification may reveal the inadequacy of the OLS, but may not reveal a practical alternative afforded by our nonparametric approach.

The potential users should, however, be well aware of the following limitations of the nonparametric approach. We know very little about the reliability of tests obtained by this approach in finite samples. The standard errors could be imprecise when the number of regressors is large and or sample is small. Not much is
known about the selection of window width in small samples. For further details about these limitations and the areas of future research, see Ullah (1987).
REFERENCES

Rilstone, P. and A. Ullah (1987), Nonparametric Estimation of Response Coefficients, Mimeo, Department of Economics, University of Western Ontario.

