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Abstract

This thesis is mainly concerned with the study of product of random stochastic matrices and

random weighted averaging dynamics. It will be shown that a generalization of a fundamental

result in the theory of ergodic Markov chains not only holds for inhomogeneous chains of

stochastic matrices, but also remains true for random stochastic matrices. To do this, the

concept of infinite flow property will be introduced for a deterministic chain of stochastic

matrices and it will be proven that it is necessary for ergodicity of any stochastic chain. This

result will further be extended to ergodic classes, through the development of the concept of

the infinite flow graph and ℓ1-approximation technique.

For the converse implications, the product of stochastic matrices will be studied in the

more general setting of random adapted stochastic chains. Using a result of A. Kolmogorov,

it will be shown that any averaging dynamics admits infinitely many comparison functions

including a quadratic one. By identifying the decrease of the quadratic comparison function

along the trajectories of the dynamics, it will be proven that under general assumptions on a

random chain, the chain is infinite flow stable, i.e. the product of random stochastic matrices

is convergent almost surely and, also, the limiting matrices admit certain structures that can

be deduced from the infinite flow graph of the chain. It will be shown that a general class of

stochastic chains, the balanced chains with feedback property, satisfy the conditions of this

result.

Some implications of the developed results for products of independent random stochastic

matrices will be provided. Furthermore, it will be proven that under general conditions,

an independent random chain and its expected chain exhibit the same ergodic behavior.

It will be proven that an extension of a well-known result in the theory of homogeneous

Markov chains holds for a sequence of inhomogeneous stochastic matrices. Then, link-failure

models for averaging dynamics will be introduced and it will be shown that under general

conditions, link failure does not affect the limiting behavior of averaging dynamics. Then,

the application of the developed methods to the study of Hegselmann-Krause model will

be considered. Using the developed results, an upper bound O(m4) will be established for

the Hegselmann-Krause dynamics, which is an improvement to the previously known bound

ii



O(m5). As a final application for the developed tools, an alternative proof for the second

Borel-Cantelli lemma will be provided.

Motivated by the infinite flow property, a stronger one, the absolute infinite flow property

will be introduced. It will be shown that this stronger property is in fact necessary for

ergodicity of any stochastic chain. Moreover, the equivalency of the absolute infinite flow

property with ergodicity of doubly stochastic chains will be proven. These results will be

driven by introduction and study of the rotational transformation of a stochastic chain.

Finally, motivated by the study of Markov chains over general state spaces, a framework

for the study of averaging dynamics over general state spaces will be proposed. Several

modes of ergodicity and consensus will be introduced and the relation between them will be

studied. It will be shown that a generalization of the infinite flow property remains necessary

for the weakest form of ergodicity over general state spaces. Inspired by the concept of an

absolute probability sequence for stochastic chains, an absolute probability sequence for a

chain of stochastic kernels will be introduced. Using an absolute probability sequence, a

family of comparison functions for the averaging dynamics, which contains a quadratic one,

will be introduced. Finally, an exact decrease rate of the quadratic comparison function

along any trajectory of the averaging dynamics will be quantified.
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Chapter 1

Introduction

In this thesis, we study infinite product of deterministic and random stochastic matrices.

This mathematical object is one of the main analytical tools that is frequently used in

various problems including: distributed computation, distributed optimization, distributed

estimation, and distributed coordination. In many of these problems, a common goal is

attempted to be achieved among a set of agents while there is no central coordination among

them. A common theme for solving those problems is to reach a form of agreement by

performing distributed averaging among the agents, which leads to an alternative way for the

study of product of (deterministic) stochastic matrices, i.e. the study of weighted averaging

dynamics. A weighted averaging dynamics is a dynamics of the form:

x(k + 1) = A(k)x(k) for k ≥ 0, (1.1)

where A(k) is a (row) stochastic matrix for any k ≥ 0 and x(0) ∈ Rm is arbitrary. Some

motivational applications for such a study are discussed in the sequel:

Distributed Optimization:

Consider a network of m agents such that each of them has a private convex

objective function fi(x) which is defined on Rn for some n ≥ 1. Suppose that we

want to design an algorithm that solves the following optimization problem:

minimize:
∑m

i=1 fi(x)

subject to: x ∈ Rn.
(1.2)

The goal is to solve the problem (1.2) distributively over the network by limited

local coordination of agents’ actions. This problem has been studied in [1, 2, 3, 4,

5, 6] both in deterministic time-changing networks and random i.i.d. networks. A

generalization of the problem (1.2) is studied in [7] where each agent has a convex

constraint set Ci ⊂ Rn and the goal is to solve the problem over the intersection
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set
∩m

i=1Ci.

Optimization problem (1.2) can be solved by using the following scheme: suppose

that at time k, agent i’s estimate of a solution to (1.2) (which is assumed to exist)

is xi(k). Then, we set

xi(k + 1) =
m∑
j=1

aij(k)x
j(k)− αi(k)di(k). (1.3)

In Eq. (1.3), A(k) = {aij(k)}i,j∈[m] is a doubly stochastic matrix. The chain

{A(k)} is assumed to possess certain properties. The variable αi(k) is the stepsize

of the ith agent at time k which also satisfies certain conditions, and di(k) is a

subgradient vector of the function fi(x) at x
i(k).

If in Eq. (1.3), we have di(k) = 0, i.e., fi(x) is constant for all i ∈ [m], the

dynamics (1.3) reduces to the dynamics (1.1) which is the focal point of the

current study. Nevertheless, for the general case of non-trivial objective functions,

convergence analysis of the algorithm in Eq. (1.3) relies on the stability properties

of the dynamic system (1.1) driven by the chain {A(k)}.

Synchronization:

Consider a network with m processors. Each of the m processors can compute

its local time τi using its own Central Processing Unit (CPU) clock. Ideally, after

the calibration, each processor’s local time should be equal to the Coordinated

Universal Time t. However, due to the hardware imperfections of CPU clocks,

different processors, even if they share the same hardware architecture, might

have different time stamps for a certain event. A first order model to describe

such a drift is the following linear model:

τi(t) = ait+ bi,

where τi(t) is the clock reading of the ith processor at time t, while ai and bi are

the ith processor’s clock skew and clock offset, respectively. Ideally, we should

have ai = 1 and bi = 0 for all i ∈ {1, . . . ,m}. However, this is not the case in

many real situations. In some applications, inaccurate and asynchronized time

readings might not cause any problem. However, in certain applications, such as

multiple target tracking scheme [8], time synchronization of different processors

is crucial.
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Figure 1.1: At each time, every robot observes the positions of the robots at its r-distance.
In this configuration, robot 1 observes the positions of the robots 1 (itself), 3, and 4.

In [9, 10], a clock synchronization scheme has been proposed and developed based

on the convergence of dynamic system (1.1). A similar approach has been pro-

posed in [11] for clock synchronization in sensor networks. The main idea in those

works is to mix the clock readings τi’s through the underlying network and align

each local time with a virtual universal clock τu(t) = aut + bu. The proposed

alignment schemes use the convergence properties of the dynamics (1.1) under

certain connectivity conditions on the underlying communication network of the

m processors.

Robotics:

Study of the dynamic system (1.1) has various applications in networks of robots,

especially when there is no central coordination among the robots. An example

of those applications is achieving rendezvous in a network of robots. To describe

the problem, consider a network of m robots. Suppose that the ith robot is

initially positioned at xi(0) ∈ R2, where i ∈ [m] and [m] = {1, . . . ,m}. The goal

is to gather the robots at a common point, a rendezvous point. For rendezvous,

consider the following recursive algorithm:

(i) At time k ≥ 0, robot i ∈ [m] measures or receives the positions of all

of the robots at a distance r, i.e., the positions of the robots in the set

Ni(k) = {j ∈ [m] | ∥xi(k)− xj(k)∥ ≤ r} (see Figure 1.1).

(ii) At time k ≥ 0, robot i ∈ [m] computes the average position of the neigh-

boring robots x̄i(k) =
1

|Ni(t)|
∑

j∈|Ni(k)| xj(k), where |Ni(k)| is the number of

elements in Ni(k).

3
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Figure 1.2: The positions of the 4 robots in Figure 1.1 after one iteration of the
distributed rendezvous algorithm.

(iii) Robot i moves to the point x̄i(k) before the communication time k+ 1, i.e.,

xi(k + 1) = x̄i(k).

One iteration of the above algorithm is illustrated in Figure 1.2. This algorithm

is motivated by the works in [12, 13] on modeling of social opinion dynamics

and it is known as Hegselmann-Krause model [14]. We study this model more

extensively in Chapter 5.

Observe that in the Hegselmann-Krause algorithm, the evolution of the position

vector x(k) = (x1(k), . . . , xm(k))
T follows the dynamics (1.1). In fact, rendezvous

resulting from the Hegselmann-Krause algorithm is equivalent to achieving con-

sensus in dynamics (1.1), a concept that will be introduced later in Chapter 2.

Theoretical Motivation:

One of the main motivations of this study is the desire to extend the following

well-known and widely used result for ergodic Markov chains.

Lemma 1.1. Let A be an irreducible and aperiodic matrix. Then Ak converges

to a rank one matrix as k approaches infinity.

In Chapter 4 and Chapter 5, we prove a generalization of this result for not

only the product of time-varying stochastic matrices but also the product of

independent random stochastic matrices. We show that, in fact, many seemingly

different results in the field of consensus and distributed averaging are just special

cases of this general result.
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1.1 Past Work

Unfortunately, the diversity and numerous publications in this area makes it almost impos-

sible to have an extensive and thorough literature review on this field. Here, we review

(relatively) few of the previous work on the study of product of random and deterministic

sequences of stochastic matrices by focusing mainly on the literature that shaped this thesis.

The study of forward product of an inhomogeneous chain of stochastic matrices is closely

related to the limiting behavior, especially ergodicity, of inhomogeneous Markov chains. One

of the earliest studies on the forward product of inhomogeneous chains of stochastic matrices

is the work of Hajnal in [15]. Motivated by a homogeneous Markov chain, Hajnal formulated

the concepts of ergodicity in weak and strong senses for inhomogeneous Markov chains, and

developed some sufficient conditions for both weak and strong ergodicity of such chains.

Using the properties of scrambling matrices that were introduced in [15], Wolfowitz [16] gave

a condition under which all the chains driven from a finite set of stochastic matrices are

strongly ergodic. In his elegant work [17], Shen gave geometric interpretations and provided

some generalizations of the results in [15] by considering vector norms other than ∥ · ∥∞,

which was originally used in [15] to measure the scrambleness of a matrix.

One of the notable works, which is used in some of the main results of this thesis is

the elegant manuscript of A. Kolmogorov [18]. There, he studied the behavior of a Markov

chain that is started in −∞. To study such Markov chains, he introduced the concept of an

absolute probability sequence for a chain of stochastic matrices and proved existence of such

a sequence for any Markov chain. This sequence and its existence will play a central role in

the development of this thesis.

The study of backward product of row-stochastic matrices, however, is motivated by

different applications all of which are in search of a form of a consensus among a set of

processors, individuals, or agents. DeGroot [19] studied such a product (for a homogeneous

chain) as a tool for reaching consensus on a distribution of a certain unknown parameter

among a set of agents. Later, Chatterjee and Seneta [20] provided a theoretical framework

for reaching consensus by studying the backward product of an inhomogeneous chain of

stochastic matrices. Motivated by the theory of inhomogeneous Markov chains, they de-

fined the concepts of weak and strong ergodicity in this context, and showed that these two

properties are equivalent. Furthermore, they developed the theory of coefficients for ergodic-

ity. Motivated by some distributed computational problems, in [2], Tsitsiklis and Bertsekas

studied such a product from the dynamical system point of view. In fact, they considered a

dynamics that accomodates an exogenous input as well as delays in the system. Through the

study of such dynamics, they gave more practical conditions for a chain to ensure ergodicity
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and consensus. The work in [1, 2] had a great impact on the subsequent studies of dis-

tributed estimation and control problems. Another notable work in the area of distributed

averaging is [21]. There, a similar result as in [1, 2] for consensus and ergodicity under a

slightly more general condition was given. Also, other interesting questions such as existence

of a quadratic Lyapunov function for averaging dynamics were raised there. Non-existence

of quadratic Lyapunov functions for general averaging dynamics was verified numerically

there and was analytically proven in [22]. A notable work on the study of the convergence

and stability of averaging dynamics is [23], where a general condition for convergence and

stability of averaging dynamics is established. In [24, 25], convergence rate and efficiency of

different averaging schemes are discussed and compared.

The common ground in the study of both forward and backward products of stochastic

matrices are the chains of doubly stochastic matrices. By transposing the matrices in such

a chain, forward products of matrices can be transformed into backward products of the

transposes of the original matrices. However, the transposition of a row-stochastic matrix is

not necessarily a row-stochastic matrix, unless the matrix is doubly stochastic. Therefore, in

the case of doubly stochastic matrices, any property of backward products can be naturally

translated into forward products.

The study of random product of stochastic matrices dates back to the early work in [26],

where the convergence of the product of i.i.d. random stochastic matrices was studied using

the algebraic and topological structures of the set of stochastic matrices. This work was

further extended in [27, 28, 29] by using results from ergodic theory of stationary processes

and their algebraic properties. In [30], the ergodicity and consensus of the product of i.i.d.

random stochastic matrices with almost sure diagonal entries were studied. The main result

in [30] can be concluded from the works in [27, 28], however, the approach used there was

quite different. Independently, the same problem was tackled in [31], where an exponential

convergence bound was established. The work in [30] was extended to ergodic stationary

processes in [32].

This thesis is also related to opinion dynamics in social networks [13, 12] and its gen-

eralizations as discussed in [33, 23, 34], consensus over random networks [35], optimiza-

tion over random networks [4], and the consensus over a network with random link fail-

ures [36]. Related are also gossip and broadcast-gossip schemes giving rise to a random

consensus over a given connected bi-directional communication network [37, 38, 39, 40].

On a broader basis, this work is related to the literature on the consensus over networks

with noisy links [41, 42, 43, 44] and the deterministic consensus in decentralized systems

models [1, 45, 2, 46, 47, 21, 48, 24, 49], including the effects of quantization and delay

[50, 51, 52, 53, 54, 40].
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1.2 Overview and Contributions

As already mentioned, this thesis is mainly devoted to the study of products of stochastic

matrices and its generalizations to random chains and general state spaces. Here, we provide

an overview and summarize the main contributions of the thesis.

In Chapter 3, we discuss the framework for studying a product of random stochastic

matrices and its corresponding dynamics driven by such matrices. We introduce the concept

of infinite flow property which is hidden in all the previously known results on ergodicity

of deterministic chains. We show that this property is in fact necessary for ergodicity of

any chain. Motivated by this result, we introduce the concept of infinite flow graph. By

introducing ℓ1-approximation of stochastic chains, we show that the limiting behavior of a

product of stochastic matrices is closely related to the connectivity of the infinite flow graph

associated with such a chain.

In Chapter 4, we study the converse statements of the results developed in Chapter 3.

We first introduce the concept of infinite flow stability for a random chain. In our attempt

to specify classes of random chains that exhibit infinite flow stability, we first study a prop-

erty which has also been commonly assumed in various forms in the previous studies in

this field, i.e. the feedback property. We define different feedback properties and investi-

gate their relations with each other. Motivated by an absolute probability sequence for a

chain of stochastic matrices, we introduce the concept of absolute probability process for an

adapted random chain. We show that using an absolute probability process, one can define

infinitely many comparison functions for the corresponding adapted random chain including

a quadratic one. Using the quadratic comparison function, we show that any chain in a

certain class of adapted random chains with weak feedback property is infinite flow stable.

Then, we define a class of balanced chains that includes nearly all the previously known

ergodic chains. We show that any balanced chain with feedback property is in fact infinite

flow stable.

Then, in Chapter 5, we study some of the implications of the results in Chapter 3 and

Chapter 4 for products of independent random stochastic matrices. We show that, under

general conditions of balancedness and feedback property, the ergodic behavior of an in-

dependent random chain and its expected chain are equivalent. We also develop a rate of

convergence result for a class of independent random chains. Then, we visit the problem

of link-failure on random chains and develop a condition under which link failure does not

affect the limiting behavior of the chain. We also discuss the Hegselmann-Krause model for

opinion dynamics. We show how an application of the developed machinery results in an up-

per bound of O(m4) for the termination time of the Hegselmann-Krause model. Finally, we
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present an alternative proof of the second Borel-Cantelli lemma using the developed results.

In Chapter 6, we extend the notion of infinite flow property to absolute infinite flow prop-

erty. We prove that this stronger property is also necessary for ergodicity of any stochastic

chain. We do this through the introduction of a rotational transformation of a stochas-

tic chain with respect to a permutation chain. Then, we show that limiting behavior of

a stochastic chain is invariant under rotational transformation. Using this result, we prove

that ergodicity of any doubly stochastic chain is equivalent to absolute infinite flow property.

Also, using the rotational transformation, we show that any products of doubly stochastic

matrices is essentially convergent, i.e. it is convergent up to a sequence of permutation. We

also develop a rate of convergence result for doubly stochastic chains based on the rate results

established in Chapter 5.

Finally, we extend the notion of averaging and product of stochastic matrices to general

measurable state spaces. There, we define several modes of ergodicity and extend the notion

of infinite flow property. We prove that in general state spaces, this property is necessary

for the weakest form of ergodicity. We define an absolute probability sequence for a chain

of stochastic kernels and we show that a chain of stochastic integral kernels with an abso-

lute probability sequence admits infinitely many comparison functions. We also derive the

decrease rate of the associated quadratic comparison function along the trajectories of any

dynamics driven by such chains.

The main contributions of this thesis include:

• Developing of new concepts, such as infinite flow property, infinite flow graph, feedback

properties, mutual ergodicity, infinite flow stability, absolute probability process, bal-

anced chains, absolute infinite flow property, and showing their relevance to the study

of product of random and deterministic stochastic matrices and averaging dynamics.

• Developing of new techniques, such as randomization technique, ℓ1-approximation, ro-

tational transformation, to study products of random and deterministic stochastic ma-

trices.

• Establishing the existence of infinitely many comparison functions for averaging dy-

namics including a quadratic one.

• Developing necessary and sufficient conditions for ergodicity of deterministic and ran-

dom stochastic chains.

• Extending a fundamental result for the study of irreducible and aperiodic homogeneous

Markov chains to inhomogeneous chains and random chains of stochastic matrices.
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• Developing a unified approach for convergence rate analysis of the averaging and con-

sensus algorithms.

• Developing a new bound for the convergence time of the Hegselmann-Krause model

for opinion dynamics.

• Formulating and study of the averaging dynamics, ergodicity, and consensus over gen-

eral state spaces.

This thesis is based on the work presented in published and under-review papers, and tech-

nical reports [55, 56, 57, 58, 59, 60, 61, 62, 63].

1.3 Notation

The notation used in this thesis is aimed to be as intuitive as possible. One may skip this

section and refer back to it, if any notation is confusing.

1.3.1 Sets, Vectors and Matrices

We use R and Z to denote the sets of real numbers and integers, respectively. Furthermore,

we use R+ and Z+ to denote the sets of non-negative real numbers and non-negative integers,

respectively. We use Rm×m to denote the set of m×m real-valued matrices. We use [m] to

denote the set {1, . . . ,m}. For a set S ⊂ [m], we let |S| be the cardinality of the set S.

We view all vectors as column vectors. For a vector x, we write xi to denote its ith entry,

and we write x ≥ 0 (x > 0) to denote that all its entries are nonnegative (positive). We use

xT to denote the transpose of a vector x. We write ∥x∥ to denote the standard Euclidean

vector norm i.e., ∥x∥ =
√∑

i x
2
i and we write ∥x∥p = (

∑m
i=1 |xi|p)1/p to denote the p-norm

of x where p ∈ [1,∞]. We use ei to denote the vector with the ith entry equal to 1 and all

other entries equal to 0, and we write e for the vector with all entries equal to 1.

For a given set C and a subset S of C, we write S ⊂ C to denote that S is a proper

subset of C. A proper and non-empty subset S of a set C is said to be a nontrivial subset

of C. We write S̄ to denote the complement of the set S ⊆ C, i.e. S̄ = {α ∈ C | α ̸∈ S}. We

denote the power set of a set C, i.e. the set of all subsets of C, by P(C).

We denote the identity matrix by I and the matrix with all entries equal to one by J .

For a matrix A, we use Aij or [A]ij to denote its (i, j)th entry, Ai and A
j to denote its ith

row and jth column vectors, respectively, and AT to denote its transpose. We write ∥A∥p
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for the matrix p-norm induced by the vector p-norm, i.e.

∥A∥p = max
∥x∥p=1

∥Ax∥p.

As for the vector 2-norm, we denote ∥A∥2 by ∥A∥.
A matrix A is row-stochastic when its entries are nonnegative and the sum of a row

entries is 1 for all rows. Since we deal exclusively with row-stochastic matrices, we refer

to such matrices simply as stochastic. We denote the set of m ×m stochastic matrices by

Sm. A matrix A is doubly stochastic when both A and AT are stochastic. We often refer

to a matrix sequence as a chain. We say that a chain {A(k)} of matrices is static if it

does not depend on k, i.e. A(k) = A(0) for all k ≥ 0, otherwise we say that {A(k)} is an

inhomogeneous or time-varying chain. Similarly, we say that a sequence of vectors {π(k)} is

static if π(k) = π(0) for all k ≥ 0.

For a vector π ∈ Rm and a scalar α ∈ R, we write π ≥ α (π > α) if πi ≥ α (πi > α) for

all i ∈ [m]. Similarly, for a matrix A ∈ Rm×m we write A ≥ α (A > α), if Aij ≥ α (Aij > α)

for all i, j ∈ [m]. Finally, for a sequence of vectors {π(k)}, we write {π(k)} ≥ α if π(k) ≥ α

for all k ≥ 0.

For an m×m matrix A, we use the following abbreviation:

∑
i<j

Aij =
m∑
i=1

m∑
j=i+1

Aij.

For a vector π = (π1, . . . , πm)
T ∈ Rm, we use diag(π) to denote the diagonal matrix

diag(π) =



π1 0 · · · 0 0

0 π2 · · · 0 0
...

...
. . .

...
...

0 0 · · · πm−1 0

0 0 · · · 0 πm


.

Given a nonempty index set S ⊆ [m] and a matrix A, we write AS to denote the following

summation:

AS =
∑

i∈S,j∈S̄

Aij +
∑

i∈S̄,j∈S

Aij.

Note that AS satisfies

AS =
∑

i∈S,j∈S̄

(Aij + Aji).
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An m×m stochastic matrix P is a permutation matrix if it contains exactly one entry equal

to 1 in each row and each column. Given a permutation matrix P , we use P (S) to denote

the image of an index set S ⊆ [m] under the permutation P ; specifically

P (S) = {i ∈ [m] | Pij = 1 for some j ∈ S}.

We note that a set S ⊂ [m] and its image P (S) under a permutation P have the same

cardinality, i.e., |S| = |P (S)|. Furthermore, for any permutation matrix P and any nonempty

index set S ⊂ [m], the following relation holds:∑
i∈P (S)

ei = P
∑
j∈S

ej.

We denote the set of m×m permutation matrices by Pm. Since there are m! permutation

matrices of size m, we may assume that the set of permutation matrices is indexed by the

index set [m!], i.e., Pm = {P (ξ) | 1 ≤ ξ ≤ m!}. Also, we say that {P (k)} is a permutation

sequence if P (k) ∈ Pm for all k ≥ 0. The sequence {I} is the permutation sequence {P (k)}
with P (k) = I for all k, and it is referred to as the trivial permutation sequence.

1.3.2 Probability Theory

Consider a probability space (Ω,F ,Pr (·)) where Ω is a set (often referred to as the sample

space), F is a σ-algebra on Ω, and Pr (·) is a probability measure on (Ω,F). We refer to

members of F as events. We denote the Borel σ-algebra on R by B.
We say that a property p holds almost surely if the set {ω ∈ Ω | ω does not satisfy p} is

an event and

Pr ({ω | ω does not satisfy p}) = 0.

We use the abbreviation a.s. for almost surely. We denote the characteristic function of an

event E by 1E, i.e. 1E(ω) = 1 for ω ∈ E and 1E(ω) = 0, otherwise. We say that an event E

is a trivial event if Pr (E) = 0 or Pr (E) = 1, or in other words, it is equal to the empty set

or Ω, almost surely.

We denote the expected value of a random variable u by E[u] and the conditional expec-

tation of u conditioned on a σ-algebra F̃ by E
[
u | F̃

]
.

We say that x : Ω → Rm is a random vector if each coordinate function xi is a random

variable for all i ∈ [m]. Likewise, we say that W : Ω → Rm×m is a random matrix if Wij is

a random variable for all i, j ∈ [m].

For a collection Θ of subsets of Ω, we let σ(Θ) to be the smallest σ-algebra containing
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Θ. For a random variable u, we let σ(u) = σ({u−1(B) | B ∈ B}).

1.3.3 Graph Theory

We view an undirected graph G on m vertices as an ordered pair ([m], E) where E is a subset

of {{i, j} | i, j ∈ [m]}. We refer to [m] as the vertex set and we refer to E as edge set of G.

If {i, j} ∈ E , we say that j is a neighbor of i. We denote the set of all neighbors of i ∈ [m]

by Ni(G) = {j ∈ [m] | {i, j} ∈ E}. We denote the set of all undirected graphs on the vertex

set [m] by G([m]).

A path between two vertices v1 = i ∈ [m] and vp = j ∈ [m] in the graph G = ([m], E) is
an ordered sequence of vertices (v1, v2, . . . , vp) such that {vℓ, vℓ+1} ∈ E for all ℓ ∈ [p− 1]. We

say that G is a connected graph if there is a path between any distinct vertices i, j ∈ [m].

We say that S ⊆ [m] is a connected component if there is a path between any two vertices

i, j ∈ S and S is the maximal set with this property.

We view a directed graph G on m vertices as an ordered pair ([m], E) where E ⊆ {(i, j) |
i, j ∈ [m]}. We say that j ∈ [m] is a neighbor of i if (i, j) ∈ E and as in the case of undirected

graph, we denote the set of neighbors of i in G = ([m], E) by Ni(G). In this case, a directed

path between a vertex v1 = i ∈ [m] and vp = j ∈ [m] in G = ([m], E) is an ordered sequence

of vertices (v1, v2, . . . , vp) such that (vℓ, vℓ+1) ∈ E for all ℓ ∈ [p− 1]. We say that a directed

graph G is strongly connected if there is a directed path between any two distinct vertices

i, j ∈ [m].

For an m×m non-negative matrix A, we say that G = ([m], E) is the graph induced by

the positive entries of A, or simply the graph induced by A if E = {(i, j) | Aij > 0}.

1.3.4 Control Theory

Let f : X × Z+ → X for some space X. Let t0 ≥ 0 be an arbitrary non-negative integer,

and let x(t0) ∈ X. Let {x(k)} be defined by

x(k + 1) = f(x(k), k) for k ≥ t0. (1.4)

We say that {x(k)} is a dynamics started with the initial condition (t0, x(t0)), or alternatively

we say that {x(k)} is the trajectory of the dynamics (1.4) started at starting time t0 ≥ 0

and starting point x(t0) ∈ X. We refer to k as the time variable. Throughout the thesis, all

the time variables are assumed to be non-negative integers.

12



For the dynamics (1.4), we say that a point x ∈ X is an equilibrium point if x = f(x, k)

for any k ≥ 0.

We say that the dynamics (1.4) is asymptotically stable if limk→∞ x(k) exists for any

initial condition (t0, x(t0)) ∈ Z+ ×X.

Suppose that X is a topological space. Then, we say that a function V : X → R+

is a Lyapunov function for the dynamics (1.4) if V (x) is a continuous function and also

V (x(k + 1)) ≤ V (x(k)) for any initial condition (t0, x(t0)) ∈ Z+ ×X and any k ≥ t0.

We say that a function V : X×Z+ → R+ is a comparison function1 for the dynamics (1.4)

if V (x, k) is a continuous function of x for any k ≥ 0 and also V (x(k+1), k+1) ≤ V (x(k), k)

for any initial condition (t0, x(t0)) ∈ Z+ ×X and any k ≥ t0.

As it can be seen from the provided definitions, the only difference between a Lyapunov

function and a comparison function is that a Lyapunov function is a time-invariant function,

whereas a comparison function could be a time-varying function.

1It is often required that Lyapunov functions and comparison functions be positive for non-equilibrium
points. However, throughout this thesis we use Lyapunov functions and comparison functions in a loose
sense of non-negative functions.
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Chapter 2

Products of Stochastic Matrices and Averaging
Dynamics

In this chapter, we introduce and review some of the results on products of stochastic matrices

and averaging dynamics. Throughout this thesis, by a product of stochastic matrices, we

mean left product of stochastic matrices. More precisely, let {A(k)} be a stochastic chain.

By left product of stochastic matrices, we mean the product of the form A(k) · · ·A(t0) where
k ≥ t0 ≥ 0 and k often approaches to infinity.

Generally, there are two alternative viewpoints for product of stochastic matrices. The

first viewpoint is directly involved with the product itself. The second viewpoint is the

dynamic system viewpoint, which is based on the study of the dynamics driven by such a

product. In this section, we first discuss the two viewpoints and we show their equivalency.

Then, we will present some results that are used in the thesis.

2.1 Averaging Dynamics: Two Viewpoints

Here, we discuss two viewpoints for averaging dynamics and show their equivalency.

2.1.1 Left Product of Stochastic Matrices

The first viewpoint builds on the convergence properties of the left product of stochastic

matrices. Suppose that we have a sequence of stochastic matrices {A(k)}. Let

A(k : s) = A(k − 1) · · ·A(s) for k > s ≥ 0,

and A(s : s) = I. Let us define the concepts of weak and strong ergodicity as appeared in

[20].

Definition 2.1. (Ergodicity [20]) Let {A(k)} be a chain of stochastic matrices. We say

that {A(k)} is weakly ergodic if limk→∞(Aiℓ(k : t0) − Ajℓ(k : t0)) = 0 for any t0 ≥ 0 and

i, j, ℓ ∈ [m].
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We say that {A(k)} is strongly ergodic, if limk→∞A(k : t0) = evT (t0) for any t0 ≥ 0,

where v(t0) is a stochastic vector in Rm.

In words, we say that {A(k)} is weakly ergodic if for any starting time t0 ≥ 0 the difference

between any two rows of the product A(k : t0) goes to zero as k approaches infinity. Likewise,

we say that {A(k)} is strongly ergodic if for any starting time t0 ≥ 0, the product A(k : t0)

approaches a stochastic matrix with identical rows, i.e. a rank one stochastic matrix.

Note that in the definition of strong ergodicity the requirement that v(t0) should be

stochastic is redundant. This follows directly from the fact that the ensemble of m × m

stochastic matrices is a closed set in Rm×m, which can be verified by noting that

Sm = {A ∈ Rm×m | A ≥ 0, Ae = e}. (2.1)

Thus, Sm is the intersection of two closed sets {A ∈ Rm×m | A ≥ 0} and {A ∈ Rm×m |
Ae = e}, implying that Sm is a closed subset of Rm×m. Hence, limk→∞A(k : t0) = evT (t0)

automatically implies that v(t0) is a stochastic vector.

Example 2.1. As a simple example for ergodicity, let {A(k)} be a chain of stochastic matri-

ces such that A(k) is equal to the rank one stochastic matrix 1
m
J for infinitely many indices

· · · > kt > · · · > k2 > k1. Note that for any stochastic matrix A, we have A[ 1
m
J ] = 1

m
J .

Also, we have [ 1
m
J ]A = 1

m
eeTA = e[ 1

m
eTA]. Note that [ 1

m
eTA] is a stochastic vector, since

1
m
eTAe = 1

m
eT e. Thus, for any t0 ≥ 0, if t is large enough such that kt > t0, then we have

A(k : t0) = A(k : kt)A(kt : t0) =
1

m
JA(kt : t0) = e[

1

m
eTA(kt : t0)],

for all k > kt. This implies that limk→∞A(k : t0) = evT (t0) for any t0 ≥ 0, where v(t0) =
1
m
AT (kt : t0)e. Thus such a chain is strongly ergodic.

Note that if limk→∞A(k : t0) = evT (t0), then we have limk→∞(Aij(k : t0)−Aℓj(k : t0)) =

vj(t0)− vj(t0) = 0. Thus, strong ergodicity implies weak ergodicity. In [20], it is proven that

the reverse implication also holds.

Theorem 2.1. ([20], Theorem 1) Weak ergodicity is equivalent to strong ergodicity.

Since weak and strong ergodicity are the same concepts, we simply refer to this property

as ergodicity. Thus, there are two equivalent viewpoints to ergodicity: the first viewpoint

is that the product A(k) · · ·A(t0) converges to a matrix with identical stochastic rows, or

alternatively, the difference between any two rows of the product A(k) · · ·A(t0) converges to
zero as k goes infinity, for any choice of starting time t0. This is the viewpoint to ergodicity

and averaging based on the left product of stochastic matrices.
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Another related concept that is based on the limiting behavior of the product of stochastic

matrices is consensus as defined below.

Definition 2.2. (Consensus) We say that a chain {A(k)} admits consensus if limk→∞A(k :

0) = evT for some stochastic vector v ∈ Rm.

The reason that such property is called consensus will be clear once we discuss the

averaging dynamics from the dynamic system viewpoint.

Note that a chain {A(k)} is ergodic if and only if {A(k)}k≥t0 admits consensus for any

t0 ≥ 0. Thus ergodicity highly depends on the future (tale) of the chain {A(k)}. However,

this may not be the case for consensus as seen from the following example.

Example 2.2. Consider the chain {A(k)} defined by A(0) = 1
m
J and A(k) = I for k ≥ 1.

Then, for any k > 0, we have A(k : 0) = 1
m
J implying that {A(k)} admits consensus.

However, note that for any starting time t0 ≥ 1, and any k > t0, we have A(k : t0) = I

implying that {A(k)} is not ergodic.

Although consensus may not be dependent on the future and, in general, it does not

imply ergodicity but under a certain condition the reverse holds.

Lemma 2.1. Let {A(k)} be a chain of stochastic matrices and suppose that A(k) is invertible

for any k ≥ 0. Then, {A(k)} admits consensus if and only if {A(k)} is ergodic.

Proof. Note that if A(k) is invertible for any k ≥ 0, then for any t0 ≥ 0, the limit

limk→∞A(k : t0) exists if and only if limk→∞A(k : 0) exists. This follows from the fact

that for k > t0, we have A(k : t0) = A(k : 0)A−1(t0 : 0).

Now, if {A(k)} admits consensus, then limk→∞A(k : 0) is a rank one matrix. Therefore,

for any t0 ≥ 0, the matrix [limk→∞A(k : t0)]A(t0 : 0) is a rank one matrix and since A(t0 : 0)

is a full-rank matrix, it implies that limk→∞A(k : t0) is a rank one matrix. But this holds

for any t0 ≥ 0, implying that {A(k)} is ergodic. The reverse implication follows by the

definition of ergodicity and consensus. Q.E.D.

2.1.2 Dynamic System Viewpoint

Here, we discuss the dynamic system viewpoint to the averaging dynamics and we show that

it is equivalent to the previously discussed viewpoint.

Let {A(k)} be a chain of stochastic matrices. Let t0 ≥ 0 and let x(t0) ∈ Rm be arbitrary.

Let us define:

x(k + 1) = A(k)x(k), for k ≥ t0. (2.2)
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We say that {x(k)} is a dynamics driven by {A(k)}. We also say that t0 ≥ 0 is the starting

time and x(t0) ∈ Rm is the starting point of the dynamics. We refer to (t0, x(t0)) ∈ Z+×Rm

as an initial condition for the dynamics.

A side remark about dynamics (2.2) is that the chain {A(k)} may depend on the his-

tory of {x(k)}, i.e. A(k) may be some function of the time k and the history of the dy-

namics x(t0), . . . , x(k). In this case, we extract the process {B(k)} by letting B(k) =

A(k, x(t0), . . . , x(k)) and study the dynamics (2.2) for the chain {B(k)} with arbitrary initial

condition.

Also, note that any point in the set

C = {λe | λ ∈ R},

which is the line passing through the all-one vector e, is an equilibrium point for the dynam-

ics (2.2). We refer to this line as the consensus subspace.

Now, consider a starting time t0 ≥ 0 and a starting point x(t0) ∈ Rm, and consider the

corresponding dynamics {x(k)} driven by a stochastic chain {A(k)}. At each time k ≥ t0,

we have xi(k+1) =
∑m

j=1Aij(k)xj(k). But Ai(k) is a stochastic vector and hence, xi(k+1)

is simply a weighted average of the scalars {x1(k), . . . , xm(k)}. Thus, the m coordinates

of the vector x(k + 1) are nothing but m weighted averages of the coordinates of x(k).

This motivates the name weighted averaging dynamics for the dynamics. Based on this

observation, an intuitive way of describing dynamics (2.2) is to consider the set [m] as a

set of m agents and let xi(t0) ∈ R to be a scalar representing the initial opinion of the ith

agent about an issue. Then, at each time k ≥ t0, agents share their opinions and agent i’s

opinion will evolve by averaging the observed opinions at time k. Although such a model

of opinion dynamics among a set of agents is hypothetical, we refer to this interpretation of

the dynamics (2.2) as the opinion dynamics viewpoint to dynamics (2.2).

For any dynamics {x(k)} and any k ≥ t0, we have x(k) = A(k : t0)x(t0). Therefore, if

{A(k)} is an ergodic chain (as defined in Definition 2.1), for any initial condition (t0, x(t0)) ∈
Z+ × Rm, we have:

lim
k→∞

x(k) = lim
k→∞

A(k : t0)x(t0) = evT (t0)x(t0) = c(t0)e,

where c(t0) = vT (t0)x(t0) is a constant depending on the initial condition. Thus, if {A(k)}
is an ergodic chain, then for any initial condition (t0, x(t0)) ∈ Z+ × Rm, any dynam-

ics {x(k)} will converge to some point in the consensus subspace C. This implies that

limk→∞ (xi(k)− xj(k)) = 0 for any i, j ∈ [m] and any initial condition (t0, x(t0)) ∈ Z+×Rm.

In fact, the reverse implication also holds.
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Theorem 2.2. A stochastic chain {A(k)} is ergodic if and only if limk→∞ (xi(k)− xj(k)) = 0

for every initial condition (t0, x(t0)) ∈ Z+ × Rm and all i, j ∈ [m].

Furthermore, for ergodicity, it suffices that limk→∞ (xi(k)− xj(k)) = 0 for any starting

time t0 ≥ 0 and x(t0) = eℓ for all ℓ ∈ [m].

Proof. The fact that the ergodicity of {A(k)} implies limk→∞ (xi(k)− xj(k)) = 0 for any

initial condition (t0, x(t0)) ∈ Z+ × Rm and all i, j ∈ [m] follows from the above discussion.

For the converse implication, suppose that limk→∞ (xi(k)− xj(k)) = 0 for all , i, j ∈ [m],

and every starting time t0 ≥ 0 and any starting point x(t0) = eℓ where ℓ ∈ [m]. For such

a starting time, we have x(k) = A(k : t0)eℓ = Aℓ(k : t0) and hence, xi(k) = Aiℓ(k : t0)

and xj(k) = Ajℓ(k : t0). Therefore, limk→∞ (xi(k)− xj(k)) = 0 for x(t0) = eℓ if and only if

limk→∞ (Aiℓ(k : t0)− Ajℓ(k : t0)) = 0. Thus, if limk→∞ (xi(k)− xj(k)) = 0 for any starting

time t0 ≥ 0 and any starting point of the form x(t0) = eℓ for ℓ ∈ [m], then {A(k)} is an

ergodic chain. Q.E.D.

Using a similar argument, the following result follows immediately.

Theorem 2.3. A stochastic chain {A(k)} admits consensus if and only if

lim
k→∞

(xi(k)− xj(k)) = 0

for the starting time t0 = 0 and every starting point x(0) ∈ Rm.

Furthermore, to show that {A(k)} admits consensus, it suffices that

lim
k→∞

(xi(k)− xj(k)) = 0

for all starting points x(0) = eℓ with ℓ ∈ [m].

This result explains why the property defined in Definition 2.2 is referred to as consensus.

Basically, admitting consensus means that for any initial opinion of the set of agents at time

0, the dynamics (2.2) will lead to consensus, i.e. the difference xi(k) − xj(k) between the

opinions of any two agents i, j ∈ [m] goes to zero as k goes to infinity.

2.1.3 Uniformly Bounded and B-Connected Chains

For the study of the averaging dynamics, it is often assumed that the positive entries of a

stochastic chain {A(k)} are bounded below by some positive scalar γ > 0 which makes the

study of those chains more convenient. We refer to this property as uniform boundedness

property.
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Definition 2.3. We say that a stochastic chain {A(k)} is uniformly bounded if there exist

a scalar γ > 0 for which Aij(k) ≥ γ for all i, j ∈ [m] and k ≥ 0 such that Aij(k) > 0.

Some consensus and ergodicity results for deterministic weighted averaging dynamics rely

on the existence of a periodical connectivity of the graphs associated with the matrices. We

refer to this property as B-connectedness property.

Definition 2.4. For a stochastic chain {A(k)}, let G(k) = ([m], E(k)) be the graph induced

by the positive entries of A(k) for any k ≥ 0. For B ≥ 1, we say {A(k)} is a B-connected

chain if

(a) {A(k)} is uniformly bounded,

(b) for any time k ≥ 0 and i ∈ [m], we have Aii(k) > 0, and

(c) the graph:

([m], E(Bk) ∪ E(Bk + 1) ∪ · · · ∪ E(B(k + 1)− 1)),

is strongly connected for any k ≥ 0.

The following result shows that a B-connected chain is ergodic. Furthermore, using the

result, we can provide some bounds on the limiting matrix limk→∞A(k : t0).

Theorem 2.4. ([1], Lemma 5.2.1) Let {A(k)} be a B-connected chain. Then, the following

results hold:

(a) {A(k)} is ergodic, i.e. for any starting time t0 ≥ 0, we have limk→∞A(k : t0) = evT (t0)

for a stochastic vector v(t0) ∈ Rm.

(b) There is a constant η ≥ γ(m−1)B, which is independent of t0, such that v(t0) ≥ η for all

t0 ≥ 0.

(c) We have

max
i,j

|Aij(k : t0)− [evT (t0)]ij| ≤ qµk−t0 ,

where µ ∈ (0, 1) and q ∈ R+ are some constants not depending on t0.

2.1.4 Birkhoff-von Neumann Theorem

Consider the set of doubly stochastic matrices

D = {A ∈ Rm×m | A ≥ 0, Ae = AT e = e}. (2.3)
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The given description in Eq. (2.3) clearly shows that the set of doubly stochastic matrices is

a polyhedral set in Rm×m. On the other hand, a permutation matrix P is an extreme point

of this set, i.e. we cannot write P = ϵA+(1− ϵ)B for some distinct A,B ∈ D and ϵ ∈ (0, 1).

The Birkhoff-von Neumann theorem asserts that, in fact, permutation matrices are the

only extreme points of D .

Theorem 2.5. (Birkhoff-von Neumann Theorem [64], page 527) Let A be a doubly stochastic

matrix. Then, A can be written as a convex combination of the permutation matrices, i.e.

there exists scalars q1, . . . , qm! ∈ R+ such that

A =
m!∑
ξ=1

qξP
(ξ),

where
∑

ξ∈[m!] qξ = 1.

We use this result in Chapter 6 to provide an alternative characterization of ergodicity

for doubly stochastic chains.
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Chapter 3

Ergodicity of Random Chains

In this chapter, we build the framework for the study of random averaging dynamics. We

also introduce some of the central objects of this work such as infinite flow property and

infinite flow graph.

The structure of this chapter is as follows: In Section 3.1, we discuss the random frame-

work for study of product of random stochastic matrices or equivalently, random averaging

dynamics. In Section 3.2, we discuss the infinite flow property and we prove the necessity

of the infinite flow for ergodicity of any chain. In Section 3.3, we relate the infinite flow

property to the connectivity of a graph, the infinite flow graph associated with the given

stochastic chain. We also introduce an ℓ1-approximation of a stochastic chain and we prove

that such an approximation preserves the ergodic behavior of a stochastic chain. Using this

result, we provide an extension of the necessity of the infinite flow property to non-ergodic

chains.

3.1 Random Weighted Averaging Dynamics

We study the product of stochastic matrices, or averaging dynamics (2.2) in a general setting

of random dynamics. To do this, let (Ω,F ,Pr (·)) be a probability space and let {Fk} be a

filtration on (Ω,F). In what follows, we provide the definition of a random chain and an

adapted random chain which are among the central objects of this thesis.

Definition 3.1. We say that {W (k)} is a random stochastic chain, or simply a random

chain, if

(a) W (k) is a random matrix process, i.e., W (k) is a random matrix for any k ≥ 0, and

(b) W (k) is a stochastic matrix almost surely for any k ≥ 0.

Furthermore, if W (k) is measurable with respect to Fk+1, i.e. Wij(k) is measurable with

respect to Fk+1 for all i, j ∈ [m] and any k ≥ 0, with an abuse of notation, we say that

{W (k)} is a random chain adapted to {Fk}, or simply {W (k)} is an adapted random chain.
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If the random matrices in {W (k)} are independently distributed, we say that {W (k)} is

an independent chain. If furthermore, the random matrices have an identical distribution we

say that {W (k)} is an identically independently distributed chain, and we use the abbreviation

i.i.d. to denote such a property.

For a given random chain {W (k)}, we consider the random dynamics of the following

form:

x(k + 1) = W (k)x(k), (3.1)

started at a starting time t0 ≥ 0 and a starting point x(t0, ω) = v ∈ Rm for all ω ∈ Ω. Note

that, in this case, we have x(t0, ω) = v for any ω ∈ Ω and since ∅ and Ω belong to any σ-

algebra, it follows that x(t0) is measurable with respect to Ft0 . Since for any adapted chain

{W (k)}, W (k) is measurable with respect to Fk+1, it follows that any random dynamics

{x(k)} is adapted to the filtration {Fk}. With an abuse of notation, instead of referring to

the starting point x(t0) as a measurable function x(t0, ω) = v ∈ Rm for all ω ∈ Ω, we often

simply say that the random dynamics {x(k)} is started at the point x(t0) ∈ Rm.

We refer to {x(k)} as a random dynamics driven by {W (k)} and, as in the case of the

deterministic dynamics, we refer to (t0, x(t0)) as an initial condition for the dynamics {x(k)}.
To avoid confusion between a deterministic chain and a random chain, we use the first

alphabet letters to denote deterministic chains (such as {A(k)} and {B(k)}) and the nearly

last alphabet letters to represent random chains (such as {W (k)} and {U(k)}).
For our further development, we let

W̄ (k) = E[W (k) | Fk] ,

and refer to {W̄ (k)} as the expected chain of {W (k)}.
Note that any deterministic chain {A(k)} can be considered as an independent random

chain and hence, the dynamics (2.2) is an instance of the random dynamics (3.1).

3.2 Ergodicity and Infinite Flow Property

In this section, we first discuss ergodicity and consensus for random averaging dynamics.

Then, we introduce the concept of infinite flow property and investigate the relation between

ergodicity and infinite flow property.

The concepts of ergodicity and consensus can be naturally generalized to random chains.

For a random model {W (k)}, there are subsets of the underlying probability space on which
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ergodicity and consensus happen. Specifically, let E and C be the subsets of Ω on which the

ergodicity and consensus happen, respectively. Then, E and C are measurable subsets.

Lemma 3.1. Let {W (k)} be a random chain on a probability space (Ω,F). Then, the subsets

E and C over which ergodicity and consensus happen are measurable subsets.

Proof. As shown in Theorem 2.1, E is the subset of Ω over which

lim
k→∞

(xi(k, ω)− xj(k, ω)) = 0,

for all starting times t0 ≥ 0 and starting points x(t0, ω) = eℓ for all ℓ ∈ Rm. Thus,

E =
∞∩

t0=0

(
m∩
ℓ=1

{ω | lim
k→∞

(xi(k, ω)− xj(k, ω)) = 0 for all i, j ∈ [m], x(t0, ω) = eℓ}

)
.

But all Wij(k)s are Borel-measurable with respect to F and hence, by Lemma A.1,

for fixed i, j, ℓ ∈ [m], the set {ω | limk→∞(xi(k, ω) − xj(k, ω)) = 0} where x(t0) = eℓ is

measurable. Since E is an intersection of finitely many measurable sets, it follows that E is

a measurable set itself.

Similarly, for the consensus event C , we have

C =
m∩
ℓ=1

{ω | lim
k→∞

(xi(k, ω)− xj(k, ω)) = 0 for all i, j ∈ [m], x(0, ω) = eℓ},

and, using a similar argument, we conclude that C ∈ F . Q.E.D.

We refer to the events E and C as ergodicity and consensus events, respectively, and we

say that a random model is ergodic (admits consensus) if the event E (C ) happens almost

surely.

Now, let us discuss the concept of the infinite flow property which is closely related to

ergodicity. Consider a B-connected chain {A(k)} as defined in Definition 2.4. Consider a

subset S ⊂ [m]. By assumption (c) of Definition 2.4, it follows that there is at least one

edge connecting a vertex in S to a vertex in S̄ in the time interval [kB, (k + 1)B) for any

k ≥ 0. On the other hand, by the uniform bounded-ness property of {A(k)}, it follows

that
∑(k+1)B−1

t=kB AS(t) ≥ γ > 0 for some γ > 0. Thus, for any S ⊂ [m], the B-connectivity

assumption on {A(k)} implies that
∑∞

t=0AS(t) = ∞. Note that this property happens for

any S ⊂ [m]. Interestingly enough, any ergodic chain {A(k)} exhibits the same behavior

which will be shown subsequently. Before proving this result, let us identify this property as

the infinite flow property.
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Definition 3.2. We say that a stochastic chain {A(k)} has the infinite flow property if∑∞
k=0AS(k) = ∞ for any non-trivial S ⊂ [m].

To motivate the necessity of infinite flow property for ergodicity, consider the opinion

dynamics interpretation of Eq. (1.4). One can interpret Aij(k) as the credit that agent i

gives to agent j’s opinion at time k. Therefore,
∑

i∈S,j∈S̄ Aij(k) can be interpreted as the

credit that the subgroup S ⊂ [m] of agents gives to the opinions of the agents that are

outside of S (the agents in S̄) at time k. Similarly,
∑

i∈S̄,j∈S Aij(k) is the credit that the

remaining agents, i.e. those agents in S̄, give to the opinion of agents in S at time k ≥ 0.

The intuition behind the concept of infinite flow property is that without having infinite

accumulated credit between groups S and S̄ of agents, we cannot have an agreement among

the agents in the sets S and S̄ for any starting time t0 of the opinion dynamic and for any

initial opinion profile x(t0) of the agents. In other words, the infinite flow property is required

to ensure necessary flow of credits between the agents in S and S̄ for any non-trivial subset

S ⊂ [m].

One of the key-observations in our development is that the infinite flow property is a

necessary condition for ergodicity. There are several ways of proving this result. Here, we

provide a non-standard way of proving it using randomization technique. In Theorem 7.1,

we provide an algebraic proof for this result on a general state space. Also, an extension of

this result will be proven in Lemma 3.6. The proof that is presented here is based on the

geometric structure of the set of m×m stochastic matrices Sm. Note that

Sm = {A ∈ Rm×m | Ae = e, A ≥ 0}.

This shows that the set Sm is a polyhedral set. Let M = {M (ξ) | ξ ∈ [mm]} be the ensemble

of matrices which has one entry equal to one at each row. It can be seen that each M (ξ) is

an extreme point of Sm. Furthermore, it can be proven that in fact these points are the only

extreme points of Sm and, hence, we can write any stochastic matrix as a convex combination

of the points in M. Using this, we prove the necessity of the infinite flow property.

Theorem 3.1. Infinite flow property is necessary for ergodicity of any deterministic chain.

Proof. Let {A(k)} be a stochastic chain with
∑∞

k=0AS(k) <∞ for some non-trivial S ⊂ [m].

Then, for any k ≥ 0, we can write A(k) as a convex combination of the elements in M, i.e.,

there exist non-negative scalars p1(k), . . . , pmm(k) such that

A(k) =
mm∑
ξ=1

pξ(k)M
(ξ),
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and
∑mm

ξ=1 pξ(k) = 1.

Now, let {W (k)} be an independent random chain defined by:

W (k) =M (ξ) with probability pξ(k).

This implies that E[W (k)] =
∑mm

ξ=1 pξM
(ξ) = A(k). Now, let

MS = {M ∈ M |MS ≥ 1},

which is the subset of M containing matrices M with entries Mij = 1 or Mji = 1 for some

i ∈ S and j ∈ S̄. The important feature of the set MS is that for any M ̸∈ MS, we have

MeS = eS where eS =
∑

i∈S ei. This is true because if M ̸∈ MS, then Mij =Mji = 0 for all

i ∈ S and j ̸∈ S̄.

Now, note that AS(k) = Pr (W (k) ∈ MS). Hence, if

∞∑
k=0

AS(k) =
∞∑
k=0

Pr (W (k) ∈ MS) <∞,

for some S ⊂ [m], then, by the Second Borel-Cantelli lemma (Lemma A.6) it follows that

Pr (W (k) ∈ MS i.o.) = 0. This means that for almost any sample path of {W (k)}, there
exists a large enough random time TS such that TS < ∞ a.s. and W (k) ∈ M \ MS for

k ≥ TS. Thus, we almost surely have ∅ =
∩∞

t=0(TS ≥ t). By continuity of measure, it follows

that there exists a large enough t0 ≥ 0 such that Pr (TS ≥ t0) ≤ 1
3
. Now, let x(t0) = eS and

let {x(k)} be the random dynamics driven by {W (k)} and let {x̄(k)} be the deterministic

dynamics driven by {A(k)} started at time t0 at the starting point x̄(t0) = eS.

Note that since A(k) = E[W (k)] and {W (k)} is an independent random chain, it follows

that x̄(k) = E[x(k)]. But for any ω ∈ {TS < t0}, we have W (k) ̸∈ MS for k ≥ t0. Thus,

for ω ∈ {TS < t0}, the dynamics {x(k)} is a static sequence {eS} which follows from the

fact that MeS = eS for M ̸∈ MS. On the other hand, for any k ≥ t0, we have xi(k) ∈ [0, 1]

almost surely and hence, for any i ∈ S, we have

x̄i(k) = E
[
xi(k)1{TS<t0}

]
+ E
[
xi(k)1{TS<t0}c

]
≥ E

[
xi(k)1{TS<t0}

]
≥ 2

3
.

Similarly, for j ∈ S̄ we have x̄j(k) ≤ 1
3
which implies that for any k ≥ t0, we have x̄i(k) −

x̄j(k) ≥ 1
3
. Thus, we found some (t0, x̄(t0)) ∈ Z+ × Rm such that for the dynamics {x̄(k)}

driven by {A(k)}, we have lim infk→∞ (x̄i(k)− x̄j(k)) > 0 for some i, j ∈ [m] which implies

that {A(k)} is not ergodic. Q.E.D.
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Ergodicity eventInfinite flow event Consensus event

Figure 3.1: Relation between ergodicity, consensus and infinite flow events for a general
random chain.

Theorem 3.1 shows that the minimum requirement for a chain {A(k)} to be an ergodic

chain is having the infinite flow property. In our forthcoming chapter, we develop general

conditions for which the reverse implication is also true.

Now, let us discuss the infinite flow property for a random chain {W (k)}. As in the cases

of ergodicity and consensus events, for a random chain {W (k)}, the infinite flow property

holds on a measurable subset of the probability space (Ω,F).

Lemma 3.2. For a random chain {W (k)} on a probability space (Ω,F), the set F on which

the infinite flow property happens is a measurable set.

Proof. By the definition of the infinite flow property, we have

F =
∩

S⊂[m]
S ̸=∅

{ω |
∞∑
k=0

WS(k) = ∞}.

Each WS(k) is a measurable function, and so is
∑t

k=0WS(k). Therefore, by Lemma A.1, we

conclude that F is a measurable set in (Ω,F). Q.E.D.

We refer to F as the infinite flow event, and we say that a random chain {W (k)} has

the infinite flow property if {W (k)} has infinite flow property almost surely.

By Theorem 3.1, for a general random chain {W (k)}, we have E ⊆ F . Also, by the def-

inition of ergodicity and consensus we have E ⊆ C . This situation is depicted in Figure 3.1.

3.3 Infinite Flow Graph and ℓ1-Approximation

So far, we showed that the infinite flow property is necessary for ergodicity of any stochastic

chain. In this section, we show that an extension of this necessary condition holds for non-

ergodic chains.
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For our development, let us define the infinite flow graph associated with a stochastic

chain {A(k)}.

Definition 3.3. (Infinite Flow Graph) For a deterministic chain {A(k)} we define the infi-

nite flow graph to be the graph G∞ = ([m], E∞) with

E∞ = {{i, j} |
∞∑
k=0

(Aij(k) + Aji(k)) = ∞, i ̸= j ∈ [m]}.

In other words, we connect two distinct vertices i, j ∈ [m] if the link between i and j

carry infinite flow over the time in either of the two directions. The next result shows that

the connectivity of the infinite flow graph is equivalent to the infinite flow property.

Lemma 3.3. A chain {A(k)} has infinite flow property if only if its infinite flow graph G∞

is connected.

Proof. Note that an undirected graph ([m], E) is connected if and only if it does not have an

empty cut [S, S̄] for a non-trivial S ⊂ [m]. Also, note that Aij(k) + Aji(k) ≤ AS(k) for any

i ∈ S and j ∈ S̄. Thus, {i, j} ∈ [S, S̄] in the infinite flow graph G∞ if
∑∞

k=0AS(k) = ∞.

For the reverse implication suppose that
∑∞

k=0AS(k) = ∞, for some non-trivial S ⊂ [m].

Observe that

AS(k) =
∑

i∈S,j∈S̄

(Aij(k) + Aji(k)) ,

and the sets S and S̄ have finite cardinality. Therefore, we have

∞∑
k=0

(Aij(k) + Aji(k)) = ∞,

for some i ∈ S and j ∈ S̄. But this happens for any non-trivial subset S ⊆ [m], which

implies that G∞ is a connected graph. Q.E.D.

Lemma 3.3 provides an alternative for Theorem 3.1 as follows.

Corollary 3.1. A deterministic chain {A(k)} is ergodic only if its infinite flow graph is

connected.

Thus, if the infinite flow graph is not connected, we cannot have an ergodic chain. Nev-

ertheless, we may have other plausible limiting behavior such as existence of limk→∞ x(k) for

any dynamics {x(k)} driven by such a chain (that does not have infinite flow property). The

next step in our analysis is to characterize properties of the limit points of such dynamics

given that such a limit exists.
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To continue our discussion, let us consider the following definition.

Definition 3.4. Let {A(k)} be a stochastic chain. Then, we say that i, j are mutually ergodic

indices for {A(k)} and we denote it by i↔A j if limk→∞ (xi(k)− xj(k)) = 0 for any dynamics

{x(k)} driven by {A(k)} started with an arbitrary initial condition (t0, x(t0)) ∈ Z+ × Rm.

We say that i ∈ [m] is an ergodic index for {A(k)} if limk→∞ xi(k) exists for any initial

condition (t0, x(t0)) ∈ Z+ × Rm.

As an example consider an ergodic chain {A(k)}. Then, i ↔A j for any i, j ∈ [m].

Moreover, any i ∈ [m] is an ergodic index for such a chain. Using the argument as in the

proof of Theorem 2.1, one can show that i ↔A j if and only if the difference between the

ith and jth column of A(k : t0) goes to zero as k approached infinity, for any starting time

t0. Similarly, it can be shown that i ∈ [m] is an ergodic index if limk→∞Ai(k : t0) exists for

any starting time t0 ≥ 0. So, we have the following result.

Lemma 3.4. For a chain {A(k)}, we have i↔A j if and only if

lim
k→∞

(Aiℓ(k : t0)− Ajℓ(k : t0)) = 0,

for any ℓ ∈ [m] and any t0 ≥ 0. Also, i ∈ [m] is an ergodic index if and only if limk→∞Ai(k :

t0) exists for any t0 ≥ 0.

In the case of ergodicity, from the mutual ergodicity of all pairs of indices (i.e. weak

ergodicity), we can also conclude that every index is an ergodic index. However, mutual

ergodicity of two indices, on its own, does not imply that either of the indices is ergodic, as

shown in the following example.

Example 3.1. Consider the 4× 4 stochastic chain {A(k)} defined by:

A(2k) =


1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

 and A(2k + 1) =


1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

 ,

for any k ≥ 0. It can be verified that for any starting time t0 ≥ 0 and any k ≥ t0, we have

A(k : t0) = A(k). This implies that 2 ↔A 3 while limk→∞A2(k : t0) and limk→∞A3(k : t0)

do not exist.

Our goal is to show that a small perturbation of any stochastic chain preserves mutual

ergodicity and the set of ergodic indices. Let us define precisely what a small perturbation

is.
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Definition 3.5. (ℓ1-approximation) We say that a chain {B(k)} is an ℓ1-approximation of

a chain {A(k)} if

∞∑
k=0

|Aij(k)−Bij(k)| <∞ for all i, j ∈ [m].

Since the set of all absolutely summable sequences in R is a vector space over R, it

follows that ℓ1-approximation is an equivalence relation for deterministic chains. Second,

we note that there are alternative formulations of ℓ1-approximation. Since the matrices

have a finite dimension, we have
∑∞

k=0 |Aij(k)− Bij(k)| < ∞ for all i, j ∈ [m] if and only if∑∞
k=0 ∥A(k)−B(k)∥p <∞ for any p ≥ 1. Thus, an equivalent definition of ℓ1-approximation

is obtained by requiring that
∑∞

k=0 ∥A(k)−B(k)∥p <∞ for some p ≥ 1.

As an example of ℓ1-approximation, let {A(k)} be an arbitrary stochastic chain and let

{B(k)} be a chain such that A(k) ̸= B(k) for finitely many indices k ≥ 0. Then, {A(k)}
is an ℓ1-approximation of {B(k)}. Note that such an approximation of {A(k)} has ergodic

properties similar to the ergodic properties of {B(k)}, i.e. i↔A j if and only if i↔B j and,

also, i ∈ [m] is an ergodic index for {A(k)} if and only if i ∈ [m] is an ergodic index for

{B(k)}. In fact, this property holds for any ℓ1-approximation of any stochastic chain.

Lemma 3.5. (Approximation lemma) Let a deterministic chain {B(k)} be an ℓ1− approxi-

mation of a deterministic chain {A(k)}. Then, i ↔A j if and only if i ↔B j and i ∈ [m] is

an ergodic index for {A(k)} if and only if it is an ergodic index for {B(k)}.

Proof. Suppose that i ↔B j. Let t0 = 0 and let x(0) ∈ [0, 1]m. Also, let {x(k)} be the

dynamics driven by {A(k)}. For any k ≥ 0, we have

x(k + 1) = A(k)x(k) = (A(k)−B(k))x(k) +B(k)x(k).

Since |xi(k)| ≤ 1 for any k ≥ 0 and any i ∈ [m], it follows that for all k ≥ 0,

∥x(k + 1)−B(k)x(k)∥∞ ≤ ∥A(k)−B(k)∥∞. (3.2)

We want to show that i↔A j, or equivalently that limk→∞(xi(k)−xj(k)) = 0. To do so,

we let ϵ > 0 be arbitrary but fixed. Since {B(k)} is an ℓ1-approximation of {A(k)}, there
exists time Nϵ ≥ 0 such that

∑∞
k=Nϵ

∥A(k)− B(k)∥∞ ≤ ϵ. Let {z(k)}k≥Nϵ be the dynamics

driven by {B(k)} and started at time Nϵ with the initial point z(Nϵ) = x(Nϵ). We next
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show that

∥x(k + 1)− z(k + 1)∥∞ ≤
k∑

t=Nϵ

∥A(t)−B(t)∥∞ for all k ≥ Nϵ. (3.3)

We use the induction on k, so we consider k = Nϵ. Then, by Eq. (3.2), we have ∥x(Nϵ+1)−
B(Nϵ)x(Nϵ)∥∞ ≤ ∥A(Nϵ)−B(Nϵ)∥∞. Since z(Nϵ) = x(Nϵ), it follows that ∥x(Nϵ+1)−z(Nϵ+

1)∥∞ ≤ ∥A(Nϵ)−B(Nϵ)∥∞. We now assume that ∥x(k)− z(k)∥∞ ≤
∑k−1

t=Nϵ
∥A(t)−B(t)∥∞

for some k > Nϵ. Using Eq. (3.2) and the triangle inequality, we have

∥x(k + 1)− z(k + 1)∥∞ = ∥A(k)x(k)−B(k)z(k)∥∞
= ∥(A(k)−B(k))x(k) +B(k)(x(k)− z(k))∥∞
≤ ∥(A(k)−B(k))∥∞∥x(k)∥∞ + ∥B(k)∥∞∥(x(k)− z(k))∥∞.

By the induction hypothesis and relation ∥B(k)∥∞ = 1, which holds since B(k) is a stochastic

matrix, it follows that ∥x(k + 1) − z(k + 1)∥∞ ≤
∑k

t=Nϵ
∥A(t) − B(t)∥∞, thus showing

relation (3.3).

Recalling that the time Nϵ ≥ 0 is such that
∑∞

k=Nϵ
∥A(k) − B(k)∥∞ ≤ ϵ and using

relation (3.3), we obtain for all k ≥ Nϵ,

∥x(k + 1)− z(k + 1)∥∞ ≤
k∑

t=Nϵ

∥A(t)−B(t)∥∞ ≤
∞∑

t=Nϵ

∥A(t)−B(t)∥∞ ≤ ϵ. (3.4)

Therefore, |xi(k) − zi(k)| ≤ ϵ and |zj(k) − xj(k)| ≤ ϵ for any k ≥ Nϵ, and by the triangle

inequality we have |(xi(k)− xj(k)) + (zi(k)− zj(k))| ≤ 2ϵ for any k ≥ Nϵ. Since i ↔B j, it

follows that limk→∞(zi(k) − zj(k)) = 0 and lim supk→∞ |xi(k) − xj(k)| ≤ 2ϵ. The preceding

relation holds for any ϵ > 0, implying that limk→∞(xi(k)−xj(k)) = 0. Furthermore, the same

analysis would go through when t0 is arbitrary and the initial point x(0) ∈ Rm is arbitrary

with ∥x(0)∥∞ ̸= 1. Thus, we have i↔A j.

Using the same argument and inequality (3.4), one can deduce that if i is an ergodic

index for {B(k)}, then it is also an ergodic index for {A(k)}. Since ℓ1-approximation is

symmetric with respect to the chains, the result follows. Q.E.D.

The ℓ1-approximation lemma has many interesting implications. The first implication is

that ℓ1-approximation preserves ergodicity.

Corollary 3.2. Let {B(k)} be an ℓ1-approximation of a chain {A(k)}. Then, {B(k)} is

ergodic if and only if {A(k)} is ergodic.
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Proof. Note that a chain {A(k)} is ergodic if and only if i ↔A j for any i, j ∈ [m]. So if

{B(k)} is an ℓ1-approximation of {A(k)}, then Lemma 3.5 implies that {A(k)} is ergodic if

and only if {B(k)} is ergodic. Q.E.D.

Another implication of ℓ1-approximation lemma is a generalization of Theorem 3.1. Recall

that by Theorem 3.1, the ergodicity of a chain {A(k)} implies the connectivity of the infinite

flow graph of {A(k)}.

Lemma 3.6. Let {A(k)} be a deterministic chain and let G∞ be its infinite flow graph.

Then, i↔A j implies that i and j belong to the same connected component of G∞.

Proof. To arrive at a contradiction, suppose that i and j belong to two different connected

components S, T ⊂ [m] of G∞. Therefore, T ⊂ S̄ implying that S̄ is not empty. Also,

since S is a connected component of G∞, it follows that
∑∞

k=0AS(k) < ∞. Without loss of

generality, we assume that S = {1, . . . , i∗} for some i∗ < m, and consider the chain {B(k)}
defined by

Bij(k) =


Aij(k) if i ̸= j and i, j ∈ S or i, j ∈ S̄,

0 if i ̸= j and i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S,

Aii(k) +
∑

ℓ∈S̄ Aiℓ(k) if i = j ∈ S,

Aii(k) +
∑

ℓ∈S Aiℓ(k) if i = j ∈ S̄.

(3.5)

The above approximation simply sets the cross terms between S and S̄ to zero, and adds

the deleted values to the corresponding diagonal entries to maintain the stochasticity of the

matrix B(k). Therefore, for the stochastic chain {B(k)} we have

B(k) =

[
B1(k) 0

0 B2(k)

]
,

where B1(k) and B2(k) are respectively i
∗× i∗ and (m− i∗)× (m− i∗) matrices for all k ≥ 0.

By the assumption
∑∞

k=0AS(k) < ∞, the chain {B(k)} is an ℓ1-approximation of {A(k)}.
Now, let ui∗ be the vector which has the first i∗ coordinates equal to one and the rest equal

to zero, i.e., ui∗ =
∑i∗

ℓ=1 eℓ. Then, B(k)ui∗ = ui∗ for any k ≥ 0 implying that i ̸↔B j. By

approximation lemma (Lemma 3.5) it follows i ̸↔A j, which is a contradiction. Q.E.D.

Lemma 3.6 shows that i↔A j is possible only for indices that fall in the same connected

component of the infinite flow graph of {A(k)}. However, the reverse implication is not true

as illustrated by the following example.
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Figure 3.2: The infinite flow graph of the chain discussed in Example 3.2.

Example 3.2. Let {A(k)} be the static chain defined by

A(k) = A(0) =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0


for any k ≥ 0.

Then, the infinite flow graph of {A(k)} is a cycle as shown in Figure 3.2 and, hence, it

is connected. Nevertheless, A(0) is just a permutation matrix and, hence, i ̸↔A j for any

i, j ∈ [m].

Another implication of the ℓ1-approximation is an extension to Theorem 2.1 where it is

shown that weak ergodicity implies strong ergodicity. Note that weak ergodicity of a chain

{A(k)} is equivalent to i↔A j for any i, j ∈ [m]. On the other hand, any weak ergodic chain

has infinite flow property and hence, any two indices i, j ∈ [m] belong to a same connected

component of the infinite flow graph of {A(k)}. Based on this observation, the following

result extends Theorem 2.1 to non-ergodic chains.

Lemma 3.7. Suppose that i ↔A j for any i, j ∈ S where S is a connected component of

G∞. Then, any i ∈ S is an ergodic index.

Proof. Without loss of generality let us assume that S = {1, . . . , i∗} for some i∗ ∈ [m]. For

the given chain {A(k)} and the connected component S, let {B(k)} be the approximation
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introduced in Eq. (3.5). Then, we have

B(k) =

[
B1(k) 0

0 B2(k)

]
,

for any k ≥ 0. As it is shown in the proof of Lemma 3.6, it follows that {B(k)} is an

ℓ1-approximation of {A(k)}. But since i↔A j for any i, j ∈ S, by Lemma 3.5 it follows that

i↔B j for any i, j ∈ S. But by the block diagonal form of {B(k)}, this implies that i↔B1 j

for any i, j ∈ S. By Theorem 2.1 it follows that any i ∈ S is an ergodic index for {B1(k)}
which implies that any i ∈ S is an ergodic index for {B(k)}. From Lemma 3.5, it follows

that any i ∈ S is an ergodic index for {A(k)}. Q.E.D.

We can extend the notions of ergodic index and mutual ergodicity to a random chain.

As for ergodicity and consensus, in this case, we naturally have subsets of the sample space

over which those properties hold.

Definition 3.6. For a random chain {W (k)}, we let i ↔W j ⊆ Ω be the set over which i

and j are mutually ergodic indices. We also let Ei ⊆ Ω be the subset over which i ∈ [m] is

an ergodic index for {W (k)}.

Note that by Definition 3.6 and the definition of ergodicity for random chains we have

E =
∩

i,j∈[m] i↔W j. Moreover, we have E ⊆
∩

i∈[m] Ei.

Similarly, we can define the infinite flow graph for a random chain {W (k)}. In this case,

instead of a deterministic graph, we would have a random graph associated with the given

random chain. For this, recall that G([m]) is the set of all simple graphs on vertex set [m].

Definition 3.7. For an adapted chain {W (k)}, we define infinite flow graph G∞ : Ω →
G([m]) by G∞(ω) = ([m], E∞(ω)) as the graph with the vertex set [m] and the edge set

E∞(ω) = {{i, j} |
∞∑
k=0

(Wij(k, ω) +Wji(k, ω)) = ∞, i ̸= j ∈ [m]}.

Using the same lines of argument as in the proofs of Lemma 3.1 and Lemma 3.2, one can

show the following result.

Lemma 3.8. Let G∞ be the infinite flow random graph associated with a random chain

{W (k)} in a probability space (Ω,F). Then, the set G∞−1(G) = {ω | G∞(ω) = G} ∈ F for

any G ∈ G([m]).

Note that the set of events {G∞−1(G) | G ∈ G([m])} is a partition of the probability

space Ω.
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Lemma 3.6 naturally holds for random chains as provided below.

Lemma 3.9. Let {W (k)} be a random chain. Then, i ↔W j ⊆ Θij where Θij is the event

that i and j belong to the same connected component of the infinite flow graph of {W (k)}.
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Chapter 4

Infinite Flow Stability

In Chapter 3, we showed that regardless of the structure and any assumption on a random

chain we have i ↔W j ⊆ Θij for any i, j ∈ [m] where Θij is the event that i, j belong to

the same connected component of the infinite flow graph of {W (k)}. In this chapter, we

characterize a class of random chains {W (k)} for which i ↔W j = Θij almost surely, i.e.

we can characterize the limiting behavior of the random dynamics (3.1) (or the product of

random stochastic matrices) by inspecting the infinite flow graph of the given random chain.

The structure of this chapter is as follows: in Section 4.1 we introduce the concept of the

infinite flow stability which is the central notion of this chapter. In Section 4.2, we introduce

one of the main properties that is needed to ensure the infinite flow stability, i.e. several

notions of feedback properties, and we study the relations of the different types of feedback

properties with each other. In Section 4.3, we introduce an infinite family of comparison

functions for the averaging dynamics including a quadratic one. We also prove a fundamental

relation that provides a bound for the decrease of the quadratic comparison function. In

Section 4.4, we characterize a class of random chains, the class P∗, and we prove one of the

central results of this thesis which states that any chain in class P∗ with a proper feedback

property is infinite flow stable. Finally, in Section 4.5, we introduce a class of random chains

that are more of practical interest and belong to the class P∗. We show that many of the

known ergodic (and hence, infinite flow stable) chains are members of this class.

4.1 Infinite Flow Stability

As shown in Lemma 3.6, for a stochastic chain {A(k)}, two indices can be mutually ergodic

only if they belong to the same connected component of the infinite flow graph of {A(k)}.
This result provides the minimum requirement for mutual ergodicity and ergodicity. How-

ever, as discussed in Example 3.1, this condition is not necessary, i.e. in general we cannot

conclude mutual ergodicity by inspecting the infinite flow graph of a chain. We are interested

in characterization of chains for which the reverse implication holds which are termed as the

infinite flow stable chains.
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Definition 4.1. (Infinite Flow Stability) We say that a chain {A(k)} is infinite flow sta-

ble if the dynamics {x(k)} converges for any initial condition (t0, x(t0)) ∈ Z+ × Rm and

limk→∞ (xi(k)− xj(k)) = 0 for all {i, j} ∈ E∞, where E∞ is the edge set of the infinite flow

graph of {A(k)}.

As in the case of the ergodicity and consensus (Theorem 2.2 and Theorem 2.3), the

infinite flow stability of a chain can be equivalently characterized by the product of stochastic

matrices in the given chain.

Lemma 4.1. A stochastic chain {A(k)} is infinite flow stable if and only if limk→∞A(k : t0)

exists for all t0 ≥ 0 and also limk→∞ ∥Ai(k : t0) − Aj(k : t0)∥ = 0 for any i, j belonging to

the same connected component of the infinite flow graph G∞ of {A(k)}.

Proof. Note that by Lemma 3.7, the infinite flow stability implies that any dynamics {x(k)}
driven by {A(k)} is convergent. Thus, if we let xi(t0) = eℓ, it follows that limk→∞Aℓ(k : t0)

exists, and since this holds for any x(t0) = eℓ it follows that limk→∞A(k : t0) exists for

any t0 ≥ 0. Moreover, since for any i, j in the same connected component of G∞ we have

limk→∞ (xi(k)− xj(k)) = 0, it follows that limk→∞ (Aiℓ(k : t0)− Ajℓ(k : t0)) = 0 for any

ℓ ∈ [m]. Thus, limk→∞ ∥Ai(k : t0)− Aj(k : t0)∥ = 0 for any t0 ≥ 0 and any i, j in the same

connected component of G∞.

For the converse, note that for any (t0, x(t0)) ∈ Z+ × Rm and any k ≥ t0, we have

|xi(t0)− xj(t0)| = | (Ai(k : t0)− Aj(k : t0))x(t0)| ≤ ∥Ai(k : t0)− Aj(k : t0)∥∥x(t0)∥,

which follows by Cauchy-Schwartz inequality. Thus, if limk→∞ ∥Ai(k : t0)− Aj(k : t0)∥ = 0,

for any x(t0) ∈ Rm, we have limk→∞ (xi(t0)− xj(t0)) = 0. Q.E.D.

The immediate question is that if for some chain {A(k)} the product A(k : t0) is conver-

gent for any t0 ≥ 0, can we conclude the infinite flow stability of {A(k)}? In other words, is

there any chain {A(k)} such that any dynamics driven by {A(k)} is convergent for any initial

condition (t0, x(t0)) ∈ Z+ × Rm but yet, {A(k)} is not infinite flow stable? The following

example shows that infinite flow stability is in fact stronger than asymptotic stability.

Example 4.1. Consider the stochastic chain {A(k)} in R3×3 defined by A(0) = I and

A(k) =

 1 0 0

1− 1
k

0 1
k

0 0 1

 for k ≥ 1.
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Figure 4.1: The infinite flow graph of the chain discussed in Example 4.1.

In this case, it can be verified that A(k : t0) = A(k) for any t0 ≥ 0 and k > t0. Therefore,

we have

lim
k→∞

A(k : t0) = lim
k→∞

A(k) =

 1 0 0

1 0 0

0 0 1

 .
Note that the infinite flow graph of the chain {A(k)} is connected (see Figure 4.1). However,

the rows of the limiting matrix are not the same (i.e. {A(k)} is not ergodic). Therefore, in

spite of convergence of A(k : t0) for any t0 ≥ 0, {A(k)} is not infinite flow stable.

We can extend the notion of infinite flow stability to a random chain {W (k)}. For a

random chain {W (k)}, the infinite flow stability happens on a measurable subset of Ω. We

say that a chain {W (k)} is infinite flow stable if it is infinite flow stable almost surely.

4.2 Feedback Properties

As in the definition of B-connected chains (Definition 2.4 (b)), in order to ensure the con-

vergence of the dynamics (2.2), it is often assumed that diagonal entries of the matrices in

a stochastic chain {A(k)} are uniformly bounded from below by a constant scalar. From

the opinion dynamics viewpoint, such an assumption can be considered as a form of self

confidence of each agents. It also ensures that effect of the other agents’ opinion does not

vanish in finite time. Here, we define several notions of feedback property and we discuss

some general results for them which will be useful in our further development.

We start our discussion on feedback properties by introducing different types of feedback

property which will be considered in this work. We discuss the feedback property in the

context of an adapted random chain.

Definition 4.2. (Feedback Properties) We say that an adapted random chain {W (k)} has:

(a) strong feedback property: if

Wii(k) ≥ γ almost surely,
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for some γ > 0, any k ≥ 0, and all i ∈ [m].

(b) feedback property: if

E[Wii(k)Wij(k) | Fk] ≥ γE[Wij(k) | Fk] almost surely,

for some γ > 0, and any k ≥ 0 and all distinct i, j ∈ [m].

(c) weak feedback property: if

E
[
W iT (k)W j(k) | Fk

]
≥ γE[Wij(k) +Wji(k) | Fk] almost surely,

for some γ > 0, and any k ≥ 0 and all distinct i, j ∈ [m].

We refer to γ as the feedback coefficient and without loss of generality we may assume that

γ ≤ 1.

In words, weak feedback property requires that the correlation of the ith and jth columns

of W (k) is bounded below by a constant factor of E[Wij(k) +Wji(k) | Fk] for any k ≥ 0

and any i, j ∈ [m]. Similarly, the feedback property requires that the correlation of the

Wii(k)Wij(k) is bounded below by a constant factor of W̄ij(k).

Note that ifWii(k) ≥ γ almost surely, then E[Wii(k)Wij(k) | Fk] ≥ γE[Wij(k) | Fk] almost

surely and hence, strong feedback property implies feedback property. Also, note that since

W (k)s are non-negative almost surely, we haveW iT (k)W j(k) ≥Wii(k)Wij(k)+Wjj(k)Wji(k)

which shows that the feedback property implies weak feedback property. In this work, most

of our main results are based on weak feedback property and feedback property.

We first show that the feedback property implies strong feedback property for the ex-

pected chain.

Lemma 4.2. Let a random chain {W (k)} have feedback property with feedback coefficient

γ ≤ 1. Then, the expected chain {W̄ (k)} has strong feedback property with γ
1−γ

.

Proof. Let the random chain have feedback property with constant γ > 0. Then, by the

definition of the feedback property, for any time k ≥ 0 and any i, j ∈ [m] with i ̸= j, we

have

E[Wii(k)Wij(k) | Fk] ≥ γ E[Wij(k) | Fk] = γ W̄ij(k).

For a fixed i ∈ [m], by adding up both sides of the above relation over all j ̸= i, and using

the fact that W (k) is stochastic almost surely, we have

E[Wii(k)(1−Wii(k)) | Fk] ≥ γ(1− W̄ii(k)).
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But Wii(k) ≤ 1 almost surely implying E[Wii(k)(1−Wii(k)) | Fk] ≤ W̄ii(k). Therefore, we

have W̄ii(k) ≥ γ(1− W̄ii(k)), implying W̄ii(k) ≥ γ
1−γ

. Q.E.D.

Since for deterministic chains, the expected chain and the original chain are the same,

Lemma 4.2 implies that the feedback property and the strong feedback property are equiva-

lent for deterministic chains. However, the following result shows that even for deterministic

chains, the feedback property cannot be implied by weak feedback property.

Example 4.2. Consider the static deterministic chain {A(k)} given by:

A(k) = A =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

 for k ≥ 0.

Since AiiAij = 0 and Aij ̸= 0 for all i ̸= j, the chain does not have feedback property. At

the same time, since Aij + Aji = 1 for i ̸= j, it follows (Ai)TAj = 1
4
= 1

4
(Aij + Aji). Thus,

{A(k)} has weak feedback property with γ = 1
4
. �

Our next goal is to show that i.i.d. chains with almost sure positive diagonal entries have

feedback property. To do this, let us first prove the following intermediate result.

Lemma 4.3. Consider an adapted random chain {W (k)}. Suppose that the random chain

is such that there is an η > 0 with the following property:

for all k ≥ 0 and i, j ∈ [m] with i ̸= j,

E[Wii(k)Wij(k) | Fk] ≥ η1{W̄ij(k)>0},

or the following property:

for all k ≥ 0 and i, j ∈ [m] with i ̸= j,

E
[
W iT (k)W j(k) | Fk

]
≥ η1{W̄ij(k)>0}.

Then, respectively, the chain has feedback property with constant η or weak feedback property

with constant η/2.

Proof. To prove the case of feedback property, note that 1W̄ij(k)>0 ≥ W̄ij(k) for any k ≥ 0

and all distinct i, j ∈ [m]. Thus, E[Wii(k)Wij(k) | Fk] ≥ η1W̄ij(k)>0 ≥ ηW̄ij(k), which implies

that {W (k)} has feedback property. The case of weak feedback property follows by the same

line of argument. Q.E.D.
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The i.i.d. chains with almost surely positive diagonal entries have been studied in [31,

30, 32]. These chains have feedback property, as seen in the following corollary.

Corollary 4.1. Let {W (k)} be an i.i.d. random chain with almost sure positive diagonal

entries, i.e. Wii(k) > 0 almost surely. Then, {W (k)} has feedback property with constant

γ = min{i ̸=j|W̄ij(k)>0} E[Wii(k)Wij(k)].

Proof. Suppose that W̄ij(k) > 0 for some i, j ∈ [m]. Since Wii(k) > 0 a.s. and Wij(k) ≥ 0,

it follows that E[Wii(k)Wij(k)] > 0. Since {W (k)} is assumed to be i.i.d., the constant

η = min{i ̸=j|W̄ij(k)>0} E[Wii(k)Wij(k)] is independent of time. Also, since the index set

i ̸= j ∈ [m] is finite, it follows that η > 0. Hence, by Lemma 4.3 it follows that the chain

has feedback property with constant η. Q.E.D.

4.3 Comparison Functions for Averaging Dynamics

Here, we introduce an infinite family of comparison functions for random averaging dynam-

ics. To do so, first we will reintroduce the concept of an absolute probability sequence for

stochastic chains and then we will introduce an absolute probability process which is the

generalization of absolute probability sequences to adapted processes. Using an absolute

probability process, and any given convex function, we introduce a comparison function for

averaging dynamics.

4.3.1 Absolute Probability Process

In [18], A. Kolmogorov introduced and studied an elegant object, the absolute probability

sequence, which is a sequence of stochastic vectors associated with a chain of stochastic

matrices as defined below.

Definition 4.3. A sequence of stochastic vectors {π(k)} is said to be an absolute probability

sequence for a chain {A(k)} of deterministic stochastic matrices, if

πT (k + 1)A(k) = πT (k) for all k ≥ 0. (4.1)

As an example, let {A(k)} be a chain of doubly stochastic matrices. Then, the static

sequence {π(k)} defined by π(k) = 1
m
e for all k ≥ 0 is an absolute probability sequence

for {A(k)}. As another example, consider the static stochastic chain {A(k)} defined by

A(k) = A for some stochastic matrix A. Since A is a stochastic matrix, it has a stochastic
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left-eigenvector π. In this case, the static sequence {π(k)} defined by π(k) = π for all k ≥ 0

is an absolute probability sequence for {A(k)}. A more non-trivial and interesting example

of absolute probability sequences is provided in the following result.

Lemma 4.4. [18] Let {A(k)} be an ergodic chain. Suppose that limt→∞A(t : k) = eπT (k)

for all k ≥ 0. Then, the sequence {π(k)} is an absolute probability sequence for {A(k)}.

Proof. For any k ≥ 0, we have:

eπT (k) = lim
t→∞

A(t : k) = lim
t→∞

A(t : k + 1)A(k) = eπT (k + 1)A(k).

Thus multiplying both sides of the above equation by 1
m
eT , it follows that πT (k) = πT (k +

1)A(k) and hence, {π(k)} is an absolute probability sequence for {A(k)}. Q.E.D.

Note that if we have a vector π(k) for some k > 0, we can find vectors π(k− 1), . . . , π(0)

that fit Eq. (4.1). However, there is no certificate that we can find vectors . . . , π(k+2), π(k+

1) that satisfy Eq. (4.1). In general, to ensure the existence of such a sequence, we need to

solve an infinite system of linear equations.

The following result plays an important role in establishing the existence of an absolute

probability sequence follows immediately.

Theorem 4.1. [65] For any chain of stochastic matrices {A(k)}, there exists an increasing

sequence of integers {rt} such that the limit

lim
t→∞

A(rt : k) = Q(k) (4.2)

exists for any k ≥ 0.

By Theorem 4.1, the existence of an absolute probability sequence for any stochastic

chain follows immediately.

Theorem 4.2. [65] Any chain {A(k)} of stochastic matrices admits an absolute probability

sequence.

Proof. By Theorem 4.1, there exists a subsequence {rt} of non-negative integers such that

Q(k) = limt→∞A(rt : k) exists. Now, for any s > k, we have Q(s)A(s : k) = Q(k). This

simply follows from the fact that

Q(k) = lim
t→∞

A(rt : k) =
(
lim
t→∞

A(rt : s)
)
A(s : k) = Q(s)A(s : k).

In particular Q(k+1)A(k+1) = Q(k) for any k ≥ 0. Therefore, for any stochastic π ∈ Rm,

the sequence {QT (k)π} is an absolute probability sequence for {A(k)}. Q.E.D.
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By Theorem 4.2, for any random chain {W (k)} and for any ω ∈ Ω, the chain {W (k, ω)}
admits an absolute probability sequence {π(k, ω)}.

We use the following generalization of absolute probability sequences for adapted random

chains.

Definition 4.4. A random vector process {π(k)} is an absolute probability process for

{W (k)} if we have:

E
[
πT (k + 1)W (k) | Fk

]
= πT (k) for all k ≥ 0,

and π(k) is a stochastic vector almost surely for any k ≥ 0.

Note that this definition implies that {π(k)} is adapted to {Fk}, i.e. π(k) is measurable

with respect to Fk.

Note that if we have an independent chain {W (k)}, if we let {Fk} to be the natural

filtration of {W (k)}, i.e. Fk = σ(W (k − 1), . . . ,W (0)) and F0 = {Ω, ∅}, then W̄ (k) =

E[W (k) | Fk] would be a deterministic matrix for any k ≥ 0. Thus, in this case an absolute

probability sequence for {W̄ (k)} is an absolute probability process for {W (k)}. Thus, by

Theorem 4.2, the existence of an absolute probability process for an independent chain

follows.

4.3.2 A Family of Comparison Functions

Existence of a quadratic Lyapunov function for averaging dynamics may lead to fast rate of

convergence results as well as better understanding of averaging dynamics. As an example,

in [51], using a quadratic Lyapunov function a fast rate of convergence has been shown for

averaging dynamics driven by a class of doubly stochastic matrices. The method used in

[51] appears to be generalizable to any dynamics admitting a quadratic Lyapunov function.

Also, as it is pointed out in [21], the existence of such a Lyapunov function may lead to an

alternative stability analysis of the dynamics driven by stochastic matrices. However, in [21],

the non-existence of a quadratic Lyapunov function for deterministic averaging dynamics is

numerically verified for an ergodic deterministic chain. Later, in [22], it is proven analytically

that not all the averaging dynamics admit a quadratic Lyapunov function.

Although averaging dynamics may not admit a quadratic Lyapunov function, in this

section, we show that any dynamics driven by a stochastic chain admits infinitely many

comparison functions among which there exists a quadratic one. We furthermore show that

the fundamental relation that was essential to derivation of the fast rate of convergence in

[51], also holds for a quadratic comparison function.
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For this, let g : R → R be an arbitrary convex function and let π = {π(k)} be a sequence

of stochastic vectors. Let us define Vg,π : Rm × Z+ → R+ by

Vg,π(x, k) =
m∑
i=1

πi(k)g(xi)− g(πT (k)x). (4.3)

Note that since g is assumed to be a convex function over R, it is continuous and hence,

Vg,π(x, k) is a continuous function of x for any k ≥ 0. Also, since π(k) is a stochastic vector,

we have
∑m

i=1 πi(k)g(xi) ≥ g(πT (k)x) and, hence, Vg,π(x, k) ≥ 0 for any x ∈ Rm and k ≥ 0.

Moreover, if π(k) > 0 and g is strictly convex, then Vg,π(x, k) = 0 if and only if xi = πT (k)x

for all i ∈ [m], which holds if and only if x belongs to the consensus subspace C. Therefore,

if g is strictly convex and {π(k)} > 0, i.e. πi(k) > 0 for all k ≥ 0 and i ∈ [m], then

Vg,π(x, k) = 0 for some k ≥ 0 if and only if x is an equilibrium of the dynamics (2.2).

Also, since g is a convex function defined on R, it has a sub-gradient ∇g(x) at each point

x ∈ R. Furthermore, we have

m∑
i=1

πi(k)∇g(πT (k)x)(xi − πT (k)x) = ∇g(πT (k)x)
m∑
i=1

πi(k)(xi − πT (k)x) = 0.

Therefore, since π(k) is stochastic, we obtain

Vg,π(x, k) =
m∑
i=1

πi(k)
(
g(xi)− g(πT (k)x)

)
=

m∑
i=1

πi(k)
(
g(xi)− g(πT (k)x)−∇g(πT (k)x)(xi − πT (k)x)

)
=

m∑
i=1

πi(k)Dg(xi, π
T (k)x), (4.4)

where Dg(α, β) = g(α)− g(β)−∇g(β)(α − β). If g is a strongly convex function, Dg(α, β)

is the Bregman divergence (distance) of α and β with respect to the convex function g(·) as
defined in [66]. Equation (4.4) shows that our comparison function is in fact a weighted av-

erage of the Bregman divergence of the points x1, . . . , xm with respect to their time changing

weighted center of the mass πT (k)x.

We now show that Vg,π is a comparison function for the random dynamics in (3.1).

Lemma 4.5. For dynamics {x(k)} driven by an adapted random chain {W (k)} with an

absolute probability process {π(k)}, we have almost surely

E[Vg,π(x(k + 1), k + 1) | Fk] ≤ Vg,π(x(k), k) for any k ≥ 0.
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Proof. By the definition of Vg,π in Eq. (4.3), we have almost surely

Vg,π(x(k + 1), k + 1) =
m∑
i=1

πi(k + 1)g(xi(k + 1))− g(πT (k + 1)x(k + 1))

=
m∑
i=1

πi(k + 1)g([W (k)x(k)]i)− g(πT (k + 1)x(k + 1))

≤
m∑
i=1

πi(k + 1)
m∑
j=1

Wij(k)g(xj(k))− g(πT (k + 1)x(k + 1)), (4.5)

where the inequality follows by convexity of g(·) and W (k) being stochastic almost surely.

Now, since {π(k)} is an absolute probability process, we have E
[
πT (k + 1)W (k) | Fk

]
=

πT (k). Also, x(k) is measurable with respect to Fk and hence, by taking the conditional

expectation with respect to Fk on both sides of Eq. (4.5), we have almost surely

E[Vg,π(x(k + 1), k + 1) | Fk] ≤
m∑
j=1

πj(k)g(xj(k))− E
[
g(πT (k + 1)x(k + 1)) | Fk

]
≤

m∑
j=1

πj(k)g(xj(k))− g(E
[
πT (k + 1)x(k + 1) | Fk

]
),

where the last inequality follows by convexity of g and Jensen’s inequality (Lemma A.2).

Using x(k+1) = W (k)x(k) and the definition of absolute probability process (Definition 4.4),

we obtain almost surely

E[Vg,π(x(k + 1), k + 1) | Fk] ≤
m∑
j=1

πj(k)g(xj(k))− g(πT (k)x(k)) = Vg,π(x(k), k).

Q.E.D.

Lemma 4.5 proves that any adapted random dynamics with an absolute probability

process admits infinitely many comparison functions. In particular, any independent and

deterministic averaging dynamics admits infinitely many comparison functions through the

use of any absolute probability sequence and any convex function g.

Here, we mention two particular choices of the convex function g for constructing com-

parison functions that might be of particular interest:

1. Quadratic function: Let g(s) = s2 and let us consider the formulation provided in
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Eq. (4.4). Then, it can be seen that

Vg,π(x, k) =
m∑
i=1

πi(k)(xi − πT (k)x)2. (4.6)

Thus for any dynamics {x(k)} in (3.1), the sequence {Vg,π(x(k), k)} is a non-negative

super-martingale in R and, hence, by Corollary A.3, the sequence {Vg,π(x(k), k)} is

convergent almost surely.

2. Kullback-Leibler divergence: Let x(0) ∈ [0, 1]m. One can view x(0) as a vector of

positions of m particles in [0, 1]. Intuitively, by the successive weighted averaging of

the m particles, the entropy of such system should not increase. Mathematically, this

corresponds to the choice of g(s) = s ln(s) in Eq. (4.3) (with g(0) = 0). Then, it can

be seen that

Vg,π(x, k) =
m∑
i=1

πi(k)DKL(xi, π
T (k)x),

where DKL(α, β) = α ln(α
β
) is the Kullback-Leibler divergence of α and β.

4.3.3 Quadratic Comparison Functions

For the study of the dynamic system (2.2), the Lyapunov function d(x) = maxi xi −mini xi

has been often used to prove convergence results and develop rate of convergence result.

However, this Lyapunov function often results in a poor rate of convergence for the dy-

namic (2.2). Using a quadratic Lyapunov function for doubly stochastic chains, a fast rate

of convergence has been developed to study the dynamics (2.2). The study is highly depen-

dent on the estimate of decrease of the quadratic Lyapunov function along the trajectories of

the dynamics (2.2). In this section, we develop a bound for the decrease rate of the quadratic

comparison function along the trajectories of (2.2).

In our further development, we consider a quadratic comparison function as in (4.6). To

simplify the notation, we omit the subscript g in Vg,π and define

Vπ(x, k) =
m∑
i=1

πi(k)(xi − πT (k)x)2. (4.7)

We refer to Vπ(x, k) as the quadratic comparison function associated with {π(k)}. By Theo-
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Figure 4.2: The vector (πTx)e is the projection of a point x ∈ Rm on the consensus line C
in ∥ · ∥π semi-distance.

rem 4.2, the existence of such a comparison function follows immediately.

Corollary 4.2. Every independent random chain {W (k)} admits a quadratic comparison

function.

In particular, the result of Corollary 4.2 holds for any deterministic chain {A(k)}.

Some Geometrical Insights

Let us discuss some geometric aspects of the introduced quadratic comparison function (4.7).

For a (deterministic) stochastic vector π, consider the weighted semi-norm1 of two vectors

in Rm defined by ∥x − y∥2π =
∑m

i=1 πi(xi − yi)
2. For any arbitrary point x ∈ Rm and an

arbitrary point λe in the consensus subspace C, we have ∥x−λe∥2π =
∑m

i=1 πi(xi−λ)2. Note
that λ∗ =

∑m
i=1 πixi = πTx minimizes ∥x − λe∥2π as a function of λ ∈ R. Therefore, the

following result holds.

Lemma 4.6. For an arbitrary point x ∈ Rm and a stochastic vector π, the scalar πTx is the

projection of the point x on the consensus subspace C. In other words,

∥x− (πTx)e∥2π =
m∑
i=1

πi(xi − πTx)2 ≤
m∑
i=1

πi(xi − c)2 = ∥x− ce∥2π,

for any c ∈ R.

This fact is illustrated in Figure 4.2.

Lemma 4.5 shows that for a dynamics {x(k)} driven by a deterministic chain {A(k)} at

each time instance k ≥ 0, the distance of the point x(k) with respect to ∥ · ∥π(k) semi-norm is

1We refer to ∥ · ∥π as a semi-norm because in general ∥x∥π = 0 does not imply x = 0, unless π > 0 in
which case ∥ · ∥π is a norm.
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non-increasing function of k. Note that if {π(k)} is not a constant sequence, then the balls

of ∥ · ∥π(k) semi-norm would be time-varying.

Using this interpretation for a random adapted chain {W (k)}, Lemma 4.5 asserts that

the conditional expectation of the random (semi)-distance of the random point x(k) from

the consensus line is non-increasing function of k.

Another interesting geometric aspect of the averaging dynamics is that the sequence

{(πT (k)x(k))e} of the projection points is a martingale sequence.

Lemma 4.7. Consider an adapted random chain {W (k)} with an absolute probability process

{π(k)}. Then, for any random dynamics {x(k)} driven by {W (k)}, the scalar sequence

{πT (k)x(k)} is a martingale.

Proof. For any k ≥ t0, we have

E
[
πT (k + 1)x(k + 1) | Fk

]
= E

[
πT (k + 1)W (k)x(k) | Fk

]
= E

[
πT (k + 1)W (k) | Fk

]
x(k) = πT (k)x(k),

which holds since x(k) is measurable with respect to Fk and {π(k)} is an absolute probability

process for {W (k)}. Q.E.D.

For a deterministic chain {A(k)}, although the sequence of semi-norms {∥ · ∥π(k)} maybe

time-changing, Lemma 4.7 shows that the projection sequence {πT (k)x(k)e} is time-invariant.

4.3.4 An Essential Relation

To make use of a comparison function for a given dynamics, it would be helpful to quantify

the amount of decrease of the particular comparison function along trajectories of the given

dynamics. Here, we derive a bound for the decrease of the quadratic comparison function

along the trajectories of the averaging dynamics.

To derive such a bound for the quadratic comparison function, consider the following

result in spectral graph theory.

Lemma 4.8. Let L be a symmetric matrix, i.e. Lij = Lji for all i, j ∈ [m]. Also let Le = 0.

Then for any vector x ∈ Rm, we have

xTLx = −
∑
i<j

Lij(xi − xj)
2.
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Proof. ([67], page 2.2) For any i, j ∈ [m], let B(i,j) be the m × m matrix with B
(i,j)
ii =

B
(i,j)
jj = 1, B

(i,j)
ij = B

(i,j)
ji = −1 and all the other entries equal to zero, or in other words

B(i,j) = (ei − ej)(ei − ej)
T . Note that xTB(i,j)x = (xi − xj)

2. Since L is symmetric and its

rows sum up to zero, we have L =
∑

i<j LijB
(i,j). This can be verified by observing that all

the entries of the matrices on the left-hand side and the right-hand side of this equation are

equivalent. Thus, we have:

xTLx = xT (
∑
i<j

LijB
(i,j))x = −

∑
i<j

Lij(xi − xj)
2.

Q.E.D.

Based on the preceding result, we can provide a lower bound on the rate of convergence

of the quadratic comparison function along any trajectory of the random dynamics.

Theorem 4.3. Let {W (k)} be a random chain adapted to the filtration {Fk} and let {π(k)}
be an absolute probability process for {W (k)}. Then, for any trajectory {x(k)} under {W (k)},
we have almost surely for all k ≥ 0,

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑
i<j

Hij(k)(xi(k)− xj(k))
2, (4.8)

where H(k) = E
[
W (k)Tdiag(π(k + 1))W (k) | Fk

]
. Furthermore, if πT (k + 1)W (k) = πT (k)

holds almost surely for all k ≥ 0, then the above inequality holds as equality.

Proof. Note that by Lemma 4.7, the sequence {πT (k)x(k)} is a martingale sequence and

since f(s) = s2 is a convex function, by Lemma A.4, it follows that {−(πT (k)x(k))2} is a

super-martingale. Also, we have

Vπ(x(k), k) =
m∑
i=1

πi(k)x
2
i (k)− (πT (k)x(k))2 = xT (k)diag(π(k))x(k)− (πT (k)x(k))2. (4.9)

Thus, if we let ∆(x(k), k) = Vπ(x(k), k) − Vπ(x(k + 1), k + 1), then using x(k + 1) =

W (k)x(k), we have

∆(x(k), k) = xT (k)diag(π(k))x(k)− (πT (k)x(k))2

−
{
xT (k + 1)diag(π(k + 1))x(k + 1)− (πT (k + 1)x(k + 1))2

}
= xT (k)

[
diag(π(k))−W T (k)diag(π(k + 1))W (k)

]
x(k)

+
{
(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2

}
= xT (k)L(k)x(k) +

{
(πT (k + 1)x(k + 1))2 − (πT (k)x(k))2

}
,
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where L(k) = diag(π(k))−W T (k)diag(π(k + 1))W (k).

Since {−(πT (k)x(k))2} is a super-martingale, by taking the conditional expectation on

both sides of the above equality, we have:

E[∆(x(k), k) | Fk] ≥ E
[
xT (k)L(k)x(k) | Fk

]
= xT (k)H(k)x(k) a.s. (4.10)

where H(k) = E[L(k) | Fk] and the last equality holds since x(k) is measurable with respect

to Fk. Note that if π
T (k+1)x(k+1) = πT (k)x(k) almost surely, then the relation (4.10) holds

as an equality. Since, this relation is the only place where we encounter an inequality, all the

upcoming inequalities hold as equality if we almost surely have πT (k+1)x(k+1) = πT (k)x(k)

(as in the case of deterministic dynamics).

Furthermore, we almost surely have:

H(k)e = E
[
diag(π(k))e−W T (k)diag(π(k + 1))W (k)e | Fk

]
= π(k)− E

[
W T (k)π(k + 1) | Fk

]
= 0,

which is true since W (k) is stochastic almost surely and {π(k)} is an absolute proba-

bility process for {W (k)}. Thus, although H(k) is a random matrix, it is symmetric

and furthermore H(k)e = 0 almost surely. Thus by Lemma 4.8, we almost surely have

xT (k)H(k)x(k) = −
∑

i<j Hij(k)(xi(k)−xj(k))2. Using this relation in the inequality (4.10),

we conclude that almost surely:

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)−
∑
i<j

Hij(k)(xi(k)− xj(k))
2.

Q.E.D.

Theorem 4.3 is a generalization of Lemma 4 in [51] and its generalization provided in

Theorem 5 in [55].

Furthermore, the relation in Theorem 4.3 is the central relation which serves as a basis

for several results in the forthcoming sections.

One of the important implications of Theorem 4.3 is the following result.

Corollary 4.3. Let {π(k)} be an absolute probability process for an adapted random chain

{W (k)}. Then, for any random dynamics {x(k)} driven by {W (k)}, we have for any t0 ≥ 0,

E

[
∞∑

k=t0

∑
i<j

Lij(k) (xi(k)− xj(k))
2

]
≤ E[Vπ(x(t0), t0)] <∞,
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where L(k) = W T (k)diag(π(k + 1))W (k).

Proof. By taking expectation on both sides of the relation (4.8), we have:

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[∑
i<j

E[Lij(k) | Fk] (xi(k)− xj(k))
2

]
. (4.11)

Note that E[Lij(k) | Fk] (xi(k)− xj(k))
2 = E[Lij(k)(xi(k)− xj(k))

2 | Fk] holds since x(k) is

measurable with respect to Fk. Also, by Lemma A.3, we have

E

[
E

[∑
i<j

Lij(k)(xi(k)− xj(k))
2 | Fk

]]
= E

[∑
i<j

Lij(k)(xi(k)− xj(k))
2

]
.

Using this relation in Eq. (4.11), we have

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− E

[∑
i<j

Lij(k)(xi(k)− xj(k))
2

]
,

and hence,
∑∞

k=t0
E
[∑

i<j Lij(k)(xi(k)− xj(k))
2
]
≤ E[Vπ(x(t0), t0)] for any t0 ≥ 0. There-

fore, by Corollary A.2, we have

E

[
∞∑

k=t0

∑
i<j

Lij(k)(xi(k)− xj(k))
2

]
≤ E[Vπ(x(t0), t0)] .

Q.E.D.

4.4 Class P∗

Now, we are ready to introduce a special class of random chains which we refer to as the

class P∗. We prove one of the central results of this thesis, i.e. any chain in class P∗ with

weak feedback property is infinite flow stable.

Definition 4.5. (Class P∗) We let the class P∗ be the class of random adapted chains that

have an absolute probability process {π(k)} such that π(k) ≥ p∗ almost surely for some scalar

p∗ > 0 and all k ≥ 0.

It may appear that the definition of class P∗ is rather a restrictive requirement. In the

following section, we show that in fact class P∗ contains a broad class of deterministic and

random chains.
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To show that any chain in class P∗ with weak feedback property is infinite flow stable,

we prove a sequence of intermediate results. The first result gives a lower bound for the

amount of the flow that is needed to ensure a decrease in the distance between the opinion

of agents in a set S and its complement.

Lemma 4.9. Let {A(k)} be a deterministic sequence, and let {z(k)} be generated by z(k +

1) = A(k)z(k) for all k ≥ 0 with an initial state z(0) ∈ Rm. Then, for any nontrivial subset

S ⊂ [m] and k ≥ 0, we have

max
i∈S

zi(k + 1) ≤ max
s∈S

zs(0) + d(z(0))
k∑

t=0

AS(t),

min
j∈S̄

zj(k + 1) ≥ min
r∈S̄

zr(0)− d(z(0))
k∑

t=0

AS(t),

where d(y) = maxℓ∈[m] yℓ −minr∈[m] yr for y ∈ Rm.

Proof. Let S ⊂ [m] be an arbitrary nontrivial set and let k ≥ 0 be arbitrary. Let zmin(k) =

minr∈[m] zr and zmax(k) = maxs∈[m] zs(k). Since zi(k + 1) =
∑m

ℓ=1Aiℓ(k)zℓ(k) and A(k) is

stochastic, we have zi(k) ∈ [zmin(0), zmax(0)] for all i ∈ [m] and all k. Then, we obtain for

i ∈ S,

zi(k + 1) =
∑
ℓ∈S

Aiℓ(k)zℓ(k) +
∑
ℓ∈S̄

Aiℓ(k)zℓ(k) ≤
∑
ℓ∈S

Aiℓ(k)

(
max
s∈S

zs(k)

)
+ zmax(0)

∑
ℓ∈S̄

Aiℓ(k),

where the inequality follows by Aiℓ(k) ≥ 0. By the stochasticity of A(k), we also obtain

zi(k + 1) ≤

(
1−

∑
ℓ∈S̄

Aiℓ(k)

)
max
s∈S

zs(k) + zmax(0)
∑
ℓ∈S̄

Aiℓ(k)

= max
s∈S

zs(k) +

(
zmax(0)−max

s∈S
zs(k)

)∑
ℓ∈S̄

Aiℓ(k).

By the definition of AS(k), we have 0 ≤
∑

ℓ∈S̄ Aiℓ(k) ≤ AS(k). Since zmax(0)−maxs∈S zs(k) ≥
0, it follows

zi(k + 1) ≤ max
s∈S

zs(k) + (zmax(0)−max
s∈S

zs(k))AS(k) ≤ max
s∈S

zs(k) + d(z(0))AS(k),

where the last inequality holds since zmax(0)−maxs∈S zs(k) ≤ zmax(0)−zmin(0) = d(z(0)). By

taking the maximum over all i ∈ S in the preceding relation, we obtain maxi∈S zi(k + 1) ≤
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maxs∈S zs(k) + d(z(0))AS(k) and recursively, we get maxi∈S zi(k + 1) ≤ maxs∈S zs(0) +

d(z(0))
∑k

t=0AS(t).

The relation for minj∈S̄ z(k+1) follows from the preceding relation by considering {z(k)}
generated with the starting point −z(0). Q.E.D.

Based on Lemma 4.9, we can prove the following result.

Lemma 4.10. Let {A(k)} be a deterministic chain with infinite flow graph G∞ = ([m], E∞).

Let (t0, x(t0)) ∈ Z+ × Rm be an initial condition for the dynamics driven by {A(k)}. Then,

if limk→∞ (xi0(k)− xj0(k)) ̸= 0 for some i0, j0 belonging to the same connected component of

G∞, then we have

∞∑
k=t0

∑
i<j

[(Aij(k) + Aji(k))(xi(k)− xj(k))
2] = ∞.

Proof. Let i0, j0 be in a same connected component ofG∞ with lim supk→∞ (xi0(k)− xj0(k)) =

α > 0. Without loss of generality we may assume that x(t0) ∈ [−1, 1]m, otherwise we can

consider the dynamics started at y(t0) =
1

∥x(t0)∥∞x(t0). Let S be the vertices of the connected

component of G∞ containing i0, j0 and without loss of generality assume S = {1, 2, . . . , q}.
Then by the definition of infinite flow graph, there exists a large enough K ≥ 0 such that∑∞

k=K AS(k) ≤ α
32q

. Also, since lim supk→∞ (xi0(k)− xj0(k)) = α > 0, there exists a time

instance t1 ≥ K such that xi0(t1)− xj0(t1) ≥ α
2
.

Let π : [q] → [q] be a permutation such that xπ(1)(t1) ≥ xπ(2)(t1) ≥ · · · ≥ xπ(q)(t1),

i.e. π is an ordering of {xi(t1) | i ∈ [q]}. Then, since xi0(t1) − xj0(t1) ≥ α
2
, it follows that

xπ(1)(t1)− xπ(q)(t1) ≥ α
2
and, hence, there exists ℓ ∈ [q] such that xπ(ℓ)(t1)− xπ(ℓ+1)(t1) ≥ α

2q
.

Let

T1 = argmin
t>t1

t∑
k=t1

∑
i,j∈[q]

i≤ℓ,ℓ+1≤j

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k)) ≥
α

32q
.

Note that since S is a connected component of G∞, we should have T1 < ∞, otherwise, S

can be decomposed into two disconnected components R = {π(1), . . . , π(l)} and S \ R =

{π(l + 1), . . . , π(q)}.
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Now, if we let R = {π(1), . . . , π(l)}, for any k ∈ [t1, T1], we have:

T1−1∑
k=t1

AR(k) =

T1−1∑
k=t1

 ∑
i,j∈[q]

i≤ℓ,ℓ+1≤j

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k)) +
∑

i≤ℓ,j∈S̄

Aπ(i)j(k) +
∑

i∈S̄,j≤l

Aiπ(j)(k)


≤

T1−1∑
k=t1

∑
i,j∈[q]

i≤ℓ,ℓ+1≤j

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k)) +
∞∑

k=K

AS(k) ≤
α

16q
,

which follows by the definition of T1 and the choice t1 ≥ K. Thus by Lemma 4.9, it

follows that for k ∈ [t1, T1], we have maxi∈R xi(k) ≤ maxi∈R xi(t1) + 2 α
16q

. Similarly, we have

mini∈S\R xi(k) ≥ mini∈S\R xi(t1)− 2 α
16q

.

Thus, for any i, j ∈ [q] with i ≤ l and j ≥ l + 1, and for any k ∈ [t1, T1], we have

xπ(i)(k)− xπ(j)(k) ≥ 2(2
α

16q
) =

α

4q
.

Therefore,

T1∑
k=t1

∑
i,j∈[q]

i≤ℓ,ℓ+1≤j

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k))(xπ(i)(k)− xπ(j)(k))
2

≥ (
α

4q
)2

T1∑
k=t0

∑
i,j∈[q]

i≤l,j≥l+1

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k)) ≥ (
α

4q
)2

α

32q
= β > 0.

Thus, it follows that:

T1∑
k=t1

∑
i<j

(Aij(k) + Aji(k))(xi(k)− xj(k))
2

≥
T1∑

k=t1

∑
i,j∈[q]

i≤ℓ,ℓ+1≤j

(Aπ(i)π(j)(k) + Aπ(j)π(i)(k))(xπ(i)(k)− xπ(j)(k))
2 ≥ β.

But since lim supk→∞ (xi0(k)− xj0(k)) = α > 0, there exists a time t2 > T1 such that

xi0(t2) − xj0(t2) ≥ α
2
. Then, using the above argument, there exists T2 > t2 such that∑T2

k=t2

∑
i<j(Aij(k) + Aji(k))(xi(k) − xj(k))

2 ≥ β. Thus, using the induction, we can find

time instances

· · · > Tξ+1 > tξ+1 > Tξ > tξ > Tξ−1 > tξ−1 > · · · > T1 > t1,
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such that
∑Tξ

k=tξ

∑
i<j(Aij(k)+Aji(k))(xi(k)−xj(k))2 ≥ β for any ξ ≥ 1. Since, the intervals

[tξ, Tξ] are non-overlapping subintervals of [t0,∞), we conclude that

∞∑
k=t0

∑
i<j

(Aij(k) + Aji(k))(xi(k)− xj(k))
2 = ∞.

Q.E.D.

Now, we can prove the main result of this section.

Theorem 4.4. Let {W (k)} ∈ P∗ be an adapted random chain with weak feedback property.

Then, {W (k)} is infinite flow stable.

Proof. Since {W (k)} ∈ P∗, {W (k)} has an absolute probability process {π(k)} ≥ p∗ > 0

almost surely. Thus it follows that

p∗E
[
W T (k)W (k) | Fk

]
≤ E

[
W T (k)diag(π(k + 1))W (k) | Fk

]
= H(k).

On the other hand, by the weak feedback property, we have

γE[Wij(k) +Wji(k) | Fk] ≤ E
[
W iT (k)W j(k) | Fk

]
,

for some γ ∈ (0, 1] and for all distinct i, j ∈ [m]. Thus, we have p∗γE[Wij(k) +Wji(k) | Fk] ≤
Hij(k). Therefore, for the random dynamics {x(k)} driven by {W (k)} started at arbitrary

t0 ≥ 0 and x(t0) ∈ Rm, by using Theorem 4.3, we have

E[Vπ(x(k + 1), k + 1) | Fk] ≤ Vπ(x(k), k)− p∗γ
∑
i<j

E[Wij(k) +Wji(k) | Fk] (xi(k)− xj(k))
2.

By taking expectation on both sides, we obtain:

E[E[Vπ(x(k + 1), k + 1) | Fk]] ≤ E[Vπ(x(k), k)]

− p∗γE

[∑
i<j

E[Wij(k) +Wji(k) | Fk] (xi(k)− xj(k))
2

]
. (4.12)

Since x(k) is measurable with respect to Fk, it follows

E[Wij(k) +Wji(k) | Fk] (xi(k)− xj(k))
2 = E

[
(Wij(k) +Wji(k)) (xi(k)− xj(k))

2 | Fk

]
.
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Therefore, by Lemma A.3, we obtain

E

[
E

[∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2 | Fk

]]

= E

[∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2

]
.

Using this relation in Eq. (4.12) and using Lemma A.3, we have

E[Vπ(x(k + 1), k + 1)] ≤ E[Vπ(x(k), k)]− p∗γE

[∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2

]
,

and hence, p∗γ
∑∞

k=t0
E
[∑

i<j(Wij(k) +Wji(k))(xi(k)− xj(k))
2
]
≤ E[Vπ(x(t0), t0)].

By Corollary A.2, we have

E

[
∞∑

k=t0

∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2

]
≤ E[Vπ(x(t0), t0)]

implying almost surely,

∞∑
k=t0

∑
i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2 <∞.

Therefore, by Lemma 4.10, we conclude that limk→∞ (xi(k, ω)− xj(k, ω)) = 0 for any i, j

belonging to the same connected component of G∞(ω), for almost all ω ∈ Ω. Q.E.D.

Theorem 4.4 not only shows that the dynamics (3.1) is asymptotically stable almost

surely for chains in P∗ with weak feedback property, but also characterizes the equilibrium

points of such dynamics.

Using the alternative characterization of the infinite flow stability in Lemma 4.1, we have

the following result.

Corollary 4.4. Let {W (k)} be an adapted random chain in P∗ that has weak feedback

property. Then, limk→∞W (k : t0) exists almost surely for all t0 ≥ 0.

In the following section, we characterize a broad class of chains that belong to the class

P∗. Before characterizing this subclass, let us discuss a straightforward generalization of

Theorem 4.4 to any (not necessarily adapted) random chain but assuming a stronger condi-

tion.
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Corollary 4.5. Let {W (k)} be a random chain such that almost all of its sample paths are

in P∗ and almost all sample paths have weak feedback property. Then, {W (k)} is an infinite

flow stable chain.

Proof. Note that if a sample path {W (k, ω)} is in P∗ and has weak feedback property, then

Theorem 4.4 applies to that particular sample path {W (k, ω)}. Thus, if almost all the sample

paths are satisfying these properties, we can conclude that the random chain is infinite flow

stable. Q.E.D.

4.5 Balanced Chains

In this section, we characterize a subclass of P∗ chains and independent random chains,

namely the class of balanced chains with feedback property. We first show that this class

includes many of the chains that have been studied in the existing literature. Then we

show that any balanced chain with feedback property has a uniformly bounded absolute

probability process, or in other words, it belongs to the class P∗.

We start our development by considering deterministic chains and later, we discuss the

random counterparts. For this, let {A(k)} be a deterministic chain of stochastic matrices

and let ASS̄(k) =
∑

i∈S,j∈S̄ Aij(k) for a non-empty S ⊂ [m]. We define balanced chains as

follows.

Definition 4.6. A chain {A(k)} is balanced if there exists a scalar α > 0, such that

ASS̄(k) ≥ αAS̄S(k) for any non-trivial S ⊂ [m] and k ≥ 0. (4.13)

We refer to α as a balancedness coefficient.

Note that in Definition 4.6, the scalar α is time-independent. Furthermore, due to the

inter-changeability of any non-trivial subset S with its complement S̄, for a balanced chain

{A(k)} we have

ASS̄(k) ≥ αAS̄S(k) ≥ α2ASS̄(k),

implying α ≤ 1.

Let us first discuss the graph theoretic interpretation of the balancedness property. For

this, note that every m × m matrix A can be viewed as a directed weighted graph G =

([m], [m]× [m], A), where the edge (i, j) has the weight Aij. For example, in Figure 4.3, the
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Figure 4.3: The representation of the matrix defined in Eq. (4.14) with a directed
weighted graph.

directed graph representation of the matrix
1
2

0 1
2

1
2

0 1
2

0 0 1

 (4.14)

is depicted.

In the graph representation of a matrix A, given a non-trivial subset S ⊂ [m], the set

S × S̄ corresponds to the set of edges going out from the subset S. With this in mind, ASS̄

is the sum of the weights going out of S, i.e. the flow going out from S. On the other hand,

AS̄S is the flow going out from S̄ or in other words the flow entering the set S. Balancedness

property requires that the ratio between the flow going out from each subset of vertices and

the flow entering the subset does not vanish across the time.

Note that we can extend the notion of balanced chains to the chains that are balanced

from some time instance t0 ≥ 0 onward, i.e. the chains such that ASS̄(k) ≥ αAS̄S(k) for some

α > 0, any non-trivial S ⊂ [m], and any k ≥ t0. In this case, all the subsequent analysis can

be applied to the sub-chain {A(k)}k≥t0 .

Before continuing our analysis of the balanced chains, let us discuss some of the well-

known subclasses of these chains:

Balanced Bidirectional Chains

We say that {A(k)} is a balanced bidirectional chain if there exists some α > 0

such that Aij(k) ≥ αAji(k) for any k ≥ 0 and i, j ∈ [m]. These chains are in fact
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balanced, since, for any S ⊂ [m], we have:

ASS̄(k) =
∑

i∈S,j∈S̄

Aij(k) ≥
∑

i∈S,j∈S̄

αAji(k) = αAS̄S(k).

Examples of such chains are bounded bidirectional chains, that are chains such

that Aij(k) > 0 implies Aji(k) > 0 and also positive entries are uniformly bounded

by some γ > 0. In other words, Aij(k) > 0 implies Aij(k) ≥ γ for any i, j ∈ [m].

In this case, for Aij(k) > 0, we have Aij(k) ≥ γ ≥ γAji(k) and for Aij(k) = 0,

we have Aji(k) = 0 and hence, in either of the cases Aij(k) ≥ γAji(k). There-

fore, bounded bidirectional chains are examples of balanced bidirectional chains.

Such chains have been considered in [33, 68, 69]. The reverse implication is not

necessarily true since positive entries of {A(k)} can go to zero but yet maintain

the bounded bidirectional property.

B-connected Chains

Let {A(k)} be a B-connected chain (see Definition 2.4). Such a chain may not

be balanced originally, however, if we instead consider the chain {Ã(k)} defined

by Ã(k) = A((k + 1)B : kB), then {Ã(k)} is balanced. The reason is that since

G(k) = ([m], E(Bk) ∪ E(Bk + 1) ∪ · · · ∪ E(B(k + 1) − 1)) is strongly connected,

for any S ⊂ [m], we have an edge (i, j) ∈ S × S̄ with Ãij(k) ≥ γm. Therefore,

ÃSS̄(k) ≥ γm ≥ γm

m
ÃS̄S(k).

Hence, {Ã(k)} is a balanced chain.

Chains with Common Steady State π > 0

This ensemble consists of chains {A(k)} with πTA(k) = πT for some stochastic

vector π > 0 and all k ≥ 0, which are generalizations of doubly stochastic chains,

where we have π = 1
m
e. Doubly stochastic chains and chains with common steady

state π > 0 are the subject of the studies in [51, 55, 60].

To show that a chain with a common steady state π > 0 is an example of a

balanced chain, let us prove the following lemma.
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Lemma 4.11. Let A be a stochastic matrix and π > 0 be a stochastic left-

eigenvector of A corresponding to the unit eigenvalue, i.e., πTA = πT . Then,

ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial S ⊂ [m], where πmax = maxi∈[m] πi and

πmin = mini∈[m] πi.

Proof. Let S ⊂ [m]. Since πTA = πT , we have∑
j∈S

πj =
∑

i∈[m],j∈S

πiAij =
∑

i∈S,j∈S

πiAij +
∑

i∈S̄,j∈S

πiAij. (4.15)

On the other hand, since A is a stochastic matrix, we have πi
∑

j∈[m]Aij = πi.

Therefore, ∑
i∈S

πi =
∑
i∈S

πi
∑
j∈[m]

Aij =
∑

i∈S,j∈S

πiAij +
∑

i∈S,j∈S̄

πiAij. (4.16)

Comparing Eq. (4.15) and Eq. (4.16), we have
∑

i∈S̄,j∈S πiAij =
∑

i∈S,j∈S̄ πiAij.

Therefore,

πminAS̄S ≤
∑

i∈S̄,j∈S

πiAij =
∑

i∈S,j∈S̄

πiAij ≤ πmaxASS̄.

Hence, we have ASS̄ ≥ πmin

πmax
AS̄S for any non-trivial S ⊂ [m]. Q.E.D.

The above lemma shows that chains with common steady state π > 0 are ex-

amples of balanced chains with balancedness coefficient α = πmin

πmax
. In fact, the

lemma yields a much more general result, as provided below.

Theorem 4.5. Let {A(k)} be a stochastic chain with a sequence {π(k)} of unit

left eigenvectors, i.e., πT (k)A(k) = πT (k). If {π(k)} ≥ p∗ for some scalar p∗ > 0,

then {A(k)} is a balanced chain with a balancedness coefficient α = p∗

1−(m−1)p∗
.

Proof. As proven in Lemma 4.11, we have

ASS̄(k) ≥
πmin(k)

πmax(k)
AS̄S(k),

for any non-trivial S ⊂ [m] and k ≥ 0, which follows by πT (k)A(k) = πT (k). But

if {π(k)} ≥ p∗ > 0, then πmin(k) ≥ p∗ for any k ≥ 0, and since π(k) is a stochastic
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vector, we have πmax(k) ≤ 1− (m− 1)πmin(k) ≤ 1− (m− 1)p∗. Therefore,

ASS̄(k) ≥
πmin(k)

πmax(k)
AS̄S(k) ≥

p∗

1− (m− 1)p∗
AS̄S(k),

for any non-trivial S ⊂ [m]. Thus, {A(k)} is balanced with a coefficient α =
p∗

1−(m−1)p∗
. Q.E.D.

Note that if we define a balanced chain to be a chain that is balanced from some

time t0 ≥ 0, then in Theorem 4.5, it suffice to have lim infk→∞ πi(k) ≥ p∗ > 0 for

all i ∈ [m].

Theorem 4.5 not only characterizes a class of balanced chains, but also provides

a computational way to verify balancedness. Thus, instead of verifying Defi-

nition 4.6 for every S ⊂ [m], it suffice to find a sequence {π(k)} of unit left

eigenvectors of the chain {A(k)} such that the entries of such a sequence do not

vanish as time goes to infinity.

Now, let us generalize the definition of balanced chains to a more general setting of indepen-

dent chains.

Definition 4.7. Let {W (k)} be an independent random chain. We say {W (k)} is balanced

chain if the expected chain {W̄ (k)} is balanced, i.e., W̄SS̄(k) ≥ αW̄S̄S(k) for any S ⊂ [m],

any k ≥ 0, and some α > 0.

Immediate examples of such chains are deterministic balanced chains.

4.5.1 Absolute Probability Sequence for Balanced Chains

In this section, we show that every balanced chain with feedback property has a uniformly

bounded absolute probability sequence, i.e., our main goal is to prove that any balanced and

independent random chain with feedback property is in P∗.

The road map to prove this result is as follows: we first show that this result holds for

deterministic chains with uniformly bounded entries. Then, using this result and geometric

properties of the set of balanced chains with feedback property, we prove the statement for

deterministic chains. Finally, the result follows immediately for random chains.

To prove the result for uniformly bounded deterministic chains, we employ the technique

that is used to prove Proposition 4 in [33]. However, the argument given in [33] needs some

extensions to fit in our more general assumption of balancedness.
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For our analysis, let {A(k)} be a deterministic chain and let

Sj(k) = {ℓ ∈ [m] | Aℓj(k : 0) > 0}

be the set of indices of the positive entries in the jth column of A(k : 0) for j ∈ [m] and

k ≥ 0. Also, let µj(k) be the minimum value of these positive entries, i.e.,

µj(k) = min
ℓ∈S(k)

Aℓj(k : 0) > 0.

Lemma 4.12. Let {A(k)} be a balanced chain with feedback property and with uniformly

bounded positive entries, i.e., there exists a scalar γ > 0 such that Aij(k) ≥ γ for Aij(k) > 0.

Then, Sj(k) ⊆ Sj(k + 1) and µj(k) ≥ γ|Sj(k)|−1 for all j ∈ [m] and k ≥ 0.

Proof. Let j ∈ [m] be arbitrary but fixed. By induction on k, we prove that Sj(k) ⊆ Sj(k+1)

for all k ≥ 0 as well as the desired relation for µj(k). For k = 0, we have A(0 : 0) = I, so

Sj(0) = {j}. Then, A(1 : 0) = A(1) and by the feedback property of the chain {A(k)} we

have Ajj(1) ≥ γ, implying {j} = Sj(0) ⊆ Sj(1). Furthermore, we have |Sj(0)| − 1 = 0 and

µj(0) = 1 ≥ γ0. Hence, the claim is true for k = 0.

Now suppose that the claim is true for k ≥ 0, and consider k+1. Then, for any i ∈ Sj(k),

we have:

Aij(k + 1 : 0) =
m∑
ℓ=1

Aiℓ(k)Aℓj(k : 0) ≥ Aii(k)Aij(k : 0) ≥ γµj(k) > 0.

Thus, i ∈ Sj(k + 1), implying Sj(k) ⊆ Sj(k + 1).

To show the relation for µj(k + 1), we consider two cases:

Case 1: ASj(k)S̄j(k)(k) = 0: In this case for any i ∈ Sj(k), we have:

Aij(k + 1 : 0) =
∑

ℓ∈Sj(k)

Aiℓ(k)Aℓj(k : 0) ≥ µj(k)
∑

ℓ∈Sj(k)

Aiℓ(k) = µj(k), (4.17)

where the inequality follows from i ∈ Sj(k) and ASj(k)S̄j(k)(k) = 0, and the definition of

µj(k). Furthermore, by the balancedness of A(k) and ASj(k)S̄j(k)(k) = 0, it follows that

0 = ASj(k)S̄j(k)(k) ≥ αAS̄j(k)Sj(k)(k) ≥ 0. Hence, AS̄j(k)Sj(k)(k) = 0. Thus, for any i ∈ S̄j(k),

we have

Aij(k + 1 : 0) =
m∑
ℓ=1

Aiℓ(k)Aℓj(k : 0) =
∑

ℓ∈S̄j(k)

Aiℓ(k)Aℓj(k : 0) = 0,

where the second equality follows from Aℓj(k : 0) = 0 for all ℓ ∈ S̄j(k). Therefore, in this

case we have Sj(k + 1) = Sj(k), which by (4.17) implies µj(k + 1) ≥ µj(k). In view of
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Sj(k + 1) = Sj(k) and the inductive hypothesis, we further have

µj(k) ≥ γ|Sj(k)|−1 = γ|Sj(k+1)|−1,

implying µj(k + 1) ≥ γ|Sj(k+1)|−1.

Case 2: ASj(k)S̄j(k)(k) > 0: Since the chain is balanced, we have

AS̄j(k)Sj(k)(k) ≥ αASj(k)S̄j(k)(k) > 0,

implying that AS̄j(k)Sj(k)(k) > 0. Therefore, by the uniform boundedness of the positive

entries of A(k), there exists ξ̂ ∈ S̄j(k) and ℓ̂ ∈ Sj(k) such that Aξ̂ℓ̂(k) ≥ γ. Hence, we have

Aξ̂j(k + 1 : 0) ≥ Aξ̂ℓ̂(k)Aℓ̂j(k : 0) ≥ γµj(k) = γ|Sj(k)|,

where the equality follows by the induction hypothesis. Thus, ξ̂ ∈ Sj(k+1) while ξ̂ ̸∈ Sj(k),

which implies |Sj(k + 1)| ≥ |Sj(k)| + 1. This, together with Aξ̂j(k + 1 : 0) ≥ γ|Sj(k)|, yields

µj(k + 1) ≥ γ|Sj(k)| ≥ γ|Sj(k+1)|−1. Q.E.D.

Note that our proof shows that the bound for the nonnegative entries given in Proposi-

tion 4 of [33] can be reduced from γm
2−m+2 to γm−1.

It can be seen that Lemma 4.12 holds for products A(k : t0) starting with any t0 ≥ 0 and

k ≥ t0 (with appropriately defined Sj(k) and µj(k)). An immediate corollary of Lemma 4.12

is the following result.

Corollary 4.6. Under the assumptions of Lemma 4.12, we have

1

m
eTA(k : t0) ≥ min(

1

m
, γm−1)eT ,

for any k ≥ t0 ≥ 0.

Proof. Without loss of generality, let t0 = 0. By Lemma 4.12, for any j ∈ [m], we have
1
m
eTAj(k : 0) ≥ 1

m
|Sj(k)|γ|Sj(k)|−1, where Aj denotes the jth column of A. For γ ∈ [0, 1], the

function t 7→ tγt−1 defined on [1,m] attains its minimum at either t = 1 or t = m. Therefore,
1
m
eTA(k : 0) ≥ min( 1

m
, γm−1)eT . Q.E.D.

Now, we relax the assumption on the bounded entries in Corollary 4.6.

Theorem 4.6. Let {A(k)} be a balanced chain with feedback property. Let α, β > 0 be

a balancedness and feedback coefficients for {A(k)}, respectively. Then, there is a scalar

γ = γ(α, β) ∈ (0, 1] such that 1
m
eTA(k : 0) ≥ min( 1

m
, γm−1)eT for any k ≥ 0.
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Proof. Let Bα,β be the set of balanced matrices with the balancedness coefficient α and

feedback property with coefficient β > 0, i.e.,

Bα,β :=
{
Q ∈ Rm×m | Q ≥ 0, Qe = e, (4.18)

QSS̄ ≥ αQS̄S for all non-trivial S ⊂ [m], Qii ≥ β for all i ∈ [m]} .

The description in relation (4.18) shows that Bα,β is a bounded polyhedral set in Rm×m. Let

{Q(ξ) ∈ Bα,β | ξ ∈ [nα,β]} be the set of extreme points of this polyhedral set indexed by the

positive integers between 1 and nα,β, which is the number of extreme points of Bα,β.

Since A(k) ∈ Bα,β for all k ≥ 0, we can write A(k) as a convex combination of the

extreme points in Bα,β, i.e., there exist coefficients λξ(k) ∈ [0, 1] such that

A(k) =

nα,β∑
ξ=1

λξ(k)Q
(ξ) with

nα,β∑
ξ=1

λξ(k) = 1. (4.19)

Now, consider the following independent random matrix process defined by:

W (k) = Q(ξ) with probability λξ(k).

In view of this definition any sample path of {W (k)} consists of extreme points of Bα,β.

Thus, every sample path of {W (k)} has a coefficient bounded by the minimum positive

entry of the matrices in {Q(ξ) ∈ Bα,β | ξ ∈ [nα,β]}, denoted by γ = γ(α, β) > 0, where γ > 0

since nα,β is finite. Therefore, by Corollary 4.6, we have 1
m
eTW (k : t0) ≥ min( 1

m
, γm−1)eT for

all k ≥ t0 ≥ 0. Furthermore, by Eq. (4.19) we have E[W (k)] = A(k) for all k ≥ 0, implying

1

m
eTA(k : t0) =

1

m
eTE[W (k : t0)] ≥ min

(
1

m
, γm−1

)
eT ,

which follows from {W (k)} being independent. Q.E.D.

Based on the above results, we are ready to prove the main result for deterministic chains.

Theorem 4.7. Any deterministic balanced chain with feedback property is in P∗.

Proof. Consider a balanced chain {A(k)} with a balancedness coefficient α and a feedback

coefficient β. As in Theorem 4.1, let {tr} be an increasing sequence of positive integers such

that R(k) = limr→∞A(tr : k). As discussed in the proof of Theorem 4.2, any sequence

{π̂TR(k)} is an absolute probability sequence for {A(k)}, where π̂ is a stochastic vector. Let
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π̂ = 1
m
e. Then, by Theorem 4.6,

1

m
eTR(k) =

1

m
lim
r→∞

eTA(tr : k) ≥ p∗eT ,

with p∗ = min( 1
m
, γm−1) > 0. Thus, { 1

m
eTR(k)} is a uniformly bounded absolute probability

sequence for {A(k)}. Q.E.D.

The main result of this section follows immediately from Theorem 4.7.

Theorem 4.8. Any balanced and independent random chain with feedback property is in P∗.

As a result of Theorem 4.8 and Theorem 4.4, the following result holds, which is one of

the central results of this thesis.

Theorem 4.9. Let {W (k)} be any independent random chain which is balanced and has

feedback property. Then, {W (k)} is infinite flow stable.

Proof. By Theorem 4.8, any such chain is in P∗. Thus, Theorem 4.4 implies the result.

Q.E.D.

As we have shown in the preceding discussions, many of the chains that are widely

discussed in other literatures, are examples of balanced chains with feedback property. Thus

Theorem 4.9 not only provides a unified analysis to many of the previous works in this field

but also, provides conditions to which those results can be extended. As it will be shown

in Chapter 5, Theorem 4.9 also shows that Lemma 1.1 holds under general assumptions for

inhomogeneous and random chains of stochastic matrices.

As in Corollary 4.5, let us assert a generalization of Theorem 4.9 to an arbitrary chain.

Corollary 4.7. Let {W (k)} be a random chain such that its sample paths are balanced and

have feedback property almost surely. Then, {W (k)} is an infinite flow stable chain.
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Chapter 5

Implications

In this chapter, we discuss some of the implications of the results developed in Chapter 3

and Chapter 4. We first study the implications of the developed results on the product of

independent random stochastic chains in Section 5.1, and also develop a rate of convergence

result for ergodic independent random chains. Then in Section 5.2, we study the implication

of Theorem 4.9 in non-negative matrix theory. There, we show that Theorem 4.9 is an

extension of a well-known result for homogeneous Markov chains to inhomogeneous products

of stochastic matrices. In Section 5.3, we provide a convergence rate analysis for averaging

dynamics driven by uniformly bounded chains. Then, in Section 5.4, we introduce link-failure

models for random chains and analyze the effect of link-failure on the limiting behavior of

averaging dynamics. In Section 5.5, we study the Hegselmann-Krause model for opinion

dynamics in social networks and provide a new bound on the termination time of such

dynamics. Finally, in Section 5.6, using the developed tools, we propose an alternative proof

for the second Borel-Cantelli lemma.

5.1 Independent Random Chains

Throughout this section, we deal exclusively with an independent random chain {W (k)}
(on Rm). For our study, let {Fk} be the natural filtration associated with {W (k)}, i.e.

Fk = σ(W (0), . . . ,W (k − 1)) for any k ≥ 1 and F0 = {∅,Ω}.
An interesting feature of independent random chains is that except consensus, all other

events that we have discussed so far are trivial events for those chains.

Lemma 5.1. Let {W (k)} be an independent random chain. Then, for any i, j ∈ [m],

i ↔W j is a tale event. Furthermore, ergodicity and infinite flow events are trivial events.

Also, there exists a graph G on m vertices such that the infinite flow graph of {W (k)} is

equal to G almost surely.

Proof. Note that if for some ω ∈ Ω, we have ω ∈ i ↔W j, then by the definition of mutual

ergodicity, it follows that limk→∞ ∥Wi(k : t0, ω) −Wj(k : t0, ω)∥ = 0 for all t0 ≥ 0, where
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W (k : t0, ω) = W (k − 1, ω) · · ·W (t0, ω). Conversely, if limk→∞ ∥Wi(k : t0, ω) − Wj(k :

t0, ω)∥ = 0 for some t0 ≥ 0, then for any t ∈ [t0, 0] we have

lim
k→∞

∥Wi(k : t, ω)−Wj(k : t, ω)∥ = lim
k→∞

∥(ei − ej)
TW (k : t, ω)∥

= lim
k→∞

∥(ei − ej)
TW (k : t0, ω)W (t0 : t, ω)∥

≤ lim
k→∞

∥(ei − ej)
TW (k : t0, ω)∥∥W (t0 : t, ω)∥

= ∥W (t0 : t, ω)∥ lim
k→∞

∥Wi(k : t0, ω)−Wj(k : t0, ω)∥ = 0,

where the inequality follows from the definition of the induced matrix norm. Therefore,

it follows that i ↔W j is a tale event. Since, for the ergodicity event E we have E =∩
i,j∈[m] i ↔W j, it follows that the ergodicity event is also a tale event. Therefore, by

Kolmogorov’s 0-1 law (Theorem A.5), it follows that mutual ergodicity and ergodicity events

are trivial events.

To prove that the infinite flow event is a trivial event, we observe that for any non-trivial

S ⊂ [m], we have
∑∞

k=0WS(k) = ∞ if and only if
∑∞

k=t0
WS(k) = ∞ for any t0 ≥ 0,

which follows from the fact that WS(k) ∈ [0,m] almost surely for any k ≥ 0. Since {W (k)}
is an independent chain, the random process {WS(k)} is an independent chain for any

S ⊂ [m]. Thus, again by application of the Kolmogorov’s 0-1 law, it follows that the event

{ω |
∑∞

k=0WS(k, ω) = ∞} is a trivial event. For the infinite flow event F , we have

F =
∩

S⊂[m]
S ̸=∅

{ω |
∞∑
k=0

WS(k, ω) = ∞},

and hence, the infinite flow event is a trivial event.

Similarly, if G∞ = ([m], E∞) is the (random) infinite flow graph of {W (k)}, then for

any i, j ∈ [m] with i ̸= j, the event
∑∞

k=0 (Wij(k) +Wji(k)) = ∞ is a tale event and

hence, G∞−1(G) is a tale event for any simple graph G. But {G∞−1(G) | G ∈ G([m])} is a

partitioning of Ω and hence, G∞ = G almost surely for a G ∈ G([m]). Q.E.D.

Based on Lemma 5.1 it follows that, as in the case of deterministic chains, we can simply

say that an independent chain is ergodic or has an infinite flow property. Also, we can

view the infinite flow graph of an independent random chain as a deterministic graph. The

following lemma identifies this particular graph among the 2(
m
2 ) simple graphs in G([m]).

Lemma 5.2. The infinite flow graph G∞ of an independent random chain is equal to the

infinite flow graph of the expected chain {W̄ (k)} almost surely.
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Proof. Let Ḡ∞ = ([m], Ē∞) be the infinite flow graph of the expected chain {W̄ (k)}. For any
i, j ∈ [m], we have Wij(k) ∈ [0, 1] almost surely. Since the sequence {Wij(k) +Wji(k)} is an

independent sequence, by Corollary A.4, {i, j} ∈ E∞ almost surely if and only if {i, j} ∈ Ē∞.

Since this holds for any i, j ∈ [m], it follows G∞ = Ḡ∞ almost surely. Q.E.D.

Recall that any absolute probability process for an independent random chain is a deter-

ministic sequence, which is true because W̄ (k) = E[W (k) | Fk] is a deterministic matrix for

any k ≥ 0 and any independent random chain admits such a sequence.

Based on the above observations and Theorem 4.4, we have the following result for

independent random chains.

Theorem 5.1. Let {W (k)} be an independent random chain. Then, {W (k)} is in P∗ if and

only if {W̄ (k)} is in P∗. Furthermore, if {W (k)} is a chain with weak feedback property and

{W̄ (k)} is in P∗, then the following properties are equivalent

(a) i↔W j,

(b) i↔W̄ j,

(c) i, j belong to a same connected component of Ḡ∞,

(d) i, j belong to a same connected component of G∞.

As a consequence of the Theorem 5.1, we can show the ergodicity of B-connected random

chains in expectation.

Corollary 5.1. Let {W (k)} be an independent random chain with weak feedback property.

Also, suppose that {W̄ (k)} is B-connected. Then, {W (k)} is ergodic almost surely.

Proof. By Theorem 2.4, for any such a chain, {W̄ (k)} is an ergodic chain. Furthermore, by

Theorem 2.4, we have limk→∞ W̄ (k : t0) = evT (t0) where v(t0) ≥ η > 0 for some η > 0.

Thus, {v(k)} ≥ η is a uniformly bounded absolute probability sequence for {W̄ (k)}. Thus,
by Theorem 5.1, {W (k)} is ergodic almost surely. Q.E.D.

5.1.1 Rate of Convergence

Here we establish a rate of convergence result for independent random chains in P∗ with

infinite flow property and with weak feedback property.

To derive the rate of convergence result, we first show some intermediate results.
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Lemma 5.3. Let {A(k)} be a chain of stochastic matrices and {z(k)} be the dynamics driven

by {A(k)} started at time t0 = 0 with a starting point z(0) ∈ Rm. Let σ be a permutation of

the index set [m] corresponding to the nondecreasing ordering of the entries zℓ(0), i.e., σ is

a permutation on [m] such that zσ1(0) ≤ · · · ≤ zσm(0). Also, let T ≥ 1 be such that

T−1∑
k=0

AS(k) ≥ δ for every non-trivial S ⊂ [m], (5.1)

where δ ∈ (0, 1) is arbitrary. Then, we have

T−1∑
k=0

∑
i<j

(Aij(k) + Aji(k)) (zj(k)− zi(k))
2 ≥ δ(1− δ)2

zσm(0)− zσ1(0)

m−1∑
i=1

(zσi+1
(0)− zσi

(0))3.

Proof. Relation (5.1) holds for any nontrivial set S ⊂ [m]. Hence, without loss of generality

we may assume that the permutation σ is identity (otherwise we will relabel the indices of

the entries in z(0) and update the matrices accordingly). Thus, we have z1(0) ≤ · · · ≤ zm(0).

For each ℓ = 1, . . . ,m− 1, let Sℓ = {1, . . . , ℓ} and define time tℓ ≥ 1, as follows:

tℓ = argmin
t≥1

{
t−1∑
k=0

ASℓ
(k) ≥ δ

zℓ+1(0)− zℓ(0)

zm(0)− z1(0)

}
.

Since the entries of z(0) are nondecreasing, we have δ zℓ+1(0)−zℓ(0)

(zm(0)−z1(0))
≤ δ for all ℓ = 1, . . . ,m−1.

Thus, by relation (5.1), the time tℓ ≥ 1 exists and tℓ ≤ T for each ℓ.

We next estimate zj(k)− zi(k) for all i < j and any time k = 0, · · · , T − 1. For this, we

introduce for 0 ≤ k ≤ T − 1 and i < j the index sets aij(k) ⊂ [m], as follows:

aij(k) = {ℓ ∈ [m] | k ≤ tℓ − 1, ℓ ≥ i, ℓ+ 1 ≤ j}.

Let k ≤ tℓ − 1 for some ℓ. Since Sℓ = {1, . . . , ℓ}, we have i ∈ Sℓ and j ∈ S̄ℓ. Thus, by

Lemma 4.9, for any k ≥ 1, we have

zi(k) ≤ max
s∈Sℓ

zs(0) + (zm(0)− z1(0))
k−1∑
τ=0

ASℓ
(τ),

zj(k) ≥ min
r∈S̄ℓ

zr(0)− (zm(0)− z1(0))
k−1∑
τ=0

ASℓ
(τ).

Furthermore, maxs∈Sℓ
zs(0) = zℓ(0) and minr∈S̄ℓ

zr(0) = zl+1(0) since Sℓ = {1, . . . , ℓ} and
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z1(0) ≤ · · · ≤ zm(0). Thus, it follows

zi(k)− zℓ(0) ≤ (zm(0)− z1(0))
k−1∑
τ=0

ASℓ
(τ),

zℓ+1(0)− zj(k) ≤ (zm(0)− z1(0))
k−1∑
τ=0

ASℓ
(τ).

By the definition of time tℓ, we have (zm(0) − z1(0))
∑k−1

τ=0ASℓ
(τ) < δ (zℓ+1(0)− zℓ(0)) for

k ≤ tℓ − 1. Hence, by using this and the definition of aij(k), for any ℓ ∈ aij(k) we have

zi(k)− zℓ(0) ≤ δ(zℓ+1(0)− zℓ(0)), (5.2)

zℓ+1(0)− zj(k) ≤ δ(zℓ+1(0)− zℓ(0)). (5.3)

Now suppose that aij(k) = {ℓ1, . . . , ℓr} for some r ≤ m − 1 and ℓ1 ≤ · · · ≤ ℓr. By

choosing ℓ = ℓ1 in (5.2) and ℓ = ℓr in (5.3), and by letting αi = zi+1(0)− zi(0), we obtain

zj(k)− zi(k) ≥ zℓr+1(0)− zℓ1(0)− δ(αℓr + αℓ1).

Since zi(0) ≤ zi+1(0) for all i = 1, . . . ,m − 1, we have zℓ1(0) ≤ zℓ1+1(0) ≤ · · · ≤ zℓr(0) ≤
zℓr+1(0), which combined with the preceding relation yields zj(k)− zi(k) ≥

∑r
ξ=1(zℓξ+1(0)−

zℓξ(0))− δ(αℓr + αℓ1). Using αi = zi+1(0)− zi(0) and aij(k) = {ℓ1, . . . , ℓr}, we further have

zj(k)− zi(k) ≥
r∑

ξ=1

αℓξ − δ(αℓr + αℓ1) ≥ (1− δ)
r−1∑
ξ=1

αℓξ = (1− δ)
∑

ℓ∈aij(k)

αℓ. (5.4)

By Eq. (5.4), it follows that

∑
i<j

(Aij(k) + Aji(k)) (zj(k)− zi(k))
2 ≥ (1− δ)2

∑
i<j

(Aij(k) + Aji(k))

 ∑
ℓ∈aij(k)

αℓ

2

≥ (1− δ)2
∑
i<j

(Aij(k) + Aji(k))

 ∑
ℓ∈aij(k)

α2
ℓ

 ,

where the last inequality holds by αℓ ≥ 0. In the last term in the preceding relation, the

coefficient of α2
ℓ is equal to (1− δ)2ASℓ

(k). Furthermore, by the definition of aij(k), we have
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ℓ ∈ aij(k) only when k ≤ tℓ − 1. Therefore,

∑
i<j

(Aij(k) + Aji(k)) (zj(k)− zi(k))
2 ≥ (1− δ)2

∑
i<j

(Aij(k) + Aji(k))

 ∑
ℓ∈aij(k)

α2
ℓ


= (1− δ)2

∑
{ℓ|k≤tℓ−1}

ASℓ
(k)α2

ℓ .

Summing these relations over k = 0, . . . , T − 1, we obtain

T−1∑
k=0

∑
i<j

(Aij(k) + Aji(k)) (zj(k)− zi(k))
2 ≥ (1− δ)2

T−1∑
k=0

∑
{ℓ|k≤tℓ−1}

ASℓ
(k)α2

ℓ

≥ (1− δ)2
m−1∑
ℓ=1

(
tℓ−1∑
k=0

ASℓ
(k)

)
α2
ℓ ,

where the last inequality follows by exchanging the order of summation. By the definition

of tℓ and using αℓ = zℓ+1(0)− zℓ(0), we have
∑tℓ−1

k=0 ASℓ
(k) ≥ δαℓ

zm(0)−z1(0)
, implying

T−1∑
k=0

∑
i<j

(Aij(k) + Aji(k)) (zj(k)− zi(k))
2 ≥ δ(1− δ)2

m−1∑
ℓ=1

α3
ℓ

zm(0)− z1(0)
.

Q.E.D.

Another intermediate result that we use in our forthcoming discussions is the following.

Lemma 5.4. Let π ∈ Rm be a stochastic vector, and let x ∈ Rm be such that x1 ≤ · · · ≤ xm.

Then, we have

1

m− 1
V (x) ≤

m−1∑
i=1

(xi+1 − xi)
2, (5.5)

m−1∑
i=1

(xi+1 − xi)
2

m− 1
≤

m−1∑
i=1

(xi+1 − xi)
3

xm − x1
. (5.6)

and hence,

1

(m− 1)2
V (x) ≤ 1

xm − x1

m−1∑
i=1

(xi+1 − xi)
3,

where V (x) =
∑m

i=1 πi(xi − πTx)2.
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Proof. We first show relation (5.5). We have xi ≤ xm for all i. Since π is stochastic, we

also have xm ≥ πTx ≥ x1. Thus, V (x) =
∑m

i=1 πi(xi − πTx)2 ≤ (xm − x1)
2. By writing

xm − x1 =
∑m−1

i=1 (xi+1 − xi), we obtain

(xm − x1)
2 = (m− 1)2

(
1

m− 1

m−1∑
i=1

(xi+1 − xi)

)2

≤ (m− 1)
m−1∑
i=1

(xi+1 − xi)
2,

where the last inequality holds by the convexity of the function s 7→ s2. Using V (x) ≤
(xm − x1)

2 and the preceding relation we obtain relation (5.5).

To prove relation (5.6), we have

(xm − x1)
m−1∑
i=1

(xi+1 − xi)
2 =

m−1∑
j=1

(xj+1 − xj)
m−1∑
i=1

(xi+1 − xi)
2

=
m−1∑
j=1

(xj+1 − xj)
3 +

∑
j<i

(
(xj+1 − xj)(xi+1 − xi)

2 + (xi+1 − xi)(xj+1 − xj)
2
)

(5.7)

Now, consider scalars α ≥ 0 and β ≥ 0, and let u = (α, β) and v = (β2, α2). Then, by

Hölder’s inequality (Theorem B.1) with p = 3, q = 3
2
, we have uTv ≤ ∥u∥p ∥v∥q. Hence,

αβ2 + βα2 ≤
(
α3 + β3

) 1
3
(
β3 + α3

) 2
3 = α3 + β3. (5.8)

By using (5.8) in (5.7) with αj = (xj+1 − xj) and βi = (xi+1 − xi) for different indices j and

i, 1 ≤ j < i ≤ m− 1, we obtain

(xm − x1)
m−1∑
i=1

(xi+1 − xi)
2 ≤

m−1∑
j=1

(xj+1 − xj)
3 +

∑
j<i

(
(xj+1 − xj)

3 + (xi+1 − xi)
3
)

= (m− 1)
m−1∑
i=1

(xi+1 − xi)
3,

which completes the proof. Q.E.D.

Now, let {W (k)} be an independent random chain with infinite flow property. Let t0 = 0

and for any q ≥ 1, let

tq = argmin
t≥tq−1+1

Pr

min
S⊂[m]

t−1∑
k=tq−1

WS(k) ≥ δ

 ≥ ϵ, (5.9)
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where ϵ, δ ∈ (0, 1) are arbitrary. Define

Aq =

ω ∣∣∣ min
S⊂[m]

tq+1−1∑
k=tq

WS(k, ω) ≥ δ

 for q ≥ 0. (5.10)

Since the chain has infinite flow property, the infinite flow event F occurs a.s. Therefore,

the time tq is finite for all q.

We next provide a rate of convergence result for a random chain in P∗ with weak feedback

property.

Theorem 5.2. Let {W (k)} be an independent random chain in P∗ and weak feedback prop-

erty. Then, for any q ≥ 1, we have:

E[V (x(tq), tq)] ≤
(
1− ϵδ(1− δ)2γp∗

(m− 1)2

)q

E[V (x(0), 0)]

Proof. Let {π(k)} ≥ p∗ be an absolute probability sequence for {W (k)}. Fix v ∈ Rm and

let x(0, ω) = v for any ω ∈ Ω. Let us denote the (random) ordering of the entries of the

random vector x(tq) by η
q for all q. Thus, at time tq, we have xηq1(tq) ≤ · · · ≤ xηqm(tq).

Now, let q ≥ 0 be arbitrary and fixed, and consider the set Aq in (5.10). By the definition

of Aq, we have
∑tq+1−1

k=tq
WS(k, ω) ≥ δ for any S ⊂ [m] and ω ∈ Aq. Thus, by Lemma 5.3, we

obtain for any ω ∈ Aq,

tq+1−1∑
k=tq

∑
i<j

(Wij(k) +Wji(k)) (xi(k)− xj(k))
2(ω) ≥ δ(1− δ)2

d(tq)(ω)

m−1∑
ℓ=1

(xηqℓ+1
(tq)− xηqℓ (tq))

3(ω)

≥ δ(1− δ)2

(m− 1)2
V (x(tq), tq)(ω),

where d(tq) = xηqm(tq) − xηq1(tq) and the last inequality follows by Lemma 5.4. We can

compactly write the inequality as:

tq+1−1∑
k=tq

∑
i<j

(Wij(k) +Wji(k)) (xi(k)− xj(k))
2 ≥ δ(1− δ)2

(m− 1)2
V (x(tq), tq)1Aq , (5.11)

Observe that x(k) and W (k) are independent since the chain is independent. Therefore, by

Theorem 4.3, we have

E[V (x(tq+1), tq+1)− V (x(tq), tq)] ≤ −
tq+1−1∑
k=tq

∑
i<j

Hij(k)E
[
(xi(k)− xj(k))

2
]
,
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with H(k) = E
[
W T (k)diag(π(k + 1))W (k)

]
. Since {π(k)} ≥ p∗ > 0, we have,

Hij(k) = E
[
(W i(k))Tdiag(π(k + 1))W j(k)

]
≥ p∗E

[
(W i(k))TW j(k)

]
≥ p∗γ (E[Wij(k)] + E[Wji(k)]) .

Therefore,

E[V (x(tq+1))]− E[V (x(tq))] ≤ −p∗γ E

tq−1∑
k=tq

∑
i<j

(Wij(k) +Wji(k)) (xi(k)− xj(k))
2

 .
Further, using relation (5.11), we obtain

E[V (x(tq+1), tq+1)]− E[V (x(tq), tq)] ≤ −p∗γ E

[
δ(1− δ)2

(m− 1)2
1AqV (x(tq), tq)

]
≤ −ϵδ(1− δ)2γp∗

(m− 1)2
E[V (x(tq), tq)] ,

where the last inequality follows by Pr (Aq) ≥ ϵ, and the fact that 1Aq and V (x(tq), tq) are

independent (since x(tq) depends on information prior to time tq and the set Aq relies on

information at time tq and later). Hence, it follows

E[V (x(tq+1), tq+1)] ≤
(
1− ϵδ(1− δ)2γp∗

(m− 1)2

)
E[V (x(tq), tq)] .

Therefore, for arbitrary q ≥ 0 we have

E[V (x(tq), tq)] ≤
(
1− ϵδ(1− δ)2γp∗

(m− 1)2

)q

E[V (x(0), 0)] .

Q.E.D.

Note that in Theorem 5.2, the starting point x(0) can be random. However, if x(0) = v

a.s. for some v ∈ Rm, then E[V (x(0), 0)] = V (v, 0). Also, if we let d(x) = maxi∈[m] xi −
minj∈[m] xj, then |vi − πT (0)v| ≤ d(v) for all i ∈ [m], and hence,

E[V (x(0), 0)] = V (v, 0) =
m∑
i=1

πi(0)(vi − πT (0)v)2 ≤
m∑
i=1

πi(0)d
2(v) = d2(v),

where the last equality follow from π(0) being stochastic. Thus, the following corollary is

immediate.

73



Corollary 5.2. Let {W (k)} be an independent random chain in P∗ with weak feedback

property, started at a deterministic point v ∈ Rm. Then, for any q ≥ 1, we have:

E[V (x(tq), tq)] ≤
(
1− ϵδ(1− δ)2γp∗

(m− 1)2

)q

d2(v).

5.1.2 i.i.d. Chains

As we assume more structure on a random chain, we may deduce more of its properties.

For example, as discussed earlier in this chapter, for any independent random chain, the

ergodicity and the infinite flow property are trivial events. However, the consensus event

may not be a trivial event as shown in the following example.

Example 5.1. For p ∈ (0, 1), let {W (k)} be an independent random chain defined by

W (0) =

{
1
m
J with probability p

I with probability 1− p
,

and W (k) = I for all k > 0. Then, although the chain {W (k)} is an independent chain, it

admits consensus with probability p and hence, the consensus event is not a trivial event for

this chain.

Although the consensus event is not a trivial event for an independent chain, it is a trivial

event for an i.i.d. chain. To establish this, we make use of the following lemma.

Lemma 5.5. Let A ∈ Sm and x ∈ Rm. Also, let A be such that

max
i∈[m]

[Aeℓ]i − min
j∈[m]

[Aeℓ]j ≤
1

2m
for any ℓ ∈ [m],

where [v]i denotes the ith component of a vector v. Then, we have maxi[Ax]i−minj[Ax]j ≤ 1
2

for any x ∈ [0, 1]m.

Proof. Let x ∈ Rm with xℓ ∈ [0, 1] for any ℓ ∈ [m]. Then, we have for any i, j ∈ [m],

yi − yj =
m∑
ℓ=1

(Aiℓ − Ajℓ)xℓ ≤
m∑
ℓ=1

|Aiℓ − Ajℓ| =
m∑
ℓ=1

|[Aeℓ]i − [Aeℓ]j| .

By the assumption on A, we obtain |[Aeℓ]i − [Aeℓ]j| ≤ maxi∈[m][Aeℓ]i −minj∈[m][Aeℓ]j ≤ 1
2m

.

Hence, yi − yj ≤
∑m

ℓ=1
1
2m

= 1
2
, implying maxi yi −minj yj ≤ 1

2
. Q.E.D.

74



We now provide our main result for i.i.d. chains, which states that the ergodicity and the

consensus events are almost surely equal for such chains. We establish this result by using

Lemma 5.5 and the Borel-Cantelli lemma (Lemma A.6).

Theorem 5.3. We have E = C almost surely for any i.i.d. random chain.

Proof. Since E ⊆ C , the assertion is true when consensus occurs with probability 0. There-

fore, it suffices to show that if the consensus occurs with a probability p other than 0, the

two events are almost surely equal. Let Pr (C ) = p with p ∈ (0, 1]. Then, for all ω ∈ C ,

lim
k→∞

d(x(k, ω)) = 0,

where d(x) = maxi xi − minj xj and {x(k, ω)} is the sequence generated by the dynamic

system (3.1) with some x(0, ω) ∈ Rm.

For every ℓ ∈ [m], let {xℓ(k, ω)} be the sequence generated by the dynamic system in (3.1)

with x(0, ω) = eℓ. Then, for any ω ∈ C , there is the smallest integer Kℓ(ω) ≥ 0 such that

d(xℓ(k, ω)) ≤ 1

2m
for all k ≥ Kℓ(ω).

Note that d(xℓ(k, ω)) is a non-increasing sequence (of k) for each ℓ ∈ [m]. Hence, by letting

K(ω) = maxℓ∈[m]K
ℓ(ω) we obtain d(xℓ(k, ω)) ≤ 1

2m
for all ℓ ∈ [m] and k ≥ K(ω). Thus, by

applying Lemma 5.5, we have for almost all ω ∈ C ,

d(x(k, ω)) ≤ 1

2
, (5.12)

for all k ≥ K(ω) and x(0) ∈ [0, 1]m. By the definition of consensus, we have

lim
N→∞

Pr (K ≤ N) ≥ Pr (C ) = p.

Thus, by the continuity of the measure, there exists an integerN1 such that Pr (K < N1) ≥ p
2
.

Now, let time T ≥ 0 be arbitrary, and let lTk denote the N1-tuple of the random matrices

W (s) driving the system (3.1) for s = T +N1k, . . . , T +N1(k + 1)− 1 and k ≥ 0, i.e.,

lTk =
(
W (T +N1k),W (T +N1k + 1), . . . ,W (T +N1(k + 1)− 1)

)
for all k ≥ 0.

Let LN denote the collection of all N -tuples (A1, . . . , AN) of matrices Ai ∈ Sm, i ∈ [N ] such

that for x(N) = ANAN−1 · · ·A1x(0) with x(0) ∈ [0, 1]m, we have d(x(N)) ≤ 1
2
. By the defini-

tions of lTk and LN , relation (5.12) and relation Pr (K < N1) ≥ p
2
state that Pr

(
{lT0 ∈ LN1}

)
≥

p
2
. By the i.i.d. property of the chain, the events {lTk ∈ LN1}, k ≥ 0, are i.i.d. and the proba-
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Ergodicity=Consensus
0-1 events

Infinite Flow
0-1 event

Figure 5.1: Relations among consensus, ergodicity, and infinite flow events for an i.i.d.
chain.

bility of their occurrence is equal to Pr
(
{lT0 ∈ LN1}

)
, implying that Pr

(
{lTk ∈ LN1}

)
≥ p

2
for

all k ≥ 0. Consequently,
∑∞

k=0 Pr
(
{lTk ∈ LN1}

)
= ∞. Since the events {lTk ∈ LN1} are i.i.d.,

by Borel-Cantelli lemma (Lemma A.6) Pr
(
{ω ∈ Ω | ω ∈ {lTk ∈ LN1} i.o.}

)
= 1. Observing

that the event {ω ∈ Ω | ω ∈ {lTk ∈ LN1} i.o.} is contained in the consensus event for the

chain {W (T + k)}k≥0, we see that the consensus event for the chain {W (T + k)}k≥0 occurs

almost surely. Since this is true for arbitrary T ≥ 0 it follows that the chain {W (k)} is

ergodic a.s., implying C ⊆ E a.s. This and the inclusion E ⊆ C yield C = E a.s. Q.E.D.

Theorem 5.3 extends the equivalence result between the consensus and ergodicity for

i.i.d. chains given in Theorem 3.a and Theorem 3.b of [30] (and hence Corollary 4 in [30]),

which have been established there assuming that the matrices have positive diagonal entries

almost surely.

The relations among C , E , and F for i.i.d. random chains are illustrated in Figure 5.1.

5.2 Non-negative Matrix Theory

In this section, we show that Theorem 4.9 is a generalization of a well-known result in the

non-negative matrix theory which plays a central role in the theory of ergodic Markov chains.

For this let us revisit the definitions of aperiodicity and irreducibility for a stochastic matrix.

Definition 5.1. (Irreducibility, [70] page 45) A stochastic matrix A is said to be irreducible

if there is no permutation matrix P such that:

P TAP =

[
X Y

0 Z

]
,

where X, Y, Z are i× i, i× (m− i), and (m− i)× (m− i) matrices for some i ∈ [m− 1] and

0 is the (m− i)× i matrix with all entries equal to zero.
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Definition 5.2. (Aperiodicity, [71] page 119) An irreducible matrix A is said to be aperiodic

if we have

g.c.d. ({n | An
ii > 0}) = 1 for some i ∈ [m],

where g.c.d.(M) is the greatest common divisor of the elements in the set M ⊆ Z+. Further-

more, it is said to be strongly aperiodic if Aii > 0 for all i ∈ [m].

For an aperiodic and irreducible matrix A, we have the following result.

Lemma 5.6. ([70] page 46) Let A be an irreducible and aperiodic stochastic matrix. Then,

Ak converges to a rank matrix.

Let us reformulate irreducibility using the tools we have developed in Chapter 3 and

Chapter 4.

Lemma 5.7. A stochastic matrix A is an irreducible matrix if and only if the static chain

{A} is a balanced chain with infinite flow property.

Proof. By the definition, a matrix A is irreducible if there is no permutation matrix P such

that

P TAP =

[
X Y

0 Z

]
.

Since A ≥ 0, we have that A is reducible if and only if there exists a subset S = {1, . . . , i}
for some i ∈ [m− 1], such that

0 = [P TAP ]S̄S =
∑

i∈S̄,j∈S

ei[P
TAP ]ej =

∑
i∈S̄,j∈S

Aσiσj
=

∑
i∈Q̄,j∈Q

Aij,

where σi = P ({i}) and Q = {σi | i ∈ S}. Thus, A is irreducible if and only if ASS̄ > 0 for

any non-trivial S ⊂ [m]. Therefore, if we let

α = min
S⊂[m]
S ̸=∅

ASS̄

AS̄S

,

then α > 0 and we conclude that {A} is balanced with balanced-ness coefficient α. Also

since AS ≥ ASS̄ > 0, we conclude that {A} has infinite flow property.

Now, if {A} has infinite flow property, then it follows that ASS̄ > 0 or AS̄S > 0 for any

non-trivial S ⊂ [m]. By balanced-ness, it follows that min(ASS̄, AS̄S) > 0 for any non-trivial

S ⊂ [m], implying that A is irreducible. Q.E.D.
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For the aperiodicity, note that A is strongly aperiodic if and only if {A} has strong feed-

back property. Thus, let us generalize the concepts of irreducibility and strong aperiodicity

to an independent random chain.

Definition 5.3. We say that an independent random chain {W (k)} is irreducible if {W̄ (k)}
is a balanced chain with infinite flow property. Furthermore, we say that {W (k)} is strongly

aperiodic if {W (k)} has feedback property.

Based on Definition 5.3 and Theorem 4.4, we have the following extension of Lemma 5.6

for random chains.

Theorem 5.4. Let {W (k)} be an irreducible and strongly aperiodic independent random

chain. Then, for any t0 ≥ 0, the product W (k : t0) converges to a rank one stochastic matrix

almost surely (as k goes to infinity). Moreover, if {W (k)} does not have the infinite flow

property, the product W (k : t0) almost surely converges to a (random) matrix that has rank

at most τ for any t0 ≥ 0, where τ is the number of connected components of the infinite flow

graph of {W̄ (k)}.

Proof. By Theorem 4.4, any balanced chain {W̄ (k)} with strong feedback property is infinite

flow stable. Also, by Lemma 5.2 {W̄ (k)} has infinite flow property if and only if {W (k)} has

infinite flow property. Thus we conclude that {W (k)} is ergodic almost surely which means

that for any t0 ≥ 0, the product W (k : t0) converges almost surely to a rank one stochastic

matrix as k goes to infinity.

Now, if {W (k)} does not have the infinite flow property, by Theorem 5.1, for any t0 ≥ 0,

the productW (k : t0) converges to some matrixW (∞ : t0). Also, limk→∞ ∥Wi(k : t0)−Wj(k :

t0)∥ = 0 for any i, j belonging to a same connected component of the infinite flow graph

of {W̄ (k)}. Thus, the rows of W (∞ : t0) admits at most τ different values, where τ is the

number of the connected components of the infinite flow graph of {W̄ (k)}. Q.E.D.

An immediate consequence of Theorem 5.4 is a generalization of Lemma 5.6 to inhomo-

geneous chains.

Corollary 5.3. Let {A(k)} be an irreducible chain of stochastic matrices that is strongly

aperiodic. Then, A(∞ : t0) = limk→∞A(k : t0) exists and it is a rank one matrix for any

t0 ≥ 0.

5.3 Convergence Rate for Uniformly Bounded Chains

Consider a deterministic chain {A(k)} that is uniformly bounded, i.e. Aij(k) ≥ γ for any

i, j ∈ [m] and k ≥ 0 such that Aij(k) > 0, where γ > 0. Here, we provide a rate of
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convergence result for a uniformly bounded chain that, as special cases, includes several of

the existing results that have been derived using different methods.

Let {A(k)} be a deterministic chain that is uniformly bounded by γ > 0. By the necessity

of the infinite flow (Theorem 3.1), to ensure ergodicity, {A(k)} should have infinite flow

property. So as in the case of random dynamics (Eq. (5.9)), let t0 = 0 and for q ≥ 1,

recursively, let tq be defined by

tq = argmin
t≥tq−1+1

min
S⊂[m]

t−1∑
k=tq−1

AS(k) > 0. (5.13)

Basically, tq is the qth time that there is a non-zero flow over every cut [S, S̄], for every

non-trivial S ⊂ [m]. Here, using the same line of argument as in the proof of Lemma 9 in

[51], we have the following result.

Theorem 5.5. Let {A(k)} be a chain in P∗ with feedback property and let tq be as defined

in Eq. (5.13). Then, for any dynamics {x(k)} driven by {A(k)} and for any q ≥ 0, we have

Vπ(x(tq+1), tq+1) ≤
(
1− γp∗

2(m− 1)

)
Vπ(x(tq), tq),

where p∗ > 0 is such that {π(k)} ≥ p∗ for an absolute probability sequence {π(k)} of {A(k)}.

Proof. Note that, since {A(k)} has feedback property and is uniformly bounded, it follows

that Aii(k) ≥ γ for any k ≥ 0 and i ∈ [m]. Now, by Theorem 4.3, for any q ≥ 0, we have:

Vπ(x(tq+1), tq+1) = Vπ(x(tq), tq)−
tq+1−1∑
k=tq

∑
i<j

Hij(k)(xi(k)− xj(k))
2

≤ Vπ(x(tq), tq)− p∗
tq+1−1∑
k=tq

∑
i<j

Lij(k)(xi(k)− xj(k))
2, (5.14)

where H(k) = AT (k)diag(π(k + 1))A(k) and L(k) = AT (k)A(k). Now, without loss of

generality we can assume that x(tq) is ordered, i.e. x1(tq) ≤ · · · ≤ xm(tq) and following the

same lines of arguments as those used to derive Lemma 8 in [51], it follows that

Vπ(x(tq), tq)− V (x(tq+1), tq+1) ≥
γp∗

2

m−1∑
i=1

(xi+1(tq)− xi(tq))
2. (5.15)
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But by Lemma 5.4, it follows that

m−1∑
i=1

(xi+1(tq)− xi(tq))
2 ≥ 1

m− 1
Vπ(x(tq), tq). (5.16)

Combining (5.15) and (5.16), we conclude

Vπ(x(tq), tq)− Vπ(x(tq+1), tq+1) ≥
γp∗

2(m− 1)
Vπ(x(tq), tq),

which completes the proof. Q.E.D.

Now, if we have B-connectivity assumption on the chain {A(k)}, we can replace tq by

qB and hence, the following result follows immediately.

Corollary 5.4. For a B-connected chain {A(k)} with an absolute probability sequence

{π(k)} ≥ p∗, we have:

Vπ (x((q + 1)B), (q + 1)B) ≤
(
1− γp∗

2(m− 1)

)
Vπ(x(qB), qB) for all q ≥ 0,

where {x(k)} is a dynamics driven by {A(k)}.

If we furthermore assume that {A(k)} is a doubly stochastic chain, then { 1
m
e} is an

absolute probability sequence for {A(k)}. Therefore, in this case we have p∗ = 1
m

and hence,

V (x((q + 1)B)) ≤
(
1− γ

2m(m− 1)

)
V (x(qB)) ≤

(
1− γ

2m2

)
V (x(qB)), (5.17)

where V (x) = 1
m

∑m
i=1(xi −

1
m
eTx)2. This result is the same as the fast rate of convergence

given in Theorem 10 in [51]. On the other hand, for a general B-connected chain, we have

an absolute probability sequence {π(k)} ≥ γ(m−1)B as shown below.

Lemma 5.8. Let {A(k)} be a B-connected chain. Then, {A(k)} admits an absolute proba-

bility sequence such that {π(k)} ≥ γ(m−1)B.

Proof. By Theorem 2.4, {A(k)} is an ergodic chain with limk→∞A(k : t0) = eπT (t0) with

π(t0) ≥ γ(m−1)B for any t0 ≥ 0. Thus by Lemma 4.4, it follows that {π(k)} is an absolute

probability sequence for {A(k)} and {π(k)} ≥ γ(m−1)B. Q.E.D.

Thus, by Lemma 5.8 and Corollary 5.4, it follows that

Vπ(x((q + 1)B), (q + 1)B) ≤
(
1− γ(m−1)B+1

2(m− 1)

)q

Vπ(x(0), 0), (5.18)
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which is similar to the slow upper bound for the rate of convergence for general B-connected

chains, as discussed in Theorem 8.1 in [24], that is often derived using the Lyapunov function

d(x) = maxi∈[m] xi −minj∈[m] xj.

Therefore, Theorem 5.5, results in different rate of convergence results for averaging

dynamics. Comparing the slow rate of convergence result for general B-connected chains in

(5.18) and the fast rate of convergence result for doubly stochastic B-connected chains in

(5.17), we can see that the lower bound p∗ on the entries of an absolute probability sequence

{π(k)} plays an important role in the rate of convergence of averaging dynamics.

5.4 Link Failure Models

Consider a random averaging scheme driven by an independent random chain {W (k)}. Sup-
pose that an adversary randomly sets each ofWij(k) to zero. We refer to the resulted process

as a link-failure process. In this section, we consider the effect of the link failure process on

ergodicity and limiting behavior of an independent random chain {W (k)}.
Here, we assume that we have an underlying random chain and that there is another

random process that models link failure in the random chain. We use {W (k)} to denote

the underlying adapted random chain, as in Eq. (3.1). We let {F (k)} denote a link failure

process, which is independent of the underlying chain {W (k)}. Basically, the failure process
reduces the information flow between agents in the underlying random chain {W (k)}. For

the failure process, we have either Fij(k) = 0 or Fij(k) = 1 for all i, j ∈ [m] and k ≥ 0, so

that {F (k)} is a binary matrix sequence. We define the link-failure chain as the random

chain {U(k)} given by

U(k) = W (k) · (eeT − F (k)) + diag([W (k) · F (k)]e), (5.19)

where “·” denotes the element-wise product of two matrices. To illustrate this chain, suppose

that we have a random chain {W (k)} and suppose that each entry Wij(k) is set to zero

(fails), when Fij(k) = 1. In this way, F (k) induces a failure pattern on W (k). The term

W (k) · (eeT − F (k)) in Eq. (5.19) reflects this effect. Thus, W (k) · (eeT − F (k)) does not

have some of the entries of W (k). This lack is compensated by the feedback term which

is equal to the sum of the failed links, the term diag([W (k) · F (k)]e). This is the same as

adding
∑

j ̸=i[W (k) · F (k)]ij to the self-feedback weight Wii(k) of agent i at time k in order

to ensure the stochasticity of U(k).

Our discussion will be focused on a special class of link failure processes, which are

introduced in the following definition.
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Definition 5.4. A uniform link-failure process is a process {F (k)} such that:

(a) The random variables {Fij(k) | i, j ∈ [m], i ̸= j} are binary i.i.d. for any fixed k ≥ 0.

(b) The process {F (k)} is an independent process in time.

Note that the i.i.d. condition in Definition 5.4 is assumed for a fixed time. Therefore, the

uniform link-failure chain can have a time-dependent distribution but for any given time the

distribution of the link-failure should be identical across the different edges.

For the uniform-link failure process, we have the following result.

Lemma 5.9. Let {W (k)} be an independent random chain that is balanced and has feedback

property. Let {F (k)} be a uniform-link failure process that is independent of {W (k)}. Then,
the failure chain {U(k)} is infinite flow stable. Moreover, the link-failure chain is ergodic if

and only if
∑∞

k=0(1−pk)E[WS(k)] = ∞ for any non-trivial S ⊂ [m], where pk = Pr(Fij(k) =

1).

Proof. By the definition of {U(k)} in (5.19), the failure chain {U(k)} is also independent

since both {W (k)} and {F (k)} are independent. Then, for i ̸= j and for any k ≥ 0, we have

E[Uij(k)] = E[Wij(k)(1− Fij(k))] = (1− pk)W̄ij(k), (5.20)

where the last equality holds since Wij(k) and Fij(k) are independent, and E[Fij(k)] = pk.

By summing both sides of relation (5.20) over i ∈ S and j ∈ S̄ and using the balanced

property of {W (k)}, we obtain

ŪSS̄(k) = (1− pk)W̄SS̄(k) ≥ α(1− pk)W̄S̄S(k) = αŪS̄S(k),

where α is the balance-ness coefficient of {W (k)}. Thus, the failure chain {U(k)} is a

balanced chain.

We next show that U(k) has feedback property. By the definition of U(k), Uii(k) ≥ Wii(k)

for all i ∈ [m] and k ≥ 0. Hence, E[Uii(k)Uij(k)] ≥ E[Wii(k)Uij(k)]. Since {F (k)} and

{W (k)} are independent, we have

E[Wii(k)Uij(k)] = E[E[Wii(k)Uij(k) | Fij(k)]] = E[E[Wii(k)Wij(k)(1− Fij(k)) | Fij(k)]]

= (1− pk)E[Wii(k)Wij(k)] .

Thus, by the feedback property of {W (k)}, we have

E[Uii(k)Uij(k)] ≥ (1− pk)γE[Wij(k)] = γE[Uij(k)] ,
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where the last equality follows from Eq. (5.20), and γ > 0 is the feedback coefficient for

{W (k)}. Thus, {U(k)} has feedback property with the same constant γ as the chain {W (k)}.
Hence, the chain {U(k)} satisfies the assumptions of Theorem 4.9, so the chain {U(k)} is

infinite flow stable. Therefore, it is ergodic if and only if
∑∞

k=0 E[US(k)] = ∞ for any

nontrivial S ⊂ [m]. By Eq. (5.20) we have E[US(k)] = (1 − pk)E[WS(k)], implying that

{U(k)} is ergodic if and only if
∑∞

k=0(1 − pk)E[WS(k)] = ∞ for any nontrivial S ⊂ [m].

Q.E.D.

Lemma 5.9 shows that the severity of a uniform link failure process cannot cause instabil-

ity in the system. An interesting feature of Lemma 5.9 is that if in the limit pk are bounded

away from 1 uniformly, i.e., lim supk→∞ pk ≤ p̄ for some p̄ < 1, then it can be seen that for

any i, j ∈ [m],
∑∞

k=0(1 − pk)E[Wij(k)] = ∞ if and only if
∑∞

k=0 E[Wij(k)] = ∞. Therefore,

an edge {i, j} belongs to the infinite flow graph of {W (k)} if and only if it belongs to the

infinite flow graph of {U(k)}. Hence, in this case, by Lemma 5.9 the following result is valid.

Corollary 5.5. Let {W (k)} be an independent random chain that is balanced and has feed-

back property. Let {F (k)} be a uniform-link failure process that is independent of {W (k)}.
For any k ≥ 0, let pk = Pr(Fij(k) = 1) and suppose that lim supk→∞ pk < 1. Then, the

ergodic behavior of the failure chain and the underlying chain {W (k)} are the same.

5.5 Hegselmann-Krause Model for Opinion Dynamics

In this section, we perform stability analysis of Hegselmann-Krause model [13]. Using the

presented quadratic comparison function and some combinatorial arguments, we derive sev-

eral bounds on the termination time for the Hegsemlann-Krause dynamics. In particular, we

show that the Hegselmann-Krause dynamics terminates in at most 32m4 steps which results

in a factor of m improvement of the previously known (upper) bound of O(m5).

5.5.1 Hegselmann-Krause Model

Suppose that we have a set of m agents and each of them has an opinion at time k, which

is represented by a scalar xi(k) ∈ R. The vector x(k) = (x1(k), . . . , xm(k))
T ∈ Rm of

agent opinions is referred to as the opinion profile at time k. Starting from an initial profile

x(0) ∈ Rm, the opinion profile evolves in time as follows. Given a scalar ϵ > 0, which we refer

to as the averaging radius, at each time instance k ≥ 0, agents whose opinions are within

ϵ-difference will average their opinions. Formally, agent i shares its opinion with agents j in
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the set

Ni(k) = {j ∈ [m] | |xi(k)− xj(k)| ≤ ϵ},

which contains i. The opinion of agent i at time k + 1 is the average of the opinions xj(k)

for j ∈ Ni(k):

xi(k + 1) =
1

|Ni(k)|
∑

j∈Ni(k)

xj(k) = B(k)x(k), (5.21)

where Bij(k) =
1

|Ni(k)| for all i ∈ [m] and j ∈ Ni(k), and Bij(k) = 0 otherwise. Note that for

a given ϵ > 0 and an initial opinion profile x(0) ∈ Rm, the dynamics {x(k)} and the chain

{B(k)} are uniquely determined. We refer to {B(k)} as the chain generated by the initial

profile x(0).

The asymptotic stability of the dynamics (5.21) has been shown in [23, 33, 34]. The

asymptotic stability of the dynamics (5.21) can also be deduced from our developed results.

To see this, note that we have Bii(k) ≥ 1
m

for all i and BSS̄(k) ≥ 1
m
BS̄S(k) for all nontrivial

S ⊂ [m], implying that the chain {B(k)} is balanced and has feedback property. Further-

more, the positive entries of B(k) are bounded from below by γ = 1
m
. Thus by Lemma 4.12,

we conclude that {B(k)} has an absolute probability sequence {π(k)} that is uniformly

bounded by some p∗ satisfying p∗ ≥ 1
mm−1 . As a result of Theorem 4.9, {B(k)} is infinite

flow stable and hence, the dynamics {x(k)} is convergent.

5.5.2 Loose Bound for Termination Time of Hegselmann-Krause Dynamics

Here, we provide a loose bound for the convergence time of the Hegselmann-Krause dynamics

which relies on the lower bound of an absolute probability sequence for the chains generated

by Hegselmann-Krause dynamics.

Let us say that K is the termination time for the Hegselmann-Krause dynamics, if K ≥ 0

is the first time such that x(k) = x(k + 1) for any k > K. Then, we have the following

combinatorial result.

Lemma 5.10. Suppose that {x(k)} is the Hegselmann-Krause dynamics generated by an

initial opinion profile x(0) ∈ Rm. Suppose that K ≥ 0 is such that |xℓ(K)− xj(K)| ≤ ϵ
2
for

all j, ℓ ∈ Ni(K) and all i ∈ [m]. Then K +1 is a termination time for the dynamics {x(k)}.

Proof. First, we show that at time K, either Ni(K) = Nj(K) or Ni(K)
∩
Nj(K) = ∅ for any

i, j ∈ [m]. To prove this, we argue by contraposition. So assume that Ni(K)
∩

Nj(K) ̸= ∅
and, without loss of generality (due to the symmetry), assume that there exists ℓ′ ∈ Nj(K)\
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Ni(K). Then, |xℓ′(K) − xj(K)| ≤ ϵ
2
. Now, let ℓ ∈ Ni(K)

∩
Nj(K) be arbitrary. We have

|xℓ(K) − xi(K)| ≤ ϵ
2
and |xℓ(K) − xj(K)| ≤ ϵ

2
, which by the triangle inequality implies

|xi(K) − xj(K)| ≤ ϵ, thus showing that i ∈ Nj(K). By the definition of the time K and

i, ℓ′ ∈ Nj(K), it follows that |xℓ′(K) − xi(K)| ≤ ϵ
2
implying ℓ′ ∈ Ni(K). This, however,

contradicts the assumption ℓ′ ∈ Nj(K) \ Ni(K).

Therefore, either Ni(K) = Nj(K) or Ni(K)
∩

Nj(K) = ∅. Thus, for the dynamics (5.21),

we have

xi(K + 1) = xj(K + 1) =
1

|Ni(K)|
∑

ℓ∈Ni(K)

xℓ(K) for all j ∈ Ni(K) and all i ∈ [m].

This implies xi(K + 1) − xj(K + 1) = 0 for all j ∈ Ni(K) and i ∈ [m]. Further, note that

|xj(K + 1)− xℓ(K + 1)| > ϵ for all j, ℓ with Nj(K)
∩

Nℓ(K) = ∅. Therefore, at time K + 1,

we have either xi(K + 1) − xj(K + 1) = 0 or |xi(K + 1) − xj(K + 1)| > ϵ. Note that any

such a vector is an equilibrium point of dynamics (5.21). Therefore, x(k) = x(k + 1) for all

k > K. Q.E.D.

Based on Lemma 5.10, we have the following result for the termination time of the

Hegselmann-Krause model.

Theorem 5.6. Let x(0) ∈ Rm and let {x(k)} be the corresponding dynamics driven by

Hegselmann-Krause model for some averaging radius ϵ > 0. Let {B(k)} be the chain gen-

erated by x(0). Then, 4m2 d
2(x(0))
p∗ϵ2

is a termination time for the dynamics, where p∗ > 0

satisfies {π(k)} ≥ p∗ for an absolute probability sequence {π(k)} of the chain {B(k)}.

Proof. Let K ≥ 0 be the first time that |xℓ(K) − xj(K)| ≤ ϵ
2
for all j, ℓ ∈ Ni(K) and all

i ∈ [m].

By Corollary 4.3, we have

d2(x(0)) ≥ Vπ(x(0), 0) ≥
K−1∑
k=0

∑
i<j

Hij(k)(xi(k)− xj(k))
2

≥ p∗
K−1∑
k=0

∑
i<j

Mij(k)(xi(k)− xj(k))
2,

where H(k) = B(k)Tdiag(π(k+1))B(k), M(k) = B(k)TB(k) and the last inequality follows

from Hij(k) ≥ p∗Mij(k) for all i, j ∈ [m] and any k ≥ 0 (by πℓ(k) ≥ p∗).

By the definition of time K, for k < K, there exist i ∈ [m] and j, ℓ ∈ Ni(k) such that
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|xℓ(k)− xj(k)| > ϵ
2
. But

M jT (k)M ℓ(k) ≥ Bij(k)Biℓ(k) ≥
1

m2
,

which follows from j, ℓ ∈ Ni(k). Therefore, for k < K, we have:

∑
i<j

Mij(k)(xi(k)− xj(k))
2 ≥ 1

m2

ϵ2

4
.

Hence, it follows

p∗
Kϵ2

4m2
≤ d2(x(0)),

implying K ≤ 4m2 d
2(x(0))
p∗ϵ2

. Therefore, by Lemma 5.10, K = 4m2 d
2(x(0))
p∗ϵ2

is a termination time

for the Hegselmann-Krause dynamics. Q.E.D.

Now, consider an initial profile x(0) ∈ Rm and without loss of generality assume that

x1(0) ≤ x2(0) ≤ · · · ≤ xm(0). Then if xi+1(0) − xi(0) ≤ ϵ for all i ∈ [m − 1], then we have

d(x(0)) = xm(0) − x1(0) ≤ mϵ. Therefore, in this case the termination time would be less

than or equal to

4m2d
2(x(0))

p∗ϵ2
≤ 4

m4

p∗
.

Note that if xi+1(0)−xi(0) > ϵ for some i ∈ [m−1], then based on the form of the dynamics,

we have xi+1(k) − xi(k) > ϵ for any k ≥ 0. Therefore, in this case, we have a dynamics

operating on each connected component of the initial profile. Hence, the termination time

would be no larger than the termination time of the largest connected component which is

less than 4m4

p∗
. Therefore, the following result holds.

Corollary 5.6. Let x(0) ∈ Rm and let {x(k)} be the corresponding dynamics driven by

Hegselmann-Krause model for some ϵ > 0 and let {B(k)} be the chain generated by the

initial profile x(0) ∈ Rm. Then, 4m4

p∗
is an upper bound for the termination time of the

dynamics, where p∗ satisfies {π(k)} ≥ p∗ for an absolute probability sequence {π(k)} for

{B(k)}.

Note that the provided bound in Corollary 5.6 does not depend on the averaging radius

ϵ > 0, as well as the initial opinion profile x(0) and its spread d(x(0)).
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5.5.3 An Improved Bound for Termination Time of Hegselmann-Krause
Model

In Theorem 4.15 in [14], an upper bound of O(m5) is given for the termination time of the

Hegselmann-Krause dynamics. Here, using the decreasing estimate of a quadratic compar-

ison function that is provided in Eq. (4.8), we prove an O(m4) bound for the termination

time of the Hegselmann-Krause dynamics.

Let {x(k)} be the Hegselmann-Krause dynamics started at an initial opinion profile

x(0) ∈ Rm with an averaging radius ϵ > 0 and let {B(k)} be the stochastic chain generated

by x(0) ∈ Rm. Throughout the subsequent discussion, without loss of generality, we assume

that {x(k)} is ordered, i.e. x1(k) ≤ x2(k) ≤ · · · ≤ xm(k) which is allowed by the order

preserving property of the Hegselmann-Krause dynamics.

By the preceding discussion, the dynamics {x(k)} converges in finite time K. Also, for

k > K, we can partition [m] into T1, . . . , Tp subsets such that xi(k) = xj(k) for any i, j ∈ Tr

and for any r ∈ {1, . . . , p}. Moreover, |xi(k) − xj(k)| > ϵ for all i, j belonging to different

subsets Tr. Therefore, we have:

B(k) =



1
|T1|J|T1| 0 · · · 0 0

0 1
|T2|J|T2| · · · 0 0

...
...

. . .
...

...

0 0 · · · 1
|Tp−1|J|Tp−1| 0

0 0 · · · 0 1
|Tp|J|Tp|


for k ≥ K, (5.22)

where JR is an R × R matrix with all entries equal to one, and the 0s are zero matrices of

appropriate dimensions. We refer to each Tr as a final component.

For a final component Tr and any k ≥ K, let π(k) = 1
|Tr|
∑

i∈Tr
ei. Then, by the form of

B(k) in (5.22), we have for any k ≥ K,

πT (k) = πT (k + 1)B(k).

For k < K, recursively, let πT (k) = πT (k+1)BT (k). Then, {π(k)} is an absolute probability

sequence for {B(k)}. We refer to such an absolute probability sequence as the absolute

probability sequence started at the final component Tr, or simply, an absolute probability

sequence started at a final component.

We say that the timeK is the termination time for the final component Tr if xi(k) = xj(k)

for any i, j ∈ Tr for any k ≥ K and K is the smallest number with this property.
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Figure 5.2: Illustration of an agent i, its upper neighbor ī(k) and its lower neighbor i(k).

For an agent i ∈ [m], let the upper neighbor of i at time k ≥ 0 be

ī(k) = min{ℓ ∈ Ni(k) | xi(k) < xℓ(k)}.

Similarly, let the lower neighbor of i ∈ [m] at time k ≥ 0 be

i(k) = max{ℓ ∈ Ni(k) | xℓ(k) < xi(k)}.

An illustration of an agent i and its upper and lower neighbors is provided in Figure 5.2.

Note that the upper neighbor of i ∈ [m] may not exist. This happens if {j ∈ [m] | xj(k) ∈
(xi(k), xi(k) + ϵ]} = ∅. Similarly, the lower neighbor may not exist.

To establish the convergence rate result for the Hegselmann-Krause dynamics, we make

use of a sequence of intermediate results.

Lemma 5.11. Let {x(k)} be the Hegselmann-Krause dynamics started at an ordered initial

opinion profile x(0) ∈ Rm. Let {π(k)} be an absolute probability sequence for {x(k)} started

at a final component Tr. Suppose that k < K − 1, where K is the terminating time for Tr.

Then, for any i ∈ [m] with πi(k + 1) > 0, there exists τ ∈ Ni(k) such that πτ (k + 1) ≥
1
2
πi(k + 1) and Nτ (k) ̸= Ni(k).

Proof. Suppose that k < K−1. Let i ∈ [m] and let N−
i (k+1) and N+

i (k+1) be the subsets

of Ni(k + 1) defined by:

N−
i (k + 1) = {j ∈ Ni(k + 1) | xj(k + 1) ≤ xi(k + 1)},

and

N+
i (k + 1) = {j ∈ Ni(k + 1) | xj(k + 1) ≥ xi(k + 1)}.
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By the definition of an absolute probability sequence, we have

πi(k + 1) =
∑

j∈Ni(k+1)

πj(k + 2)Bji(k + 1)

≤
∑

j∈N−
i (K+1)

πj(k + 2)Bji(k + 1) +
∑

j∈N+
i (K+1)

πj(k + 2)Bji(k + 1), (5.23)

where the inequality follows by the fact that N−
i (k + 1)

∪
N+

i (k + 1) = Ni(k + 1). Thus,

either of the following inequalities holds:

πi(k + 1)

2
≤

∑
j∈N−

i (k+1)

πj(k + 2)Bji(k + 1) or
πi(k + 1)

2
≤

∑
j∈N+

i (k+1)

πj(k + 2)Bji(k + 1).

Without loss of generality assume that πi(k+1)
2

≤
∑

j∈N+
i (K+1) πj(k + 2)Bji(k + 1).

Now, consider the following cases:

(1) ī(k + 1) exists: then we have ī(k + 1) ∈ N+
i (k + 1) and N+

i (k + 1) ⊆ Nī(k+1)(k + 1).

Thus, we have:

πī(k+1)(k + 1) =
∑

j∈Nī(k+1)

πj(k + 2)Bjī(k + 1) ≥
∑

j∈N+
i (k+1)

πj(k + 2)Bjī(k + 1)

=
∑

j∈N+
i (k+1)

πj(k + 2)Bji(k + 1) ≥ πi(k + 1)

2
,

where, in the second inequality, we used the fact that the positive entries in each row

of B(k + 1) are identical. Thus, πī(k+1)(k + 1) ≥ πi(k+1)
2

. Note that ī(k + 1) ∈ Ni(k),

because otherwise,

xī(k+1)(k) ≤ xī(k+1)(k + 1),

and also,

xi(k + 1) ≤ xi(k).

Since ī(k + 1) ∈ N+
i (k + 1), it follows x̄i(k + 1)− xi(k + 1) ≤ ϵ. This and the preceding

two relations imply xī(k+1)(k)−xi(k) ≤ ϵ, i.e. ī(k+1) ∈ Ni(k). Also, Nī(k+1)(k) ̸= Ni(k),

because otherwise, xi(k+1) = xī(k+1)(k+1) which contradicts with xi(k+1) < xī(k+1)(k+

1). Therefore, in this case, the assertion is true and we have τ = ī(k + 1).

(2) ī(k+1) does not exist: in this case, for any j ∈ N+
i (k+1), we have xj(k+1) = xi(k+1).

Thus, N+
i (k + 1) ⊆ N−

i (k + 1) and hence, N−
i (k + 1) = Ni(k + 1). If i(k + 1) does not

exists, then we have N−
i (k + 1) = Ni(k + 1), implying xj(k + 1) = xi(k + 1) for any
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j ∈ Ni(k). This implies that k + 1 is the termination time for the final component Tr

which contradicts with the assumption k < K − 1.

Thus, in this case i(k + 1) must exist. But since Ni(k) = N−
i (k + 1) ⊆ Ni(k+1)(k + 1),

using the same line of argument as in the previous case, it follows that

πi(k+1) ≥
1

2
πi(k + 1),

and the assertion holds for τ = i(k + 1).

Q.E.D.

For an agent i ∈ [m], let di(k) = maxj∈Ni(k) xi(k) − minj∈Ni(k) xj(k). In a sense, di(k)

is the spread of the opinions that agent i observes at time k. Let us prove the following

inequality.

Lemma 5.12. Let {x(k)} be the Hegselmann-Krause dynamics started at an ordered initial

opinion profile x(0) ∈ Rm. Then, for any ℓ ∈ [m], we have:

∑
i,j∈Nℓ(k)

(xi(k)− xj(k))
2 ≥ 1

4
|Nℓ(k)|d2ℓ(k) for any k ≥ 0.

Proof. If dℓ(k) = 0, then the assertion follows immediately. So, suppose that dℓ(k) ̸= 0.

Let lb = min{i ≤ ℓ | i ∈ Nℓ(k)} and ub = max{i ≥ ℓ | i ∈ Nℓ(k)}. In words, lb and ub

are the agents with the smallest and largest opinion in the neighborhood of ℓ. Therefore,

dℓ(k) = xub(k)− xlb(k) and since dℓ(k) ̸= 0, we have lb ̸= ub. Thus, we have∑
i,j∈Nℓ(k)

(xi(k)− xj(k))
2 ≥

∑
j∈Nℓ(k)

(xub(k)− xj(k))
2 +

∑
j∈Nℓ(k)

(xj(k)− xlb(k))
2

=
∑

j∈Nℓ(k)

{
(xub(k)− xj(k))

2 + (xj(k)− xlb(k))
2
}

≥
∑

j∈Nℓ(k)

1

4
(xub(k)− xlb(k))

2 =
1

4
|Nℓ(k)|d2ℓ(k).

In the last inequality we used the fact that

(xub(k)− xj(k))
2 + (xj(k)− xlb(k))

2 ≥ 1

4
(xub(k)− xlb(k))

2,

which holds since the function s → (xub(k) − s)2 + (s − xlb(k))
2 attains its minimum at

s = xlb(k)+xub(k)
2

. Q.E.D.
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Based on Lemma 5.12, we can prove another intermediate result which bounds the de-

crease value of the quadratic comparison function for the Hegselmann-Krause dynamics.

Lemma 5.13. Let {x(k)} be the Hegselmann-Krause dynamics started at an ordered initial

opinion profile x(0) ∈ Rm. Then, for any k ≥ 0, we have

m∑
i<j

Hij(k)(xi(k)− xj(k))
2 ≥ 1

2

m∑
ℓ=1

πℓ(k + 1)
d2ℓ(k)

4|Nℓ(k)|
≥ 1

8m

m∑
ℓ=1

πℓ(k + 1)d2ℓ(k),

where H(k) = BT (k)diag(π(k + 1))B(k), {B(k)} is the stochastic chain generated by x(0),

and {π(k)} is an absolute probability sequence for {B(k)}.

Proof. Since H(k) is a symmetric matrix, we have:

2
m∑
i<j

Hij(k)(xi(k)− xj(k))
2 =

m∑
i=1

m∑
j=1

Hij(k)(xi(k)− xj(k))
2.

On the other hand, we have:

m∑
i=1

m∑
j=1

Hij(k)(xi(k)− xj(k))
2 =

m∑
i=1

m∑
j=1

m∑
ℓ=1

πℓ(k + 1)Bℓi(k)Bℓj(k)(xi(k)− xj(k))
2

=
m∑
ℓ=1

πℓ(k + 1)

(
m∑
i=1

m∑
j=1

Bℓi(k)Bℓj(k)(xi(k)− xj(k))
2

)

=
m∑
ℓ=1

πℓ(k + 1)

|Nℓ(k)|2
∑

i∈Nℓ(k)

∑
j∈Nℓ(k)

(xi(k)− xj(k))
2, (5.24)

where we used the fact that Bℓr(k) = 1
|Nℓ(k)|

if and only if r ∈ Nℓ(k), and Bℓr(k) = 0,

otherwise. Thus, by Lemma 5.12 and relation (5.24), we have

m∑
i=1

m∑
j=1

Hij(k)(xi(k)− xj(k))
2 ≥

m∑
ℓ=1

πℓ(k + 1)

4|Nℓ(k)|2
|Nℓ(k)|d2ℓ(k)

=
m∑
ℓ=1

πℓ(k + 1)
d2ℓ(k)

4|Nℓ(k)|
.

Thus the first inequality follows. The second inequality follows from |Nℓ(k)| ≤ m. Q.E.D.

Now, we are ready to prove the O(m4) upper bound for the convergence time of the

Hegselmann-Krause dynamics.
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Theorem 5.7. For the Hegselmann-Krause dynamics {x(k)} started at an initial opinion

profile x(0) ∈ Rm, the termination time K is bounded above by 32m2d2(x(0))
ϵ2

+ 1, where ϵ > 0

is the averaging radius.

Proof. Let {B(k)} be the stochastic chain generated by x(0) and let {π(k)} be an absolute

probability sequence started at a final component T .

Let ℓ̄ = arg maxℓ∈[m]πℓ(k + 1). Since, π(k + 1) is a stochastic vector, it follows that

πℓ̄(k + 1) ≥ 1
m
.

Now, suppose that k < K − 1, where K is the termination time of Tr. Consider the

following cases:

Case 1. dℓ̄(k) >
ϵ
2
: in this case, by Lemma 5.13, we have

∑
i<j

Hij(k)(xi(k)− xj(k))
2 ≥ 1

8m

m∑
ℓ=1

πℓ(k + 1)d2ℓ(k)

≥ 1

8m
πℓ̄(k + 1)d2ℓ̄(k) ≥

ϵ2

32m2
,

which follows from πℓ̄(k + 1) ≥ 1
m

and dℓ̄(k) >
ϵ
2
.

Case 2. dℓ̄(k) ≤ ϵ
2
: since k < K − 1, by Lemma 5.11, there exists τ ∈ Nℓ̄(k) such that

πτ (k + 1) ≥ 1

2
πℓ̄(k + 1) ≥ 1

2m
.

Moreover, Nτ (k) ̸= Nℓ̄(k).

Let us first prove that dτ (k) ≥ ϵ. Since dℓ̄(k) ≤ ϵ
2
, it follows that |xℓ̄(k)−xτ (k)| ≤ ϵ

2
.

Also, for any i ∈ Nℓ̄(k), we have:

|xi(k)− xτ (k)| ≤ |xi(k)− xℓ̄(k)|+ |xℓ̄(k)− xτ (k)| ≤ ϵ,

implying i ∈ Nτ (k). Thus, Nℓ̄(k) ⊂ Nτ (k). Let i ∈ Nτ (k) \ Nℓ̄(k). Then, |xi(k) −
xℓ̄(k)| > ϵ, and hence, dτ (k) ≥ ϵ.

Therefore, by Lemma 5.11, we have:

∑
i<j

Hij(k)(xi(k)− xj(k))
2 ≥ 1

8m

m∑
ℓ=1

πℓ(k + 1)d2ℓ(k) ≥
1

8m
πτ (k + 1)d2τ (k) ≥

ϵ2

16m2
,

which follows from πτ (k + 1) ≥ 1
2m

and dτ (k) ≥ ϵ.
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All in all, if k < K − 1, we have

∑
i<j

Hij(k)(xi(k)− xj(k))
2 ≥ ϵ2

32m2
.

At the same time, by Theorem 4.3, we should have:

d2(x(0)) ≥ Vπ(x(0), 0) ≥
K−1∑
k=0

∑
i<j

Hij(k)(xi(k)− xj(k))
2.

Thus, we should have K ≤ 32m2d2(x(0))
ϵ2

+ 1. But the derived bound does not rely on the

particular choice of the final component T and hence, 32m2d2(x(0))
ϵ2

+ 1 is a termination time

for the Hegselmann-Krause dynamics. Q.E.D.

Note, that the proof of Theorem 5.7, does not rely on the existence of an absolute

probability sequence {π(k)} with {π(k)} ≥ p∗ for some scalar p∗ > 0. It only relies on the

decrease estimate given in Theorem 4.3.

As discussed in Corollary 5.6, without loss of generality, we can assume that the graph

induced by the initial opinion profile x(0) ∈ Rm is connected. Otherwise, we can use the

given analysis in Theorem 5.7 for the largest connected component of the initial profile.

When the graph is connected, we have d(x(0)) ≤ mϵ. Thus, 32m2d2(x(0))
ϵ2

≤ 32m4 and hence,

32m4 + 1 is an upper bound for the termination time of the Hegselmann-Krause dynamics.

Corollary 5.7. 32m4 + 1 is an upper bound for the termination time of the Hegselmann-

Krause dynamics.

5.6 Alternative Proof of Borel-Cantelli lemma

In this section, we provide an alternative proof for the second Borel-Cantelli lemma (Lemma

A.6) based on the results developed so far.

For a sequence of events {Ek} in some probability space, let us define a sequence of

random 2× 2 stochastic matrices {W (k)} as follows:

W (k) =
1

2
eeT1Ek

+ I1Ec
k
,

for k ≥ 0, i.e., W (k) is equal to the stochastic matrix 1
2
eeT on Ek and otherwise, it is equal

to the identity matrix.
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Let U =
∩∞

k=0

∪∞
s=k Es = {Ek i.o.} where i.o. stands for infinitely often. Then, ω ∈ U

means that in the corresponding random chain {W (k)}(ω) we have W (k)(ω) = 1
2
eT e for

infinitely many indices k. Let {A(k)} be a chain of 2× 2 matrices where A(k) is either I or
1
2
eeT for all k ≥ 0. Since M(1

2
eeT ) = 1

2
eeT for any 2× 2 stochastic matrix M , it follows that

the chain {A(k)} is ergodic if and only if the matrix 1
2
eeT appears infinitely many times in

the chain. This observation, together with Theorem 5.1, gives rise to an alternative proof of

the second Borel-Cantelli lemma.

Theorem 5.8. (Second Borel-Cantelli lemma) Let {Ek} be independent and
∑∞

k=0 Pr(Ek) =

∞. Then Pr (U) = 1.

Proof. Let {W (k)} be the random chain corresponding to the sequence {Ek}. Then {W (k)}(ω)
is ergodic if and only if ω ∈ U . Since

∑∞
k=0 Pr (Ek) = ∞, it follows

∑∞
k=0 E[W12(k) +W21(k)] =

∞, implying that {W (k)} has infinite flow. Furthermore, since {Ek} is independent, so

is {W (k)}. Observe that each realization of W (k) is doubly stochastic. We also have

Wii(k) ≥ 1
2
for i = 1, 2 and any k. Therefore, by Theorem 5.1, the model {W (k)} is ergodic

and, hence, Pr (U) = 1. Q.E.D.

In the derivation of the above proof, there is a possibility of being exposed to the trap of

circular reasoning. But to the best of author’s knowledge, none of the steps in the proof is

involving with the use of Lemma A.6 itself.
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Chapter 6

Absolute Infinite Flow Property

Motivated by the concept of the infinite flow property, in this chapter we introduce the

concept of absolute infinite flow property and extend some of the results developed so far. Our

discussion in this chapter is restricted to deterministic chains and deterministic dynamics.

In Section 6.1, we introduce the concepts of a regular sequence and flow over a regular

sequence, as well as the absolute infinite flow property. Then, in Section 6.2 we prove

that the absolute infinite flow property is necessary for ergodicity. We do this through the

rotational transformation of a chain with respect to a permutation chain. In Section 6.3,

we introduce the class of decomposable chains for which their absolute infinite flow property

can be computed more efficiently as compared to a general chain. Finally in Section 6.4,

we consider a subclass of decomposable chains, the doubly stochastic chains, and prove that

the absolute infinite flow property is equivalent to ergodicity for those chains. We also prove

that the product of any sequence of doubly stochastic matrices is essentially convergent, i.e.

it is convergent up to a permutation sequence.

6.1 Absolute Infinite Flow

In this section, we introduce the absolute infinite flow property which will play a central role

in the forthcoming discussion in this chapter. To introduce this property, let us provide a

visualization scheme for the dynamics in Eq. (2.2) which is motivated by the trellis diagram

method for visualizing convolution decoders. Let us introduce the trellis graph associated

with a given stochastic chain. The trellis graph of a stochastic chain {A(k)} is an infinite

directed weighted graph G = (V, E , {A(k)}), with the vertex set V equal to the infinite grid

[m]× Z+ and the edge set

E = {((j, k), (i, k + 1)) | j, i ∈ [m], k ≥ 0}. (6.1)

In other words, we consider a copy of the set [m] for each time k ≥ 0 and we stack these

copies over time, thus generating the infinite vertex set V = {(i, k) | i ∈ [m], k ≥ 0}. We
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Figure 6.1: The trellis graph of the 2× 2 chain {A(k)} with weights A(k) given in
Eq. (6.2).

then place a link from each j ∈ [m] at time k to every i ∈ [m] at time k+1, i.e., a link from

each vertex (j, k) ∈ V to each vertex (i, k + 1) ∈ V . Finally, we assign the weight Aij(k) to

the link ((j, k), (i, k + 1)). Now, consider the whole graph as an information tunnel through

which the information flows: we inject a scalar xi(0) at each vertex (i, 0) of the graph. Then,

from this point on, at each time k ≥ 0, the information is transferred from time k to time

k+1 through each edge of the graph that acts as a communication link. Each link attenuates

the in-vertex’s value with its weight, while each vertex sums the information received through

the incoming links. One can observe that the resulting information evolution is the same

as the dynamics given in Eq. (2.2). As a concrete example, consider the 2 × 2 static chain

{A(k)} with A(k) defined by:

A(k) =

[
1
4

3
4

3
4

1
4

]
for k ≥ 0. (6.2)

The trellis graph of this chain is depicted in Figure 6.1.

Recall the definition of infinite flow property for a chain {A(k)} (Definition 3.2) which

requires that
∑∞

k=0AS(k) = ∞ for any non-trivial S ⊂ [m]. Graphically, the infinite flow

property requires that in the trellis graph of a given model {A(k)}, the weights on the edges

between S × Z+ and S̄ × Z+ add up to infinity, for any non-trivial S ⊂ [m].

Although infinite flow property is necessary for ergodicity, this property alone is not

strong enough to separate some stochastic chains from ergodic chains, such as permutation

sequences. As a concrete example consider a static chain {A(k)} of permutation matrices

A(k) given by

A(k) =

[
0 1

1 0

]
for k ≥ 0. (6.3)

The chain {A(k)} has infinite flow property, but it is not ergodic.

As a remedy for this situation, in Chapter 4, we have imposed additional conditions on
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Figure 6.2: The trellis graph of the permutation chain in Eq. (6.3). For the regular
sequence {S(k)}, with S(k) = {1} if k is even and S(k) = {2} otherwise, the vertex set
{(i, k) | i ∈ S(k), k ≥ 0} is marked by black vertices. The flow F ({A(k)}; {S(k)}), as
defined in (6.5), corresponds to the summation of the weights on the dashed edges.

the matrices A(k) that eliminate permutation matrices such as feedback properties. Here,

we take a different approach.

Specifically, we will require a stronger infinite flow property by letting the set S in

Definition 3.2 vary with time. In order to do so, we will consider sequences {S(k)} of

non-trivial index sets S(k) ⊂ [m] with a form of regularity in the sense that the sets S(k)

have the same cardinality for all k. In what follows, we will reserve notation {S(k)} for the

sequences of index sets S(k) ⊂ [m]. Furthermore, for easier exposition, we define the notion

of regularity for {S(k)} as follows.

Definition 6.1. A sequence {S(k)} is regular if the sets S(k) have the same (nonzero)

cardinality, i.e., |S(k)| = |S(0)| for all k ≥ 0 and |S(0)| ̸= 0.

The nonzero cardinality requirement in Definition 6.1 is imposed only to exclude the

trivial sequence {S(k)} consisting of empty sets.

Graphically, a regular sequence {S(k)} corresponds to the subset {(i, k) | i ∈ S(k), k ≥
0} of vertices in the trellis graph associated with a given chain. As an illustration, let us

revisit the 2× 2 chain given in Eq. (6.3). Consider the regular {S(k)} defined by

S(k) =

{
{1} if k is even,

{2} if k is odd.

The vertex set {(i, k) | i ∈ S(k), k ≥ 0} associated with {S(k)} is shown in Figure 6.2.

Now, let us consider a chain {A(k)} of stochastic matrices A(k). Let {S(k)} be any

regular sequence. At any time k, we define the flow associated with the entries of the matrix

A(k) across the index sets S(k + 1) and S(k) as follows:

AS(k+1),S(k)(k) =
∑

i∈S(k+1),j∈S̄(k)

Aij(k) +
∑

i∈S̄(k+1),j∈S(k)

Aij(k) for k ≥ 0. (6.4)
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The flow AS(k+1),S(k)(k) could be viewed as an instantaneous flow at time k induced by the

corresponding elements in the matrix chain and the index set sequence. Accordingly, we

define the total flow of a chain {A(k)} over {S(k)}, as follows:

F ({A(k)}; {S(k)}) =
∞∑
k=0

AS(k+1),S(k)(k). (6.5)

We are now ready to extend the definition of infinite flow property to time-varying index

sets S(k).

Definition 6.2. A stochastic chain {A(k)} has absolute infinite flow property if

F ({A(k)}; {S(k)}) = ∞ for every regular sequence {S(k)}.

Note that the absolute infinite flow property of Definition 6.2 is more restrictive than

the infinite flow property of Definition 3.2. In particular, we can see this by letting the set

sequence {S(k)} be static, i.e., S(k) = S for all k and some nonempty S ⊂ [m]. In this case,

the flow AS(k+1),S(k)(k) across the index sets S(k+1) and S(k) as defined in Eq. (6.4) reduces

to AS(k), while the flow F ({A(k)}; {S(k)}) in Eq. (6.5) reduces to
∑∞

k=0AS(k). This brings

us to the quantities that define the infinite flow property (Definition 3.2). Thus, the infinite

flow property requires that the flow across a trivial regular sequence {S} is infinite for all

nonempty S ⊂ [m], which is evidently less restrictive requirement than that of Definition 6.2.

In light of this, we see that if a stochastic chain {A(k)} has absolute infinite property, then

it has infinite flow property.

The distinction between absolute infinite flow property and infinite flow property is actu-

ally much deeper. Recall our example of the chain {A(k)} in Eq. (6.3), which demonstrated

that a permutation chain may posses infinite flow property. Now, for this chain, consider

the regular sequence {S(k)} with S(2k) = {1} and S(2k + 1) = {2} for k ≥ 0. The trellis

graph associated with {A(k)} is shown in Figure 6.2, where {S(k)} is depicted by black

vertices. The flow F ({A(k)}; {S(k)}) corresponds to the summation of the weights on the

dashed edges in Figure 6.2, which is equal to zero in this case. Thus, the chain {A(k)} does

not have absolute flow property.

In fact, while some chains of permutation matrices may have infinite flow property, it

turns out that no chain of permutation matrices has absolute infinite flow property. In

other words, absolute infinite flow property is strong enough to filter out the chains of

permutation matrices in our search for necessary and sufficient conditions for ergodicity which

is a significant distinction between absolute infinite flow property and infinite flow property.

To formally establish this property, we turn our attention to an intimate connection between
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a regular index sequence and a permutation sequence that can be associated with the index

sequence.

Specifically, an important feature of a regular sequence {S(k)} is that it can be obtained

as the image of the initial set S(0) under a certain permutation sequence {P (k)}. To see this,
note that we can always find a one-to-one matching between the indices in S(k) and S(k+1)

since |S(k)| = |S(k+1)|. The complements S̄(k) and S̄(k+1) of the sets S(k) and S(k+1),

respectively, also have the same cardinality, so there is a one-to-one matching between S̄(k)

and S̄(k + 1) as well. Thus, we have a matching for the indices in [m] which is one-to-one

mapping between S(k) to S(k+1), and also one-to-one mapping between S̄(k) and S̄(k+1).

Therefore, we can define an m ×m matrix P (k) as the incidence matrix corresponding to

this matching, as follows: for every j ∈ S(k) we let Pij(k) = 1 if index j is matched with the

index i ∈ S(k + 1) and Pij(k) = 0 otherwise; similarly, for every j ∈ S̄(k) we let Pij(k) = 1

if index j is matched with the index i ∈ S̄(k + 1) and Pij(k) = 0 otherwise. The resulting

matrix P (k) is a permutation matrix and the set S(k + 1) is the image of set S(k) under

the permutation matrix P (k), i.e., S(k + 1) = P (k)(S(k)). Continuing in this way, we can

see that S(k) is just the image of S(k − 1) under some permutation matrix P (k − 1), i.e.,

S(k) = P (k−1)(S(k−1)) and so on. As a result, any set S(k) is an image of a finitely many

permutations of the initial set S(0); formally S(k) = P (k−1) · · ·P (1)P (0)(S(0)). Therefore,
we will refer to the set S(k) as the image of the set S(0) under {P (k)} at time k. Also, we

will refer to the sequence {S(k)} as the trajectory of the set S(0) under {P (k)}.
In the next lemma, we show that no chain of permutation matrices has absolute infinite

property.

Lemma 6.1. For any permutation chain {P (k)}, there exists a regular sequence {S(k)} for

which

F ({P (k)}; {S(k)}) = 0.

Proof. Let {P (k)} be an arbitrary permutation chain and let {S(k)} be the trajectory of a

nonempty set S(0) ⊂ [m] under the permutation {P (k)}. Note that {S(k)} is regular, and

we have

PS(k+1),S(k)(k) =
∑

i∈S(k+1),j∈S̄(k)

Pij(k) +
∑

i∈S̄(k+1),j∈S(k)

Pij(k) = 0,

which is true since P (k) is a permutation matrix and S(k + 1) is the image of S(k) under

P (k). Q.E.D.

Hence, by this lemma none of the permutation sequences {P (k)} has absolute infinite

flow property.
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6.2 Necessity of Absolute Infinite Flow for Ergodicity

As discussed in Theorem 3.1, infinite flow property is necessary for ergodicity of a stochastic

chain. In this section, we show that the absolute infinite flow property is actually necessary

for ergodicity of a stochastic chain despite the fact that this property is much more restrictive

than infinite flow property. We do this by considering a stochastic chain {A(k)} and a related

chain, say {B(k)}, such that the flow of {A(k)} over a trajectory translates to a flow of

{B(k)} over an appropriately defined trajectory. The technique that we use for defining the

chain {B(k)} related to a given chain {A(k)} is developed in the following section. Then,

we prove the necessity of absolute infinite flow for ergodicity.

6.2.1 Rotational Transformation

Rotational transformation is a process that takes a chain and produces another chain through

the use of a permutation sequence {P (k)}. Specifically, we have the following definition of

the rotational transformation with respect to a permutation chain.

Definition 6.3. Given a permutation chain {P (k)}, the rotational transformation of an

arbitrary chain {A(k)} with respect to {P (k)} is the chain {B(k)} given by

B(k) = P T (k + 1 : 0)A(k)P (k : 0) for k ≥ 0,

where P (0 : 0) = I. We say that {B(k)} is the rotational transformation of {A(k)} by

{P (k)}.

The rotational transformation has some interesting properties for stochastic chains which

we discuss in the following lemma. These properties play a key role in the subsequent

development, while they may also be of interest in their own right.

Lemma 6.2. Let {A(k)} be an arbitrary stochastic chain and {P (k)} be an arbitrary per-

mutation chain. Let {B(k)} be the rotational transformation of {A(k)} by {P (k)}. Then,

the following statements are valid:

(a) The chain {B(k)} is stochastic. Furthermore,

B(k : s) = P T (k : 0)A(k : s)P (s : 0) for any k > s ≥ 0,

where P (0 : 0) = I.

(b) The chain {A(k)} is ergodic if and only if the chain {B(k)} is ergodic.
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(c) For any regular sequence {S(k)} for {A(k)}, there exists another regular sequence {T (k)}
for {B(k)}, such that AS(k+1)S(k)(k) = BT (k+1)T (k)(k). Also, for any regular sequence

{T (k)} for {B(k)}, there exists a regular sequence {S(k)} for {A(k)}, with

AS(k+1)S(k)(k) = BT (k+1)T (k)(k).

In particular, F ({A(k)}; {S(k)}) = F ({B(k)}; {T (k)}) and hence, {A(k)} has absolute

infinite flow property if and only if {B(k)} has absolute infinite flow property.

(d) For any S ⊂ [m] and k ≥ 0, we have AS(k+1),S(k)(k) = BS(k), where S(k) is the image

of S under {P (k)} at time k, i.e., S(k) = P (k : 0)(S).

Proof. (a) By the definition of B(k), we have B(k) = P T (k + 1 : 0)A(k)P (k : 0). Thus,

B(k) is stochastic as the product of finitely many stochastic matrices is a stochastic matrix.

The proof of relation B(k : s) = P T (k : 0)A(k : s)P (s : 0) proceeds by induction on k

for k > s and an arbitrary but fixed s ≥ 0. For k = s + 1, by the definition of B(s) (see

Definition 6.3), we have B(s) = P T (s + 1 : 0)A(s)P (s : 0), while B(s + 1 : s) = B(s) and

A(s+1 : s) = A(s). Hence, B(s+1, s) = P T (s+1 : 0)A(s+1 : s)P (s : 0) which shows that

B(k, s) = P T (k : 0)A(k : s)P (s : 0) for k = s + 1, thus implying that the claim is true for

k = s+ 1.

Now, suppose that the claim is true for some k > s, i.e., B(k, s) = P T (k : 0)A(k : s)P (s :

0) for some k > s. Then, for k + 1 we have

B(k + 1 : s) = B(k)B(k : s) = B(k)
(
P T (k : 0)A(k : s)P (s : 0)

)
, (6.6)

where the last equality follows by the induction hypothesis. By the definition of B(k), we

have B(k) = P T (k+1 : 0)A(k)P (k : 0), and by replacing B(k) by P T (k+1 : 0)A(k)P (k : 0)

in Eq. (6.6), we obtain

B(k + 1 : s) =
(
P T (k + 1 : 0)A(k)P (k : 0)

) (
P T (k : 0)A(k : s)P (s : 0)

)
= P T (k + 1 : 0)A(k)

(
P (k : 0)P T (k : 0)

)
A(k : s)P (s : 0)

= P T (k + 1 : 0)A(k)A(k : s)P (s : 0),

where the last equality follow from P TP = I which is valid for any permutation matrix P ,

and the fact that the product of two permutation matrices is a permutation matrix. Since

A(k)A(k : s) = A(k + 1 : s), it follows that

B(k + 1 : s) = P T (k + 1 : 0)A(k + 1 : s)P (s : 0),
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thus showing that the claim is true for k + 1.

(b) Let the chain {A(k)} be ergodic and fix an arbitrary starting time t0 ≥ 0. Then, for

any ϵ > 0, there exists a sufficiently large time Nϵ ≥ t0, such that the rows of A(k : t0) are

within ϵ-vicinity of each other; specifically ∥Ai(k : t0)− Aj(k : t0)∥ ≤ ϵ for any k ≥ Nϵ and

all i, j ∈ [m]. We now look at the matrix B(k : t0) and its rows. By part (a), we have for all

k > t0,

B(k : t0) = P T (k : 0)A(k : t0)P (t0 : 0).

Furthermore, the ith row of B(k : t0) can be represented as eTi B(k : t0). Therefore, the norm

of the difference between the ith and jth row of B(k : t0) is given by

∥Bi(k : t0)−Bj(k : t0)∥ = ∥(ei − ej)
TB(k : t0)∥ = ∥(ei − ej)

TP T (k : 0)A(k : t0)P (t0 : 0)∥.

Letting ei(k) = P (k : 0)ei for any i ∈ [m], we further have

∥Bi(k : t0)−Bj(k : t0)∥ = ∥(ei(k) − ej(k))
TA(k : t0)P (t0 : 0)∥

= ∥(Ai(k)(k : t0)− Aj(k)(k : t0))P (t0 : 0)∥

= ∥Ai(k)(k : t0)− Aj(k)(k : t0)∥, (6.7)

where the last inequality holds since P (t0 : 0) is a permutation matrix and ∥Px∥ = ∥x∥ for

any permutation P and any x ∈ Rm. Choosing k ≥ Nϵ and using

∥Ai(k : t0)− Aj(k : t0)∥ ≤ ϵ,

for any k ≥ Nϵ and all i, j ∈ [m], we obtain

∥Bi(k : t0)−Bj(k : t0)∥ ≤ ϵ for any k ≥ Nϵ and all i, j ∈ [m].

Therefore, it follows that the ergodicity of {A(k)} implies the ergodicity of {B(k)}.
For the reverse implication we note that A(k : t0) = P (k : 0)B(k : t0)P

T (t0 : 0), which

follows by part (a) and the fact PP T = PP T = I for any permutation P . The rest of the

proof follows a line of analysis similar to the preceding case, where we exchange the roles of

B(k : t0) and A(k : t0).

(c) Let {S(k)} be a regular sequence. Let T (k) be the image of S(k) under the permutation

P T (k : 0), i.e. T (k) = P T (k : 0)(S(k)). Note that |T (k)| = |S(k)| for any k ≥ 0 and since

{S(k)} is a regular sequence, it follows that {T (k)} is a regular sequence. Now, by the

definition of rotational transformation we have A(k) = P (k + 1 : 0)B(k)P T (k : 0), and
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hence: ∑
i∈S(k+1),j∈S̄(k)

eTi A(k)ej =
∑

i∈S(k+1),j∈S̄(k)

eTi [P (k + 1 : 0)B(k)P T (k : 0)]ej

=
∑

i∈T (k+1),j∈T̄ (k)

eTi B(k)ej.

Similarly, we have
∑

i∈S̄(k+1),j∈S(k) e
T
i A(k)ej =

∑
i∈T̄ (k+1),j∈T (k) e

T
i B(k)ej. Now, note that

AS(k+1)S(k)(k) =
∑

i∈S(k+1),j∈S̄(k)

eTi A(k)ej +
∑

i∈S̄(k+1),j∈S(k)

eTi A(k)ej,

BT (k+1)T (k)(k) =
∑

i∈T (k+1),j∈T̄ (k)

eTi B(k)ej +
∑

i∈T̄ (k+1),j∈T (k)

eTi B(k)ej.

Hence, we have AS(k+1)S(k)(k) = BT (k+1)T (k)(k), implying

F ({A(k)}; {S(k)}) = F ({B(k)}; {T (k)}).

For the converse, for any regular sequence {T (k)}, if we let S(k) = P (k : 0)(T (k))

and using the same line of argument, we conclude that {S(k)} is a regular sequence and

AS(k+1)S(k)(k) = BT (k+1)T (k)(k). Therefore, F ({A(k)}; {S(k)}) = F ({B(k)}; {T (k)}) and

hence, {A(k)} has absolute infinite flow property if and only if {B(k)} has absolute infinite

flow property.

(d) If {P (k)} is such that S(k) is the image of S under {P (k)} at any time k ≥ 0, by the

previous part, it follows that AS(k+1)S(k)(k) = BT (k+1)T (k)(k), where T (k) = P T (k : 0)(S(k)).

But since S(k) is the image of S under {P (k)} at time k, it follows that P T (k : 0)(S(k)) = S,

which follows from the fact that P T (k : 0)P (k : 0) = I. Similarly, T (k + 1) = S and hence,

by the previous part AS(k+1)S(k)(k) = BS(k). Q.E.D.

As listed in Lemma 6.2, the rotational transformation has some interesting properties:

it preserves ergodicity and it preserves absolute infinite flow property. We will use these

properties intensively in the development in this section and the rest of this chapter.

6.2.2 Necessity of Absolute Infinite Flow Property

In this section, we establish the necessity of absolute infinite flow property for ergodicity of

stochastic chains. The proof of this result relies on Lemma 6.2.
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Theorem 6.1. The absolute infinite flow property is necessary for ergodicity of any stochastic

chain.

Proof. Let {A(k)} be an ergodic stochastic chain. Let {S(k)} be any regular sequence.

Then, there is a permutation sequence {P (k)} such that {S(k)} is the trajectory of the set

S(0) ⊂ [m] under {P (k)}, i.e., S(k) = P (k : 0)(S(0)) for all k, where P (0 : 0) = I. Let

{B(k)} be the rotational transformation of {A(k)} by the permutation sequence {P (k)}.
Then, by Lemma 6.2 (a), the chain {B(k)} is stochastic. Moreover, by Lemma 6.2 (b), the

chain {B(k)} is ergodic. Now, by the necessity of infinite flow property (Theorem 3.1), the

chain {B(k)} should have infinite flow property, i.e.,

∞∑
k=0

BS(k) = ∞ for any S ⊂ [m]. (6.8)

Therefore, in particular, we must have
∑∞

k=0BS(k) = ∞ for S = S(0). By Lemma 6.2 (d),

Eq. (6.8) implies

∞∑
k=0

AS(k+1),S(k)(k) = ∞,

thus showing that {A(k)} has absolute infinite flow property. Q.E.D.

The converse statement of Theorem 6.1 is not true generally, namely absolute infinite

flow need not be sufficient for ergodicity of a chain. We reinforce this statement later in

Section 6.3 (Corollary 6.1). Thus, even though absolute infinite flow property requires a

lot of structure for a chain {A(k)}, by requiring that the flow of {A(k)} over any regular

sequence {S(k)} be infinite, this is still not enough to guarantee ergodicity of the chain.

However, as we will soon see, it turns out that this property is sufficient for ergodicity of the

doubly stochastic chains.

6.3 Decomposable Stochastic Chains

In this section, we consider a class of stochastic chains, termed decomposable, for which

verifying absolute infinite flow property can be reduced to showing that the flows over some

specific regular sequences are infinite. We explore some properties of this class which will be

also used in later sections.

We start with the definition of a decomposable chain.
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Definition 6.4. A chain {A(k)} is decomposable if {A(k)} can be represented as a nontrivial

convex combination of a permutation chain {P (k)} and a stochastic chain {Ã(k)}, i.e., there
exists a γ > 0 such that

A(k) = γP (k) + (1− γ)Ã(k) for all k ≥ 0. (6.9)

We refer to {P (k)} as a permutation component of {A(k)} and to γ as a mixing coefficient

for {A(k)}.

An example of a decomposable chain is a chain {A(k)} that has strong feedback property,

i.e., with Aii(k) ≥ γ for all k ≥ 0 and some γ > 0. In this case, A(k) = γI + (1 − γ)Ã(k)

where Ã(k) = 1
1−γ

(A(k)− γI). Note that A(k)− γI ≥ 0 and (A(k)− γI)e = (1− γ)e, which

follows from the stochasticity of A(k). Therefore, Ã(k) is a stochastic matrix for any k ≥ 0

and the trivial permutation {I} is a permutation component of {A(k)}. Later, we will show
that any doubly stochastic chain is decomposable.

We have some side remarks about decomposable chains. The first remark is an ob-

servation that a permutation component of a decomposable chain {A(k)} need not to be

unique. An extreme example is the chain {A(k)} with A(k) = 1
m
eeT for all k ≥ 0. Since

1
m
eeT = 1

m!

∑m!
ξ=1 P

(ξ), any sequence of permutation matrices is a permutation component of

{A(k)}. Another remark is about a mixing coefficient γ of a chain {A(k)}. Note that mixing

coefficient is independent of the permutation component. Furthermore, if γ > 0 is a mixing

coefficient for a chain {A(k)}, then any ξ ∈ (0, γ] is also a mixing coefficient for {A(k)}, as
it can be seen from the decomposition in Eq. (6.9).

An interesting property of any decomposable chain is that if they are rotationally trans-

formed with respect to their permutation component, the resulting chain has trivial permu-

tation component {I}. This property is established in the following lemma.

Lemma 6.3. Let {A(k)} be a decomposable chain with a permutation component {P (k)} and

a mixing coefficient γ. Let {B(k)} be the rotational transformation of {A(k)} with respect

to {P (k)}. Then, the chain {B(k)} is decomposable with a trivial permutation component

{I} and a mixing coefficient γ.

Proof. Note that by the definition of a decomposable chain (Definition 6.4), we have

A(k) = γP (k) + (1− γ)Ã(k) for any k ≥ 0,

where P (k) is a permutation matrix and Ã(k) is a stochastic matrix. Therefore,

A(k)P (k : 0) = γP (k)P (k : 0) + (1− γ)Ã(k)P (k : 0).
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By noticing that P (k)P (k : 0) = P (k+1 : 0) and by using left-multiplication with P T (k+1 :

0), we obtain

P T (k + 1 : 0)A(k)P (k : 0) = γP T (k + 1 : 0)P (k + 1 : 0) + (1− γ)P T (k + 1 : 0)Ã(k)P (k : 0).

By the definition of the rotational transformation (Definition 6.3), we have B(k) = P T (k+1 :

0)A(k)P (k : 0). Using this and the fact P TP = I for any permutation matrix P , we further

have

B(k) = γI + (1− γ)P T (k + 1 : 0)Ã(k)P (k : 0).

Define B̃(k) = P T (k + 1 : 0)Ã(k)P (k : 0) and note that each B̃(k) is a stochastic matrix.

Hence,

B(k) = γI + (1− γ)B̃(k), (6.10)

thus showing that the chain {B(k)} is decomposable with the trivial permutation component

and a mixing coefficient γ. Q.E.D.

In the next lemma, we prove that absolute infinite flow property and infinite flow property

are one and the same for decomposable chains with a trivial permutation component.

Lemma 6.4. For a decomposable chain with a trivial permutation component, infinite flow

property and absolute infinite flow property are equivalent.

Proof. By definition, absolute infinite flow property implies infinite flow property for any

stochastic chain. For the reverse implication, let {A(k)} be decomposable with a permutation

component {I}. Also, assume that {A(k)} has infinite flow property. We claim that {A(k)}
has absolute infinite flow property. To see this, let {S(k)} be any regular sequence. If S(k)

is constant after some time t0, i.e., S(k) = S(t0) for k ≥ t0 and some t0 ≥ 0, then

∞∑
k=t0

AS(k+1),S(k)(k) =
∞∑

k=t0

AS(t0)(k) = ∞,

where the last equality holds since {A(k)} has infinite flow property. Therefore, if S(k) =

S(t0) for k ≥ t0, then we must have
∑∞

k=0AS(k+1),S(k)(k) = ∞.

If there is no t0 ≥ 0 with S(k) = S(t0) for k ≥ t0, then we must have S(kr + 1) ̸= S(kr)

for an increasing time sequence {kr}. Now, for an i ∈ S(kr) \ S(kr + 1) ̸= ∅, we have

AS(kr+1),S(kr)(kr) ≥ Aii(kr) since i ∈ S̄(kr + 1). Furthermore, Aii(k) ≥ γ for all k since

{A(k)} has the trivial permutation sequence {I} as a permutation component with a mixing
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coefficient γ. Therefore,

∞∑
k=0

AS(k+1),S(k)(k) ≥
∞∑
r=0

AS(kr+1),S(kr)(kr) ≥ γ
∞∑
r=0

1 = ∞.

All in all, F ({A(k)}, {S(k)}) = ∞ for any regular sequence {S(k)} and, hence, the chain

{A(k)} has absolute infinite flow property. Q.E.D.

Lemma 6.4 shows that absolute infinite flow property may be easier to verify for the

chains with a trivial permutation component, by just checking infinite flow property. This

result, together with Lemma 6.3 and the properties of rotational transformation established

in Lemma 6.2, provide a basis for showing that a similar reduction of absolute infinite flow

property is possible for any decomposable chain.

Theorem 6.2. Let {A(k)} be a decomposable chain with a permutation component {P (k)}.
Then, the chain {A(k)} has absolute infinite flow property if and only if F ({A(k)}; {S(k)}) =
∞ for any trajectory {S(k)} under {P (k)}, i.e., for all S(0) ⊂ [m] and its trajectory {S(k)}
under {P (k)}.

Proof. Since, by definition, absolute infinite flow property requires F ({A(k)}; {S(k)}) = ∞
for any regular sequence {S(k)}, it suffice to show that F ({A(k)}; {S(k)}) = ∞ for any

trajectory {S(k)} under {P (k)}. To show this, let {B(k)} be the rotational transformation

of {A(k)} with respect to {P (k)}. Since {A(k)} is decomposable, by Lemma 6.3, it follows

that {B(k)} has the trivial permutation component {I}. Therefore, by Lemma 6.4 {B(k)}
has absolute infinite flow property if and only if it has infinite flow property, i.e.,

∞∑
k=0

BS(k) = ∞ for all nonempty S ⊂ [m]. (6.11)

By Lemma 6.2 (d), we have BS(k) = AS(k+1),S(k)(k), where S(k) is the image of S(0) = S

under the permutation {P (k)} at time k. Therefore, Eq. (6.11) holds if and only if

∞∑
k=0

AS(k+1)S(k)(k) = ∞,

which in view of F ({A(k)}; {S(k)}) =
∑∞

k=0AS(k+1)S(k)(k) shows that F ({A(k)}; {S(k)}) =
∞. Q.E.D.

In light of Theorem 6.2, verification of absolute infinite flow property for a decomposable

chain is considerably simpler than for an arbitrary stochastic chain. For decomposable chains,
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it suffice to verify F ({A(k)}; {S(k)}) = ∞ only for the trajectory {S(k)} of S(0) under a

permutation component {P (k)} of {A(k)} for any S(0) ⊂ [m].

Another direct consequence of Lemma 6.4 is that absolute infinite flow property is not

generally sufficient for ergodicity.

Corollary 6.1. Absolute infinite flow property is not a sufficient condition for ergodicity.

Proof. Consider the following static chain:

A(k) =

 1 0 0
1
3

1
3

1
3

0 0 1

 for k ≥ 0.

It can be seen that {A(k)} has infinite flow property. Furthermore, it can be seen that {A(k)}
is decomposable and has the trivial permutation sequence {I} as a permutation component.

Thus, by Lemma 6.4, the chain {A(k)} has absolute infinite flow property. However, {A(k)}
is not ergodic. This can be seen by noticing that the vector v = (1, 1

2
, 0)T is a fixed point

of the dynamics x(k + 1) = A(k)x(k) with x(0) = v, i.e., v = A(k)v for any k ≥ 0. Hence,

{A(k)} is not ergodic. Q.E.D.

Although absolute infinite flow property is a stronger necessary condition for ergodicity

than infinite flow property, Corollary 6.1 demonstrates that absolute infinite flow property

is not yet strong enough to be equivalent to ergodicity. However, using the results developed

so far, we will show that absolute infinite flow property is in fact equivalent to ergodicity for

doubly stochastic chains, as discussed in the following section.

6.4 Doubly Stochastic Chains

In this section, we focus on the class of the doubly stochastic chains. We first show that this

class is a subclass of the decomposable chains. Using this result and the results developed

in the preceding sections, we establish that absolute infinite flow property is equivalent to

ergodicity for doubly stochastic chains.

We start our development by proving that a doubly stochastic chain is decomposable.

The key ingredient in this development is the Birkhoff-von Neumann theorem (Theorem 2.5).

Consider a sequence {A(k)} of doubly stochastic matrices. By applying Birkhoff-von
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Neumann theorem to each A(k), we have

A(k) =
m!∑
ξ=1

qξ(k)P
(ξ), (6.12)

where
∑m!

ξ=1 qξ(k) = 1 and qξ(k) ≥ 0 for all ξ ∈ [m!] and k ≥ 0. Since
∑m!

ξ=1 qξ(k) = 1 and

qξ(k) ≥ 0, there exists a scalar γ ≥ 1
m!

such that for every k ≥ 0, we can find ξ(k) ∈ [m!]

satisfying qξ(k)(k) ≥ γ. Therefore, for any time k ≥ 0, there is a permutation matrix

P (k) = P (ξ(k)) such that

A(k) = γP (k) +
m!∑
ξ=1

αξ(k)P
(ξ) = γP (k) + (1− γ)Ã(k), (6.13)

where γ > 0 is a time-independent scalar and Ã(k) = 1
1−γ

∑m!
ξ=1 αξ(k)P

(ξ).

The decomposition of A(k) in Eq. (6.13) fits the description in the definition of decom-

posable chains (Definition 6.4). Therefore, we have established the following result.

Lemma 6.5. Any doubly stochastic chain is a decomposable chain.

In the light of Lemma 6.5, all the results developed in Section 6.3 are applicable to doubly

stochastic chains. In particular, Theorem 6.2 is the most relevant, which states that verifying

absolute infinite flow property for decomposable chains can be reduced to verifying infinite

flow along particular sequences of the index sets. Another result that we use is the special

instance of Theorem 6 in [55] as applied to doubly stochastic chains. Any doubly stochastic

chain that has the trivial permutation component {I} (i.e., Eq. (6.13) holds with P (k) = I)

fits the framework of Theorem 4.4.

Now, we are ready to deliver our main result of this section, showing that ergodicity and

absolute infinite flow are equivalent for doubly stochastic chains. We accomplish this by

combining Theorem 6.2 and Theorem 4.4.

Theorem 6.3. A doubly stochastic chain {A(k)} is ergodic if and only if it has absolute

infinite flow property.

Proof. Let {P (k)} be a permutation component for {A(k)} and let {B(k)} be the rotational

transformation of {A(k)} with respect to its permutation component. By Lemma 6.3, {B(k)}
has the trivial permutation component {I}. Moreover, since B(k) = P T (k+1 : 0)A(k)P (k :

0), where P T (k + 1 : 0), A(k) and P (k : 0) are doubly stochastic matrices, it follows that

{B(k)} is a doubly stochastic chain. Therefore, by application of Theorem 6.3 to doubly

stochastic chain with strong feedback property, it follows that {B(k)} is ergodic if and only
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if it has infinite flow property. Then, by Lemma 6.2(d), the chain {B(k)} has infinite flow

property if and only if {A(k)} has absolute infinite flow property. Q.E.D.

Theorem 6.3 provides an alternative characterization of ergodicity for doubly stochastic

chains, under only requirement to have absolute infinite flow property. We note that The-

orem 6.3 does not impose any other specific conditions on matrices A(k) such as uniformly

bounded diagonal entries or uniformly bounded positive entries, which have been typically

assumed in the existing literature (see for example [1, 21, 69, 52, 13, 37, 72]).

We observe that absolute infinite flow typically requires verifying the existence of infinite

flow along every regular sequence of index sets. However, to use Theorem 6.3, we do not

have to check infinite flow for every regular sequence. This reduction in checking absolute

infinite flow property is due to Theorem 6.2, which shows that in order to assert absolute

infinite flow property for doubly stochastic chains, it suffice that the flow over some specific

regular sets is infinite. We summarize this observation in the following corollary.

Corollary 6.2. Let {A(k)} be a doubly stochastic chain with a permutation component

{P (k)}. Then, the chain is ergodic if and only if F ({A(k)}; {S(k)}) = ∞ for all trajectories

{S(k)} of subsets S(0) ⊂ [m] under {P (k)}.

6.4.1 Rate of Convergence

Here, we explore the rate of convergence result for an ergodic doubly stochastic chain {A(k)}
which is based on the rate of convergence result developed in Chapter 4. The major ingre-

dient in the development is the establishment of another important property of rotational

transformation related to the invariance of the Lyapunov function.

Let {A(k)} be a doubly stochastic chain and consider a dynamic {x(k)} driven by {A(k)}
starting at some initial condition (t0, x(t0)) ∈ Z+ × Rm. Note that for a doubly stochas-

tic chain, the static sequence { 1
m
e} is an absolute probability sequence. In this case, the

associated quadratic comparison function would be a Lyapunov function defined by:

V (x) =
1

m

m∑
i=1

(xi − x̄)2 for x ∈ Rm, (6.14)

where x̄ = 1
m
eTx is the average of the entries of the vector x.

We now consider the behavior of the Lyapunov function under rotational transformation

of the chain {A(k)}, as given in Definition 6.3. It emerged that the Lyapunov function

V is invariant under the rotational transformation, as shown in forthcoming Lemma 6.6.
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We emphasize that the invariance of the Lyapunov function V holds for arbitrary stochastic

chain; the doubly stochasticity of the chain is not needed at all.

Lemma 6.6. Let {A(k)} be a stochastic chain and {P (k)} be an arbitrary permutation

chain. Let {B(k)} be the rotational transformation of {A(k)} by {P (k)}. Let {x(k)} and

{y(k)} be the dynamics obtained by {A(k)} and {B(k)}, respectively, with the same initial

point y(0) = x(0) where x(0) ∈ Rm is arbitrary. Then, for the function V (·) defined in

Eq. (6.14) we have

V (x(k)) = V (y(k)) for all k ≥ 0.

Proof. Since {y(k)} is the dynamics obtained by {B(k)}, there holds for any k ≥ 0,

y(k) = B(k − 1)y(k − 1) = . . . = B(k − 1) · · ·B(1)B(0)y(0) = B(k : 0)y(0).

By Lemma 6.2 (a), we have B(k : 0) = P T (k : 0)A(k : 0)P (0 : 0) with P (0 : 0) = I, implying

y(k) = P T (k : 0)A(k : 0)y(0) = P T (k : 0)A(k : 0)x(0) = P T (k : 0)x(k), (6.15)

where the second equality follows from y(0) = x(0) and the last equality follows from the

fact that {x(k)} is the dynamics obtained by {A(k)}. Now, notice that the function V (·)
of Eq. (6.14) is invariant under any permutation, that is V (Px) = V (x) for any permutation

matrix P . In view of Eq. (6.15), the vector y(k) is just a permutation of x(k). Hence,

V (y(k)) = V (x(k)) for all k ≥ 0. Q.E.D.

Consider an ergodic doubly stochastic chain {A(k)} with a trivial permutation component

{I}. Let t0 = 0 and for any δ ∈ (0, 1) recursively define tq, as follows:

tq+1 = arg min
t≥tq+1

min
S⊂[m]

t−1∑
t=tq

AS(k) ≥ δ, (6.16)

where the second minimum in the above expression is taken over all nonempty subsets

S ⊂ [m]. Basically, tq is the first time t > tq−1 when the accumulated flow from t = tq−1 + 1

to t = tq exceeds δ over every nonempty S ⊂ [m]. We refer to the sequence {tq} as

accumulation times for the chain {A(k)}. We observe that, when the chain {A(k)} has

infinite flow property, then tq exists for any q ≥ 0, and any δ > 0.

Now based on the rate of convergence derived in Theorem 5.2, for the sequence of time

instances {tq}, we have the following rate of convergence result.

Lemma 6.7. Let {A(k)} be an ergodic doubly stochastic chain with a trivial permutation

component {I} and a mixing coefficient γ > 0. Also, let {x(k)} be the dynamics driven by
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{A(k)} starting at an arbitrary point x(0). Then, for any q ≥ 1, we have

V (x(tq)) ≤
(
1− γδ(1− δ)2

m(m− 1)2

)
V (x(tq−1)),

where tq is defined in (6.16).

Proof. Note that any deterministic chain can be considered as an independent random chain.

Thus, the result follows by letting p∗ = 1
m

and ϵ = 1 in Theorem 5.2 . Q.E.D.

Using the invariance of the Lyapunov function under rotational transformation and the

properties of rotational transformation, we can establish a result analogous to Lemma 6.7

for an arbitrary ergodic chain of doubly stochastic matrices {A(k)}. In other words, we

can extend Lemma 6.7 to the case when the chain {A(k)} does not necessarily have trivial

permutation component {I}. To do so, we appropriately adjust the definition of the accu-

mulation times {tq} for this case. In particular, we let δ > 0 be arbitrary but fixed, and let

{P (k)} be a permutation component of an ergodic chain {A(k)}. Next, we let t0 = 0 and

for q ≥ 1, we define tq as follows:

tq+1 = arg min
t≥tq+1

min
S(0)⊂[m]

t−1∑
t=tδq

AS(k+1)S(k)(k) ≥ δ, (6.17)

where {S(k)} is the trajectory of the set S(0) under {P (k)}.
We have the following convergence result.

Theorem 6.4. Let {A(k)} be an ergodic doubly stochastic chain with a permutation compo-

nent {P (k)} and a mixing coefficient γ > 0. Also, {x(k)} be the dynamics driven by {A(k)}
starting at an arbitrary point x(0). Then, for any q ≥ 1, we have

V (x(tq)) ≤
(
1− γδ(1− δ)2

m(m− 1)2

)
V (x(tq−1)),

where tq is defined in (6.17).

Proof. Let {B(k)} be the rotational transformation of the chain {A(k)} with respect to

{P (k)}. Also, let {y(k)} be the dynamics driven by chain {B(k)} with the initial point

y(0) = x(0). By Lemma 6.3, {B(k)} has the trivial permutation component {I}. Thus, by

Lemma 6.7, we have for all q ≥ 1,

V (y(tq)) ≤
(
1− γδ(1− δ)2

m(m− 1)2

)
V (y(tq−1)).
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Now, by Lemma 6.2 (d), we have AS(k+1)S(k)(k) = BS(k). Therefore, the accumulation

times for the chain {A(k)} are the same as the accumulation times for the chain {B(k)}.
Furthermore, according Lemma 6.6, we have V (y(k)) = V (x(k)) for any k ≥ 0 and, hence,

for all q ≥ 1,

V (x(tq)) ≤
(
1− γδ(1− δ)2

m(m− 1)2

)
V (x(tq−1)).

Q.E.D.

6.4.2 Doubly Stochastic Chains without Absolute Infinite Flow Property

So far we have been concerned with doubly stochastic chains with absolute infinite flow

property. In this section, we turn our attention to the case when absolute flow property is

absent. In particular, we are interested in characterizing the limiting behavior of backward

product of a doubly stochastic chain that does not have absolute infinite flow.

Let us extend the notion of the infinite flow graph as introduced in Definition 3.3.

Definition 6.5. Let us define the infinite flow graph of {A(k)} with respect to a permutation

sequence {P (k)} to be an undirected graph G∞
P = ([m], E∞

P ) with

E∞
P =

{
{i, j}

∣∣ ∞∑
k=0

(
Ai(k+1),j(k)(k) + Aj(k+1)i(k)

)
= ∞

}
,

where {i(k)} and {j(k)} are the trajectories of the sets S(0) = {i} and S(0) = {j}, re-

spectively, under the permutation component {P (k)}; formally, ei(k) = P (k : 0)ei and

ej(k) = P (k : 0)ej for all k with P (0 : 0) = I. We refer to the graph G∞
P = ([m], E∞

P ) as the

infinite flow graph of the chain {A(k)} with respect to a permutation sequence {P (k)}.

Notice that if we let the permutation sequence {P (k)} be the trivial permutation sequence

{I}, then G∞
P is nothing but the infinite flow graph G∞ as given in Definition 3.3.

As discussed in Lemma 3.3, we can state Theorem 3.1 in terms of the infinite flow graph.

We can use the same line of argument to restate Theorem 6.1 in terms of the associated

infinite flow graphs G∞
P .

Lemma 6.8. Let {A(k)} be an ergodic chain. Then the infinite flow graph of {A(k)} with

respect to any permutation sequence {P (k)} is connected.

Proof. Let G∞
P be an infinite flow graph with respect to a permutation chain {P (k)} that is
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not connected. Let S ⊂ [m] be a connected component of G∞
P . Then, we have

∞∑
k=0

∑
i∈S,j∈S̄

(
Ai(k+1)j(k)(k) + Ai(k)j(k+1)(k)

)
<∞.

But
∑

i∈S,j∈S̄ Ai(k)j(k)(k) = AS(k+1)S(k)(k) which implies that F ({A(k)}; {S(k)}) < ∞ and

hence, by Theorem 6.1 it follows that {A(k)} is not ergodic. Q.E.D.

Since a doubly stochastic chain is decomposable, Theorem 6.2 is applicable, so by this

theorem when the chain {A(k)} does not have absolute infinite flow property, then

F ({A(k)}; {S(k)}) <∞

for some S(0) ⊂ [m] and its trajectory under a permutation component {P (k)} of {A(k)}.
This permutation component will be important so we denote it by P. By Theorem 6.2, we

have that G∞
P is connected if and only if the chain has absolute infinite flow property. Since,

a doubly stochastic chain {A(k)} with the trivial permutation component is a chain in P∗

with feedback property, Theorem 4.4 shows the connectivity of G∞
P is closely related to the

limiting matrices of the product A(k : t0), as k → ∞.

Using Lemma 6.2, Lemma 6.3 and Theorem 6.3, we can show that the backward product

of any doubly stochastic chain essentially converges.

Theorem 6.5. Let {A(k)} be a doubly stochastic chain with a permutation component

{P (k)}. Then, for any starting time t0 ≥ 0, the product A(k : t0) converges up to a permuta-

tion of its rows; i.e., there exists a permutation sequence {Q(k)} such that limk→∞Q(k)A(k :

t0) exists for any t0 ≥ 0. Moreover, for the trajectories {i(k)} and {j(k)} of S(0) = {i} and

S(0) = {j}, respectively, under the permutation component {P (k)}, we have

lim
k→∞

∥Ai(k)(k : t0)− Aj(k)(k : t0)∥ = 0 for any starting time t0,

if and only if i and j belong to the same connected component of G∞
P .

Proof. Let {B(k)} be the rotational transformation of {A(k)} by the permutation component

{P (k)}. As proven in Lemma 6.3, the chain {B(k)} has a trivial permutation component.

Hence, by Theorem 6.3, the limit B∞(t0) = limk→∞B(k : t0) exists for any t0 ≥ 0. On the

other hand, by Lemma 6.2 (a), we have

B(k : t0) = P T (k : 0)A(k : t0)P (t0 : 0) for all k > t0.
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Multiplying by P T (t0 : 0) from the right, and using PP T = I which is valid for any permu-

tation matrix P , we obtain

B(k : t0)P (t0 : 0)
T = P T (k : 0)A(k : t0) for all k > t0.

Therefore, limk→∞B(k : t0)P (t0 : 0)T always exists for any starting time t0 since B(k :

t0)P
T (t0 : 0) is obtained by a fixed permutation of the columns of B(k : t0). Therefore, if

we let Q(k) = P T (k : 0), then limk→∞Q(k)A(k : t0) exists for any t0 which proves the first

part of the theorem.

For the second part, by Theorem 6.3, we have limk→∞ ∥Bi(k : t0) − Bj(k : t0)∥ = 0

for any t0 ≥ 0 if and only if i and j belong to the same connected component of the

infinite flow graph of {B(k)}. By the definition of the rotational transformation, we have

B(k : t0) = P T (k : 0)A(k : t0)P (t0 : 0). Therefore, for the ith and jth row of B(k : t0), we

have according to Eq. (6.7):

∥Bi(k : t0)−Bj(k : t0)∥ = ∥Ai(k)(k : t0)− Aj(k)(k : t0)∥,

where ei(k) = P (k : 0)ei and ej(k) = P (k : 0)ej for all k. Therefore, limk→∞ ∥Bi(k :

t0) − Bj(k : t0)∥ = 0 if and only if limk→∞ ∥Ai(k)(k : t0) − Aj(k)(k : t0)∥ = 0. Thus,

limk→∞ ∥Ai(k)(k : t0) − Aj(k)(k : t0)∥ = 0 for any t0 ≥ 0 if and only if i and j belong to the

same connected component of the infinite flow graph of {B(k)}. The last step is to show

that the infinite flow graph of {B(k)} (with respect to the trivial permutation chain) and

the infinite flow graph of the chain {A(k)} with respect to P are the same. This however,

follows from the following relations:

∞∑
k=0

Bij(k) =
∞∑
k=0

eTi P
T (k + 1 : 0)A(k)P (k : 0)ej =

∞∑
k=0

ei(k)A(k)ej(k).

Q.E.D.

By Theorem 6.5, for any doubly stochastic chain {A(k)} and any fixed t0, the sequence

consisting of the rows of A(k : t0) converges to a multiset of m points in the probability

simplex of Rm, as k approaches to infinity. In general, this is not true for an arbitrary

stochastic chain. For example, consider the stochastic chain

A(2k) =

 1 0 0

1 0 0

0 0 1

 , A(2k + 1) =

 1 0 0

0 0 1

0 0 1

 for all k ≥ 0.
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For this chain, we have A(2k : 0) = A(2k) and A(2k + 1 : 0) = A(2k + 1). Hence,

depending on the parity of k, the set consisting of the rows of A(k : 0) alters between

{(1, 0, 0), (1, 0, 0), (0, 0, 1)} and {(1, 0, 0), (0, 0, 1), (0, 0, 1)} and, hence, never converges to a

multiset with 3 elements in R3.
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Chapter 7

Averaging Dynamics in General State Spaces

Motivated by the theory of Markov chains over general state spaces [73], in this chapter

we provide a framework for the study of averaging dynamics over general state spaces. We

will show that some of the developed results in the previous chapters remain to be true

for arbitrary state spaces. As in Chapter 6, our discussion on general state spaces will be

restricted to deterministic chains.

The structure of this chapter is as follows: In Section 7.1, we introduce and discuss

averaging dynamics over general state spaces. Then, in Section 7.2 we discuss several modes

of ergodicity. We show that unlike averaging dynamics on Rm, there are several notions of

ergodicity for averaging dynamics in a general state space that are not necessarily equivalent.

In Section 7.3, we discuss the generalization of infinite flow property over a general state

space and prove that it is necessary for the weakest form of ergodicity in an arbitrary state

space. Finally, in Section 7.4 we prove a generalization of the fundamental relation (4.8) for

the averaging dynamics in general state spaces.

7.1 Framework

As discussed in Chapter 2, for averaging dynamics in Rm we are interested in limiting

behavior of the dynamics

x(k + 1) = A(k)x(k), for k ≥ t0, (7.1)

where, (t0, x(t0)) ∈ Z+×Rm is an initial condition for the dynamics. To distinguish between

averaging dynamics in Rm and general state spaces, we refer to the dynamics in Eq. (7.1)

as the classic averaging dynamics. By our earlier discussions in Chapter 2, study of limiting

behavior of the dynamics (7.1) is an alternative way of studying the convergence properties of

the product A(k : t0). This viewpoint leads to our operator theoretic viewpoint to averaging

dynamics over general state spaces. Also, as it is shown in Theorem 2.2, it suffice to verify

the convergence of {x(k)} only for x(t0) = eℓ where ℓ ∈ [m] which shows that the ℓth column
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of A(k : t0) converges. In our development, we will visit a counterpart of such a result for

averaging dynamics in general state spaces.

Before formulating averaging dynamics over general state spaces, let us discuss the no-

tation used in this chapter which is slightly different from the notation used in the previous

chapters. Here, instead of sequences of stochastic matrices, we are dealing with sequences of

stochastic kernels in a measure space. Since in this case the state variables are more involved

in our developments, we use the subscripts for indexing time variables. Thus instead of using

the notation {K(k)} for a sequence of stochastic kernels, we use {Kk} to denote a sequence

of kernels. Also, we use Kk(ξ, η) to denote the value of Kk at the point (ξ, η). However, for

averaging dynamics over Rm, we still use the same notation as in the previous chapters. This

also helps us to distinguish between averaging dynamics over Rm and averaging dynamics

over general state spaces.

To formulate averaging dynamics over a general state space, let X be a set with a σ-

algebra M of subsets of X. Throughout this chapter, the measurable space (X,M) will

serve as our general state space.

Definition 7.1. [73] We say a function K : X ×M → R+ is a stochastic kernel if

(a) for any S ∈ M, the function fS : X → R+ defined by fS(ξ) = K(ξ, S) is a measurable

function,

(b) for any ξ ∈ X, the set function K(ξ, ·) is a measure on X,

(c) for any ξ ∈ X, we have K(ξ,X) = 1, i.e. the measure K(ξ, ·) is a probability measure

for any ξ ∈ X.

Furthermore, if we can write

K(ξ, S) =

∫
S

K̃(ξ, η)dµ(η),

for some measurable function K̃ : X × X → R+ and a measure µ on (X,M), then K is

referred as a stochastic integral kernel with density K̃ and basis µ.

Let us define L∞ to be the space of all measurable functions x from (X,M) to R such

that supξ∈X |x(ξ)| <∞, and let ∥x∥∞ = supξ∈X |x(ξ)|.
For a chain {Kk} of stochastic kernels, a given starting time t0 ≥ 0, and a starting point

xt0 ∈ L∞, let us define the averaging dynamics as follows:

xk+1(ξ) =

∫
X

Kk(ξ, dη)xk(η) for any ξ ∈ X and k ≥ t, (7.2)
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where
∫
X
Kk(ξ, dη)xk(η) is the integral of xk with respect to the measure K(ξ, ·). Let us

represent Eq. (7.2) concisely by xk+1 = Kkxk.

Note that, when the kernel Kk in (7.2) is an integral kernel with density K̃k and a basis

µ, then we can write (7.2) as

xk+1(ξ) =

∫
X

K̃k(ξ, η)xk(η)dµ(η). (7.3)

We now show that the dynamics (7.2) is well-defined, in the sense that {x(k)} ⊂ L∞

whenever the dynamics is started at a point in L∞.

Lemma 7.1. Let {x(k)} be the dynamics generated by the dynamics (7.2) started at time

t0 ≥ 0 and the point xt0 ∈ L∞. Then, ∥xk+1∥∞ ≤ ∥xk∥∞ for any k ≥ 0. Thus, {x(k)} is a

sequence in L∞.

Proof. Note that xt0 ∈ L∞ and by induction for any ξ ∈ X, we have

|xk+1(ξ)| = |
∫
X

Kk(ξ, dη)xk| ≤
∫
X

|Kk(ξ, dη)xk| ≤ ∥xk∥∞,

which holds since Kk(ξ, ·) is a probability measure. Therefore, it follows that |xk+1(ξ)| ≤
∥xt0∥∞ for all ξ ∈ X and hence, xk ∈ L∞ for all k ≥ t0. Q.E.D.

Example 7.1. Let X = [m] = {1, . . . ,m}, M = P([m]) (the set of all subsets of [m]) and

let µ be the counting measure on (X,M), i.e. µ(S) = |S| for any S ⊆ [m]. For a chain of

stochastic matrices {A(k)}, if we define K̃k(i, j) = Aij(k) for all i, j ∈ [m] and k ≥ 0, then

{K̃k} is a chain of density functions with basis µ.

For such a chain any vector xt0 ∈ Rm is in L∞ and hence, the classic averaging dynam-

ics (7.1) is a special case of the averaging dynamics (7.3) in general state spaces.

7.2 Modes of Ergodicity

In this section, we define several modes of ergodicity for averaging dynamics in (7.2). As

in the case of stochastic matrices, a stochastic kernel K can be viewed as an operator T :

L∞ → L∞ defined by T (x) = Kx. Note that by Lemma 7.1, we have ∥Kx∥∞ ≤ ∥x∥∞. Also,

since K is a stochastic kernel, we have K1X = 1X . On the other hand, by the linearity of

integral, we have K(x + y) = Kx + Ky for any x, y ∈ L∞. Thus, K can be viewed as an

element in B(L∞, L∞) where B(L∞, L∞) is the set of bounded linear operators from L∞ to

L∞. Furthermore, ∥K∥∞ = 1 where ∥K∥∞ is the induced operator norm of K.
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A viewpoint to averaging dynamics (7.2) is to view {x(k)} as the image of a point xt0

under a sequence of operators Kk:t0 = Kk−1Kk−2 · · · Kt0 as k varies from t0 + 1 to ∞ where

PQ should be understood as:

[PQ](ξ, S) =

∫
P (ξ, dψ)Q(ψ, S),

for any ξ ∈ X and S ∈ M.

For a probability measure π on (X,M), let us denote the stochastic kernel K(ξ, S) = π(S)

by K = 1Xπ
T .

Definition 7.2. Let {Kk} be a chain of stochastic kernels on (X,M). Then, we say {Kk}
is

• Uniformly Ergodic: if limk→∞ ∥Kk:t0 − 1Xπ
T
t0
∥∞ = 0 for some probability measure πt0

on (X,M), and any t0 ≥ 0, where the equality should be understood as the induced

operator norm.

• Strongly Ergodic: if for any set ξ ∈ X, we have limk→∞ xk(ξ) = c(xt0 , t0) for some

c(xt0 , t0) ∈ R and any initial condition (t0, xt0) ∈ Z+ × L∞.

• Weakly Ergodic: if for any ξ, η ∈ X, we have

lim
k→∞

(xk(ξ)− xk(η)) = 0,

for any initial condition (t0, xt0) ∈ Z+ × L∞.

Based on Definition 7.2 one can define several modes of consensus types.

Definition 7.3. We say that {Kk} admits Consensus

• Uniformly: if limk→∞ ∥Kk:0−1Xπ
T∥∞ = 0, for some probability measure π on (X,M).

• Strongly: if for any ξ ∈ X, we have limk→∞ xk(ξ) = c(x0) for some c(x0) ∈ R and any

starting point x0 ∈ L∞.

• Weakly: if for any ξ, η ∈ X, we have limk→∞ (xk(ξ)− xk(η)) = 0 for any starting point

x0 ∈ L∞.

For classic averaging dynamics, all these notions of ergodicity and consensus as given in

Definition 7.2 and Definition 7.3 are equivalent. However, in general state spaces they lead

to different properties.
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From the Definition 7.2, it follows that uniform ergodicity implies strong ergodicity which

itself implies weak ergodicity. Similar relations hold among the modes of consensus. However,

the reverse implications do not necessary hold. The following example shows that in general,

strong ergodicity (consensus) does not imply uniform ergodicity (consensus).

Example 7.2. Consider the set of non-negative integers Z+, and let M = P(Z+), and µ

be the counting measure on Z+. Let {Kk} be the chain of stochastic kernels with density

functions given by

K̃k(i, j) =

{
δ0j if i ≤ k,

δij if i > k,

for k ≥ 1 and for k = 0, let K̃0(i, j) = δij, where δij = 1 of i = j and otherwise, δij = 0. In

this case, K̃k can be viewed as a |Z+| × |Z+| stochastic matrix with the form:

K̃k =



1 · · · 0 0 0 0 · · ·
...

. . .
...

...
...

... · · ·
1 · · · 0 0 0 0 · · ·
1 · · · 0 0 0 0 · · ·
0 · · · 0 0 1 0 · · ·
0 · · · 0 0 0 1 · · ·
...

...
...

...
...

...
. . .


. (7.4)

Now, let {x(k)} be a dynamics generated by {Kk} started at an arbitrary initial condition

(t0, xt0) ∈ Z+ × L∞. Then for any ξ ∈ Z+, if we let k > max(t0, ξ), we have xk(ξ) = xt0(0).

Thus, limk→∞ xk(ξ) = xt0(0). Therefore, {Kk} is strongly ergodic and admits consensus

strongly.

However, by the form of Eq. (7.4), the only candidate for limk→∞ Kk:t0 is the integral

kernel 1Xπ
T where π is the probability measure concentrated at {0}, i.e. π(S) = 1 if 0 ∈ S

and π(S) = 0, otherwise. However, if we define xt0 by xt0(i) = δ0i, then we have ∥(Kk −
1Xπ

T )xt0∥∞ = 1 and hence, {Kk} is not uniformly ergodic and does not admit consensus

uniformly.

The following example shows that weak ergodicity (consensus) does not imply strong

ergodicity (consensus).

Example 7.3. Consider the measure space (Z+,M), defined in the previous example. Con-
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sider the chain of stochastic integral kernels {Kk} with density kernels,

K̃k(i, j) =

{
δjk if i ≤ k,

δij if i > k
for k ≥ 0.

The density kernel K̃k has the following form

K̃k =



0 · · · 0 1 0 0 · · ·
...

. . .
...

...
...

... · · ·
0 · · · 0 1 0 0 · · ·
0 · · · 0 1 0 0 · · ·
0 · · · 0 0 1 0 · · ·
0 · · · 0 0 0 1 · · ·
...

...
...

...
...

...
. . .


.

For any two ξ, η ∈ Z+, and any starting point xt0 ∈ L∞, we have xk(ξ) = xk(η) = xk(k),

for k ≥ K = max(ξ, η) and hence, limk→∞(xk(ξ) − xk(η)) = 0. Nevertheless, if we let

{αk} be a sequence of scalars in [0, 1] that is not convergent and we start the dynamics at

time t = 0 and starting point x0 = (α0, α1, α2, . . .) (which belongs to L∞), then we have

xk = (αk, αk, . . . , αk, αk+1, αk+2 . . .). Therefore, for any ξ ∈ Z+, we have xk(ξ) = αk for

k > ξ. Since {αk} is not convergent, we conclude that limk→∞ xk(ξ) does not exist and

hence, the chain {Kk} is not strongly ergodic and does not admit consensus uniformly.

The definition of weak ergodicity and consensus are inspired by the dynamic system

viewpoint to ergodicity and consensus presented in Theorem 2.2 and Theorem 2.3. These

properties would be of more interest from the consensus-seeking algorithms and protocols.

7.3 Infinite Flow Property in General State Spaces

In Chapter 3, we defined the infinite flow property and we showed that this property is

necessary for ergodicity of classic averaging dynamics. In this section, we show a similar

result for averaging dynamics in a general state space.

For a stochastic chain {A(k)}, the infinite flow property requires that
∑∞

k=0AS(k) = ∞
for any non-trivial S ⊂ [m] where

AS(k) = ASS̄(k) + AS̄S(k) =
∑

i∈S,j∈S̄

Aij(k) +
∑

i∈S̄,j∈S

Aij(k).
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In a general state space (X,M) that is not equipped with a measure, K(S, S̄) is not

well-defined for a stochastic kernel K. However, if we have an integral kernel K with density

K̃ and a basis µ, we can define

K(S, S̄) =

∫
S

K(ξ, S̄)dµ(ξ) =

∫
S

∫
S̄

K̃(ξ, η)dµ(η)dµ(ξ).

Thus, for a chain of stochastic integral kernels {Kk} with density kernels {K̃k} and basis µ,

it is tempting to define the flow over a non-trivial set S ∈ M (i.e. S ̸= ∅ and S ̸= X a.e.) to

be

K̄f (S) = K(S, S̄) +K(S̄, S) =

∫
S

∫
S̄

K̃(ξ, η)dµ(ξ)dµ(η) +

∫
S̄

∫
S

K̃(ξ, η)dµ(ξ)dµ(η), (7.5)

and conclude the necessity of the infinite flow for (at least) uniform ergodicity of any chain

of stochastic integral kernels. However, with the definition of flow in Eq. (7.5), such a result

is not true as it can be deduced from the following example.

Example 7.4. Let X = [0, 1] with M being Borel sets of [0, 1] and µ being the Borel-measure

on [0, 1]. Let the densities K̃k be defines by

K̃k(ξ, η) =


2 · 1( 1

2
,1](η) ξ ∈ [0, 2−k]

2k · 1[0,2−k](η) ξ ∈ (2−k, 1
2
]

2 · 1( 1
2
,1](η) ξ ∈ (1

2
, 1]

for k ≥ 0. (7.6)

First, let us show that {Kk} is uniformly ergodic. To do so, we show that K̃k+1K̃k(ξ, η) =

2 · 1( 1
2
,1](η) for any k ≥ 0 and ξ ∈ [0, 1]. To prove this, consider the following cases:

(i) ξ ∈ [0, 2−(k+1)]: In this case, by Eq. (7.6), we have K̃k+1(ξ, ψ) = 2 ·1( 1
2
,1](ψ) and hence,

K̃k+1K̃k(ξ, η) =

∫
[0,1]

K̃k+1(ξ, ψ)K̃k(ψ, η)dµ(ψ) = 2

∫
( 1
2
,1]

K̃k(ψ, η)dµ(ψ)

= 2

∫
( 1
2
,1]

2 · 1( 1
2
,1](η)dµ(ψ) = 2 · 1( 1

2
,1](η).

(ii) ξ ∈ (2−(k+1), 1
2
]: In this case, we have K̃k+1(ξ, ψ) = 2k+1 · 1[0,2−(k+1)](ψ) and hence,

K̃k+1K̃k(ξ, η) =

∫
[0,1]

K̃k+1(ξ, ψ)K̃k(ψ, η)dµ(ψ) = 2k+1

∫
[0,2−(k+1)]

K̃k(ψ, η)dµ(ψ).
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Since [0, 2−(k+1)] ⊂ [0, 2−k] it follows that,

K̃k+1K̃k(ξ, η) = 2k+1

∫
[0,2−(k+1)]

2 · 1( 1
2
,1](η)dµ(ψ) = 2 · 1( 1

2
,1](η).

(iii) ξ ∈ (1
2
, 1]: In this case, we have K̃k+1(ξ, ψ) = 2 · 1( 1

2
,1](ψ) and hence, a similar result

as in the case (i) holds.

Thus, K̃k+1K̃k(ξ, η) = 2 · 1( 1
2
,1](η) implying that {Kk} is uniformly ergodic. Nevertheless,

if we let S = [0, 1
2
], then K̄f

k(S) = 2−k and hence,
∑∞

k=0 K̄
f
k(S) = 2 <∞.

What makes the chain in Example 7.4 uniformly ergodic is the fact that the measure µ

can approach zero and yet, such a small measure set can contribute a lot to ergodicity. As

a consequence this straightforward generalization of the infinite flow property need not be

necessary in general state spaces.

In fact, with proper definition of infinite flow property, the necessity of infinite flow is still

true for arbitrary state spaces and for the weakest form of ergodicity, i.e. weak ergodicity. To

formulate the infinite flow property, for a stochastic kernel K and any non-trivial set S ∈ M,

let us define the flow from set S to S̄ to be:

Kf (S, S̄) = sup
ξ∈S

K(ξ, S̄). (7.7)

Notice that the definition of the flow Kf (S, S̄) in (7.7) does not require the measurable space

(K,M) to be equipped with a measure. Also, note that since K is a stochastic kernel, we

have Kf (S, S̄) ≤ 1.

Based on Eq. (7.7), let us define the flow between S and S̄ to be Kf (S) = Kf (S, S̄) +

Kf (S̄, S). Now, let us define the infinite flow property.

Definition 7.4. We say that a chain of stochastic kernels {Kk} has infinite flow property if∑∞
k=0K

f
k(S) = ∞ for any non-trivial set S ∈ M.

For example, the chain {Kk} discussed in Example 7.4 has infinite flow property over the

set S = [0, 1
2
]. In this case, we have Kf

k(S) = 1 for any k ≥ 0 and hence,
∑∞

k=0K
f
k([0,

1
2
]) = ∞.

In fact, Definition 7.4 is a generalization of the infinite flow property in the classical

averaging dynamics. In the case of a stochastic chain {Kk} = {A(k)}, a non-trivial set

S ∈ M would be a set with S ̸= ∅ and S ̸= [m]. For any such S, we have

1

|S|
(ASS̄(k) + AS̄S(k)) ≤ Kf

k(S) ≤ ASS̄(k) + AS̄S(k).
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Thus, {A(k)} has infinite flow property (in terms of Definition 7.4) if and only if

∞∑
k=0

ASS̄(k) + AS̄S(k) = ∞,

for any nonempty S ⊂ [m] which coincides with Definition 3.2.

Now, we can prove the necessity of infinite flow property for the weak ergodicity.

Theorem 7.1. The infinite flow property is necessary for weak ergodicity.

Proof. Let {Kk} be a chain that does not have infinite flow property. Therefore, there exists

a non-trivial S ∈ M with
∑∞

k=0 K
f
k(S) <∞. Let t0 ≥ 0 be such that

∑∞
t=t0

Kf
t (S) ≤ 1

4
. Let

xt0 = 1S − 1S̄ which is in L∞. Then, for any k ≥ t0, and any ξ ∈ S, we have

xk+1(ξ) =

∫
X

Kk(ξ, dη)xk(η)

=

∫
S

Kk(ξ, dη)xk(η) +

∫
S̄

Kk(ξ, dη)xk(η)

≥ inf
η∈S

(xk(η))Kk(ξ, S)−Kk(ξ, S̄)

= inf
η∈S

(xk(η))(1−Kk(ξ, S̄))−Kk(ξ, S̄), (7.8)

where the inequality follows from ∥xk∥∞ ≤ ∥xt0∥∞ = 1 (Lemma 7.1), and the last equality

follows from Kk(ξ, ·) being a probability measure. Therefore, assuming infη∈S(xk(η)) ≥ 0,

we have

xk+1(ξ) ≥ inf
η∈S

(xk(η))(1−Kk(ξ, S̄))−Kk(ξ, S̄)

≥ inf
η∈S

(xk(η))(1−Kf
k(S, S̄))−Kf

k(S, S̄)

≥ inf
η∈S

(xk(η))− 2Kf
k(S, S̄),

where the last inequality follows by ∥x(k)∥∞ ≤ 1 and the fact that Kk(ξ, S̄) ≤ Kf
k(S, S̄).

Therefore, using induction, for any ξ ∈ S, we can show that

inf
η∈S

(xk+1(η)) ≥ inf
η∈S

(xk(η))− 2Kf
k(S) ≥ inf

η∈S
(xt0(η))− 2

k∑
t=t0

Kf
t (S) ≥

1

2
,
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and hence, infη∈S(xk(η)) ≥ 1
2
> 0 for any k ≥ t0. Using the same line of argument, we have

sup
η∈S̄

xk(η) ≤ sup
η∈S̄

(xt0(η)) + 2
k∑

t=t0

Kf
t (S) ≤ −1

2
.

Therefore, for any ξ ∈ S and any η ∈ S̄, we have

lim inf
k→∞

(xk(ξ)− xk(η)) ≥ 1,

which shows that {Kk} is not weakly ergodic. Q.E.D.

Restriction of the proof of Theorem 7.1 to the stochastic chains in Rm gives an algebraic

proof for Theorem 3.1.

7.4 Quadratic Comparison Function

In Chapter 4, we used a quadratic comparison function to perform stability analysis for

averaging dynamics. For this, in Theorem 4.3, we derived an identity which quantifies the

exact decrease rate for the introduced quadratic comparison function for deterministic chains.

In this section, we show that the decrease rate provided in Theorem 4.3 can be generalized

to an arbitrary state space.

Let π be a probability measure on (X,M). For a stochastic kernel K, let us define

λ : M → R+ by λ(S) =
∫
X
π(dξ)K(ξ, S) for any S ∈ M. Then λ induces a measure

on (X,M) and also since λ(X) =
∫
X
π(dξ)K(ξ,X) =

∫
X
π(dξ) = 1, the measure λ is a

probability measure.

Motivated by the concept of absolute probability sequence for stochastic chains, let us

have the following definition.

Definition 7.5. We say that a sequence of probability measures on (X,M) is an absolute

probability sequence for {Kk} if for any S ∈ M, we have

πk(S) =

∫
X

πk+1(dξ)Kk(ξ, S) for any k ≥ 0.

As in the case of classic averaging dynamics, using an absolute probability sequence and

a convex function g : R → R, we can construct a comparison function for dynamics driven
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by {Kk}. For this, let us define Vg,π : L∞ × Z+ → R+ by

Vg,π(x, k) =

∫
X

πk(dξ)g(x(ξ))− g(πkx) =

∫
X

πk(dξ) (g(x(ξ))− g(πkx)) , (7.9)

where {πk} is an absolute probability sequence for {Kk} and πx =
∫
X
π(dξ)x(ξ).

As for the classic averaging dynamics, for a probability measure π, we have∫
X

π(dξ)∇g(πx)(x(ξ)− πx) = ∇g(πx)
∫
X

π(dξ)(x(ξ)− πx) = 0,

which follows from π being a probability measure.

Therefore, by subtracting 0 =
∫
X
π(dξ)∇g(πkx)(x(ξ)−πkx) from the both sides of (7.9),

we have

Vg,π(x, k) =

∫
X

πk(dξ) (g(x(ξ))− g(πkx))

=

∫
X

πk(dξ) (g(x(ξ))− g(πkx)−∇g(πkx)(x(ξ)− πkx))

=

∫
X

πk(dξ)Dg(x(ξ), πkx),

where Dg(x(ξ), πkx) is the Bregman distance of x(ξ) and πkx under further assumption of

strong convexity of g. Thus, the given comparison function Vg,π(x, k) is in fact, the weighted

distance of a measurable function x ∈ L∞ from the average point πkx.

The following result shows that Vg,π(x, k) is a comparison function for the dynamics (7.2).

Theorem 7.2. Let {πk} be an absolute probability sequence for {Kk}. Then, Vg,π(x, k), as

defined in Eq. (7.9), is a comparison function for {Kk}.

Proof. Let {x(k)} be a dynamics driven by {Kk}. Then, for any k ≥ t0, we have∫
X

πk+1(dξ)g(xk+1(ξ)) =

∫
X

πk+1(dξ)g

(∫
X

Kk(ξ, dη)xk(η)

)
≤
∫
X

πk+1(dξ)

∫
X

Kk(ξ, dη)g(xk(η))

=

∫
X

πk(dη)g(xk(η)), (7.10)

where the inequality follows by the application of the Jensen’s inequality (Theorem A.2), and

the last equality follows by {πk} being absolute probability sequence for {Kk}. On the other

hand, we have πk+1xk+1 = πkxk and hence, g(πk+1xk+1) = g(πkxk). Using this observation
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and relation (7.10), we conclude that

Vg,π(xk+1, k + 1) =

∫
X

πk+1(dξ)g(xk+1(ξ))− g(πk+1xk+1)

≤
∫
X

πk(dξ)g(xk(ξ))− g(πkxk)

= Vg,π(xk, k).

Q.E.D.

Similar to the classical averaging dynamics, let us denote the quadratic comparison func-

tion Vπ : L∞ × Z+ → [0,∞) by

Vπ(x, k) =

∫
X

πk(dξ)(x(ξ)− πkx)
2 =

∫
X

πk(dξ)x
2(ξ)− (πkx)

2. (7.11)

Note that for any stochastic function π and any x ∈ L∞, we have∫
X

π(dξ)(x(ξ)− πx)2 ≤ 4∥x∥2∞ <∞,

which follows from π being stochastic and x ∈ L∞. Therefore, for any dynamics {xk} driven

by a chain {Kk} and any absolute probability sequence {πk}, we have

Vπ(xk, k) ≤ 4∥xk∥2∞ ≤ 4∥xt0∥2∞,

which follows by Lemma 7.1.

Suppose that we are given a probability measure π on (X,M) and a stochastic kernel K.

Our next step is to define a probability measure H on the product space (X ×X,M⊗M)

using π and K. Let us define H on the product of measurable sets S, T ∈ M by

H(S × T ) =

∫
X

π(dξ)K(ξ, S)K(ξ, T ).

Moreover, for a collection of disjoint sets S1 × T1, . . . , Sn × Tn ⊂ X ×X, where Si, Ti ∈ M
for all i ∈ [n], let

H(
n∪

i=1

Si × Ti) =
n∑

i=1

H(Si × Ti) =
n∑

i=1

∫
X

π(dξ)K(ξ, Si)K(ξ, Ti). (7.12)

Equation (7.12) provides a pre-measure on the algebra of rectangular sets on X × X. By

Theorem 1.14 in [74], H can be extended to an outer measure on X × X such that its
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restriction on M⊗M is a measure. Note that H(X ×X) =
∫
X
π(dξ)K(ξ,X)K(ξ,X) = 1

and hence, H is a probability measure on the product space (X×X,M⊗M). We refer to the

measure H constructed this way as the measure induced by K and π (on (X×X,M⊗M)).

Now, we can quantify the decrease rate of the quadratic comparison function along any

trajectory of the dynamics (7.2).

Theorem 7.3. Suppose that π, λ are probability measures on (X,M) such that λ(S) =∫
X
π(dξ)K(ξ, S) for all S ∈ M. Then, for any x, y ∈ L∞ with y = Kx, we have∫

X

π(dξ)y2(ξ)− (πy)2 =

{∫
X

λ(dξ)x2(ξ)− (λx)2
}
− 1

2

∫
X×X

H(dη1 × dη2)(x(η1)− x(η2))
2,

(7.13)

where H is the probability measure induced by K and π on (X ×X,M⊗M).

Proof. We first prove relation (7.13) for arbitrary simple functions. Let x =
∑m

i=1 αi1Si

where {Si | i ∈ [m]} ⊆ M is a partition for X with m ≥ 1 disjoint sets (i.e. Si

∩
Sj = ∅

(a.e.) for all i, j ∈ [m] with i ̸= j and
∪

i∈[m] Si = X) and also α = (α1, . . . , αm)
T ∈ Rm.

Then, we have

y(ξ) = K(ξ, ·)x =

∫
X

K(ξ, dη)x(η) =
m∑
i=1

αiK(ξ, Si).

Therefore,

πy2 =

∫
X

π(dξ)y2(ξ) =

∫
X

π(dξ)

(
m∑
i=1

αiK(ξ, Si)

)2

(7.14)

=

∫
X

π(dξ)

(
m∑
i=1

α2
iK2

i (ξ, Si)

)
+

∫
X

π(dξ)

 ∑
i,j∈[m]
i ̸=j

αiαjK(ξ, Si)K(ξ, Sj)

 .

By the linearity of integral we have

∫
X

π(dξ)

 ∑
i,j∈[m]
i̸=j

αiαjK(ξ, Si)K(ξ, Sj)

 =
∑

i,j∈[m]
i̸=j

αiαj

∫
X

π(dξ)K(ξ, Si)K(ξ, Sj)

=
∑

i,j∈[m]
i̸=j

αiαjH(Si × Sj), (7.15)

which follows by the definition of the induced measure H.
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On the other hand, for any ξ ∈ X we have K(ξ, Si) = 1 −
∑

j ̸=i K(ξ, Sj) which follows

from K(ξ, ·) being a probability measure. Therefore,

∫
X

π(dξ)

(
m∑
i=1

α2
iK2(ξ, Si)

)
=

∫
X

π(dξ)

(
m∑
i=1

α2
i

{
K(ξ, Si)−

∑
j ̸=i

K(ξ, Si)K(ξ, Sj)

})
.

We also have ∫
X

π(dξ)

(
m∑
i=1

α2
iK(ξ, Si)

)
=

m∑
i=1

α2
i

(∫
X

π(dξ)K(ξ, Si)

)
=

m∑
i=1

α2
iλ(Si) = λx2, (7.16)

which follows from the definition of the probability measure λ and x =
∑m

i=1 αi1Si
. Also,

using a similar argument as the one used to derive Eq. (7.15), we have

∫
X

π(dξ)

(
m∑
i=1

α2
i

∑
j ̸=i

K(ξ, Si)K(ξ, Sj)

)
=
∑

i,j∈[m]
i̸=j

H(Si × Sj)α
2
i . (7.17)

Therefore, replacing relations (7.15), (7.16), and (7.17) in relation (7.14), we have:

πy2 = λx2 −


∑

i,j∈[m]
i̸=j

H(Si × Sj)(α
2
i − αiαj)


= λx2 − 1

2

∑
i,j∈[m]

H(Si × Sj)(αi − αj)
2,

where the last equation holds since, H(Si × Sj) = H(Sj × Si) for any i, j ∈ [m]. Note that

the function xi(η1)− xj(η2) is equal to the constant αi − αj over Si × Sj. Thus,∑
i,j∈[m]

H(Si × Sj)(αi − αj)
2 =

∫
X×X

H(dη1 × dη2)(x(η1)− x(η2))
2. (7.18)

The last step to prove the result for simple functions is to use that fact that (πy)2 =

(π(Kx))2 = (λx)2. Therefore, by subtracting this relation from the both sides of (7.18) we

arrive at the desired relation (7.13).

Now, we prove that the assertion holds for an arbitrary x ∈ L∞. Note that the function

T (z) = πz =
∫
X
π(dξ)z(ξ) is a continuous function on (L∞, ∥ · ∥∞) for any probability
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measure π. Also, T̃ (x) = x2 is a continuous function from L∞ → L∞. Thus the function

πy2 − (πy)2 and λx2 − (λx)2 are continuous functionals over L∞. Similarly, the functional

T̄ (x) =
∫
X×X

H(dη1 × dη2)(x(η1) − x(η2))
2 is a continuous functional from (L∞, ∥ · ∥∞) to

R, which follows from H being a probability measure on (X ×X,M⊗M).

Therefore, all the functionals involved in relation (7.13) are continuous over L∞. Since

the relation holds for a dense subset of L∞ (i.e. simple functions), we conclude that the

relation holds for any x ∈ L∞. Q.E.D.

Using Theorem 7.3, the following corollary follows immediately.

Corollary 7.1. Let {Kk} be a chain of stochastic integral kernels and let {πk} be an absolute

probability sequence for {Kk}. Then, for any dynamics {xk} driven by {Kk} started at time

t0 and point xt0 ∈ L∞, we have:

Vπ(xk+1, k + 1) = Vπ(xk)−
1

2

∫
X×X

Hk(dη1 × dη2) (xk(η1)− xk(η2))
2 ,

where Hk is the induced measure on (X × X,M ⊗ M) by Kk and πk+1. Furthermore, we

have
∞∑

k=t0

∫
X×X

Hk(dη1 × dη2) (xk(η1)− xk(η2))
2 ≤ 2Vπ(xt0 , t0).
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Chapter 8

Conclusion and Suggestions for Future Works

8.1 Conclusion

We studied products of random stochastic matrices and the limiting behavior of averaging

dynamics as well as averaging dynamics over arbitrary state spaces. The main idea and

contribution of this thesis is to demonstrate that the study of the limits of product of

stochastic matrices is closely related to the study of the summation of stochastic matrices,

i.e. the study of flows.

We introduced the notions of infinite flow property, absolute infinite flow property, infinite

flow graph, and infinite flow stability for a chain of stochastic matrices and showed that they

are closely related to the limiting behavior of product of stochastic matrices and averaging

dynamics. We proved that for a class of stochastic matrices, i.e. the class P∗ with feedback

property, this limiting behavior can be determined by investigating the infinite flow graph

of the given chain. Our proof is based on the use of a quadratic comparison function and

also the derived decrease rate for such a comparison function along any trajectory of the

averaging dynamics. We defined balanced property for a chain of stochastic matrices which

can be verified efficiently. We proved that any balanced chain with feedback property is an

instance of a class P∗ chain with feedback property and hence, the product of such stochastic

matrices are convergent and the structure of the limiting matrices can be determined using

the infinite flow graph of the chain. We showed that this class contains many of the previously

studied chains of stochastic matrices.

We then studied the implications of the developed results for independent random chains,

uniformly bounded chains, product of inhomogeneous stochastic matrices, link-failure models

and Hegselmann-Krause model for opinion dynamics. We also provided an alternative proof

of the second Borel-Cantelli lemma.

Inspired by the necessity of infinite flow property for ergodicity of stochastic chains, we

proved that a stronger property, the absolute infinite flow property, is necessary for ergodicity.

We showed that, in fact, this property is equivalent to ergodicity for doubly stochastic chains.

To prove these results we introduced the rotational transformation of a stochastic chain with
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respect to a permutation chain and showed that many of the limiting behavior of the product

of stochastic matrices is invariant under rotational transformation.

Finally, we generalized the framework for the study of the averaging dynamics over

general state spaces. We defined several modes of ergodicity and showed that unlike the

averaging dynamics over Rm, different modes of ergodicity are not equivalent in general

state spaces. Then, we introduced a generalization of the infinite flow property to arbitrary

state spaces and showed that this generalization remains to be necessary for the weakest form

of ergodicity in arbitrary state spaces. We also introduced the concept of absolute infinite

flow property for a chain of stochastic integral kernel. We showed that, as in the case of

averaging dynamics in finite state spaces, using an absolute probability sequence for a chain

of stochastic integral kernel, one can develop infinitely many comparison function for any

dynamics driven by the chain. Moreover, we quantified the decrease rate of the quadratic

comparison function along the trajectory of the averaging dynamics.

8.2 Suggestions for Future Works

Here, we discuss some questions and suggestions for future works on product of random

stochastic matrices and weighted averaging dynamics.

Chapter 3

1. One can define the directed infinite flow graph Ḡ∞ = ([m], Ē∞) by letting

Ē∞ = {(i, j) | i ̸= j,
∞∑
k=0

Aij(k) = ∞},

which contains more information than the infinite flow graph. What properties of the

limiting behavior of the averaging dynamics can be deduced from the directed infinite

flow graph which cannot be deduced from the infinite flow graph itself?

Chapter 4

1. As it is shown in Example 4.1, there is a gap between the infinite flow stability and

convergence of the product A(k : t0) for any t0 ≥ 0. Characterization of the chains that

have the latter property but they are not infinite flow stable remains open.

2. Does Theorem 4.9 hold for adapted chains that are balanced in expectation?

As it is shown in Chapter 5, a lower bound p∗ > 0 for coordinates of an absolute probability

sequence plays an important role on development of an upper bound for the convergence
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rate of averaging dynamics. For balanced chains with feedback property, we have provided

a lower bound p∗ which depends on the minimum value of the positive entries of matrices

in the polyhedral set Bα,β (defined in Eq. (4.18)). Some related open questions include:

I. Can the bound min( 1
m
, γm−1) in Corollary 4.6 be improved?

II. What is the characterization of the extreme points in the polyhedral set Bα,β?

III. What is the minimum value for the positive entries of the matrices in Bα,β?

Chapter 5

1. Theorem 5.2 and Theorem 5.5 provide upper bounds for the convergence rate of averaging

dynamics. Derivation of a lower bound for the convergence rate of averaging dynamics is

left open for future work.

2. The developed machinery in Chapter 3, Chapter 4, and Chapter 5 suggests a way of

extending the celebrated Cheeger’s inequality to time-inhomogeneous chains. Such an

extension remained open for future works.

3. For the link-failure models investigated in Section 5.4, one can use the same machinery

to study link attenuation models. However, we did not find any practical scenario that

such a model would fit into it.

4. The study of link failure models for adapted processes remains open for future work.

5. Can the generic lower bound p∗ ≥ 1
mm−1 for entries of an absolute probability sequence

be customized and improved for Hegselmann-Krause dynamics?

Chapter 6

1. We showed that a doubly stochastic chain is ergodic if and only if it has absolute infinite

flow property. For what other classes of stochastic chains does this equivalency hold?

Chapter 7

There are many natural questions that can be asked related to the content of this chapter.

This chapter was intended to show that the study of the averaging dynamics in Rm can be

generalized to arbitrary state spaces. Here are few immediate questions that would be of

interest:

1. What is a proper way of generalizing B-connectivity to general state spaces?

2. What is a proper way of defining the infinite flow graph for a chain of stochastic kernels?
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3. For a finite measure space X, i.e. µ(X) <∞, one can define a chain of stochastic kernels

{Kk} to be doubly stochastic if { 1
µ(X)

1X} is an absolute probability sequence for {Kk}.
With a proper definition of feedback property, is the infinite flow property sufficient for

weak ergodicity of a chain of doubly stochastic kernels with feedback property?

4. Under what condition an absolute probability sequence exists for a chain of stochastic

kernels?

5. One can extend the definition of balancedness for a chain of stochastic kernels {Kk} by

requiring that Kf
k(S, S̄) ≥ αKf

k(S̄, S) for some α > 0, any non-trivial S ∈ M and any

k ≥ 0. Can we show results such as Theorem 4.9 (with a proper definition of feedback

property) for a chain of balanced stochastic kernels?
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Appendix A

Background Material on Probability Theory

Here, we review some of the results and tools from probability theory. Materials of this

section are extracted from [75]. We assume that readers are familiar with basic notions of

probability theory such as probability space, expectation, and conditional expectation. We

first review some results on the convergence of sequences of random variables. Next, we

present some results on conditional expectation and the martingale convergence theorem.

Finally, we discuss some results on sequences of independent random chains.

A.1 Convergence of Random Variables

Let Ω be a sample space and F be a σ-algebra of subsets of Ω. Let Pr (·) be a probability

measure on (Ω,F ,Pr (·)). Many of the events of our interest can be formulated as a set,

or intersection of sets that are described by a limit of a sequence of random variables. To

be able to discuss probability of such sets, we should be assured that such sets are in fact

measurable sets. The following result gives such a certificate.

Lemma A.1. For a sequence of random variables {u(k)}, the limits lim supk→∞ u(k) and

lim infk→∞ u(k) are measurable. In particular, the sets {ω | limk→∞ u(k) exists} and {ω |
limk→∞ u(k) = α} are measurable sets for any α ∈ [−∞,∞].

Lemma A.1 follows from Theorem 2.5 in [75]. As an immediate corollary to Lemma A.1,

the following result holds.

Corollary A.1. For a sequence of random vectors {x(k)}, the set {ω | limk→∞ x(k) exists}
is a measurable set.

Proof. Note that {ω | limk→∞ x(k) exists} =
∩m

i=1{ω | limk→∞ xi(k) exists} and by Lemma

A.1, the set {ω | limk→∞ xi(k) exists} is measurable for all i ∈ [m]. Since, F is a σ-algebra,

thus we conclude that {ω | limk→∞ x(k, ω) exists} is measurable. Q.E.D.

For a sequence {u(k)} of random variables that is convergent almost surely, we are often

interested in conditions under which we can swap limit and expectation, i.e. limk→∞ E[u(k)] =
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E[limk→∞ u(k)]. The following two results give us two conditions under which we can inter-

change the limit and expectation operations.

Theorem A.1. (Monotone Convergence theorem) Suppose that {u(k)} is a sequence of non-

decreasing and non-negative random variables, i.e. 0 ≤ u(k)(ω) ≤ u(k+1)(ω) for all ω ∈ Ω.

Then,

lim
k→∞

E[u(k)] = E
[
lim
k→∞

u(k)
]
.

Theorem A.2. (Dominated Convergence theorem) Suppose that {u(k)} is a sequence of

random variables dominated by a non-negative random variable v, i.e. |u(k)| ≤ v almost

surely. Then if E[v] <∞, we have

lim
k→∞

E[u(k)] = E
[
lim
k→∞

u(k)
]
.

Proofs for Theorem A.1 and Theorem A.2 can be found in [75], page 15.

As a consequence of the monotone convergence theorem, we have the following result.

Corollary A.2. Let {u(k)} be a sequence of non-negative random variables. Then,

E

[
∞∑
k=0

u(k)

]
=

∞∑
k=0

E[u(k)] .

Proof. Let {s(k)} be the sequence of partial sums of {u(k)}, i.e. s(k) =
∑k

t=0 u(t). Since

u(t)s are non-negative, {s(k)} is a non-decreasing and non-negative sequence and hence,

the result follows by the monotone convergence theorem and linearity of the expectation

operation. Q.E.D.

A.2 Conditional Expectation and Martingales

Here, we review some of the results on conditional expectation and, also, present the mar-

tingale convergence theorem.

We start by presenting the Jensen’s inequality ([75], page 223).

Lemma A.2. (Jensen’s Inequality) Let ϕ : R → R be a convex function and let u be a

random variable. Then, for any sub-σ algebra F̃ ⊆ F , we have ϕ(E
[
u | F̃

]
) ≤ E

[
ϕ(u) | F̃

]
.

Another result that is useful in our development is the following ([75], page 224).
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Lemma A.3. ([75], page 224) Consider two sub σ-algebras F1 ⊆ F2 ⊆ F . Then, for any

random variable u, we have

E[E[u | F1] | F2] = E[E[u | F2] | F1] = E[u | F1] .

Suppose that we have a sequence {Fk} of σ-algebras in (Ω,F) such that Fk ⊆ F and

Fk ⊆ Fk+1 for all k ≥ 0. Such a sequence of σ-algebras is referred to as a filtration. A

sequence of random variables {u(k)} is said to be adapted to {Fk} if u(k) is measurable

with respect to Fk for any k ≥ 0.

An adapted sequence {u(k)} of random variables is said to be a martingale, if we have

E[u(k + 1) | Fk] = u(k) and it is said to be a super-martingale, if E[u(k + 1) | Fk] ≤ u(k) for

all k ≥ 0.

Using Jensen’s equality which is provided in Lemma A.2, we conclude the following result.

Lemma A.4. ([75], page 230) Let ϕ : R → R be a convex function and let {u(k)} be a

martingale adapted to a filtration {Fk}. Then, {−ϕ(u(k))} is a super-martingale sequence

with respect to {Fk}.

Proof. For any k ≥ 0, we have

E[−ϕ(u(k + 1)) | Fk] ≤ −ϕ(E[u(k + 1) | Fk]) = −ϕ(u(k)),

where the inequality follows by Lemma A.2 and the equality follows by the fact that {u(k)}
is a martingale sequence. Q.E.D.

The following result shows that any super-martingale (and hence, martingale) which is

bounded below, in a certain way, is convergent almost surely.

Theorem A.3. (Martingale Convergence theorem [75], page 233) Let {u(k)} be a super-

martingale sequence. Also, suppose that supk≥0 E[max(−u(k), 0)] < ∞. Then, {u(k)} is

convergent almost surely.

Note that if {u(k)} is a non-negative super-martingale, then we have max(−u(k), 0) = 0,

and hence, any non-negative super-martingale sequence is convergent almost surely.

Corollary A.3. Let {u(k)} be a sequence of non-negative super-martingale. Then, {u(k)}
is a convergent sequence almost surely.

We will use this simplified version of the martingale convergence for our study.

Another important martingale result, which is often used to prove convergence of random

sums, is the following result.
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Theorem A.4. ([76], page 164) Let {u(k)}, {α(k)}, {β(k)}, and {ξ(k)} be sequences of

adapted non-negative random variables such that almost surely, for all k ≥ 0,

E[u(k + 1) | Fk] ≤ (1 + α(k))u(k) + β(k)− ξ(k),

where
∑∞

k=0 α(k) < ∞ and
∑∞

k=0 β(k) < ∞ almost surely. Then, limk→∞ u(k) exists and∑∞
k=0 ξ(k) <∞ almost surely.

A.3 Independence

The independency for a sequence of random variables, vectors, or matrices, allows us to use

powerful tools that are available for independent sequences. Here, we discuss three of those

tools that are used in this thesis.

A.3.1 Borel-Cantelli lemma

Suppose that we are given a sequence of events {E(k)} in a probability space (Ω,F ,Pr (·)).
The infinitely often (abbreviated as i.o.) event associated with {E(k)} is defined by

{E(k) i.o.} =
∞∩
k=0

∞∪
t=k

E(t).

In other words, {E(k) i.o.} consists of the sample points ω ∈ Ω that will occur in infinitely

many of the events {E(k)}.
First and second Borel-Cantelli lemmas relate the

∑∞
k=0 Pr (E(k)) and the probability

Pr ({E(k) i.o.}).

Lemma A.5. (First Borel-Cantelli lemma) Let {E(k)} be a sequence of (not necessarily

independent) events on (Ω,F). Then, Pr ({E(k)} i.o.) > 0 implies
∑∞

k=0 Pr (E(k)) = ∞.

The second Borel-Cantelli lemma, provides the converse of this result given the indepen-

dency of {E(k)}.

Lemma A.6. (Second Borel-Cantelli lemma) Let {E(k)} be a sequence of independent events

on (Ω,F). Then,
∑∞

k=0 Pr (E(k)) = ∞ implies Pr ({E(k)} i.o.) = 1.

Proofs for Lemma A.5 and Lemma A.6 can be found in [75], page 46 and page 49,

respectively.
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A.3.2 Kolmogorov’s 0-1 law

Consider a sequence {Fk} of σ-algebras. Consider the σ-algebra of the tale events of {Fk},
i.e.

τ =
∞∩
k=0

σ(
∞∪
t=k

Ft).

As an example, let {u(k)} be a scalar sequence adapted to {Fk} and let E to be the

event that
∑∞

k=0 u(k) is convergent, i.e. E = {ω |
∑∞

k=0 u(k) is convergent}. For a sequence

{a(k)} of real numbers,
∑∞

k=0 a(k) is convergent if and only if
∑∞

t=k a(t) is convergent for

any k ≥ 0. Thus, E belongs to the tale of {Fk}.
Now, we are ready to assert the Kolmogorov’s 0-1 law.

Theorem A.5. (Kolmogorov’s 0-1 law [75], page 61) Let {Fk} be a sequence of mutually

independent σ-algerbas. Then, any tale event is a trivial event, i.e. it happens with either

probability one or probability zero.

A.3.3 Kolmogorov’s three-series theorem

Suppose that we have a sequence of independent random variables {u(k)}. The following

result enables us to study convergence of random series
∑∞

k=0 u(k) using convergence of

deterministic series.

Theorem A.6. (Kolmogorov’s three-series theorem [75], page 63) Suppose that {u(k)} is a

sequence of independent random variables. Then,
∑∞

k=0 u(k) is convergent almost surely, if

and only if, for any α > 0 we have

I.
∑∞

k=0 Pr (|un| > α) <∞,

II.
∑∞

k=0 E
[
u(k)1|u(k)|≤α

]
is convergent, and

III.
∑∞

k=0 var(u(k)1|u(k)|≤α) is convergent.

As a consequence of Kolmogorov’s three series theorem, consider the case where we have

a sequence {u(k)} of random variables in [0, 1]. Then, for α = 1 we have u(k)1|u(k)|≤α = u(k)

and also Pr (|un| > α) = 0. On the other hand, since u(k) is in [0, 1], we have E[u2(k)] ≤
E[u(k)] and hence, 0 ≤ var(u(k)) ≤ E[u(k)]. Therefore, the following result is true.

Corollary A.4. Let {u(k)} be a sequence of independent random variables in [0, 1]. Then,∑∞
k=0 u(k) <∞ almost surely if and only if

∑∞
k=0 E[u(k)] <∞.
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Appendix B

Background Material on Real Analysis

Here, we discuss some background material on functional analysis.

Consider a measurable space (X,M, µ), where X is a set, M is a σ-algebra on X, and

µ is a measure on (X,M). For p ∈ [1,∞), consider the space Lp with the norm defined by

∥f∥p = (
∫
X
|f |pdµ)1/p and L∞ with the norm ∥f∥∞ = ess. sup(f) where ess. sup(f) is the

essential supremum of the function f . We denote the ball of radius r of the Lp space by

Bp(r), i.e. Bp(r) = {f ∈ Lp | ∥f∥p ≤ r}.

Theorem B.1. (Hölder’s inequality [74], page 182) For any p, q ∈ [1,∞] with 1
p
+ 1

q
= 1,

and for any f ∈ Lp and g ∈ Lq, we have:∫
X

|fg|dµ ≤ ∥f∥p∥g∥q.

We say that a function f is a simple function if f =
∑n

i=1 αi1Ei
for some E1, . . . , En ∈ M.

Then, we have

Lemma B.1. The set of simple functions is dense in L∞.
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[5] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Stochastic incremental gradient descent for
estimation in sensor networks,” in Proc. of Asilomar, 2007.
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