
Refactoring meets Spreadsheet Formulas
Sandro Badame, Danny Dig

University of Illinois
{badame1,dig}@illinois.edu

Abstract—The number of end-users who write spreadsheet
programs is at least an order of magnitude larger than the
number of trained programmers who write professional software.
We studied a corpus of 3691 spreadsheets and we found that
their formulas are riddled with the same smells that plague
professional software: hardcoded constants, duplicated expres-
sions, unnecessary complexity, and unsanitized input. These make
spreadsheets difficult to read and expensive to maintain. Like
refactoring of object-oriented code, refactoring of spreadsheet
formulas can be transformative.

In this paper we present seven refactorings for spreadsheet
formulas implemented in REFBOOK, a plugin for Microsoft Excel.
To evaluate the usefulness of REFBOOK, we employed three kinds
of empirical methods. First, we performed a Retrospective Case
Study on the EUSES Spreadsheet Corpus with 3691 spreadsheets
to determine how often we could apply the refactorings supported
by REFBOOK. Second, we conducted a User Survey with 28 Excel
users to find out whether they preferred the refactored formulas.
Third, we conducted a Controlled Experiment with the same 28
participants to measure their productivity when doing manual
refactorings. The results show: (i) the refactorings are widely
applicable, (ii) users prefer the refactored formulas, and (iii)
REFBOOK is faster and safer than manual refactoring. On average
REFBOOK is able to apply the refactorings in less than half the
time that users performed the refactorings manually. 92.54% of
users introduced errors or new smells into the spreadsheet or
where unable to complete the task.

Keywords-refactoring, end-user, spreadsheets, Microsoft Excel,
code smells

I. INTRODUCTION

The number of end-users who write spreadsheet programs is
at least an order of magnitude larger than the number of trained
programmers who write professional software [1], [6], [30].
Therefore the majority of programming is actually performed
by users who do not consider themselves programmers. These
spreadsheet users are referred to as end-users [7]. While these
end-users are responsible for the maintenance and correctness
of their spreadsheets, they have not been trained to develop
software and often are not trained in the best practices for
spreadsheet maintenance.

We have analyzed 3691 spreadsheets from the EUSES
Spreadsheet Corpus [15] to determine the internal quality
of the spreadsheets. We found that many formulas have
smells, similar to those commonly found in professionally
developed software. Some smells degrade the performance,
others decrease readability, and others make it harder to change
the table in the future. For example: 61% of formulas contain
numerical constants that can be extracted. By consolidating
all of the constant references in a formula to a single place,
the formula’s readability and maintainability is increased.

13.66% of text columns are good candidates for conversion
to a dropdown menu which reduces the possibility of typos
occurring in a column and convey to a maintainer the acceptable
values for a text column. 61% of formulas can be given
descriptive names instead of using anonymous cell references,
thus making it easier to understand the purpose of a formula.

Although smelly formulas may correctly perform their tasks,
they are difficult to maintain and can mask errors. Such
errors have cost millions of dollars [7]. Researchers [2], [4],
[9], [12], [17], [18], [20], [23], [26], [27], [29] have made
continuous strides into finding and displaying errors and smells
in spreadsheets. However, there is no work on the removal of
smells from spreadsheet formulas.

In professional programing the removal of smells while
preserving program behavior is called refactoring [16]. Refac-
toring is an important part of professional software develop-
ment. Refactoring has revolutionized how programmers design
software: it has enabled programmers to continuously explore
the design space of large codebases, while preserving the
existing behavior. Researchers found that refactorings decrease
the number of software defects [28]. Modern IDEs such as
Eclipse [10], NetBeans [22], IntelliJ IDEA [19], or Visual
Studio [32] incorporate refactoring in their top-level menu and
often compete on the basis of refactoring support.

While professional programmers have the support of refac-
toring tools, end-users – who are not even trained to maintain
software – do not have any refactoring support. We propose
to remove spreadsheet smells through the use of automated
refactoring, analogous to the refactoring process used for object-
oriented code.

There is a large number of refactorings for spreadsheet
formulas that we could have implemented. However, we want
to automate those that are frequently performed but cause
frustration, and those that are infrequent but are difficult. We
asked these questions to different end users.

We contacted the 750 members of the European Spreadsheet
Risks Interest Group [13] that subscribe to the mailing list
of professional spreadsheet users, and we exchanged several
emails with their Chair, Patrick O’Beirne, the author of an
influential paper [23] about best practices for spreadsheets.
We also posted on two large forums that have been used by
hundreds of thousands of users: the OpenOffice Calc forum 1

that has more than 200 active users online at any time, and
the Excel forum 2 that has on average 4,000 active members

1http://www.oooforum.org/
2http://www.excelforum.com/

Fig. 1. Table before refactoring (A), and after refactoring (B). Underneath the table we show the formulas in row 5. The other formulas differ only in their
row index.

online at any time. We also asked on the staff mailing list at
the CS department at UIUC.

Based on their input, we have implemented REFBOOK: a
plugin for Microsoft Excel that implements seven refactorings
that safely remove spreadsheet smells.

REFBOOK implements the following refactorings: EXTRACT ROW

OR COLUMN, MAKE CELL CONSTANT, GUARD CALL, REPLACE AWKWARD

FORMULAS, STRING TO DROPDOWN, INTRODUCE CELL NAME, and
EXTRACT LITERAL. Each refactoring is specialized to remove a
particular smell from a spreadsheet. These refactorings increase
programmer productivity by performing the refactorings quickly
and correctly. EXTRACT ROW OR COLUMN breaks formulas into
smaller components and can reduce the amount of code
duplication that exists in spreadsheets. MAKE CELL CONSTANT

makes formulas less error prone and more readable by rewriting
the formula to contain $’s that signify that a particular cell or
column is constant throughout a set of formulas. GUARD CALL

rewrites a cell formula to have user defined behavior when
an error condition occur. REPLACE AWKWARD FORMULAS re-writes
formulas using Excel’s built-in functions (e.g., SUM) so that
spreadsheets become more uniform and easier to understand.
STRING TO DROPDOWN limits the number of allowed values for
a cell to reduce the chance of a typo. INTRODUCE CELL NAME

removes anonymous cells and replaces them with named cells.
EXTRACT LITERAL removes “magic numbers” from formulas.

To evaluate the usefulness of REFBOOK, we employed three
kinds of empirical evaluation methods. First, we performed a
Retrospective Case Study on the EUSES Spreadsheet Corpus
with 3691 spreadsheets. Our goal is to determine how often we
could apply the refactorings supported by REFBOOK. Second,
we conducted a User Survey with 28 Excel users to find
out whether they preferred the refactored formulas. Third,
we conducted a Controlled Experiment with the same 28
participants to measure their productivity when doing manual
refactorings.

This paper makes the following contributions:
1) To the best of our knowledge, we are the first to present

the concept of refactoring into the domain of spreadsheet
formulas.

2) We present the first refactoring tool for spreadsheet

formulas, REFBOOK, implemented as a plugin for Excel.
REFBOOK currently supports seven refactorings. A demo
can be seen at:
http://www.youtube.com/watch?v=wGIu6Muvd8I

3) Our three-way evaluation reveals:
(i) The refactorings can be applied to many of the
formulas contained in spreadsheets. Thus REFBOOK is
applicable. (ii) On average REFBOOK is able to apply
the refactorings in less than half the time that users
performed the refactorings manually. Thus REFBOOK

improves programmer productivity. (iii) 92.54% of users
asked to perform the same refactorings introduced errors
into the spreadsheet or where unable to complete the
task. REFBOOK makes it easier to apply the refactorings
correctly, thus it is safer. (iv) For four out of the seven
refactorings users preferred the refactored output. Thus
the refactorings improve spreadsheet quality.

II. MOTIVATING EXAMPLE

To illustrate the kinds of refactorings applicable to spread-
sheets, we will use the table shown in Figure 1(A). This
table tabulates data from an orchard warehouse where four
salespersons purchased fruits and resold them for a profit.
Each row tabulates the data for one salesperson. Underneath
the table we show the kind of each column and the formulas
they compute. Notice that we only show the formulas as they
would appear in row 5 (thus referring to cells from row 5), but
the formulas for the other rows refer to their respective cells.

The table contains twelve columns: six columns contain
literals, and six columns contain formulas that compute on the
other columns. Now we briefly explain each column.

• Column A is a text column containing the names of the
participants.

• Columns B-E are numerical columns that hold the number
of each type of fruit that each salesperson had purchased.

• Column F Total Price is a formula column that
computes the total price that each salesperson paid for
their fruits. This column performs two calculations: sum
the total number of fruits purchased by each person, then
multiply it by $0.50, the purchase price per fruit.

2

• Column G Sold Price is a numerical column that holds
the amount of money that each salesperson collected from
selling their fruits.

• Column H Fruits Sold is a formula column that
computes the number of fruits sold: it divides the Sold

Price by $1, the resale price per fruit.
• Column I is a formula column that computes the remain-

ing fruits that each salesperson still has. This column
performs two calculations: sum the total number of fruits
purchased by that person, then subtract the number of
fruits sold by that person.

• Column J is a formula column that computes Income as
the difference between Sold Price and Total Price .

• Column K is a formula column that computes the return
on investment, ROI , as the division between Income and
Total Price .

• Column L is a text column containing the favorite fruit
as reported by the salesperson. This column should only
contain the names of real fruits, not arbitrary text.

There are several things that point to “smells” in this
table. Some smells degrade the performance, others decrease
readability, and others make it harder to change the table in
the future.

Take for example the expression B5+C5+D5+E5 which
computes the total number of sold fruits. First, this can become
more readable if it was replaced with the built-in SUM function
(i.e., SUM(B5:E5)). Second, this expression is calculated twice,
once in the Total Price column and then again in the
Remaining Fruits column. Given that Excel does not cache
expression results, but instead does cache cell results, this
wastes CPU cycles. Third, since this expression is duplicated
between the Total Price column and the Remaining Fruits

column, a future change request like introducing a new kind of
fruit and its afferent column, requires changing the expression in
the two columns. Like in the case of professional programming,
duplication increases the maintenance effort.

Also notice that the table contains two constants, 0.5 and
1. First, constants make the formulas unreadable: another co-
worker who inspects the table will have to guess what is the
meaning of these constants (i.e., purchase price and resale price).
Second, constants make it tedious to perform maintenance tasks:
if we wanted to change the purchase and resale price, we will
have to manually find and update 8 cells. Performing a find-
and-replace for 1 will erroneously update the cell C2 , which
just happens to have value 1 .

Also notice that the Favorite column can contain any
arbitrary text, even the ones that do not represent fruit names,
for example by a typo that just misplaced one character (e.g.,
“Appls”). This affects the readability of the column for humans.
This is even worse for other automated tools: macros or other
programs that read such erroneous values won’t work.

Also notice that all formulas that refer to static cells use the
“fixed column” format. For example, the formula in H5 refers
to the static cell G5 . Adding the $ can make cell references
more resistant to errors when the spreadsheet is modified for
maintenance, e.g., when the formula is dragged down a column.

Fig. 2. Typical sequence of events to perform a refactoring.

Dragging a formula in Excel copies the formula into the
adjacent cell and changes the cell references in the formula
to reference the new row or column that the cell was dragged
into. For example, dragging A1 down one row will insert
the formula A2 into the new row. While the ability to drag
a formula is very useful in practice, it leads to smelly and
possibly erroneous spreadsheets when not used carefully. Bugs
can occur when dragging a formula that contains a reference to
a cell that is constant throughout the entire table. Dragging this
formula will also increment the reference to the constant cell.
This means that the dragged formulas will refer to a different
cell than the one intended by the user.

The $ signs also serve as a form of documentation about
the formula: the $ signs highlight which cell references are
constant throughout the entire column of formulas.

Figure 1(B) shows the same table after we applied several
refactorings. We added Total Fruits column to hold the
intermediate calculation of total number of purchased fruits. We
modified the Total Price and Remaining Fruits formulas
to reference the newly introduced Total Fruits column.

We moved the 0.5 and 1 constants from Total Price and
Fruits Sold columns into their own cell and named them
PurchasePPF and SoldPPF respectively.

We changed the ROI column to sanitize its input against a
division by 0 . If the number of sold fruits was 0 then the
ROI would display a “divide by zero” error. With the guarded
formula, the ”Unknown” text is displayed. The advantage is
that it notifies the reader that the formula was written with the
error case in mind, and that the error case is handled.

We changed the Favorite column to use a dropdown menu
for valid values instead of arbitrary text. Using a dropdown
also makes the user aware that there are a fixed number of
values that are allowed in the column.

Across all of the formula cells, we updated the cell references
to use the $ on their column identifier.

REFBOOK supports all the refactorings performed on the table
from Fig. 1(B).

III. HIGH LEVEL OVERVIEW OF REFBOOK

A. Typical use of REFBOOK

Users interact with REFBOOK from within Excel. We describe
a typical use of REFBOOK using our motivating example from
Figure 1: replace the formulas in the Total Price column
with formulas that contain constant cell references. To perform
this refactoring the user selects cells F2-F5 from the Total

Price column, right-clicks on the selection to bring up the
context menu (which shows REFBOOK on the top), then selects

3

the MAKE CELL CONSTANT option in the menu. REFBOOK then
replaces the highlighted formulas with formulas that contain
the $ sign.

B. Life-cycle of a Refactoring

REFBOOK’s architecture consists of three major components:
Excel plugin, Ludwig [25], and the refactoring engine. The
Excel plugin is the front-end. Users only interact with the
Excel plugin component of REFBOOK. The Excel plugin creates
a separate process for the back-end, Ludwig and the refactoring
engine. The back-end calculates the corresponding changes
for each refactoring, and sends them to the Excel plugin that
applies them on the spreadsheet.

Ludwig [25] is an off-the-shelf component that given a
grammar for a language (e.g., the grammar for Excel formulas
– see Fig 3) generates a Java library for parsing that grammar.
The Abstract Syntax Tree (AST) generated by Ludwig supports
manipulation of the AST while preserving the formatting for
the remainder of the formula. This crucial feature simplifies
the implementation of actual refactorings while making it very
practical for users who care about the formatting.

The refactoring engine is a Java application that takes as
input the name of the refactoring to perform, the table that is
the target of the refactoring, and the user input. It performs the
AST transformations, e.g., adding, removing, updating cells.
Then it outputs commands for the Excel plugin to perform on
the Excel spreadsheet. The output of the refactoring engine is
an ordered list comprised of commands of this kind:

• INSERTCOLUMN columnIndex
• INSERTROW rowIndex
• SETCELL columnIndex, rowIndex, content
• NAMECELL columnIndex, rowIndex, name

The major advantage of this 3-tier architecture is that
REFBOOK is extensible to other spreadsheet tools, beyond
Microsoft Excel. If we were to implement refactoring support
for OpenOffice Calc [8] then we would have to reimplement
only the Excel plugin portion of REFBOOK.

IV. SPREADSHEET GRAMMAR

A. Anatomy of a Spreadsheet

The terminology we will use is derived from Excel’s
terminology. A Workbook is a single file that contains multiple
Sheets . The Workbook ’s name is its filename. A sheet can only
belong to one Workbook . A Sheet is a named two dimensional
array of Cells .

Cells are indexed in a Sheet either by row and column,
or by a user-defined name. A Cell ’s column is represented
as series of letters that range between A and ZZ . A Cell ’s
row is represented as an integer greater than 0. Cells can be
named or anonymous. The condition for a valid user-defined
name is that the given name cannot be interpreted as a valid
index (e.g. A1 is not a valid cell name) or as an Excel builtin.
We will refer to a cell that has not been given a user-defined
name as an anonymous cell.

Cells can contain a value that is one of three types: Number,
Text, or Formula. Other types such as Dates and Currency are

(s k i p) : : = [\ t \ r \n]+ # De f i ne w h i t e s p a c e
<Formula> : : = <E x p r e s s i o n> | ”{” <E x p r e s s i o n> ”}”
<E x p r e s s i o n> : : = O p e r a t o r ∗ <E x p r e s s i o n P r i m i t i v e > <

A n o t h e r E x p r e s s i o n >?
<E x p r e s s i o n P r i m i t i v e > : : = <P r i m i t i v e > | <Func t ion> |

<C e l l R e f e r e n c e> | <RangeReference> | <E r r o r> |
” (” <E x p r e s s i o n> ”) ”

<A n o t h e r E x p r e s s i o n> : : = O p e r a t o r <E x p r e s s i o n>
P r i m i t i v e Data t y p e s
<P r i m i t i v e > : : = t o k e n : Number | t o k e n : Boolean | t o k e n

: S t r i n g
Number : : = [0−9]+ (” . ” [0−9]+) ? ”%”?
Boolean : : = ” t r u e ” | ” f a l s e ” | ”TRUE” | ”FALSE”
S t r i n g : : = ”\”” ([ˆ \ ”] | ” \ ” \ ” ”) ∗ ”\””
O p e r a t o r : : = ”<” | ”>” | ”>=” | ”<=” | ”>=” | ”<=” |

”<>” | ”=” | ”+” | ”−” | ” / ” | ”∗” | ” ˆ ” | ”&”
<E r r o r> : : = ”#REF ! ”
R e f e r e n c i n g c e l l s
<C e l l R e f e r e n c e> : : = <R e f e r e n c e P r e f i x> <Cel l>
<R e f e r e n c e P r e f i x> : : = <E r r o r >? workbook : Workbook ?

s h e e t : S h e e t ?
<RangeReference> : : = s t a r t :<C e l l R e f e r e n c e> ” : ” end:<

C e l l R e f e r e n c e>
Workbook : : = ” ’”? ” [” ˜ ”] ” ” ’”?
S h e e t : : = ” ’” [ˆ ’ !] ∗ ” ’” ” ! ” | [A−Za−z] [. A−Za−z0−9]+

” ! ”
<Cel l> : : = i sColumnFixed (boo l) : D o l l a r ? Column

isRowFixed (boo l) : D o l l a r ? row : Number?
D o l l a r : : = ” $ ”
Column : : = [0−9A−Za−z # !]∗ [A−Za−z # !]
F u n c t i o n s
<Func t ion> : : = F u n c t i o n S t a r t a r g s :<E x p r e s s i o n >∗ (

s e p a r a t e d−by) Comma ”) ”
F u n c t i o n S t a r t : : = [A−Za−z] [A−Za−z0−9]∗ [\ t]∗ ” (”
Rparen : : = ”) ”
Comma : : = ” , ”

Fig. 3. Grammar that we feed to Ludwig to parse Excel formulas

represented internally by both REFBOOK and Excel as numerical
Cells . Cells that are Numerical or Textual have values
defined by the user. Formula Cells contain a formula that is
executed by Excel, which produces a Number or Text.

Most formulas refer to other cells. Figure 3 defines the
grammar for formulas. Excel does not publicly release a
grammar for their formula language. Therefore we developed
our own grammar that is a subset of the official Excel formula
language. The grammar was based heavily on a grammar
developed by Daniel Ballinger [5].

We pass our grammar from Figure 3 to Ludwig to generate an
Excel formula parser. The grammar assumes that all formulas
are syntax error-free.

The grammar does not have a special node for named cells.
This is done to simplify the grammar. A named cell is a Cell

with the name stored in the Column .
For the sake of simplicity of the grammar, the grammar does

not differentiate between binary and unary operators.

V. REFACTORINGS

Now we describe each of the seven refactorings supported
by REFBOOK. For each refactoring we first present an example
of the transformation, then we describe in plain text what
the refactoring does, then we provide pseudo-code for the
algorithm. Here we show the input, the preconditions, and the

4

transformation. We use the same style of behavior-presentation
introduced by Opdyke [24], namely we guarantee that the
refactored spreadsheet computes the same values as the original
spreadsheet when the precondition predicate is true.

There are many formulas in a spreadsheet that are dragged
down a column or across a row. However, the user only created
one single formula, the rest only differ by the cell references.
Many of our refactorings check whether the user selected cells
that belong to consistent formulas (defined below).

Definition 1. Consistent formulas are formulas that have the
same AST shapes.

Definition 2. Distinct formulas are formulas that have different
AST shapes.

Two formulas have the same shape if their ASTs are
isomorphic, i.e., the ASTs contain the same number of AST
nodes, the corresponding nodes have the same type, and the
nodes form the same structure.

A. EXTRACT ROW OR COLUMN

Example: In the motivating example in Fig. 1, we apply
the refactoring to the Total Price column. It extracts the
expression: (B5+C5+D5+E5) from Total Price and Remaining

Fruits into a new column, F5 . This new column will contain
B5+C5+D5+E5 . The Total Price column will then contain:
F5*.5 and the Remaining Fruits column will contain: F5-H5

In professional programming the analogous refactoring is
”Extract Temporary Variable”.

Description: The user selects a row or column to extract
from and a subexpression from the row or column to be
extracted into a new row or column. REFBOOK moves the
selected row or column one position down or to the right.
Then it updates the cell references in the table to refer to the
new cell positions after the movement. It places the extracted
subexpression into every cell of the newly created row or
column. Then, it finds all instances of the subexpression in the
table and replaces them with a reference to the corresponding
cell in the new column or row.

Our prototype implementation does not check whether the
user selects a subexpression that transcends the boundary of
operator precedence. For example, a user could select 2+3

from the 6*2+3 formula. An industrial-strength implementation
should raise a warning that the new formula will compute value
30 instead of 15. We leave this for future work.

B. MAKE CELL CONSTANT

Example: In the motivating example in Fig 1, we apply
the refactoring to all of the formula columns: Total Price

, Fruits Sold , and Remaining Fruits . REFBOOK converts
the column formulas from (B5+C5+D5+E5)*0.5) , G5/1 and
(B5+C5+D5+E5)-H5) to ($B5+$C5+$D5+$E5)*0.5) , $G5/1 ,
and ($B5+$C5+$D5+$E5)-$H5) respectively.

Description: The user selects formula cells. REFBOOK

first determines whether any of the cell references can be
made constant. It uses the shape of the first formula as
the model for all the other formulas in the selection. Then

Procedure 1 Extract an expression into a column
Input: sheet, expr, colIndex
Preconditions: f1, f2 ∈ sheet[colIndex], f1isConsistent(f2)

function EXTRACTCOLUMN
for all cell ∈ sheet do

original = expr.updateRowsTo(cell.row)
new = ” = ” + colIndex+ cell.Row
cell.Formula.replaceAll(original, new)

end for
newColumn = sheet.insertColumn(colIndex)
for all cell ∈ newColumn do

cell.Formula = expr.updateRowsTo(cell.row)
end for

end function

it compares corresponding cell references between pairs of
selected formulas and it determines which cell references do
not change. These are the cell references that it prefixes with
the $ sign.

Procedure 2 Make all possible cell references fixed.
Input: sheet, colIndex
Preconditions: f1, f2 ∈ sheet[colIndex], f1isConsistent(f2)
∃cellRef ∈ sheet[colIndex][1].Formula)

function MAKECELLCONSTANT
column = sheet[colIndex]
first = column[1].Formula
constColRefs = first.cellRefs.cols
discardedColRefs = {}
constRowRefs = first.cellRefs.rows
discardedRowRefs = {}
for all cell ∈ column do

if cell.Formula.isDistinctFrom(first) then
continue

end if
cellColRefs = cell.Formula.cellRefs
cellRowRefs = cell.Formula.cellRefs
for i = 1→ |cellRefs| do

if i /∈ discardedColRefs then
if cellColRefs 6= constColRefs[i] then

discardedColRefs.add(i)
end if

end if
if i /∈ discardedRowRefs then

if cellRowRefs 6= constRowRefs[i] then
discardedRowRefs.add(i)

end if
end if

end for
end for
for all cell ∈ column do

cellRefs = cell.Formula.cellRefs
for i = 1→ |cellRefs| do

if i /∈ discardedColRefs then
cellRefs.fixColumn

end if
if i /∈ discardedRowRefs then

cellRefs.fixRow
end if

end for
end for

end function

C. GUARD CALL

Example: In the motivating example we apply the refac-
toring to the ROI column. The user supplied the error

5

expression "Unknown" . GUARD CALL converted J5/F5 to
IF(G5<>9,K5/G5,"Unknown") .

Description: The user selects a formula cell and also
provides an expression to be supplied as the error message.
REFBOOK searches for a division operator, and replaces it with
a conditional IF , where the condition checks whether the
denominator is different than zero, the then branch performs
the division, and the else branch displays the error message.

Procedure 3 GUARD CALL
Input: formula, errMsg
Preconditions: ∃“/” ∈ formula

errMsg.isValidFormula

function GUARDCALL
binaryOps = formula.collectAll(AnotherExpression)
for all n ∈ binaryOps|n.Operator = “/” do

guard = “IF (” + n.Expression + “ <> 0, ” + n.Parent +
“, ” + errMsg + “)”

n.parent.ExpressionPrimitive = guard
end for

end function

D. REPLACE AWKWARD FORMULAS

Example: In the motivating example, we apply the
refactoring to the Total Price and Remaining Fruits fruits
column converting them from (B5+C5+D5+E5)*0.5) and
(B5+C5+D5+E5)-H5) to SUM(B5:E5)*0.5 and SUM(B5:E5)-H5

respectively.
Description: The user selects a formula and REFBOOK first

searches for expressions containing the + or * operator,
and at least four operands of consecutive cells. REFBOOK

replaces such long chains with a single SUM(<<range>>) or
PRODUCT(<<range>>) function.

Procedure 4 Replace Awkward
Input: formula
Preconditions: ∃“ + ”or“ ∗ ” ∈ formula
∃{cellRef} ∈ formula|{cellRef}.cardinality > 3

function REPLACEAWKWARD
original = formula
refactored = attempt(formula)
while original 6= refactored do

original = refactored
refactored = attempt(original)

end while
end function
function ATTEMPT(expr)

awkwardAST = getAwkwardASTNode(expr)
if awkwardAST 6= NONE then

expr.replace(awkwardAST, fixedAST)
end ifreturn expr

end function

REPLACE AWKWARD FORMULAS can be applied to any formula
expression.

E. STRING TO DROPDOWN

Example: In our motivating example, we apply this
refactoring to the Favorite column. The set of valid entries
consists of: Apples, Oranges, and Pears.

Description: The user selects a textual column. REFBOOK

searches for all the unique text entries in the column. REFBOOK

attaches dropdown menus to each cell in the column. It fills
in each dropdown selection the value that was previously in
the cell.

Procedure 5 STRING TO DROPDOWN
Input: column
Preconditions: forEachcell ∈ column, cell.isTextual

function STRING TO DROPDOWN
choices = {x ∈ column|x /∈ choices}
for all cell ∈ column do

cell.DropdownOptions = choices
end for

end function

STRING TO DROPDOWN assumes that the user-selected column
of textual entries does not contain any errors. Specifically if
typos exist, they also populate the values in the dropdown
menu.

F. INTRODUCE CELL NAME

Example: In our second table from the motivating example,
we appled this refactoring to the cell O2 , and we named it
PurchasePPF . The formula in G5 , F5*PurchasePPF , uses the
new name.

Excel’s “Search and Replace” is not a sound method to use
to replace all anonymous cell references in formulas with the
named reference. For example, if the text A1 was in a text
literal then it would be replaced. If A1 was referenced as A1

“Search and Replace” misses this reference. Without REFBOOK

the end-user programmer would be forced to inspect each cell
in the table for correctness. REFBOOK safely and correctly finds
all references to the cell.

Description: The user selects a cell, and provides a name.
REFBOOK checks whether the new name is not in use, and
defines the name. REFBOOK searches in the entire table for
references to the anonymous selected cell, and updates them
to the named cell.

Procedure 6 INTRODUCE CELL NAME
Input: anonCell, name, sheet
Preconditions: name.isV alid

function INTRODUCE NAME
anonLoc = cellLocation(anonCell)
sheet.defineName(anonCell, name)
for all cell ∈ sheet do

for all cellRef ∈ cell.Formula
|cellLocation(cellRef) = anonLoc do

cell.Formula.replace(cellRef, name)
end for

end for
end function
function CELLLOCATION(cell)
return (cell.Workbook, cell.Sheet, cell.Column, cell.Row)
end function

G. EXTRACT LITERAL

Example: In the motivating example, we applied the
refactoring to the Total Price and Fruits Sold columns.

6

Each of these columns have a “magic number” (0.5 and 1
respectively).

Description: User selects a formula. She also selects the
actual literal value to be extracted and provides a name for the
cell. REFBOOK first checks whether the new name is not in use.
Then REFBOOK finds an empty cell where it moves the literal,
names the cell, then replaces all references to the literal in the
table with a reference to the named cell.

Procedure 7 EXTRACT LITERAL
Input: literal, cellName, sheet
Preconditions: cellName.isV alid

function EXTRACTLITERAL
sheet.defineName(sheet.getUnUsedCell(), cellName)
sheet[cellName] = literal
for all cell ∈ sheet do

for all literal ∈ cell.Formula.collectAll(Number) do
if literal.Parent 6= Cell then

cell.Formula.replace(literal, cellName)
end if

end for
end for

end function

VI. EVALUATION

We evaluate the usefulness of the proposed refactorings by
answering four research questions:

• Q1: Can REFBOOK make the refactoring process safer?
• Q2: Do the refactorings improve programmer produc-

tivity?
• Q3: Do the refactorings improve the spreadsheets

quality?
• Q4: Are the refactorings applicable?
All these questions address the higher level question “Is

REFBOOK useful?” from different angles. Safety ensures that
the runtime behavior is not modified and the transformation
does not introduce more smells. Productivity measures whether
automation saves human time. Quality measures whether the
users find the refactored formulas more readable. Applicability
measures how many formulas in real-world spreadsheets can
be directly transformed.

A. Methodology

To answer these questions, we employed three different
empirical techniques.

To measure refactoring safety and user productivity when
performing manual refactorings, we conducted a Controlled
Experiment with 28 Excel users. To assess whether users
preferred the refactored formulas, we conducted an online
User Survey with the same 28 participants. In order to
ensure discretion, each participant responded to the survey
and performed the change tasks in their own environment. To
determine how often we could apply the refactorings supported
by REFBOOK, we performed a Retrospective Case Study on the
EUSES Spreadsheet Corpus [15] with 3691 spreadsheets.

1) Controlled Experiment: To recruit participants, we ad-
vertised to students in the University of Illinois CS105 course.
This course is attended by students enrolled in the Business
department. In this course students learn how to use Excel
for business-related purpose. The participation in the survey
was voluntary, and it did not have any relationship with the
course evaluation. The successful completion of the survey
was rewarded with a $5 Amazon giftcard.

Out of the 500 enrolled students, 28 responded to our call.
We asked three questions about their experience with Excel.
Figure 4 shows the demographics of our participants. Notice
that two-thirds of the participants claimed to have more than
two years experience with Excel. All our participants responded
within 24 hours from our post.

Each participant used an Excel document. The tables
contained data about the orchard warehouse, similar with the
example shown in our motivating example from Fig. 1. The
document contained 7 tasks. Each task has a smelly table, a
set of instructions on what to change in the table, a “Start”
button, and a “Task Complete” button. Before the “Start” button
is pressed, the spreadsheet is read-only. During this time the
participant is free to inspect and become familiar with the table,
the task that she will perform, and a short, optional tutorial
that we designed to present the Excel features she might use.

Once the participant has familiarized with the task and the
table, she can press the “Start” button. When a participant
presses the “Start” button, the table becomes editable, and the
participant can perform the changes. A timer records the time
taken to perform the changes. When a participant completes
the task, she presses the “Task Complete” button which stops
the timer and moves her onto the next task.

After we received their online submissions, we processed
each document to record the time it took participants, and
whether they performed the tasks correctly. We also applied
ourselves REFBOOK to complete the same tasks, and then we
compared our results with the participants’ results.

2) User Survey: To find out whether end-users prefer smelly
or refactored formulas, we designed and deployed a survey to
the same 28 participants. Each participant performed the User
Survey by using an Excel document, consisting of 7 sections.
Each section focuses on a single particular smell. Each section
has two tables: one table that contains the smell and one table
were the smell has been removed through applying one of our
refactorings.

For each section, we asked two questions about the tables.
The first question was a “filter”: we asked a technical question
that revealed whether the participant studied the two tables and
understood the differences between them. The second question
asked which table they would prefer to work with. To eliminate
the confounding effect, we randomized the order of appearance
between smelly and non-smelly tables.

3) Retrospective Case Study: To determine the applicability
of our refactorings we analyzed the EUSES Spreadsheet
Corpus’s 3691 spreadsheets to find out how many formulas
have smells that can be fixed by our refactorings. We chose
the EUSES Spreadsheet Corpus because it is regarded as the

7

Fig. 4. Demographics of our 28 participants.

most mature, representative corpus of spreadsheets. At least 13
published papers [15] have used it to draw conclusions about
spreadsheet programming. This corpus contains 206355 tables
and 495578 distinct formulas, thus we think it is representative.

First, we had written a tool to find the tables in all the
spreadsheets. In real-world spreadsheets, tables are (i) often
surrounded by documentation, (ii) do not begin at the top and
left-most cell, and (iii) multiple tables are scattered throughout
the spreadsheet. Our tool parses the corpus spreadsheets
using the Apache POI [3] Java library. Due to limitations
in the Apache POI [3] library, our tool could not parse 234
spreadsheets of the 3925, so we retained 3691. Apache POI
[3] can not find tables within a workbook’s sheet, so we
implemented a search algorithm. To find the individual tables
that exist within a sheet, we used the algorithm described
in [17].

Then we implemented a collector tool, customized for each
refactoring kind. The collector calculates how many cells in
each table manifest a particular smell that can be fixed by a
particular kind of refactoring.

B. Results
Safety: The second column in Table I shows how many of

our participants submitted a solution that contained at least one
fault. A fault is a semantical error (i.e., the changed formula
computes the wrong value) or a smell (i.e., the original smell
was not corrected).

The overall majority of the 28 participants submitted solu-
tions with at least one fault. For one refactoring, EXTRACT ROW

OR COLUMN, all submitted solutions had faults. Many participants
copied the subformula into a new column, but did not remove
the duplication between the newly introduced column and the
old column. That is, the new column is never referenced from
the old column. For the example in Fig. 1, from column F

containing the formula (B5+C5+D5+E5)*0.5 they copied the
expression (B5+C5+D5+E5) into a new column G , but did not
replace the original formula with G5*0.5 .

For EXTRACT LITERAL, the literal appeared in multiple for-
mulas, e.g., G5*0.5 and (B5+C5+D5+E5)*0.5 . Many users
extracted the literal from one of the formula columns, but not
both. Thus the “magic number” smell still remains in the table.

In contrast, REFBOOK performs all refactorings correctly.

Productivity: The third and fourth columns in Table I show
the average time that it took our 28 participants to perform the

Refactoring % Faulty Manual Std. REFBOOK

Kind Submissions Time[sec] Dev. Time[sec]
ExtractColumn 100% 36 18 16

MakeCellConstant 30% 37 17 09
StringToDropdown 82% 217 169 09

ReplaceAwkward 47% 68 42 22
GuardCall 82% 67 28 31

IntroduceName 82% 79 50 30
ExtractLiteral 91% 42 23 18

TABLE I
SAFETY AND PRODUCTIVITY OF MANUAL VS. AUTOMATED REFACTORINGS.

manual refactorings. The fifth column shows the time we took
to perform the same refactorings with REFBOOK.

Notice that the time that our Excel macro records for the
participants includes both the selection of cells and the actual
change. To make the comparison fair, in the REFBOOK’s time
we also report the time to select cells and to apply REFBOOK

(though REFBOOK applies the refactoring in less than 3 seconds).
The table shows that performing the refactoring with REFBOOK

is faster than performing it manually, the improvements
ranging from 2.2x to 24x. Notice that this is a conservative
lower bound; we expect the productivity difference to be even
more dramatic in practice. First, real-world tables contain more
rows than the 15 rows in our controlled experiment. Second,
the faults committed by the participants were typically errors
of omission: many participants had applied the refactoring
incompletely. Had they applied the complete refactoring, this
would have taken them even more time.

Quality: Table II shows for each refactoring kind, how many
of the 28 participants preferred the smelly or the refactored
formulas.

For 4 out of the 7 refactorings, the majority of participants
preferred the refactored formulas. For one refactoring, STRING

TO DROPDOWN, the majority did not have any preference. For 2
refactorings, the majority preferred the smelly formulas. For
example, for the INTRODUCE CELL NAME, the participants preferred
the table that contained the anonymous cells. Since 82.61% of
the participants were able to correctly answer the filter question
about the table, we are confident that they understood the table.
This corroborates another study [31] where end-users working
with Yahoo pipes preferred seeing all the pipes at once instead
of abstracting functionality to another pipe.

When judging whether the refactorings improve the

8

Refactoring Prefer Prefer No No Pass
Kind Smelly Refactor Pref. Resp. Filter

ExtractColumn 17.39% 47.83% 21.74% 13.04% 73.91%
MakeCellConstant 21.74% 52.17% 13.04% 13.04% 60.87%
StringToDropdown 8.70% 21.74% 56.52% 13.04% 34.78%

ReplaceAwkward 4.35% 52.17% 26.09% 17.39% 78.26%
GuardCall 47.83% 13.04% 26.09% 13.04% 78.26%

IntroduceName 52.17% 4.35% 26.09% 17.39% 82.61%
ExtractLiteral 17.39% 60.87% 8.70% 13.04% 69.57%

TABLE II
PREFERENCES OF USERS TOWARD FORMULAS.

readability and maintainability for end users, we assume
that that their opinion reflects the quality of the formulas.
Others [31] have used the same technique when judging the
quality of end-user code.

Applicability: Based on the data we collected from the
EUSES Spreadsheet Corpus, we present the applicability of
individual refactorings.

There are many formulas in a spreadsheet that are dragged
down a column or across a row. However, the user only created
one single formula, the rest only differ by the cell references.
If we took these dragged cells into account, our results will
be skewed by the amount of dragged cells that exist in each
table. To prevent this, we define and compute metrics only
over distinct formulas (defined in Section V).

EXTRACT ROW OR COLUMN. First, we measured the formula
complexity. We define a formula’s complexity as the sum of the
number of binary operators and function calls that a formula
contains. For example:

IF(G5 <> 0, K5/G5, "Unknown"))

has a complexity of 3 (one function call, i.e., IF , plus two
binary operators, i.e., not equals and division). A formula that
contains only a single reference to another cell, number, or
text, has a complexity of 0.

We found that 10.1% of distinct formulas have a complexity
of 0, 57.71% have a complexity of 1, 18.49% have a complexity
of 2, 11.97% have a complexity of 3, 1.73% have a complexity
greater than 3. Formulas that have complexity larger than 1,
that is, 32.19% of all distinct formulas, are candidates for the
EXTRACT ROW OR COLUMN, which reduces the complexity of a
formula by breaking it into smaller sub-formulas.

We also compute the amount of duplication that exists
between distinct formulas in a table. We calculate the amount
of duplication by counting the number of times an AST node
is repeated in a table. 72.89% of the formulas contain no
duplication. The remaining 27.11% of formulas contain some
amount of duplication, thus are candidates for EXTRACT ROW OR

COLUMN.
MAKE CELL CONSTANT We apply the MAKE CELL CONSTANT

refactoring on every distinct formula and recorded the number
of cell references that were successfully made constant. We
found that 23.28% of the formulas did not change when we
applied the MAKE CELL CONSTANT refactoring, 9.03% of the
formulas had a single $ prefix added to a cell reference,
19.35% of the formulas had two places where $ was added to

cell references (e.g., A5), 3.24% of the formulas had three
$ added to cell references, 32.64% of the formulas had four $
added to cell references (e.g., A5 + B5). The reason for
the higher percentages for two and four $ is because often
when one cell is made constant both the row and column are
made constant.

GUARD CALL We found that IFERROR , ISBLANK , and
ISNUMBER are all among the top 10% most widely-used Excel
functions. This shows that explicit error handling code is a
popular technique.

REPLACE AWKWARD FORMULAS We found that 15.73% of all
distinct formulas use the SUM function. This shows that end-
users understand it and like to use it.

STRING TO DROPDOWN We computed the number of duplicated
entries that exist in a column of text values. We found that
86.34% of the text columns had no duplication of text values,
6.99% of the text columns repeated up to 50% of the text
entries, and 6.67% of the text columns repeated between 51%
and 99% of their text entries. This shows that for 13.66% of
text columns the STRING TO DROPDOWN refactoring can reduce a
drastic amount of duplicated entries.

INTRODUCE CELL NAME Among formula columns, we found
that 61% of the columns refer to at least one common
anonymous cell that is a good candidate for being named.
For example, column C contains formulas of the type: A1+B0
, A2+B0 , A3+B0 ; cell B0 is a good candidate for INTRODUCE

CELL NAME. We also found that in such columns, on average
2.21 cells could be named.

EXTRACT LITERAL Among formula columns, we found that
61% of them referred to the same numerical constants. For
example, column D contains formulas of the type: C1+12 ,
C2+12 , C3+12 ; constant 12 can be extracted into a separate
cell. Of the columns where EXTRACT LITERAL can be applied, on
average 2.09 numerical constants can be extracted. We also
found that 0.06% of formula columns referred to the same
string literal. From these columns, on average 1.84 string
literals can be extracted.

VII. RELATED WORK

Erwig [12] proposes to apply techniques and tools from
professional programming to end-users. Erwig specifically
advocates for better error reporting, debuggers and static type
checking [11]. He does not mention applying the refactoring
techniques from professional programming.

Guidelines for creating clean, consistent and non-smelly
spreadsheets have been proposed by others [23], [27].

PUP [20] and ASAP Utilities [2] are tools that add many
features to Excel including some basic formula manipulation.
The “Error Condition Wizard” in PUP and “Custom Error
Message” in ASAP Utilities is similar in spirit to our GUARD

CALL refactoring. The major difference is that these tools do
not let users type in arbitrary expressions to be executed in the
erroneous else branch, but they limit the type to Strings, unlike
REFBOOK that allows any arbitrary expression. Also, our GUARD

CALL infers the check for erroneous behavior, it does not react

9

to an already existing error. This gives users more flexibility
to define the action that should be taken for bad input.

ASAP Utilities includes a “Change formula reference style”
operation and Excel has a feature that adds $ sign to cell
references that is similar in spirit to our MAKE CELL CONSTANT.
However, they cycle through the selected cells and blindly add
$ to every single cell reference. Our MAKE CELL CONSTANT is
different from the above alternatives because it intelligently
determines which cells should be made constant based on their
usage in similar formulas from the user selection.

”What You See is What You Test” (WYSIWYT) [29] is a
testing tool that helps end users find bugs in their spreadsheets.
WYSIWYT estimates a cell’s correctness based on user input.
WYSIWYT does not offer any automation to correct cells that
are found to be incorrect.

Cunha et al. [9] detect data in spreadsheets that are outliers
from the typical entries. These outliers are referred to as being
“smelly”. Their work does not apply to finding spreadsheet
formula smells. REFBOOK removes smells from formula cells
not from data cells.

Hermans et al. [14], [18] implemented a tool to generate
diagrams that visualize the dataflow between spreadsheet
formulas. The tool is designed to make spreadsheet smells
apparent through visualizations but does not support removing
the smells. Also their work focuses on inter-table smells,
whereas we focus on intra-table smells and their correction.

Harris et al. [17] implemented a tool that infers spreadsheet
transformations by parsing a small example of the transfor-
mation and then extrapolating that example to an entire table.
Their work focuses on transforming the layout of data cells
and does not take cell formulas into account. REFBOOK has
a predefined set of refactorings while their tool infers a new
transformation for every example.

The inspiration for our project comes from research on
refactoring for end-user programming in the context of Yahoo
Pipes [31]. While both Yahoo Pipes refactoring and REFBOOK

target end-users, the environments of these users are different.
Spreadsheets have different smells and require a different set
of tools to remove these smells.

Jazayeri et al. [21] found that the end-user programming
population are missing the tools that professional programmers
have. Their research focuses on developing end-user tools for
web development while we focus on spreadsheets.

VIII. CONCLUSIONS

End users working with spreadsheets make the same poor
choices that professional developers make and have to pay
the same “technical debt” that professional programmers pay
during maintenance.

We designed, implemented, and evaluated REFBOOK, the first
refactoring tool for spreadsheet formulas. It currently supports
7 refactorings that eliminate smells in spreadsheets.

Our three-pronged evaluation (case study of the EUSES
Spreadsheet Corpus, user survey and controlled experiment
with 28 participants) concludes that the refactorings supported
by REFBOOK are widely applicable, increase programmer

productivity, increase safety of transformations, and increase
the quality of spreadsheets. More research is needed to find
why end users do not feel comfortable with abstraction and
how to create tools that they can embrace.

Acknowledgements: The authors thank Cosmin Radoi and
Semih Okur for providing comments on an earlier draft of
this paper, Jeff Overbey for providing assistance with Ludwig,
Patrick O’Beirne for his advice on selecting refactorings to
automate, the 28 participants in our study, and Microsoft for
partially funding this research through a SEIF award.

REFERENCES

[1] The state of the art in end-user software engineering.
[2] Asap utilities - the essential add-in for excel users. http://www.asap-

utilities.com/index.php, December 2011.
[3] Apache POI. http://poi.apache.org/.
[4] Fairway Associates. FormulaDataSleuth ExcelSpreadsheet

Checking Software — Excel Experts — Fairway Associates.
http://www.fairwayassociates.co.uk/formuladatasleuth.

[5] Daniel Ballinger. Fishbrains. http://homepages.ecs.vuw.ac.nz/ elvis/d-
b/Excel.shtml, December 2011.

[6] C. Brown A. Chulani S. Clark B. Horowitz E. Madachy R. Reifer J.
Boehm, B. Abts and Steece. Software Cost Estimation with COCOMO
II. Prentice Hall PTR.

[7] Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-user software
engineering. Commun. ACM, 2004.

[8] OpenOffice Calc. http://www.openoffice.org/product/calc.html.
[9] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João Saraiva

Hugo Pacheco. Towards a Catalog of Spreadsheet Smells. ICCSA, 2012.
[10] Eclipse IDE. http://www.eclipse.org/.
[11] M. Erwig and M. M. Burnett. Adding apples and oranges. 2002.
[12] Martin Erwig. Software engineering for spreadsheets. 2009.
[13] EuSpRiG: European Spreadsheet Risk Interest Group.

http://www.eusprig.org/dt.
[14] M. Pinzger F. Hermans and A. van Deursen. Detecting and visualizing

inter-worksheet smells in spreadsheets. to appear in ICSE, 2012.
[15] Marc Fisher and Gregg Rothermel. The euses spreadsheet corpus: a shared

resource for supporting experimentation with spreadsheet dependability
mechanisms. 2005.

[16] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[17] William R. Harris and Sumit Gulwani. Spreadsheet table transformations
from examples. PLDI, 2011.

[18] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Supporting
professional spreadsheet users by generating leveled dataflow diagrams.
ICSE, 2011.

[19] IntelliJ IDEA. http://www.jetbrains.com/idea/.
[20] Inc. J-Walk & Associates. Pup v7 utilities, June 2011.
[21] Mehdi Jazayeri and Navid Ahmadi. End-user programming of web-native

interactive applications. CompSysTech, 2011.
[22] NetBeans IDE. http://www.netbeans.org/.
[23] Patrick O’Beirne. Spreadsheet refactoring. CoRR, 2010.
[24] Bill Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign, 1992.
[25] Jeffrey L. Overbey and Ralph E. Johnson. Generating rewritable abstract

syntax trees. In SLE. 2009.
[26] Raymond R. Panko. What we know about spreadsheet errors. J. End

User Comput., 1998.
[27] John F. Raffensperger. New guidelines for spreadsheets. CoRR, 2008.
[28] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. On the relation

of refactorings and software defect prediction. 2008.
[29] Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett, Justin

Schonfeld, T. R. G. Green, and Gregg Rothermel. Wysiwyt testing
in the spreadsheet paradigm: an empirical evaluation. In ICSE, 2000.

[30] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the
numbers of end users and end user programmers. In VLHCC, 2005.

[31] Kathryn T. Stolee and Sebastian Elbaum. Refactoring pipe-like mashups
for end-user programmers. In ICSE, 2011.

[32] Visual Studio. http://www.microsoft.com/visualstudio/.

10

