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Abstract

We derive a supplemental evolution equation for an interface between the nematic and

isotropic phases of a liquid crystal when flow is neglected. Our approach is based on

the notion of configurational force. As an application, we study the behavior a spherical

isotropic drop surrounded by a radially-oriented nematic phase: our supplemental evolution

equation then reduces to a simple ordinary differential equation admitting a closed form

solution. In addition to describing many features of isotropic-to-nematic phase transitions,

this simplified model yields insight concerning the occurrence and stability of isotropic

cores for hedgehog defects in liquid crystals.

1 Introduction

When quenched from a high-temperature isotropic phase to a low-temperature nematic
phase, a liquid crystal undergoes a first-order phase transition (de Gennes 1971). Such
transitions proceed via the nucleation, growth, and coalescence of droplets (Ostner,
Chan & Kahlweit 1973). Experiments involving free- and directional-growth show that
nematic-isotropic phase interfaces exhibit a host of interesting morphological instabili-
ties, instabilities that are manifested by the formation of dendrites (Armitage & Price
1978) and periodic cellular patterns (Oswald, Bechoeffer & Libchaber 1987) resembling
those occuring in crystal growth (Langer 1980).

Here, we take a first step toward developing a sharp-interface theory for the de-
scription of such phenomena. Our goal is a generalization of the Ericksen–Leslie theory
(Ericksen 1961; Leslie 1968) for uniaxial nematics which

• allows for phase transitions,

• models an nematic-isotropic interfaces as a sharp surface across which bulk fields
may suffer discontinuities,

• accounts for localized interactions between phases by endowing the interface with
excess properties.
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Our work is a first step because, for clarity, we neglect effects associated with flow and
with heat and mass transport. Hence, what we present is in essence a generalization of
the classical curvature elasticity theory (Oseen 1933; Zöcher 1933; Frank 1958).

As we neglect flow and both thermal and compositional influences, the free-energy
(density) of the isotropic phase is a constant that, without loss in generality, we set
equal to zero. This allows us to restrict attention to the nematic phase and the nematic-
isotropic interface.

Our discussion begins with a concise overview of the theory for the nematic phase. In
addition to a director momentum balance, that theory is based an isothermal statement
of the second law that is used to restrict constitutive equations.

To deal with the nematic-isotropic interface, we rely on recent developments in the
theory of configurational forces (Gurtin 1995, 2000; Gurtin & Struthers 1990). Although
configurational forces are superfluous away from the interface, the interfacial limits of the
bulk configurational stress and configurational momentum are of essential importance.

Prior to considering the interface, we therefore reformulate the theory for the ne-
matic phase in a manner that accounts for the role of configurational forces. Using
control volumes that migrate within the nematic phase this yields representations for the
configurational stress and momentum in bulk, representations obtained without recourse
to constitutive assumptions and, hence, more broadly valid than would be counterparts
derived on the basis of variational arguments (Maugin & Trimarco 1995).

Our treatment of the interface is analogous to that taken in our reformulation of the
bulk theory. Aside from the director momentum balance, we impose a configurational
momentum balance and an isothermal version of the second law that accounts for power
expended by both the director and configurational forces. As in the theory for the nematic
phase, the interfacial dissipation inequality is used to obtain restrictions on constitutive
equations. With those restrictions, we arrive at the general system of evolution equations
for the interface. Those equations, which enforce the director momentum balance and
the normal component of the configurational momentum balance, supplement the bulk
director momentum balance arising from the standard theory.

Precisely, denote by n the director, let G = gradn, and let Ψ̂(n,G) denote the
bulk free energy. The evolution equation in the nematic phase in the absence of flow is
classical:

σ(n̈ + |ṅ|2n) + γṅ = div

(
∂Ψ̂
∂G

)
+

(
G: ∂Ψ̂

∂G

)
n− ∂Ψ̂

∂n
, (1.1)

with σ > 0 the director mass density and γ ≥ 0 a viscosity associated with changes in
director-orientation. The conditions at a stationary nematic-isotropic interface are also
classical, and involve an interfacial free energy (density) ψ to describe weak anchoring
(Rapini & Papoular 1969) and a dissipative contribution (Derzhanski & Petrov 1979):
denoting by m the unit interfacial normal directed away from the nematic phase and by
◦n the normal-time derivative of n, our generalization of the Derzhanski–Petrov condition
to an evolving interface has ψ = ψ̂(n,m) and takes the form

β1
◦n + σV ṅ = − ∂Ψ̂

∂G
m− ∂ψ̂

∂n
, (1.2)

with β1 ≥ 0 a dissipative coefficient.
The configurational balance provides the evolution equation for the phase interface.

Denoting by V the normal velocity of the interface, by K its total curvature (twice the
mean curvature) and by divS the surface divergence, we obtain the evolution equation

β1Gm· ◦n + divS(β2
◦
m) + β3V = ψK − divS

(
∂ψ̂

∂m

)
−Gm· ∂ψ̂

∂n
− (Ψ− 1

2σ|ṅ|
2). (1.3)
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with β2 ≥ 0 and β3 ≥ 0 additional dissipative coefficients. To our knowledge this equation
has never been proposed in the literature. However, our developments complement recent
work (Poniewierski 2000; Rey 2000a, b, c, 2001; Cheong & Rey 2002) concerning the
rheology of a material interface between a nematic liquid crystal and an isotropic fluid.

We specialize (1.3) to two simple applications. In the first we develop approximate
equations for a perturbed planar interface S0 such that

m = e + εm1 + o(ε), V = V0 + εV1 + o(ε), n = e + εn1 + o(ε), (1.4)

with e a fixed unit vector and ε a small parameter. The simplest such equations arise for
ψ̂(n,m) = ψ0 and Ψ = Ψ0 + εΨ1 +o(ε), with ψ0, Ψ0 and Ψ1 given constants. Then, with
β2 constant and inertia neglected, (1.3) is approximated, at the zeroth and first order in
ε, by

β3V0 = −Ψ0, −β2

◦
K1 + β3V1 = ψ0K1 −Ψ1, (1.5)

the second of which, for β2 = 0, is the classical curvature-flow equation (cf., e.g., Gurtin
2000).

As a second application, we discuss the growth and equilibrium of a spherical isotropic
drop in a nematic ocean in which the director is radially oriented. The evolution equation
(1.3) then reduces to the ordinary differential equation

βṘ = Ψ0 −
2σ
R

+
κ

R2
(1.6)

for the radius R of the isotropic drop. The moduli σ > 0 and κ > 0 are related to
surface energy and bulk elasticity, while Ψ0 is a measure of the bulk energy difference
between the phases, and possibly depends on temperature. The solutions of (1.6) have
different behavior according to the size and sign of the nematic-isotropic energy difference
Ψ0. When Ψ0 ≤ 0, so that the energy of the nematic phase is lower than that of the
isotropic phase, (1.6) has a stable equilibrium R∗. Hence, an isotropic drop in a nematic
ocean is stable at the characteristic radius R∗, a fact that might explain the presence of
an isotropic core for hedgehog defects: our theory indeed allows for an estimate of the
core radius. When 0 < Ψ0 < σ2/κ, so that the nematic phase has the higher energy,
(1.6) still has a stable equilibrium R−∗ , but also has an unstable equilibrium R+

∗ > R−∗ :
in this regime the surface tension σ is sufficiently large compared to Ψ0, so that small
isotropic droplets persist in the nematic phase. However, if the radius of the drop is
large enough, the drop grows and the nematic phase eventually becomes isotropic. This
result is consistent with observations showing that, for the phase transformation proceed
beyond a certain stage, isotropic nuclei must coalesce. Finally, when Ψ0 ≥ σ2/κ, so that
the energy difference between the nematic and isotropic phase is sufficiently large, (1.6)
has no equilibrium points and the isotropic phase grows at the expense of the nematic
phase.

2 Theory for the nematic phase

Throughout this section P denotes an arbitrary (fixed) region lying within the nematic
phase.

Our developments can be viewed as a specialization of the Ericksen–Leslie theory
(Ericksen 1961; Leslie 1968) that neglects flow and thermal transport.
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2.1 Kinematics

We write n(x, t) for the director field, assumed consistent with the constraint

|n| = 1. (2.1)

Using grad to denote the gradient operator, we write

G = gradn (2.2)

for the director gradient ; then, by (2.1),

G�n = 0. (2.3)

We use a superposed dot to denote time-differentiation, so that,

ṅ·n = 0. (2.4)

2.2 Balance of director momentum

We write σ for the (constant) director mass density (i.e., the peculiar mass density of
the mesogens),

r = σṅ (2.5)

for the director momentum (density), S for the director stress, and g for the director
body force (density). Balance of director momentum requires that, for any P,

˙∫
P

rdv =
∫
∂P

Sm∂P da+
∫
P

g dv, (2.6)

or, equivalently, that the field equation

ṙ = divS + g (2.7)

hold throughout the nematic phase.
A direct calculation allows us to decompose (2.7) into components,

ṙ− (r·ṅ)n = div(S− n⊗S�n) + GS�n + (G:S)n + g − (g·n)n,

ṙ·n = div(S�n)−G:S + g·n,

}
(2.8)

perpendicular and parallel to the director.

2.3 Energy imbalance

We restrict attention to isothermal processes, in which case the first and second laws of
thermodynamics reduce to an imbalance of energy asserting that, for any P, the net (free
plus kinetic) energy of P change at a rate that is not greater than the power expended
on P. Writing Ψ for the free-energy (density), so that Ψ+ 1

2r·ṅ represents the net energy
per unit volume, and noting that

∫
∂P Sm∂P ·ṅda represents the power expended on P

by material exterior to P, the energy imbalance requires that
.∫

P

(Ψ + 1
2r·ṅ) dv ≤

∫
∂P

Sm∂P ·ṅda. (2.9)
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Using the balance of director momentum, (2.7), we may write (2.9) equivalently as∫
P

(Ψ̇− S:Ġ + g·ṅ) dv ≤ 0. (2.10)

The requirement that (2.10) hold for all P is therefore equivalent to the requirement that
the dissipation inequality

Ψ̇− S:Ġ + g·ṅ ≤ 0 (2.11)

hold throughout the nematic phase.

2.4 Constitutive equations

We take Ψ to be given constitutively as a function

Ψ = Ψ̂(n,G). (2.12)

Then (2.11) takes the form

{
∂Ψ̂(n,G)

∂G
− S

}
:Ġ +

{
∂Ψ̂(n,G)

∂n
+ g

}
·ṅ ≤ 0. (2.13)

Constitutive equations for S and g that ensure satisfaction of the dissipation inequality
(2.11) are given by

S = n⊗α+
∂Ψ̂(n,G)

∂G
,

g = λn−Gα− ∂Ψ̂(n,G)
∂n

− γ(n,G)ṅ,


 (2.14)

with γ ≥ 0 and with α and λ constitutively indeterminate fields that arise in response
to the constraint (2.1),1 where differentiation is performed on the manifold defined by
(2.1), so that (∂Ψ̂/∂G)�n = 0 and (∂Ψ̂/∂n)·n = 0.

2.5 Basic partial differential equation in the nematic phase

If we combine the balance (2.8)1 and the constitutive equations (2.14), we arrive at the
partial differential equation that governs the evolution of the director in the nematic
phase:

σ
(
n̈− |ṅ|2n

)
+ γṅ = div

(
∂Ψ̂
∂G

)
+

(
G: ∂Ψ̂

∂G

)
n− ∂Ψ̂

∂n
. (2.15)

We refer to (2.15) as the (constitutively augemented) director momentum balance in
bulk.

1We avoid a detailed discussion of constraints and associated multiplier fields. A modern geometrical
treatment of constraints in a material with nematic microstructure is given by Anderson, Carlson &
Fried (1999).
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3 Configurational forces and configurational momen-
tum in the nematic phase

The goal of this study is a complete theory of nematic-isotropic transitions in which the
interface is allowed to move relative to the material. In variational treatments of related
equilibrium problems, independent kinematical quantities may be independently varied,
and each such variation yields a corresponding Euler–Lagrange balance. In dynamics with
general forms of dissipation there is no encompassing variational principle, but experience
has demonstrated the need for an additional balance associated with the kinematics
of the interface. Here, guided by variational treatments in which such a balance is
a consequence of the assumption of equilibrium, we follow Gurtin & Struthers (1990)
and Gurtin (1995, 2000) and introduce, as primitive objects, configurational forces and
momentum together with an independent balance of configurational momentum. Roughly
speaking, configurational forces are related to the integrity of the material structure and
expend power in the transfer of material and in the evolution of the interface.

In this part we discuss configurational forces in bulk. Within that context such
forces are extraneous to the solution of actual boundary-value problems. But in general
situations knowledge of the structure of configurational forces in bulk away from the
interface is central to the understanding of their localized behavior at the interface.

3.1 Balance of configurational momentum

We consider a configurational momentum balance involving three fields: a configura-
tional momentum (density) q, a configurational stress C, and a configurational body
force (density) f . Balance of configurational momentum then requires that, for any P,

˙∫
P

qdv =
∫
∂P

Cm∂P da+
∫
P

f dv, (3.1)

or, equivalently, that the field equation

q̇ = divC + f (3.2)

hold throughout the liquid.

3.2 Migrating control volumes. Observed and relative velocities

To characterize the manner in which configurational forces perform work, a means of
capturing the kinematics associated with the transfer of material is needed. Following
Gurtin (1995, 2000), we accomplish this with the aid of control volumes R(t) that migrate
relative to the liquid and thereby result in the transfer of material to — and the removal of
material from — R(t) at ∂R(t). Here it is essential that fixed regions P not be confused
with control volumes R(t) that migrate relative to the material. The use of migrating
control volumes allows us to determine representations for the configurational stresses
and momenta in bulk.

Let R = R(t) be a migrating control volume with V∂R(x, t) the (scalar) normal
velocity of ∂R(t) in the direction of the outward unit normal m∂R(x, t). To describe
power expenditures associated with the migration of R(t), we introduce a field v∂R(x, t)
defined over ∂R(t) for all t. Compatibility then requires that v∂R have V∂R as its normal
component,

v∂R ·m∂R = V∂R, (3.3)
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but v∂R is otherwise arbitrary. We refer to any such field v∂R as a velocity field for ∂R.
Nonnormal velocity fields, while not intrinsic, are important. For example, given an

arbitrary time-dependent parametrization x = x̂(ξ1, ξ2, t) of ∂R, the field defined by
v∂R = ∂x̂/∂t (holding (ξ1, ξ2) fixed) generally represents a nonnormal velocity field for
∂R. But while it is important that we allow for the use of non-normal velocity fields,
it is essential that the theory itself not depend on the particular velocity field used to
describe a given migrating control volume. As we shall see, this observation has important
consequences.

We refer to the normal velocity V∂R and any choice of the velocity field v∂R for ∂R
as migrational velocities for ∂R.

Given a migrating control volume R, the field

ṅ + Gv∂R (3.4)

represents the rate of change of the director following the migration of ∂R.
Useful in what follows is the following transport identity: given a smooth field Φ(x, t)

and a migrating control volume R = R(t),

˙∫
R

Φ dv =
∫
R

Φ̇ dv +
∫
∂R

ΦV∂R da. (3.5)

3.3 Expended power

3.3.1 Power expended by tractions

The conventional form for the power expended by material exterior to a fixed region P is∫
∂P Sm∂P·ṅda. Consider, instead, a migrating control volume R = R(t). The migration

of R involves a transfer of material across ∂R and we expect that this transfer should
be accompanied by a power expenditure over and above the conventional expenditure.
Configurational forces are introduced to account for power expenditures associated with
material transfer. Specifically, we view the configurational traction Cm∂R distributed
over ∂R as a force, per unit area, associated with the transfer of material across ∂R.
Since any velocity field v∂R for ∂R represents the velocity with which material is trans-
ferred across ∂R, we take v∂R to be an appropriate power-conjugate velocity for Cm∂R,
and hence assume that the migration of R is accompanied by the power expenditure∫
∂RCm∂R ·v∂R da.

We assume that the velocity power-conjugate to the director traction Sm∂R is not
given by ṅ, but rather by ṅ + Gv∂R, the rate of change of the director following the
migration of ∂R (cf. (3.4)); granted this,

∫
∂R Sm∂R·(ṅ + Gv∂R) da represents the power

expended on ∂R by the director traction.
Material is added to R only along its boundary ∂R; there is no transfer of material

to the interior of R. For that reason, the configurational body force f expends no power.
The total power expended on R by tractions over ∂R is therefore given by

W (R) =
∫
∂R

(
Sm∂R ·(ṅ + Gv∂R) + Cm∂R ·v∂R

)
da. (3.6)
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3.3.2 Momentum forces and their associated power expenditures

The momentum balance (3.1), written for a migrating control volume R, takes the form

˙∫
R

rdv =
∫
∂R

Sm∂R da+
∫
R

g dv +
∫
∂R

rV∂R da,

˙∫
R

qdv =
∫
∂R

Cm∂R da+
∫
R

f dv +
∫
∂R

qV∂R da.




(3.7)

To verify, say, the first of these expressions, we simply integrate (2.7) over R and use the
transport identity (3.5).

In the balances (3.7), the vector fields

k = V∂Rr and j = V∂Rq (3.8)

represent flows of director and configurational momentum, respectively, across ∂R in-
duced by its migration. When there is no migration, so that V∂R = 0, these momentum
flows vanish.

We may view k and j as tractions, for then each of the momentum balances in (3.7)
asserts that

d
dt

{
momentum of R(t)

}
=

{
net force on R(t)

}
. (3.9)

This view is essential to a discussion of configurational forces, as k and j represent
tractions associated with the transfer of material across ∂R.2

Considering the momentum flows as tractions allows us to associate with each such
flow a power expenditure. Let R be a migrating control volume. The traction j is
configurational, as it corresponds to the configurational momentum q, and, as with the
traction Cm∂R, we take v∂R as the velocity power-conjugate to j. On the other hand, k
is a traction associated with director momentum and, as with Sm∂R, we take ṅ + Gv∂R
as the respective power-conjugates of j and k. The power expended by the momentum
flows therefore has the form

M(R) =
∫
∂R

(
k·(ṅ + Gv∂R) + j·v∂R

)
da. (3.10)

3.3.3 Invariance of the total power under changes in velocity field

Given a migrating control volume R,

W (R)︷ ︸︸ ︷∫
∂R

{
Sm∂R ·(ṅ + Gv∂R) + Cm∂R ·v∂R

}
da+

M(R)︷ ︸︸ ︷∫
∂R

{
k·(ṅ + Gv∂R) + j·v∂R

}
da (3.11)

represents the total power expended on R. We require that, given any migrating control
volume R, (3.11) be independent of the observed velocity field v∂R chosen to charac-
terize the migration of R. More precisely, we require that (3.11) be invariant under all
transformations of the form

v∂R �→ v∂R + t, (3.12)

2This treatment of momentum within the context of configurational forces is based on but differs
conceptually from the treatment of Cermelli & Fried (2002).
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with t ·m = 0. A necessary and sufficient condition that (3.11) be invariant under all
transformations (3.12) is then that

∫
∂R

{
(G�S+C)m∂R+V∂R(G�r+q)

}
·t da = 0, where

we have used (3.8). Thus, since R and t (tangential to ∂R) may be arbitrarily chosen,
it follows that {

(G�S + C)m + V (G�r + q)
}
·t = 0 (3.13)

for any scalar V , any unit vector m, and any vector t orthogonal to m. Since V is
arbitrary, we may use (2.5) to obtain the relation,

q = −G�r = −σG�ṅ. (3.14)

Hence, the configurational momentum is completely determined by the director momen-
tum.

Next, by (3.13),
t·

(
G�S + C

)︸ ︷︷ ︸
A

m = 0

for all t and m with t orthogonal to m. Hence, for each m, Am must lie in the direction
of m, which is possible if and only if A has the form A = Φ1, with Φ a scalar field.
Invariance therefore yields the pre-Eshelby relation

C = Φ1−G�S (3.15)

for the configurational stress.
Next, in view of (3.8), (3.14), and (3.15), if we take the velocity v∂R in its intrinsic

form V∂Rm∂R, then the total power expended on R becomes

W (R) +M(R) =
∫
∂R

(
Sm∂R ·ṅ + (Φ + r·ṅ)V∂R

)
da. (3.16)

3.4 Energy imbalance

We now generalize the energy imbalance (2.9) to account for power expenditures asso-
ciated with the addition of material. Specifically, we consider an imbalance that, for
migrating control volumes R, has the form

d
dt

{
total energy of R(t)

)
≤

{
total power expended on R(t)

}
(3.17)

and, thus, accounts for power expended by configurational and momentum forces, but
not explicitly for flows (relative to the material) of free and kinetic energy into R across
∂R. Precisely, this imbalance takes the form

.∫
R

(
Ψ + 1

2r·ṅ
)
dv ≤W (R) +M(R). (3.18)

By (3.5),

.∫
R

(
Ψ + 1

2r·ṅ
)
dv =

∫
R

.(
Ψ + 1

2r·ṅ
)
dv +

∫
∂R

(
Ψ + 1

2r·ṅ
)
V∂R da
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and therefore, by (3.16), the energy imbalance (3.17) for R becomes∫
R

.(
Ψ + 1

2r·ṅ
)
dv ≤

∫
∂R

Sm∂R ·ṅda+
∫
∂R

(
Φ−Ψ + 1

2r·ṅ
)
V∂R da. (3.19)

In view of (a) of the Variation Lemma given in the Appendix, this inequality can hold
for all migrating control volumes R only if the coefficient of V∂R vanishes: Φ = Ψ− 1

2r·ṅ.
Thus, by (3.15), we have the Eshelby relation

C = (Ψ− 1
2r·ṅ)1−G�S. (3.20)

We emphasize that our derivation of (3.20) is independent of constitutive assumptions.
Hence, the validity of that representation goes beyond that of comparable expressions
derived on the basis of particular constitutive theories. Finally, by (2.3), (2.5), and (2.14),
(3.20) becomes (Eshelby 1980; Maugin & Trimarco 1995)

C =
(
Ψ− 1

2σ|ṅ|
2
)
1−G�

∂Ψ̂
∂G

. (3.21)

In view of (3.20), the ultimate term in (3.19) vanishes. In addition, if R = P is fixed
then (3.19) reduces to the more conventional imbalance (2.9).

4 Theory for the interface

4.1 Kinematics

We suppose that the isotropic and nematic phases are separated by a surface S = S(t)
oriented by a unit normal field m(x, t) directed from the region occupied by the nematic
phase into the region occupied by the isotropic phase.

We write V (x, t) for the (scalar) normal velocity of S. To describe power expenditures
associated with the motion of S, we introduce a field v(x, t) defined over S(t) for all t.
Compatibility then requires that v have V as its normal component,

v·m = V, (4.1)

but v is otherwise arbitrary. We refer to any such field v as a velocity field for S.
We require that the theory be independent of the choice of velocity field v for S. At

some point we shall specialize our results to a velocity field v that is normal,

v = Vm, (4.2)

but for now v need only satisfy (4.1).

4.1.1 Superficial fields

We refer to scalar and vector fields defined on S for all time as superficial fields. A
superficial vector field f(x, t) is tangential if f·m = 0. We refer to a tensor field F(x, t)
defined on S for all time as superficial if Fm = 0; such a field F is fully tangential if
F�m = 0. An example of a fully tangential tensor field is the projection

P = 1−m⊗m. (4.3)
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Each superficial tensor field F admits a decomposition of the form

F = Ftan + m⊗f,

{
Ftan = PFP,

f = F�m,
(4.4)

with Ftan fully tangential and f tangential. Thus, for F fully tangential, F = Ftan.
The superfical gradient gradS is defined by the chain rule; that is, for ϕ(x, t) a super-

ficial scalar field, f(x, t) a superficial vector field, and z(λ) an arbitrary curve on S,

d
dλ
ϕ(z(λ), t) =

[
gradSϕ(z(λ), t)

]
·z′(λ),

d
dλ

f(z(λ), t) =
[
gradSf(z(λ), t)

]
z′(λ).

Since dz/dλ is tangent to S, this defines gradSϕ and gradSf only on vectors tangent to
S, but in accord with the requirement that Fm = 0 for any superficial tensor field F,
we extend gradSϕ and gradSf by requiring that (gradSϕ) ·m = 0 and (gradSf)m = 0.
Thus gradSϕ is a tangential vector field, while gradSf is a superficial tensor field. The
superficial divergence of f is then defined by

divSf = tr(gradSf), (4.5)

while the surface divergence divSF of a superficial tensor field F is the superficial vector
field defined through the identity

c·divSF = divS(F�c) (4.6)

for all constant vectors c.
We write

K = −gradSm (4.7)

for the curvature tensor and

K = trK = −divSm (4.8)

for the total curvature (i.e., twice the mean curvature). As is well known, K is fully
tangential and symmetric. An important identity based on (4.3) and these definitions is

divSP = Km. (4.9)

Let A denote an arbitrary subsurface of S, and let m∂A denote the outward unit
normal to the boundary curve ∂A of A, so that m∂A is tangent to the surface S and
normal to the curve ∂A. The superficial divergence theorem, for f a tangential vector
field and F a superficial tensor field, can then be stated as follows:∫

∂A

f·m∂A ds =
∫
A

divSfda,
∫
∂A

Fm∂A ds =
∫
A

divSFda. (4.10)

4.1.2 Migrating pillboxes. Superficial time differentiation

We assume throughout that all fields defined in the nematic phase are smooth up to the
interface.

Consider an arbitrary migrating subsurface A = A(t) of S = S(t). The superfi-
cial pillbox determined by A is a control volume of infinitesimal thickness consisting of
(Fig. 1):
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A+

m

A−

−m

m∂A

∂A

S
A

Figure 1: Schematic of a migrating subsurface A of the interface S showing an enlarged view of the
associated superficial pillbox.

• a surface A+, with unit normal m, that lies in the isotropic phase;

• a surface A−, with unit normal −m, that lies in the nematic phase;

• a lateral bounding surface ∂A with outward unit normal m∂A.

Intrinsic velocities for the evolution of ∂A(t) are its scalar velocity V∂A(x, t) in the
direction of m∂A(x, t) and the normal migration velocity V (x, t). To describe power ex-
penditures associated with the migration of A(x, t), we introduce a field v∂A(x, t) defined
over ∂A(t) for all t. Compatibility then requires that

v∂A ·m = V and v∂A ·m∂A = V∂A. (4.11)

Otherwise, however, v∂A is arbitrary. We refer to any such field v∂A and to V∂A as
migrational velocities for ∂A.

Let v be a velocity field for S. For ϕ a superficial field, the time-derivative ◦ϕ of ϕ
following the motion of S as described by v is defined as follows: given any time t0 and
any point x0 on S(t0), let z(t) denote the unique solution of

dz(t)
dt

= v(z(t), t), z(t0) = x0; (4.12)

then

◦
ϕ(x0, t0) =

dϕ(z(t), t)
dt

∣∣∣∣
t=t0

. (4.13)

For a parametrization of S with v normal, so that

v = Vm, (4.14)
◦
ϕ is the time derivative of ϕ following the normal trajectories of S. With a slight
abuse of notation, we shall use the same notation for the normal time derivative and the
time derivative involving an arbitrary velocity field v, the meaning being clear from the
context.

The normal time-rate ◦m of the interfacial orientation m and the surface-gradient of
the normal migrational velocity V are related by the classical identity

gradSV = − ◦m. (4.15)

Important to what follows is the superficial transport theorem (cf. Gurtin, Struthers
& Williams 1989): for ϕ(x, t) a smooth superficial scalar field and ◦

ϕ its normal time-
derivative,

˙∫
A

ϕ da =
∫
A

(◦
ϕ− ϕKV

)
da+

∫
∂A

ϕV∂A ds. (4.16)
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4.2 Balance of director momentum

In addition to the stress S and the body force g associated with the director in bulk,
we account for a superficial body force associated with the director through a field g.
The director forces on a migrating superficial pillbox A then consist of the internal force∫
A g da and the force −

∫
A Smda exerted on A by the bulk material in the nematic phase.

Also acting on A from the nematic phase is the director momentum flow −
∫
A rV da.

We neglect superficial distributions of director momentum. The balance of director
momentum then requires that, for any migrating superficial pillbox A,∫

A

(g− Sm− rV ) da = 0 (4.17)

or, equivalently, that the field equation

g = Sm + V r (4.18)

hold on the interface S.
In view of (2.5), the interfacial director momentum balance decomposes into compo-

nents

(1− n⊗n)(g− Sm) = V r and g·n = (S�n)·m (4.19)

perpendicular and parallel to the director.
By (2.14)2 and the requirement that (∂Ψ̂/∂G)�n = 0, (4.19)2 yields

g·n = α·m, (4.20)

so that the component of g parallel to n is determined by the multiplier field α and the
orientation m of S. Further, by (2.5) and (2.14)1, (4.19)1 can be written as

(1− n⊗n)g =
∂Ψ̂
∂G

m + σV ṅ. (4.21)

The result (4.21) makes it clear that only the component of g perpendicular to n can
be given constitutively, while (4.20) shows that the component of g parallel to n is
determined in terms of α.

4.3 Balance of configurational momentum

In addition to the stress tensor C and the internal body force f that characterize the con-
figurational forces in bulk, we account for configurational forces on the interface through
a superficial tensor field C, the stress, and a superficial vector field f, the internal force.
The configurational forces on a migrating superficial pillbox A then consist of the trac-
tion

∫
∂ACm∂A ds exerted by the portion of S exterior to A, the internal force

∫
A fda,

and the force −
∫
ACmda exerted on A by the bulk material in the nematic phase. Also

acting on A are the configurational momentum flow from the nematic phase, as given by
−

∫
A qV da.
We neglect superficial distributions of configurational momentum. Thus the balance

of configurational momentum requires that, for any migrating superficial pillbox A,∫
∂A

Cm∂A ds+
∫
A

(
f−Cm− V q

)
da = 0 (4.22)

or, equivalently, that the configurational momentum balance

divSC + f = Cm + V q (4.23)

hold on the interface S.
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4.4 Power

4.4.1 Power expended by tractions

To express the power expended by the tractions, we proceed as in §3.3.1 and mimick the
reasoning leading to the expression (3.6) for the power expenditure on a control volume
migrating through the nematic phase. The configurational traction Cm∂A is distributed
over the “lateral” boundary ∂A of the pillbox. As in our discussion of the bulk phases, we
take the migrational velocity v∂A of ∂A to be the appropriate power-conjugate velocity
for Cm∂A. In addition, we view the configurational traction −Cm exerted on A by the
nematic phase as forces, per unit area, associated with the transfer of material across S
that occurs as one phase grows with respect to the other. We therefore take the velocity
v of S to be an appropriate power-conjugate velocity for Cm. Similarly, consistent with
our treatment of the power expendend by the director traction on a migrating control
volume, we use as a power-conjugate velocity for −Sm the velocity ◦n following the motion
of S as described by v. The (net) external power expended on A therefore has the form

w(A) =
∫
∂A

Cm∂A ·v∂A ds−
∫
A

(
Sm· ◦n + Cm·v

)
da. (4.24)

4.4.2 Momentum forces and their associated power expenditure

Proceeding as in §3, we view the flows k = rV and j = qV of director and configura-
tional momentum as tractions and associate with each of these a power expenditure. As
appropriate power-conjugates for k and j, we choose ◦n, and v, respectively. Thus the net
power expended on A by the momentum flows is

m(A) = −
∫
A

(
k· ◦n + j·v

)
da. (4.25)

4.4.3 Invariance of the total power under changes in velocity field

Given a migrating pillbox A, the sum

w(A) +m(A) =
∫
∂A

Cm∂A ·v∂A ds−
∫
A

(
(Sm + k)· ◦n + (Cm + j)·v

)
da (4.26)

represents the total power expended on A. As in our treatment of the power acting
on a migrating control volume (cf. §3), we require that (4.26) be invariant under all
transformations of the form

v∂A �→ v∂A + t, t·m = t·m∂A = 0. (4.27)

Thus a necessary and sufficient condition that (4.26) be invariant under all transforma-
tions of the form (4.27) is that

∫
ACm∂A ·tds = 0. Since A and t (tangential to ∂A)

may be arbitrarily chosen, it follows that t2 ·Ct1 = 0 for all t1 and t2 orthogonal to m,
with t2 orthogonal to t1. Thus Ct1 must lie in the direction of t1 for each t1 orthogonal
to m, which is possible if and only if the tangential component Ctan of C has the form
Ctan = ϕP, with ϕ a superficial scalar field. Invariance therefore implies that the fully
tangential component Ctan of interfacial configurational stress C must be of the form

Ctan = ϕP. (4.28)
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Equivalently, bearing in mind (4.4),

C = ϕP + m⊗c, c = C�m, (4.29)

with c the configurational shear a tangential vector field.
In view of the configurational momentum-balance (4.23) and the expression (4.29) —

which we view as a superficial pre-Eshelby relation — it follows, using (4.9), that{
ϕK + divSc + f −m·(Cm + qV )

}
m + gradSϕ−Kc + P(f−Cm− qV ) = 0, (4.30)

where we have introduced the normal configurational force

f = f·m. (4.31)

Since gradSϕ, Kc, and P(f−Cm− qV ) are tangential vector fields on S, it follows that
the configurational balance (4.23) decomposes into a normal component

ϕK + divSc + f = m·(Cm + qV ) (4.32)

and a tangential component gradSϕ −Kc + Pf = P(Cm + qV ). We restrict attention
from now on to velocity fields v and v∂A in intrinsic form

v = Vm, v∂A = Vm + V∂Am∂A, (4.33)

so that a superposed circle denotes the normal time derivative. This restriction, together
with (4.29), allows to write the total power (4.26) expended on A as

w(A) +m(A) =
∫
∂A

ϕV∂A ds+
∫
∂A

V c·m∂A ds−
∫
A

{
(Sm + k)· ◦n + (Cm + j)·v

}
da.

(4.34)

Using the superficial balances (4.18) and (4.32) of director and configurational momen-
tum, the surface divergence theorem and relations (4.29) and (4.15), (4.34) becomes

w(A) +m(A) =
∫
∂A

ϕV∂A ds−
∫
A

(
ϕKV + c· ◦m + fV + g· ◦n

)
da. (4.35)

4.5 Imbalance of free energy

Since we neglect superficial distributions of momentum, the first and second laws for the
interface reduce to an imbalance of free energy. Writing ψ for the superficial free energy
(density), measured per unit area, so that

∫
A ψ da represents the net free energy of A,

the imbalance of free energy requires that, for any migrating interfacial pillbox A,

˙∫
A

ψ da ≤ w(A) +m(A), (4.36)

with the power w(A) and m(A) as given by (4.24) and (4.25). Thus, by the superficial
transport theorem (4.16) and the intrinsic expression (4.35) for w(A) +m(A),∫

A

( ◦
ψ − (ψ − ϕ)KV ) da+

∫
∂A

(ψ − ϕ)V∂A ds ≤ −
∫
A

(
c· ◦m + fV + g· ◦n) da. (4.37)
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This inequality can hold for all migrating pillboxes A only if the coefficient of V∂A in the
integral over ∂A vanishes (cf. (b) of the Variation Lemma given in the Appendix). Thus,
by (4.29), we have the superficial Eshelby relation

C = ψP + m⊗c. (4.38)

Consider now the configurational momentum balance (4.23). By (4.32) and (4.38),
(4.23) has normal component

ψK + divSc + f = m·(Cm + qV ). (4.39)

We refer to (4.39) as the normal configurational force balance. As opposed to (4.39), the
(nonintrinsic) tangential component, gradSψ − Kc + Pf = P(Cm + qV ), of (4.23) is
inconsequential to the theory.

Note, for future use, that, by (3.14) and (3.21), we may write the normal configura-
tional force balance in the form

ψK + divSc + f = Ψ− 1
2σ|ṅ|

2 −Gm·
(
∂Ψ̂
∂G

m + σṅV
)
. (4.40)

As another consequence of (4.38) the free-energy imbalance (4.37) reduces to∫
A

( ◦
ψ + g· ◦n + c· ◦m + f V ) da ≤ 0, (4.41)

or, equivalently, to the dissipation inequality

◦
ψ + g· ◦n + c· ◦m + f V ≤ 0. (4.42)

4.6 Constitutive equations

We take ψ to be given constitutively as a function

ψ = ψ̂(n,m). (4.43)

Then
◦
ψ = {ψ̂(n,m)/∂n}· ◦n + {ψ̂(n,m)/m}· ◦m and the dissipation inequality (4.42) takes

the form (
∂ψ̂(n,m)

∂n
+ g

)
· ◦n +

(
∂ψ̂(n,m)
∂m

+ c

)
· ◦m + f V ≤ 0. (4.44)

Bear in mind that c is orthogonal to m, and that n and m are unit vectors, so that
∂ψ̂/∂n and ∂ψ̂/∂m are orthogonal to n and m, respectively. Then a sufficient condition
that (4.44) hold identically is that g, c, and f have the forms

g = αn− ∂ψ̂(n,m)
∂n

− β1(n,m) ◦n,

c = − ∂ψ̂(n,m)
∂m

− β2(n,m) ◦m,

f = −β3(n,m)V,




(4.45)

where α is a constitutively indeterminate interfacial field that arises because g need
not be orthogonal to n and β1, β2, and β3 are generalized viscosities consistent with
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βi(n,m) ≥ 0, i = 1, 2, 3. The field α is not independent of the bulk response. Indeed,
by (4.20), α = g ·n = α ·m; α is thus determined by the interfacial normal component
of the interfacial limit of the bulk multiplier α. Further, by (2.14) and (4.19)2, α =
{(∂Ψ̂/∂G)m}·n.

Finally, we assume that the function ψ̂ is isotropic and hence consistent with

ψ̂(n,m) = ψ̂(Qn,Qm) (4.46)

for every rotation Q; hence there is a function ψ̄ such that

ψ = ψ̂(n,m) = ψ̄(ξ), ξ = n·m. (4.47)

Furthermore, the viscosities β1, β2, and β3 may depend on (n,m) at most via ξ:

βi(n,m) = βi(ξ), i = 1, 2, 3. (4.48)

4.7 Basic partial differential equations for the interface

The final governing equations for the interface are

β1
◦n + σV ṅ = − ∂Ψ̂

∂G
m,−dψ̄

dξ
(m− ξn) (4.49)

which expresses director momentum balance, and

β1Gm· ◦n + divS(β2
◦
m) + β3V = ψK − divS

(
∂ψ̂

∂m

)
−Gm· ∂ψ̂

∂n
− (Ψ− 1

2σ|ṅ|
2), (4.50)

which expresses normal configurational momentum balance (simplified by taking into
account the director momentum balance (4.49)).

Of these, (4.49) follows immediately on using (4.45)1 and the identity

∂ψ̂

∂n
=

dψ̄
dξ

(m− ξn), (4.51)

which is a consequence of (4.47), in (4.21). Each term of (4.49) is orthogonal to n.
Next, the normal configurational momentum balance (4.40) and the constitutive equa-

tions (4.45) yield

divS(β2
◦
m) + (β3 − σGm· .n)V = ψK − divS

(
∂ψ̂

∂m

)
−

(
Ψ− 1

2σ|ṅ|
2 −Gm· ∂ψ̂

∂G
m

)
,

(4.52)

which, when combined with the director momentum balance (4.49), yields (4.50).
A potentially useful alternative to (4.50) is

β1Gm· ◦n + (β2|K|2 + β3)V − β2

◦
K +

dβ2

dξ
(G�m−Kn)· ◦m

=
(
ψ − ξdψ̄

dξ

)
K +

d2ψ̄

dξ2
n·Kn + ξ

d2ψ̄

dξ2
m·Gm− dψ̄

dξ
trG−Ψ + 1

2σ|ṅ|
2. (4.53)

To obtain this, we first note that, by

gradSξ = (gradSm)�n + (gradSn)�m = −Kn + PG�m (4.54)
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and (Gurtin and Jabbour 2002, eqt. (2.19)2)

divS
( ◦
m

)
= −

◦
K + |K|2V, (4.55)

it follows that

divS(β2
◦
m) = −β2

◦
K + β2|K|2V +

dβ2

dξ
(G�m−Kn)· ◦m. (4.56)

Further, by (4.51)2 and (4.54)

divS

(
∂ψ̂

∂m

)
= −d2ψ̄

dξ2
(n·Kn + ξm·Gm) +

dψ̄
dξ

(trG−m·Gm + ξK). (4.57)

Thus, using (4.56) and (4.57) in (4.50), we obtain (4.50). A similar alternative exists for
(4.52).

5 Approximate equations for a perturbed planar in-
terface

The balances (4.49) and, especially, (4.53) are complicated. A somewhat simpler system
ensues when the interface is nearly planar and the interfacial energy is of the form (Rapini
& Papoular 1969)

ψ̂(n,m) = ψ0 − c(n·m)2, (5.1)

with c > 0 and ψ0 a given constant, so that ψ̄(ξ) = ψ0 − cξ2. Precisely, given an
orthonormal basis {e1, e2, e}, let S0 denote the family of moving planes with parametric
representation r = r(x, y, t) = xe1 +ye2 +F0(t)e, and let S be a perturbation of S0 given
parametrically by

r = r(x, y, t) = xe1 + ye2 + (F0(t) + εF1(x, y, t))e. (5.2)

On denoting by gradS0 the gradient in the plane perpendicular to e, it follows that

m = m0 + εm1 + o(ε) = e− εgradS0F1 + o(ε),

V = V0 + εV1 + o(ε) = Ḟ0 + εḞ1 + o(ε),

K = εK1 + o(ε) = −εgradS0m1 + o(ε) = εgradS0gradS0F1 + o(ε),

K = εK1 + o(ε) = ε∆S0F1 + o(ε),

◦
K = εK̇1 + o(ε) = ε∆S0 Ḟ1 + o(ε),




(5.3)

with ∆S0 the Laplacian in the plane perpendicular to e. Also, for z ≥ F0(t) + εF1(t), we
assume that

n = e + εn1(x, y, z, t), (5.4)

so that

n|S = e + εn1(x, y, F0(t)) + o(ε),

G = εG1 + o(ε) = εgradn1 + o(ε),
◦n = ε(ṅ1 + V0G1e) + o(ε),

ξ = 1 + o(ε).




(5.5)
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Nematic ocean
n radial

Isotropic droplet
n undefined

−m

R

Figure 2: Schematic of an isotropic drop of radius R in an nematic ocean with radial director field. The
interfacial unit normal m is directed outward from the nematic phase toward the origin.

Finally, we assume that

Ψ = Ψ0 + εΨ1 + o(ε) (5.6)

with Ψ0 and Ψ1 given constants.
Then, assuming that β2 is constant and neglecting inertia, (4.53) yields at zeroth and

first order in ε,

β3V0 = −Ψ0,

β3V1 − β2

◦
K1 = (ψ0 + c)K1 + 2cdivS0n1 −Ψ1.

}
(5.7)

When the interfacial free energy is constant (i.e., c = 0) this relation takes the form

−β2

◦
K1 + β3V1 = ψ0K1 −Ψ1, (5.8)

which, for β2 = 0, is the classical curvature-flow equation (Gurtin 2000).

6 Radial symmetry. Isotropic drop in a nematic ocean

6.1 Kinematics

Consider an isotropic spherical drop of time-dependent radius R(t) surrounded by a
nematic ocean with purely radial director field (Figure 2)

n(x) =
x
|x| . (6.1)

Then, for |x| > R(t),

G(x) =
1
|x| (1− n(x)⊗n(x)), ṅ(x) = 0, and n̈(x) = 0 (6.2)

Moreover, for the phase interface |x| = R(t),

m(x, t) = − x
R(t)

, K(x, t) =
1

R(t)
P(x, t), K(x, t) =

2
R(t)

,

V (x, t) = −Ṙ(t), ◦
m(x, t) = 0,

◦
K(x, t) = −2Ṙ(t)

R2(t)
,


 (6.3)
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with P = 1−m⊗m. Also, on |x| = R(t),

n(x) = −m(x, t), G(x) =
1

R(t)
P(x, t), ṅ(x) = ◦n(x) = 0, ξ = −1, (6.4)

the last of which is a consequence of (6.4)1.

6.2 Bulk results

We take the relative free-energy density of the nematic phase to have the standard form

Ψ̂(n, gradn) = Ψ0 + 1
2k1(divn)2 + 1

2k2(n·curln)2 + 1
2k3|n×curln|2

+ 1
2 (k2 + k4)(|gradn|2 − (divn)2), (6.5)

due to Oseen (1933), Zöcher (1933), and Frank (1958). Here, following Ericksen (1966),
we assume that the splay, twist, bend, and saddle-splay moduli k1, k2, k3, and k4 obey
k1 ≥ 0, k2 ≥ |k4|, k3 ≥ 0, and 2k1 ≥ k2+k4. The term Ψ0 contains information about the
free-energy density of the nematic phase relative to that of the isotropic phase. For fixed
compositions and in the absence of external electromagnetic fields, we might expect Ψ0

to be negative at sufficiently low temperatures, positive at sufficiently high temperatures,
and zero at some intermediate temperature. Similar remarks can be made about what
to expect when the temperature is fixed, external fields are absent, but compositional
fluctuations are allowed, etc. We refer to Ψ0 as the ambient free-energy difference.

In view of (6.1) and (6.2), the free-energy density (6.5) specializes to

Ψ̂(n(x),G(x)) = Ψ0 +
κ

|x|2 , (6.6)

where we have introduced

κ = 2k1 − (k2 + k4) ≥ 0. (6.7)

Further, direct calculations show that

∂Ψ̂(n(x),G(x))
∂G

=
κ

|x| (1− n(x)⊗n(x)),
∂Ψ̂(n(x),G(x))

∂n
= 0. (6.8)

Satisfaction of the bulk director momentum balance (2.15) on |x| > R(t) then follows
from (6.2) and (6.8).

6.3 Interfacial results

By (6.4) and (6.8), a direct calculation shows that the interfacial director momentum
balance (4.49) is satisfied on |x| = R(t).

Further, by (6.3), (6.4), (6.6), and (6.8), the normal configurational force balance
(4.53) simplifies to an ordinary differential equation

βṘ = Ψ0 −
2σ
R

+
κ

R2
(6.9)

for the position R of the phase interface. Here, we have introduced

β = β3 and σ = ψ̄(−1). (6.10)
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Table 1: Equilibria for the ordinary differential equation (6.9).

Ψ0 < 0 R∗ =

(√
1 +

κ|Ψ0|
σ2

− 1

)
σ

|Ψ0|

Ψ0 = 0 R∗ =
κ

2σ

0 < Ψ0 <
σ2

κ
R±∗ =

(
1±

√
1− κΨ0

σ2

)
σ

Ψ0

Ψ0 =
σ2

κ
R∗ =

σ

Ψ0
=
κ

σ
(unstable)

Ψ0 >
σ2

κ
R∗ →∞

We assume the interfacial free-energy density is defined so that

σ > 0. (6.11)

The equilibria of the ordinary differential equation (6.9) are synopsized in Table 1
and the qualitative behavior of the solutions is depicted in Figure 3. Suppose that the
isotropic drop initially occupies a sphere of radius R0:

R(0) = R0 (6.12)

To discuss the initial-value problem formed by (6.9) and (6.12), we consider separetly
three regimes:

Ψ0 < 0, Ψ0 = 0, and Ψ0 > 0.

For Ψ0 < 0, (6.9) has a single equilibrium point

R∗ =

(√
1 +

κ|Ψ0|
σ2

− 1

)
σ

|Ψ0|
. (6.13)

Thus, when the ambient energy of the nematic phase is less than that of the isotropic
phase, the competition between nematic curvature elasticity and interfacial tension allows
for the existence of a unique two-phase equilibrium state with an isotropic spherical drop
in a nematic ocean. In a dynamical process, the radius R of the drop grows or shrinks
from its initial value R0 until it reaches R∗ as given by (6.14) depending on whether
0 < R0 < R∗ or R∗ < R0 <∞, respectively.

For Ψ0 = 0, (6.9) still has a single stable equilibrium point

R∗ =
κ

2σ
, (6.14)

and the qualitative behavior is the same as above.
For Ψ0 > 0, we consider three subregimes:

Ψ0 <
σ2

κ
, Ψ0 =

σ2

κ
, and Ψ0 >

σ2

κ
.
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R(t)

t

Ψ0 < 0

R∗ R−∗

R+
∗

0 < Ψ0 < σ2/κ σ2/κ < Ψ0

t t t

R(t) R(t)

Figure 3: Plots of the time-dependence of the radius of an isotropic drop in a radial nematic ocean, at
different values of the ambient energy.

First, for Ψ0 < σ2/2κ, (6.9) has two equilibrium points

R±∗ =

(
1±

√
1− κΨ0

σ2

)
σ

Ψ0
, (6.15)

and R−∗ is stable while R+
∗ is unstable. In this regime the ambient energy of the nematic

phase exceeds that of the isotropic phase, but the competition between nematic curvature
elasticity and interfacial tension allows for the presence of stable isotropic spherical drops
in a nematic ocean. For 0 < R0 < R+

∗ , the radius R of the drop grows or shrinks from its
initial valueR0 until it reachesR−∗ as given by (6.15), depending on whether 0 < R0 < R−∗
or R−∗ < R0, respectively. For R+

∗ < R0 <∞, the region occupied by the isotropic phase
grows at the expense of the nematic phase. Hence R+

∗ is a critical radius for the phase
transition: the drop must be sufficiently large to initiate a complete transformation to
the isotropic phase. The fact that a nematic to isotropic transition that initiated with
the nucleation of isotropic droplets requires that the drops coalesce to proceed further is
consistent with observations.

Next, for Ψ0 = σ2/κ, (6.9) has a single saddle equilibrium point

R∗ =
σ

Ψ0
=
κ

σ
. (6.16)

Thus, in a dynamical process, the radius of the drop will always grow.
Finally, for Ψ0 > σ2/κ, the isotropic phase grows without bound. Thus, when the

ambient energy of the nematic phase exceeds that of the isotropic phase to the extent
that it is greater than σ2/κ, the nematic phase is unstable.

Remarks

(i) Reasonable orders of magnitude for the parameters κ and σ are (Stephen & Stra-
ley 1974) κ ∼ 10−7 erg/cm Thus, when the ambient energy difference vanishes,
(6.14) gives R∗ ∼ 10−1 µm. Assuming that |Ψ0| � σ2/κ and expanding (6.13)
accordingly, we find that this value for R∗ ∼ σ/κ ∼ 10−1 µm as well. Further,
for Ψ0 � σ2/κ, (6.15) gives R−∗ ∼ κ/σ ∼ 10−1 µm and R+

∗ ∼ 2σ/Ψ0 � R−∗ . In
each of these cases, the theory therefore yields drop radii on the order of 10−1 µm.
Thus, since the characteristic dimension of a mesogen is 1 nm, R∗ as predicted by
our theory is on the order of 102 molecular lengths.

(ii) For Ψ0 > σ2/κ, i.e., when the isotropic to nematic transition is favored, different
time scales characterize nucleation and growth. In fact, when R is sufficiently small,
(6.9) should be well-approximated by

βṘ ∼ κ

R2
,
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which implies that the, in the initial stage of growth immediately after nucleation,
the drop radius evolves according to

R(t) ∼ 3
√
R0 + 3κt.

Subsequently, there is a cross-over time where both terms −2σ/R and κ/R2 be-
come important. Thereafter, the term Ψ0 − 2σ/R will dominate and the growth
is diffusive (∼

√
t). Finally, once the radius is large enough, the constant term

will dominate, and the growth is linear in time. Hence, the initial growth after
nucleation is much faster than the steady growth of sufficiently large inclusions (cf.
Figure 3).

(iii) If we considered instead a radially-aligned nematic drop is an isotropic ocean, the
foregoing results would be unchanged. (To achieve it all we would need to do is
alter a few words and signs (m would be outward).) The analog of the foregoing
result concerning a initial stage of rapid growth would then be consistent with the
experiments of Ostner, Chan & Kahlweit (1973).

(iv) Small isotropic spherical drops in a nematic radially oriented phase for Ψ0 ≤ 0, may
be used to model the cores of hedgehog defects. Indeed, we may explicitly calculate
the net (bulk plus surface) free-energy in a sphere of radius R̄ > R∗ containing as
isotropic drop to yield

4π
(

1
3Ψ0R̄

3 + κR̄
)

+ 4π
(
σR2
∗ − 1

3Ψ0R∗ − κR∗
)
. (6.17)

Of the two terms in (6.17) the first is the bulk energy of a hedgehog defect while
the second is the correction due to the isotropic core; a straightforward calculation
shows that, for Ψ0 ≤ 0 and R∗ given by (6.13) or (6.14), this correction is negative,
so that the presence of the core decreases the free energy stored in the hedgehog.

Appendix

Variation Lemma:

(a) Let Φ = Φ(x, t) and Θ = Θ(x, t) be scalar bulk fields, and h = h(x, t) a bulk vector
field. If ∫

R

Φ dv +
∫
∂R

h·m∂R da ≤
∫
∂R

ΘV∂R da, (6.18)

for all migrating control volumes R, then

Θ = 0. (6.19)

(b) Let u = u(x, t) and w = w(x, t) be superficial fields: if∫
A

u da ≤
∫
∂A

wV∂A ds, (6.20)

for all migrating pillboxes A ⊂ S, then

w = 0. (6.21)
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Proof:

(a) Fix t = t0, and choose arbitrarily a fixed region R0. Letting r0(ξ), ξ = (ξ1, ξ2), be
a parametrization of ∂R0, define a migrating control volume R(t) so that

r(ξ, t) = r0(ξ) + c(t− t0)φ(ξ)m∂R(ξ),

is a parametrization of ∂R(t), where c is an arbitrary constant, φ is an arbitrary
smooth function and m∂R is the outward unit normal to ∂R0. Clearly, R(t0) = R0

and V∂R(ξ, t0) = cφ(ξ). Hence, letting

A :=
∫
R0

Φ dv +
∫
∂R0

h·m∂R da, B :=
∫
∂R0

Θφda,

(6.18) becomes A ≤ cB for any constant c. Now, if B �= 0, choosing c < A/B when
B > 0 and c > A/B when B < 0, we obtain A < A, which is impossible. Hence,∫
∂R0

Θφda = 0 for arbitrary φ and R0, and this implies (6.19).

(b) Now let r(ξ, t) be a parametrization of S(t), fix t0 and A0 ⊂ S(t0). If r(ξ0(s), t0)
is a parametrization of the curve ∂A0, define

ξ(s, t) = ξ0(s) + c(t− t0)φ(s)m(s),

where m(s) is the 2-dimensional vector such that[
∂r
∂ξ

(ξ0(s), t0)
]
m(s) = m∂A(ξ0(s), t0),

c is an arbitrary constant, and φ(s) and arbitrary real function. Then r(ξ(s, t), t)
is the parametrization of the boundary ∂A(t) ⊂ S(t) of a migrating pillbox such
that A(t0) = A0. Moreover, at t = t0,

v∂A = v + cφm∂A, V∂A = v·m∂A + cφ,

with v = ∂r/∂t. Hence, letting

α :=
∫
A0

u da−
∫
∂A0

wv·m∂A ds, β :=
∫
∂A0

wφds,

(6.20) becomes α ≤ cβ for any c. Proceeding as in (a) we obtain (6.21).
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