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ABSTRACT 

 

Reverse osmosis (RO) and electrodialysis (ED) were examined to determine an optimum way to 

concentrate natural organic matter (NOM) for chemical and biological characterization of 

disinfection by-products (DBPs). RO is an effective way to concentrate NOM. However, it also 

concentrates inorganic ions which lead to an increase in the osmotic pressure, eventually 

rendering RO ineffective, and potentially producing membrane scaling. Salts are also harmful to 

mammalian cells at high concentrations, which may cause artifacts in the toxicological outcomes. 

Thus ED was introduced to remove the inorganic ions. However, since a portion of NOM is 

negatively charged, it is not retained well by ED.  

 

Due to the ion exchange properties of ED membranes, sodium sulfate and sodium chloride were 

added at different time points and amounts in order to optimize the retention and concentration 

of NOM. It was found that a high concentration of sodium chloride displaced NOM that had 

adsorbed to anion exchange sites on the membranes, and was able to prevent loss of NOM. 

However, calcium was removed slowly due to the high sodium concentration, which limited the 

amount of sulfate that could be added. Meanwhile, continually adding sulfate at lower 

concentrations (low enough to prevent calcium sulfate precipitation) resulted in an initial loss of 

NOM, but eventually no further loss occurred as sulfate took over the anion exchange sites. 

However, not all of the calcium could be removed this way, and the presence of limited sulfate 

makes it infeasible to achieve large concentration factors. In order to optimize this process, 

calcium should be removed prior to concentration. 

 

 



 iii 

ACKNOWLEDGEMENTS 

 

I would like to thank my adviser, Benito Mariñas, for his guidance and support during this 

project. It has been a privilege to be around his knowledge and expertise, along with his passion 

for helping people in the developing world. I have also been blessed to work with Yukako 

Komaki and Bryan Smith – thanks to you both for all the help you’ve given me over this project. 

Thank you, Shaoying Qi, for offering great advice and support in the lab. I’d also like to thank 

the Mariñas group for getting me situated in the lab and the department. Thanks to all those who 

offered to help – Sean Carbonaro for his filter system, Katherine Kim for setting up the solid 

state relay and pulse generator, Alex Torres-Negron for dealing with TOC instrument problems, 

Jong Kwon Choe for dealing with IC problems, and the rest of the 4
th
 floor. Finally, thanks to my 

family and friends for their support and encouragement, and to God for the strength and hope 

that He provides. 



 iv 

TABLE OF CONTENTS 

 

 

CHAPTER 1: INTRODUCTION....................................................................................................1 

1.1 Motivation......................................................................................................................1 

1.2 Objectives......................................................................................................................2 

CHAPTER 2: LITERATURE REVIEW.........................................................................................3 

 2.1 Previous Concentration Methods...................................................................................3 

 2.2 Electrodialysis as a Selective Process............................................................................6 

 2.3 Ion Exchange Properties of Electrodialysis Membranes...............................................7 

CHAPTER 3: MATERIALS AND METHODS...........................................................................11 

 3.1 Reverse Osmosis Membrane and Setup.......................................................................11 

 3.2 Electrodialysis Setup....................................................................................................11 

 3.3 Reagents.......................................................................................................................12 

 3.4 Analytical Techniques.................................................................................................12 

 3.5 Characterization of Reverse Osmosis Membrane........................................................13 

 3.6 Characterization of Electrodialysis Stack....................................................................13 

 3.7 Summary of Experimental Protocols...........................................................................13 

 3.8 Tap Water Experiments...............................................................................................15 

  3.8.1 Preliminary RO/ED Experiments.................................................................15 

  3.8.2 Isolating TOC Loss.......................................................................................15 

 3.9 Ion Exchange Experiments..........................................................................................16 

  3.9.1 Salt Cleaning.................................................................................................16 

  3.9.2 Determining Sulfate vs. Chloride Selectivity...............................................16 

 3.10 Tap Water with Salt Addition Experiments...............................................................16 

  3.10.1 ED with Sulfate Addition............................................................................16 

  3.10.2 ED with Chloride Addition.........................................................................17 

  3.10.3 Final Concentration Experiment.................................................................17 

CHAPTER 4: RESULTS AND DISCUSSION.............................................................................18 

 4.1 Characterization of Reverse Osmosis Membrane........................................................18 

 4.2 Characterization of Electrodialysis Stack....................................................................18 

 4.3 Tap Water Experiments...............................................................................................21 



 v 

  4.3.1 Preliminary RO/ED Experiments.................................................................21 

  4.3.2 Isolating TOC Loss.......................................................................................22 

 4.4 Ion Exchange Experiments..........................................................................................24 

  4.4.1 Salt Cleaning.................................................................................................25 

  4.4.2 Determining Sulfate vs. Chloride Selectivity...............................................26 

 4.5 Tap Water with Salt Addition Experiments.................................................................28 

  4.5.1 ED with Sulfate Addition..............................................................................28 

  4.5.2 ED with Chloride Addition...........................................................................31 

  4.5.3 Comparison between Sulfate and Chloride Addition...................................33 

  4.5.4 Final Concentration Experiment...................................................................35 

CHAPTER 5: CONCLUSIONS....................................................................................................36 

 5.1 Summary of Results and Recommendations...............................................................36 

 5.2 Future Work.................................................................................................................37 

REFERENCES..............................................................................................................................38 

APPENDIX A – Summary of Experimental Methods..................................................................41 

APPENDIX B – Tap Water Experiments......................................................................................43 

APPENDIX C – Ion Exchange Experiments.................................................................................50 

APPENDIX D – Tap Water with Salt Addition Experiments.......................................................51



 1 

CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

Natural organic matter (NOM) is present in surface and ground waters, and comes from the 

decay of plants and animals in the environment. NOM does not have a unique structure and is 

difficult to characterize and isolate. NOM is not harmful, but when combined with chlorine or 

other disinfectants, reactions take place that produce disinfection by-products (DBPs), including 

some that are potentially harmful.  

 

Due to regulations in the Stage 2 Disinfectants/DBP Rule and the Long-Term 2 Enhanced 

Surface Water Treatment Rule (LT2ESWTR), many water utilities are switching from using free 

chlorine to combined chlorine for residual disinfection, as combined chlorine produces fewer of 

the regulated DBPs. However, combined chlorine can produce nitrogen-containing DBPs (N-

DBPs) and iodinated DBPs (I-DBPs), which have been shown to have a higher mammalian 

cytotoxicity and genotoxicity than the regulated DBPs (Richardson et al., 2007). Besides the use 

of disinfectant, utilities must also begin to consider whether to repair aging distribution systems 

or convert traditional systems to dual systems. Changes in the system could result in changes in 

the hydraulic residence time, which could in turn lead to differences in microbial growth as well 

as in DBP formation. 

 

While the toxicity of many individual DBPs has been determined (Plewa et al., 2010), some 

DBPs are not stable and undergo reactions depending on the contact time and type of disinfectant 

used. Therefore, the overall toxicity of a DBP mixture would be more relevant to assess when 

determining the best disinfectant and contact time to select. In order to obtain a meaningful 

toxicity response, a highly concentrated DBP sample is desired. This can be done by either first 

disinfecting and then concentrating the resulting solution (which could result in loss of DBPs by 

volatilization or permeation through membranes), or pre-concentrating NOM and then adding 

disinfectant (higher contact time and/or disinfectant concentration differ from real conditions). 

The latter method will be used so as not to lose the volatile DBPs.  
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1.2 Objectives 

A new way to concentrate NOM (to which different disinfection schemes will be applied) using 

a hybrid reverse osmosis/electrodialysis (RO/ED) system will be explored here. If effective, this 

system will be able to concentrate large volumes of water while retaining most of the NOM and 

keeping the concentration of salts low. The hybrid RO/ED system will be optimized to 

concentrate NOM for whole mixture DBP studies. The main goals will be to examine the ion 

exchange properties of ED and to utilize these findings to minimize total organic carbon (TOC) 

loss. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Previous Concentration Methods 

The concentration of natural organic matter for disinfection by-product (DBP) studies has been 

explored by the U.S. EPA (Speth et al., 2008; Simmons et al., 2008). The goal of the study was 

to determine the in vitro and in vivo health effects of complex mixtures of DBPs that would be 

representative of what is found in most distribution systems. The research team of this study 

decided to concentrate finished drinking water, and spike back the DBPs lost in the concentration 

process. They were able to achieve a concentration factor of 136 times for chlorinated samples 

and 124 times for ozonated/postchlorinated samples by passing the waters through hydrogen-

form cation-exchange resin columns to remove hardness and quench free chlorine, and then 

concentrating with reverse osmosis membranes. With this method, the final pH of the 

concentrates were 1.6 and 1.5 for chlorinated and ozonated/postchlorinated waters, respectively, 

and sodium hydroxide had to be added to adjust the pH back to 7 in order to minimize the 

potential for structural changes in the organics. They were able to recover 86% and 84% TOC 

and 68% and 62% total organic halide (TOX) before spike-back for the chlorination and 

ozonation/postchlorination waters, respectively. The positively charged DBPs could have been 

retained on the hydrogen-form cation-exchange resin, while smaller, neutral DBPs could have 

permeated through the reverse osmosis membrane. Also, structural changes due to low pH could 

have irreversibly altered the DBPs. Finally, biological degradation could have occurred as well. 

Despite concentrating the waters over 100 times, they were not able to see a measurable effect in 

vivo (Narotsky et al., 2008), which indicates that a higher concentration factor is necessary.  

 

Another concentration method that has been used is XAD extraction, where compounds adsorb 

onto the surface of the resin, and then are extracted using an appropriate solvent. XAD resins are 

nonionic macroporous copolymers that can differ in pore size, surface area, and polarity (Aiken, 

1988). XAD resins isolate selected fractions of NOM, but certain portions will adsorb 

irreversibly, and will thus be lost in the process. However, XAD will retain NOM without 

retaining inorganic ions. XAD extraction was not a favorable method for the animal 

toxicological study because large volumes of water were needed and had to be in aqueous form 

(Simmons et al., 2002; Simmons et al., 2008). 
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Reverse osmosis is the most effective way to recover NOM, with a median recovery of ~90% 

(Perdue and Ritchie, 2003). Unfortunately, RO also concentrates inorganic ions, and is often 

coupled with a cation-exchange resin to remove hardness such as calcium and magnesium, which 

if concentrated could lead to scaling of the membrane surface by sparingly soluble salts. Sulfate 

and dissolved silica tend to remain in the RO concentrate. The percent recovery of NOM by 

membrane processes is strongly dependent on the rejection and the water concentration factor. 

The relationship is shown in Equation 2.1 (Perdue and Ritchie, 2003): 

[ ]{ })1)(1(exp(1
)1(

100
−−−⋅−

−
= WRR

RW
overyrecPercent     Equation 2.1 

where  W = water concentration factor   

R = rejection.  

 

If the sample is concentrated too much or the rejection is too low, the percent recovery will be 

lower. Figure 2.1 shows how the percent recovery will decrease as the water concentration factor 

increases and at rejections of R = 0.995 and R = 0.99.  
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Figure 2.1: Percent recovery of NOM vs. Water concentration factor in reverse osmosis at 

rejections of 0.995 and 0.99. 
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A combined approach to concentrating natural organic matter was used by a group of researchers 

at Georgia Institute of Technology and Kansas State University (Koprivnjak et al., 2006; Vetter 

et al., 2007; Gurtler et al., 2008). They coupled reverse osmosis with electrodialysis in order to 

concentrate NOM without building up a high concentration of inorganic solutes. Studies were 

done on both fresh waters and seawater.  

 

In the freshwater study (Koprivnjak et al., 2006), the emphasis was placed on removing sulfate 

and silicic acid, as the cations were removed by an hydrogen-form cation exchange resin, and 

anions that produced relatively volatile acids were removed during the freeze drying process. 

Sulfate and silicic acid interfere with estimations of phenolic and carboxylic contents of NOM, 

and are undesirable for their goal to characterize NOM. At their optimal conditions, using a 5 

cell pair ED stack, they were able to remove 79% of sulfate, 65% of silicic acid, while 

recovering 102% of TOC. In their other experiments, they speculated that most of the TOC was 

lost by adsorption to the membranes, with most of the loss occurring within the first hour. 

However, they still achieved good TOC recovery, with an average recovery of 84%.  

 

The same group of researchers used RO and ED to concentrate dissolved organic matter (DOM) 

in seawater (Vetter et al., 2007). They were able to recover 64-93% of DOC by running an initial 

ED phase to remove salts, followed by an RO/ED phase to remove both water and salts, and a 

final ED phase to reduce the conductivity to around 10 mS/cm. They found that most of the DOC 

was lost in the final ED phase. During this phase, there were fewer inorganic anions to carry the 

electrical current as well as to adsorb to the anion exchange sites. Gurtler et al. (2008) found that 

by pulsing the electrical current, they were able to obtain a higher recovery of DOM. They used 

a pulse frequency of 0.25 Hz, with a similar protocol: initial ED phase to remove salts, RO/ED 

phase to reach target volume, and final ED phase with pulsed ED. Using this protocol, they 

achieved high recovery of DOM until a conductivity of 1 mS/cm was reached. They 

hypothesized that pulsing created a “relaxation time” that prevents fouling by allowing a re-

mixing of the boundary layer, which has been depleted of the faster diffusing inorganic anions.  

 

Ions are depleted at the membrane surface in the diluate compartment due to concentration 

polarization. Concentration polarization is caused by the difference in ion transfer numbers 
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between the solution and the membranes. This lowers the limiting current, increases cell 

resistance, and restricts the ED capacity. Pulsing was investigated to try to decrease the 

concentration polarization that occurs in ED (Mishchuck et al., 2001). Concentration polarization 

could be mitigated by making the duration of the current or voltage pulses shorter than the 

characteristic time to build up the polarization layer. The pulse-pause duration ratio and the pulse 

frequency were important parameters in the optimization of the salt removal.  

 

Lee et al. (2002) examined pulsed ED as a way to reduce fouling of humate on ED membranes. 

However, they found that a pulsing frequency of 100 Hz was most effective at reducing fouling, 

and at other frequencies cell resistance increased before the salts were depleted, indicating that 

the membranes were being fouled. They proposed that pulsing caused increasing mixing effects 

in the boundary layer, which disturbed the formation of the gel layer on the surface of 

membranes.  

 

2.2 Electrodialysis as a Selective Process 

Electrodialysis is a membrane process that uses an applied potential and alternating positively 

and negatively charged ion exchange membranes to transfer charged molecules from between 

solutions (Figure 2.2). It is more desirable to remove certain ions from the feed water than others, 

and the ability of ED to selectively remove certain species has been examined.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: ED consists of alternating cation exchange membranes (CEM) and anion exchange 

membranes (AEM) with an applied voltage. 
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Van der Bruggen et al. (2004) explored the separation of monovalent and divalent ions using ED. 

They used two types of ion exchange membranes: conventional, nonselective membranes and 

monovalent-selective ion exchange membranes. With the nonselective membranes, NaCl was 

transported the fastest, while MgSO4 was removed the slowest. Multivalent ions are more 

strongly retained in the membrane and more sterically hindered, so they are transported more 

slowly. Use of the selective membranes resulted in greater separation efficiencies, although the 

fraction of ions removed was lower, as they faced a larger resistance against mass transport. The 

separation efficiency also depended on the charge of the counterion. If separation between 

magnesium and sodium was desired, it would be more effective with chloride as the counterion 

instead of sulfate. Sulfate, as the divalent counterion, would be transported more slowly, which 

would result in a slower transport of the co-ions (magnesium or sodium) to keep the charge 

balance. This is less favorable for monovalent ions, and thus the separation efficiency is 

decreased.  

 

Zhang et al. (2011) have investigated the separation of small organic ions and salts using ED. 

They used a synthetic feed solution composed of NaCl, MgSO4, NaNO3, NaHCO3, and Na2HPO4 

with 120 mg/L of an organic ion (formate, acetate, propionate, butyrate, tartrate, or aspartate). 

They found that chloride and sulfate ions were transported much faster than acetate, propionate, 

and butyrate, and these were removed appreciably only after the inorganic anions were removed. 

Formate and aspartate were removed at about the same rate throughout the experiment. Tartrate, 

which has a net charge of –2 at the pH tested and is highly hydrophilic, did not behave 

differently from chloride and sulfate, and there was no selectivity between them. They also 

hypothesized that since aspartate and tartrate had ionic sizes comparable to the free volume size 

of the anion exchange membrane, these molecules adsorbed to the surface, forming a double 

layer structure, which repulsed sulfate more than chloride. This was their explanation for why 

sulfate ion flux was not increased for experiments at higher voltage. 

 

2.3 Ion Exchange Properties of Electrodialysis Membranes 

Ion exchange membranes are made up of ionic groups attached to a polymer matrix. The focus of 

this section will be on anion-exchange membranes, as natural organic matter tends to be 

negatively charged, and negatively charge foulants only affect the anion exchange membrane 
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(Lindstrand et al., 2000a; Lindstrand et al., 2000b). Anion-exchange membranes contain 

positively charged groups, such as –NH3
+
, –NRH2

+
, –NR2H

+
, –NR3

+
, –PR3

+
, and –SR2

+
 (Xu, 

2005). The quaternary amine is the strongest anion-exchange resin, followed by the ternary, 

secondary, and primary amine. In monovalent/divalent exchange, the isotherms will change 

depending on total ion concentration in the aqueous phase. At low concentrations, the membrane 

will prefer the ion with the higher valency. The selectivity constant could change if resin 

swelling occurs.  

 

Boari et al. (1974) did a theoretical analysis and found the following selectivity sequence 

towards the sulfate ion with respect to the chloride ion: primary amino group > secondary group 

> tertiary group > quaternary group resin. This shows the increasing predominance of the 

electrostatic (net point charge, dipole moment) interactions over the hydrostatic (involving the 

break up of the hydrated structure) interactions (Boari et al., 1974).  

 

Ion exchange selectivity at equilibrium depends on the selectivity constant and in case of a 

monvalenet/divalent exchange also on the total concentration of ions in solution and the ion 

exchange capacity of the resin.  The equilibrium isotherms describing the selectivity for 

monovalent-divalent exchange, illustrated with Cl
-
 and SO4

=
, is: 

C

C
K

x

x

y

y
SO

Cl

SO

SO

SO

SO
4

4

4

4

4

22 )1()1( −
=

−
       Equation 2.2 

Where C = capacity of anion exchange membrane (eq/L) 

 C = total aqueous ion concentration (eq/L) 

4SOy = equivalent fraction of SO4
=
 in the anion exchange membrane 

4SOx = equivalent fraction of SO4
=
 in solution 

4SO

Cl
K = selectivity coefficient for SO4

=
 exchanging with Cl

-
 onto membrane 

 

In the case of monovalent-monovalent exchange, the isotherm has a simpler form, illustrated 

with Cl
-
 and a generic monovalent NOM ion, NOM

-
: 

NOM

Cl

NOM

NOM

NOM

NOM K
x

x

y

y

)1()1( −
=

−
       Equation 2.3 
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Where NOMy = equivalent fraction of NOM
-
 in the anion exchange membrane 

 NOMx = equivalent fraction of NOM
-
 in solution 

 NOM

ClK = selectivity coefficient for NOM
-
 exchanging with Cl

-
 onto the membrane 

 

Figure 2.3 shows the isotherms for a chloride-to-sulfate selectivity coefficient 4SO

ClK = 0.1. These 

curves show how the fraction of sites taken up by sulfate and chloride in the membrane changes 

with aqueous fraction and total concentration. At low concentrations it is seen that the membrane 

prefers sulfate over chloride, even if the selectivity for sulfate is low.  For monovalent-

monovalent exchange, possible isotherms for different selectivity constants are shown in Figure 

2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Anion exchange isotherm in the presence of sulfate and chloride for a chloride-to-

sulfate selectivity 4SO

ClK =0.1, which was roughly determined from experimental data. xSO4 is the 

aqueous equivalent fraction of sulfate, whereas ySO4 is the equivalent fraction of anion exchange 

sites occupied by sulfate. 
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Figure 2.4: Ion exchange isotherm for monovalent-monovalent exchange. xA is the fraction of 

solute A in the aqueous phase, whereas yA is the fraction of ion exchange sites taken up by solute 

A. 

 

In monovalent-monovalent ion exchange, the total concentration in the aqueous phase does not 

change the properties of the isotherm. For the exchange of organics for chloride, if the selectivity 

for organics is high, then a high concentration of chloride must be added to minimize TOC loss. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Reverse Osmosis Membrane and Setup 

A Dow Filmtec TW30-2514 membrane (The Dow Chemical Company, Midland, MI) was used 

in the reverse osmosis system. The characteristics of the membrane, given by the manufacturer, 

are listed in Table 3.1. 

 

Table 3.1: Dow TW30-2514 membrane characteristics 

Size 2.5 in. x 14 in. 

Nominal active surface area 0.7 m
2
 

Permeate flow rate* 0.53 L/min 

Stabilized salt rejection* 99.5% 

*Based on 2000 ppm NaCl, 225 psig, and 5% recovery 

 

This membrane was chosen because of its use in previous efforts to concentrate NOM 

(Koprivnjak et al., 2006; Gurtler et al., 2008; Vetter et al., 2007), and because it was readily 

available. The 2.5 inch size was chosen because the pump available (CAT pump 341) 

constrained the feed flow rate to less than 15 L/min.  

 

The membrane was housed in a 316SS pressure vessel (Applied Membranes). A diaphragm 

pressure regulator (Equilibar, Fletcher, NC) was installed at the concentrate outlet to control the 

pressure. A VWR Recirulator recirculated water at 18 
◦
C through a stainless steel coil in the feed 

tank. 

 

3.2 Electrodialysis Setup 

A 30-cell pair Mk I ED stack (GE Power & Water, Westborough, MA) was used with 

AR204SZRA anion and CR67HMR cation exchange membranes. Characteristics of the ion 

exchange membranes are listed in Table 3.2. 
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Table 3.2: Characteristics of GE ion exchange membranes 

 AR204SZRA anion 

exchange membrane 

CR67HMR cation 

exchange membrane 

Thickness (mm) 0.55-0.60 0.60-0.65 

Active membrane 

area (cm
2
) 

280 280 

Initial membrane 

resistance (ohm-cm
2
) 

7-8 9-11 

Capacity (eq/L) 1.18 1.08 

Functional group Quaternary 

ammonium ions 

Sulfonate groups 

 

The ED stack was connected to an Ametek DCS 100-10E (100 V, 10 A) power supply. For 

pulsed experiments, the power supply was connected to a solid state relay, which was controlled 

by a pulse generator (Philips PM 5715). The frequency of the pulse was set to 0.7 Hz. Three 

Fluid-o-Tech MG200 series gear pumps (MG213XD1P-C52VS) were used to pump the diluate, 

concentrate, and electrolyte solutions from their respective tanks. The flow rates of each stream 

were controlled using WEG CFW10 inverters. The diluate stream was run in batch, while the 

concentrate stream was either recirculated or run continuously, depending on the experiment.  

 

3.3 Reagents 

General laboratory reagents were purchased from Fisher Scientific (Fair Lawn, NJ) and Sigma-

Aldrich Company (St. Louis, MO). 

 

3.4 Analytical Techniques 

Concentrations of sulfate and chloride ions were measured by ion chromatography (ICS-2000, 

Dionex, Sunnyvale, CA) using a Dionex IonPac AS19 column. Total organic carbon was 

measured using a Shimadzu TOC-VCPH TOC analyzer. A spectrofluorometer (Shimadzu RF-

5301PC) was used to measure fluorescence in order to determine Rhodamine WT rejection. Size 

exclusion chromatography was performed using a PL aquagel-OH Analytical column (Agilent 

Technologies, Santa Clara, CA) and a Waters Alliance HPLC (Waters e2695 Separation Module) 

with a UV detector (Waters 2489 UV/Visible Detector). Calcium was measured by the USEPA 

Standard EDTA Titrimetric Method using a Hach Digital Titrator with CalVer 2 Calcium 

Indicator Powder Pillows and 0.0800 M EDTA.  
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3.5 Characterization of Reverse Osmosis Membrane 

The performance of the reverse osmosis membrane was characterized by testing NaCl and 

Rhodamine WT (RWT) solutions. The feed was composed of 20 L of deionized water, and a 

single solute at a concentration of either 1 or 2 g/L NaCl, and 2.5 mg/L RWT. The RO system 

was run in batch recirculation, with permeate and reject streams being returned to the feed tank. 

 

3.6 Characterization of Electrodialysis Stack 

To characterize the ED stack, 2 g/L NaCl was added to the diluate tank, the concentrate tank was 

filled with deionized water, and the electrolyte tank was made up of a solution of 0.7% Na2SO4. 

All three tanks were run in batch recirculation, and different experiments were run with a flow 

rate of 0.5 L/min, 1.5 L/min, and 1.5 L/min with pulsed ED. The conductivity of each stream 

was monitored by a Cole-Parmer 100-Ohm Pt RTD Conductivity Cell.  

 

3.7 Summary of Experimental Protocols 

The experiments performed were designed based on the results obtained for each previous 

experiment. In total, 14 experiments were run to troubleshoot and optimize the proposed RO/ED 

system. Figure 3.1 shows the experimental setup, while Figure 3.2 shows the progression and 

summary of the experiments performed. 

 

 

 

Figure 3.1: Hybrid RO/ED system. 
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Figure 3.2: Experimental protocols for: (a) Preliminary RO/ED experiments; (b) Isolating TOC 

loss experiments; (c) Tap water with salt addition experiments; and (d) Final concentration 

experiment. 
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Figure 3.2 (cont.) 

 

 

3.8 Tap Water Experiments 

Experiments to concentrate NOM were run using tap water, as the NOM here would be 

representative of that found in treated waters. Tap water was added to the diluate tank, with an 

excess of sodium bisulfite added to quench the residual chlorine to prevent it from damaging the 

RO membrane. In later experiments, the tap water was first run through a 10µm and a 1µm filter 

in series to remove small particles.  

 

3.8.1 Preliminary RO/ED Experiments 

Preliminary RO/ED experiments (Figure 3.2a) were run to see if the concentration methods 

proposed by Gurtler et al. (2008) and Koprivnjak et al. (2006) would be effective to concentrate 

the NOM in tap water. In these experiments, RO was run and ED was introduced at different 

times during the process. 

 

3.8.2 Isolating TOC Loss 

Since TOC loss was observed in the preliminary RO/ED experiments, RO and ED were isolated 

to determine the point in the process that TOC loss was occurring (Figure 3.2b). 
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3.9 Ion Exchange Experiments 

In an effort to see if a high conductivity would retain TOC, NaCl was added at 8.5 g/L to water 

that was previously concentrated five times by RO. Next, cleaning experiments were performed 

by exposing the membranes to high concentrations of sodium chloride. Experiments exploring 

the selectivity of the anion exchange membranes were also conducted. 

 

3.9.1 Salt Cleaning 

A total of 8 batches of water were run through both the ED diluate and concentrate streams, with 

no applied voltage. Initial batches consisted of 10 g/L NaCl. Later cleaning experiments were 

performed by using a solution of 30 g/L NaCl, and incrementally increasing the concentration by 

10 g/L until the solution was 70 g/L NaCl. After each addition, the streams were circulated for 2 

hours to allow the membranes to reach equilibrium. 

 

3.9.2 Determining Sulfate vs. Chloride Selectivity 

After running 60 and 70 g/L NaCl through the ED stack, it was assumed that the anion exchange 

membranes were in chloride form. Deionized water was run through the stack to rinse the 

membranes, and afterwards, a 4 g/L Na2SO4 solution was run through both the diluate and 

concentrate streams. Later 1 g/L Na2SO4 was added to both the diluate and concentrate tanks and 

circulated for 2 hours.  

 

3.10 Tap Water with Salt Addition Experiments 

To examine the effects of salt addition, RO was used to concentrate the tap water approximately 

5 times, and varying amounts of sodium chloride or sodium sulfate were added to the diluate 

water prior to running ED (Figure 3.2c).  

 

3.10.1 ED with Sulfate Addition 

Due to the behavior of monovalent-divalent exchange, which prefers the divalent ion at low 

concentrations (Figure 2.3), sodium sulfate was added to concentrated RO water prior to running 

ED. Two concentrations of Na2SO4 were tested: 0.5 g/L and 1.7 g/L. The concentration of 1.7 

g/L was tested both with the anion exchange membranes being in either the chloride form or 

sulfate form. Sodium sulfate was added throughout the ED experiment to keep the conductivity 
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constant. For an initial addition of 1.7 g/L, a total of 18.92 g Na2SO4 was added throughout 4.5 

hours for the experiment done in chloride form, while a total of 10.87 g Na2SO4 was added 

within 4 hours for the experiment in sulfate form. Another experiment that was tried was adding 

1.8 g/L Na2SO4 prior to concentration, and then running RO and ED simultaneously with no 

subsequent salt addition. 

 

3.10.2 ED with Chloride Addition 

In order to compare the effectiveness of sulfate versus chloride in retaining NOM in ED, sodium 

chloride was added to concentrated RO water prior to running ED. In this experiment, 1.6 g/L 

NaCl was added, and throughout the next 4 hours, 31 g NaCl was added to keep the conductivity 

constant. 

 

3.10.3 Final Concentration Experiment 

A final concentration experiment was run to see if RO coupled with ED and salt addition could 

be used to produce a concentrated sample of NOM (Figure 3.2d). In this experiment, RO was 

used to concentrate 118 L to 13 L, and the tank was refilled to 119 L and concentrated to 20 L. 

Then 160 g NaCl was added to this 20 L, and run through ED for 4 hours to remove calcium. 

NaCl was continuously added to keep the conductivity constant. The tank was then refilled to 

118 L and concentrated to 15 L using RO. This 15 L was run through ED for 4 hours. No further 

salt was added during this second ED run. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Characterization of Reverse Osmosis Membrane 

The RO membrane was characterized using both NaCl and RWT. The amount of passage vs. 

pressure is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Rejection of NaCl and RWT at different pressures. Cp is the concentration of the 

solute in the permeate, and Cf is the concentration in the feed. 

 

Figure 4.1 shows that rejection is higher when a higher pressure is applied on the feed side. 

However, higher pressure leads to more severe concentration polarization, which can lower or 

even reverse the improvement trend in rejection. 

 

4.2 Characterization of Electrodialysis Stack 

ED was characterized using NaCl, while recirculating the diluate, concentrate, and electrolyte 

streams. Conductivity was used to represent NaCl concentration, since it was the only salt 

present in the streams. Figure 4.2 shows the normalized change in conductivity vs. time for two 

different flow rates used and also comparing pulsed and continuous ED. Figure 4.2 shows that a 

higher flow rate allows more salt to be removed per time, and as expected, pulsing the voltage 

results in lower salt removal. 
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Figure 4.2: Normalized change in conductivity vs. time for an original concentration of 2 g/L 

NaCl and diluate and concentrate volumes of 20 L. The voltage applied was 20 VDC. 

 

 

Figure 4.3 shows how the conductivity changes when taking into account the residence time. 

This shows that lower flow rates resulted in a higher fraction of salt being removed per pass, but 

because fewer passes through the ED stack occur with a lower flow rate, overall less salt is 

removed. 
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Figure 4.3: Change in normalized concentration of salt vs. time when taking residence time into 

account. 

 

 

Using these data, ED can be modeled as removing a certain fraction of salt per pass through the 

stack. The equations below show how the mass balance can be modeled. Equation 4.1 is the 

original mass balance, while Equation 4.2 is the integrated form 

  

           Equation 4.1 
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Equation 4.2 shows that there is a linear relationship between ln(C/C
0
) and time, and this model 

agrees with Figures 4.2 and 4.3, which also show a linear relationship. 

 

4.3 Tap Water Experiments 

4.3.1 Preliminary RO/ED Experiments 

Initial tap water experiments showed that combined RO and ED were effective at concentrating 

TOC. Table 4.1 shows that the TOC concentration factor is almost twice the water concentration 

factor, even though there is a buildup of TOC in the ED concentrate as well. However, in later 

experiments, this could not be reproduced. It is likely that organics were coming off the new ED 

membranes, misrepresenting the amount that was concentrated. Issues that occurred with RO 

were a rapid loss in flux, so that in subsequent experiments the tap water was filtered through a 

10 µm and 1 µm cartridge filter and the feed pressure was lowered to mitigate concentration 

polarization and fouling. In all tables, Diluate refers to the water concentrated by RO, but having 

salts removed by ED (Figure 3.1). Concentrate refers to the ED concentrate, and Permeate the 

RO permeate. 

 

Table 4.1: Results from Experiment 1 – combined RO/ED 

Time (min) 

Diluate TOC 

concentration 

(mg/L) 

Concentrate 

TOC 

concentration 

(mg/L) 

Permeate 

TOC 

concentration 

(mg/L) 

Permeate 

volume* 

(L) 

TOC 

concentration 

factor 

Water 

concentration 

factor* 

0 1.66   0 1.00 1.00 

25 1.38 3.96 0.238 12 0.83 1.12 

55 1.26 2.83 0.333 27 0.76 1.30 

96 1.33 4.16 0.627 47 0.81 1.67 

125 1.07 4.38 0.477 61 0.65 2.09 

156 1.52 4.77 0.472 76 0.92 2.86 

181 3.04 9.71 0.437 88 1.84 4.08 

200 18.5 10 0.499 98 11.2 6.02 

*Values are approximate 

 

Pulsed and continuous ED were also compared in these preliminary experiments. As shown by 

Gurtler et al. (2008), pulsed ED was able to retain a greater fraction of TOC. These authors used 

a pulsing frequency of 0.25 Hz because it allowed enough time for qualitative observation of 

equilibration times. A frequency of 0.7 Hz was used here because it was the lowest frequency 

allowed by the pulse generator. Table 4.2 shows results from Experiments 2 through 4. 
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Experiment 3 (pulsed ED) had less TOC in the concentrate stream than Experiments 2 and 4 

(continuous ED).  

 

Table 4.2: TOC loss comparing continuous (Experiments 2 and 4) and pulsed (Experiment 3) ED 

 Experiment 2 Experiment 3 Experiment 4 

Final diluate TOC 

concentration (mg/L) 

140 23.3 21.7 

Final concentrate TOC 

concentration (mg/L) 

30 4.06 6.92 

TOC recovery 0.71 0.30 0.11 

 

4.3.2 Isolating TOC Loss 

In order to determine where TOC loss was coming from, the RO and ED processes were isolated. 

First, RO was used to concentrate the water about 9 times. As seen in Table 4.3, it was found that 

RO was able to retain most of the NOM, until about 4 times concentration, where a large loss in 

TOC was seen. It was postulated that this was due to calcium carbonate scaling and calcium 

bridging. In order to prevent calcium carbonate precipitation in the following experiments, HCl 

was added to keep the pH of the tap water around 7 during the RO process. 

 

Table 4.3: TOC loss occurring during RO concentration with no pretreatment of tap water 

(Experiment 5) 

% water 

remaining 

TOC 

Concentration 

(mg/L) 

TOC 

concentration 

factor 

(TOC/TOC0) 

Water 

concentration 

factor (V0/V) 

TOC recovery 

[(TOC/TOC0)/ 

(V0/V) 

100.0 1.02 1.00 1.00 1.00 

89.5 1.16 1.14 1.12 1.02 

78.8 1.32 1.29 1.27 1.02 

67.9 1.51 1.49 1.47 1.01 

56.9 1.86 1.83 1.76 1.04 

46.2 2.21 2.17 2.17 1.00 

35.5 2.77 2.72 2.82 0.97 

25.0 3.93 3.86 4.00 0.96 

13.8 1.63 1.60 7.27 0.22 

10.9 4.27 4.19 9.19 0.46 
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To isolate TOC change from running ED, water was first concentrated by 5 times with RO, and 

then run through ED only to examine TOC loss. In this experiment, both the concentrate and 

diluate streams were recirculated. Tables 4.4 and 4.5 show the results from both processes. RO is 

able to retain most of the NOM, as HCl had been added to keep the pH around 7. Table 4.5 

shows that TOC loss does occur in ED, especially at higher applied voltage. Since the 

concentrate stream was recirculated, it is likely that ions and NOM are being removed more 

slowly (as salts accumulate in the concentrate stream) than if the concentrate stream were 

deionized water that only passed through the ED stack once, where there would be a larger 

driving force. 

 

Table 4.4: RO concentration, adjusting pH to 7 (Experiment 7) 

% water 

remaining 

TOC 

Concentration 

(mg/L) 

TOC 

concentration 

factor 

(TOC/TOC0) 

Water 

concentration 

factor (V0/V) 

TOC recovery 

[(TOC/TOC0)

/ (V0/V) 

100.0 1.12 1.00 1.00 1.00 

89.4 1.30 1.16 1.12 1.04 

78.3 1.45 1.29 1.28 1.01 

66.6 1.70 1.52 1.50 1.01 

55.5 2.00 1.78 1.80 0.99 

43.7 2.51 2.24 2.29 0.98 

32.3 3.39 3.03 3.09 0.98 

19.6 5.41 4.84 5.11 0.95 

 

Table 4.5: TOC loss occurring through ED (Experiment 7) 

Time 

(min) 

Volts 

applied 

TOC 

concentration 

(mg/L) 

Conductivity 

(mS/cm) 

% TOC retained 

[(TOC/TOC0)/ 

(V0/V) 

0 20 5.41 1.75 0.95 

30 20 5.26 1.66 0.92 

60 20 4.92 1.64 0.86 

90 40 4.11 1.3 0.72 

120 40 3.15 0.85 0.55 

150 40 2.41 0.5 0.42 

 

As seen in Figure 2.4, if the membranes have a high selectivity for organics (see Section 4.4), 

unless the fraction of inorganic ions is much larger than the fraction of NOM, the anion 



 24 

exchange sites will select NOM more preferentially, and some TOC will be lost by adsorption 

onto the membranes. Table 4.5 shows that the conductivity was relatively low, which indicates 

that the inorganic fraction is not high enough to prevent TOC loss, either by adsorption to the 

membrane or removal to the concentrate stream.  

 

4.4 Ion Exchange Experiments 

In an effort to retain the NOM in tap water, NaCl was added at 8.5 g/L to 20 L of concentrated 

tap water (expected to bring conductivity above 15 mS/cm, which was shown to be high enough 

to prevent TOC loss by Gurtler et al., 2008). Instead of TOC loss, the amount of TOC in the 

water increased, as chloride ions exchanged with NOM absorbed on the anion exchange 

membranes in previous runs. This verifies that a certain portion of TOC loss was due to 

absorption into the membranes, which agrees well with previous work that has found that 

adsorption of NOM on RO and ED membranes is diminished in the presence of NaCl (Lee and 

Elimelech, 2007; Kim et al., 2003; Koprivnjak et al., 2009; Gurtler et al. 2008). Figure 4.4 shows 

how the TOC concentration changes with time, at a constant conductivity of 18 mS/cm. After 

about 3 hours, the TOC concentration levels off. While running this experiment, the calcium 

concentration only decreased about half, from 86.6 mg/L to 45.3 mg/L. 
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Figure 4.4: TOC changes with time while running ED with 5 times concentrated tap water with 

8.5 g/L NaCl added (Experiment 8).  
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4.4.1 Salt Cleaning 

Since the previous experiment showed that a relatively high concentration of NaCl could result 

in the release of NOM from the ion exchange membranes, cleaning with a high concentration of 

NaCl was attempted. Cleaning with high concentrations of NaCl resulted in TOC desorbing from 

the membranes. As seen in Figure 4.5, as more NaCl is added to both the diluate and concentrate 

streams, more chloride is able to exchange with TOC that is on the membranes, increasing the 

NOM concentration in solution.  
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Figure 4.5: Increase in TOC concentration as increments of 10 g/L NaCl are added to both the 

diluate and concentrate streams. 

 

A total of 8 batches of water were run through ED to clean the membranes, and 550.7 mg TOC 

was recovered. This was calculated by adding up the difference between initial and final TOC 

masses in each batch of water. NOM in Newmark tap water has a molecular weight in the range 

of approximately 80 g/mol to 3000 g/mol (Figure 4.6).  
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Figure 4.6: Size exclusion spectrum for Newmark tap water. The numbers indicate molecular 

weight in Daltons. 

 

A molecular weight of 100 g/mol was chosen to represent this NOM, as it was assumed that the 

smaller NOM fraction was adsorbing to the membranes. This would mean that 5.5 meq was 

recovered from the membranes, which have a total capacity of 0.595 eq (see Section 4.5.1 for 

calculation). Thus, the amount of TOC removed in the cleaning experiment was about 0.9% of 

the total sites. If the NOM from all previous experiments (1.6 g total TOC for 10 experiments) 

had adsorbed onto the anion exchange membranes, only about 2.7% of the sites would be taken 

up by NOM. This shows the very high capacity for ED membranes to adsorb NOM.  

 

4.4.2 Determining Sulfate vs. Chloride Selectivity 

In order to examine sulfate/chloride selectivity, solutions of 4 g/L Na2SO4 were circulated 

through both the diluate and concentrate while the membranes were in chloride form. The 

selectivity constant, 4SO

ClK , for these membranes was calculated to be 0.09 from data obtained 

from the ion exchange experiments and Equations 4.3 to 4.5: 
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           Equation 4.5 

Where [Cl
-
] and [SO4

2-
] are measured using ion chromatography.  

 

This would yield an isotherm similar to Figure 2.3, which shows that sulfate is only preferred at 

concentrations less than 0.01 eq/L.  

 

The selectivity constant for organics and chloride, NOM

Cl
K , is more difficult to estimate, due to the 

varying properties and sizes of NOM. Also, NOM must be concentrated from tap water, which 

also contains many other ions. Concentrated NOM that can be purchased is not representative of 

NOM in treated water (Malcom and MacCarthy, 1986), and so a synthetic solution cannot be 

made. However, from calculations using Equations 4.6 and 4.7 and data from the cleaning 

experiment, it is estimated to be between 0.75 and 20. Since it was not known how much NOM 

had adsorbed to the membrane from previous experiments, a value of 0.004 eq/L was chosen, 

assuming that nearly all of NOM had desorbed by the time an NaCl concentration of 70 g/L was 

used. 
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           Equation 4.7 

 

The selectivity constant for organics and sulfate, NOM

SOK
4

, can be related to the previous two 

selectivity constants by the following equation: 
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With the values estimated here, NOM

SOK
4

would be between 6.5 and 4600. Again this shows that in 

order for sulfate to be preferred over NOM, the total aqueous concentration must be low, or the 

fraction of sulfate in the aqueous phase must be very close to 1.  

 

4.5 Tap Water with Salt Addition Experiments 

In order to optimize TOC retention in ED, after concentrating tap water 5 times with RO, 

different concentrations of sulfate or chloride were added before and throughout running ED.  

 

4.5.1 ED with Sulfate Addition 

Figure 4.7 shows the change in TOC and chloride over time, with 0.5 g/L Na2SO4 addition, and 

Na2SO4 added throughout the experiment to keep the conductivity constant (~2.5 mS/cm). 
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Figure 4.7: Change in TOC and chloride concentrations as the diluate stream is run through ED 

(Experiment 9). The anion exchange membranes were in sulfate form. 

 

Figure 4.7 shows that the concentration change of chloride and TOC follow a similar trend, 

although TOC loss levels off within 2 hours, while the chloride concentration appears that it will 

levels off at a later time. Figure 4.8 compares the chloride removal with calcium removal. At this 
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concentration, calcium is removed faster than chloride. Although the ions are of different charges, 

the monovalent vs. divalent behavior agrees with ion exchange theory, where at lower 

concentrations, the divalent ion will be preferred on the ion exchange sites, and should be 

removed faster. 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300

Time (min)

C
l-

 (
m

o
l/
L

)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

C
a
+
+
 (

m
o

l/
L

)

Cl-

Ca++

  

Figure 4.8: Change in calcium and chloride concentrations as the diluate stream is run through 

ED (Experiment 9). The anion exchange membranes were in sulfate form. 

 

In order to see the effect of sulfate concentration, 1.7 g/L Na2SO4, which is just below the 

solubility limit for the amount of calcium in the water, was added before running the 

concentrated tap water through ED. Figure 4.9 shows how TOC and chloride concentrations 

change with time.  
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Figure 4.9: Change in TOC and chloride concentrations as the diluate stream is run through ED 

(Experiment 12). The anion exchange membranes were in sulfate form. 

 

Once again, the chloride and TOC concentrations show a similar decrease at the beginning, but 

the TOC concentration levels off sooner. Although in Experiment 9 (0.5 g/L Na2SO4 addition), 

initial TOC loss was greater, after 4 hours, both Experiments 9 and 12 retained the same fraction 

of TOC (~60%).  

 

A similar experiment was done, except with the anion exchange membranes in chloride form. 

The changes in chloride and TOC concentrations are seen in Figure 4.10. 
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Figure 4.10: Change in TOC and chloride concentrations as the diluate stream is run through ED 

(Experiment 10). The anion exchange membranes were in chloride form. 

 

Figure 4.10 shows an increase in chloride as chloride in the anion exchange membrane 

exchanges with sulfate in the aqueous solution. According to information from the manufacturer, 

GE, the capacity of the anion exchange membranes is 1.18 eq/L. The volume of the 30 anion 

exchange membranes is 0.504 L, which yields a total number of sites of 0.595 eq. From Figure 

4.10, 0.184 eq Cl
-
 are displaced from the anion exchange membranes, whereas 0.565 eq SO4

2-
 

have been added to the tank. Therefore, not all of the chloride is displaced by sulfate, but the 

fraction of sulfate ions on the membranes increases as more sulfate is added as chloride is being 

removed. When the ED run was started with anion exchange membrane in chloride form, as 

much as 73% of TOC was retained in the diluate (Figure 4.10) as compared to 60% when the 

anion exchange membrane was in sulfate form (Figure 4.9). 

 

4.5.2 ED with Chloride Addition 

The previous experiment with sulfate addition successfully showed that an increase in sulfate 

concentration resulted in less TOC loss; however, it failed to distinguish the effect of sulfate vs. 
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chloride addition. In order to test that TOC loss was minimized due to sulfate addition and not 

just because of an increase in ion concentration, 1.6 g/L NaCl was added to concentrated water 

and run through ED in chloride form.  

 

Figure 4.11 shows how calcium and sulfate concentrations change with time. Although they are 

both divalent, and the concentrations of Na
+
 and Cl

-
 should be comparable, calcium shows a 

larger decrease over time, indicating that the cation exchange membrane selectivity for calcium 

over sodium is higher than the anion exchange membrane selectivity for sulfate over chloride. 

 

0

0.0005

0.001

0.0015

0.002

0.0025

0 50 100 150 200 250 300

Time (min)

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
o

l/
L

)

Ca++

SO4=

 

Figure 4.11: Change in calcium and sulfate concentrations as the diluate stream is run through 

ED (Experiment 13). The anion exchange membranes were in chloride form. 

 

 

Figure 4.12 compares the change in TOC with the change in sulfate concentration. Sulfate is 

removed slightly slower than TOC. At this concentration, with xSO4 between 0.1 and 0.05, the 

monovalent ion will be preferred over the divalent ion in the membrane. More TOC was lost in 

Experiment 13 (chloride addition) than in the sulfate addition experiments. Only 44% of TOC 

was retained in the diluate when sodium chloride is added to the diluate stream (Figure 4.14, 

Experiment 13), whereas 60 – 73% of TOC was retained when sodium sulfate is added 

(Experiment 9, 10, 12). Interestingly, the conductivity level is higher (~6.5 mS/cm) during the 
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ED operation with sodium chloride addition (Experiment 13) than when sodium sulfate is added 

(3.93 mS/cm in Experiment 10). This indicates that conductivity is not the only parameter that 

controls NOM adsorption onto the anion exchange membrane, but valency of the anion is also 

important. 
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Figure 4.12: Change in TOC and sulfate concentrations as the diluate stream is run through ED 

(Experiment 13). The anion exchange membranes were in chloride form. 

 

 

4.5.3 Comparison between Sulfate and Chloride Addition 

Figure 4.13 shows the normalized concentrations of the previous experiments. Figure 4.13 shows 

that there is a trade-off between TOC retention and calcium removal. In order to retain TOC, 

either a high NaCl concentration or a high fraction of sulfate must be present in the diluate 

solution. However, a high NaCl concentration results in lower calcium removal (this was seen in 

the cleaning experiment where an NaCl concentration of 8.5 g/L was used), and the amount of 

sulfate needed to result in a high fraction in the aqueous phase cannot be added without 

precipitating calcium sulfate. Also, this high concentration of sodium sulfate will also result in 

lower calcium removal. 
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Figure 4.13: Changes in (a) TOC concentrations and (b) calcium concentrations after running ED 

with added amounts of solutes.  
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4.5.4 Final Concentration Experiment 

Based on previous findings, adding a high concentration of NaCl (around 8 g/L) could retain 

NOM well while removing some calcium to allow the water to be concentrated further. In the 

final experiment, concentrating 224 L by 11.4 times with RO resulted in retaining 96% of TOC. 

By keeping the pH around 7, calcium carbonate precipitation was prevented. Subsequent ED 

operation with NaCl addition reduced the calcium concentration from 156 mg/L to 53 mg/L, but 

the TOC concentration also dropped from 11.7 mg/L to 8.9 mg/L, resulting in 73% retention of 

TOC. Upon adding 98 L and concentrating down to 15 L, again the RO was able to retain TOC, 

at 76% of what should originally be in the total 322 L. ED was run again, this time with no salt 

addition, and the calcium concentration was reduced from 132 mg/L to 76 mg/L, while TOC 

decreased from 17.6 mg/L to 14.0 mg/L. The result was 60% retention of TOC. 

 

Although 8 g/L NaCl resulted in less TOC loss than lower concentrations of sulfate or chloride, 

it resulted in much lower calcium removal. Lower concentrations of sodium would be necessary 

to remove more calcium, but without being able to replace chloride with sulfate, TOC loss would 

continue to occur.  
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CHAPTER 5: CONCLUSIONS 

 

5.1 Summary of Results and Recommendations 

TOC loss was mainly attributed to TOC adsorption to the ion exchange membranes as well as 

TOC passing through the membranes into the ED concentrate. TOC loss from ED can be 

minimized by adding NaCl or Na2SO4 to the diluate stream. Sulfate addition is more effective 

than chloride for retaining NOM when the sulfate fraction in the aqueous phase is high or the 

total ion concentration is low. A high concentration of sodium chloride displaces NOM that 

adsorbs to anion exchange sites on the membranes, and is able to prevent loss of NOM. However, 

calcium is removed slowly due to the high sodium concentration, which limits the amount of 

sulfate that can be added when trying to bring the conductivity lower. Adding sulfate in low 

concentrations (low enough to prevent calcium sulfate precipitation) results in an initial loss of 

NOM, but eventually no further loss occurs as sulfate takes over the anion exchange sites. 

However, it is unable to remove all the calcium, and limits further concentration due to the risk 

of calcium sulfate precipitation. 

 

In order to optimize NOM concentration with RO, the tap water should first be filtered with 1 

micron or 0.3 micron filters (in future experiments) to remove colloids that could clog the 

membrane. The pump should be run at around half the recommended feed pressure in order to 

reduce the effects of concentration polarization and fouling. Also, when high calcium 

concentrations and alkalinity are present in the water, the pH should be adjusted to 7 to prevent 

calcium carbonate scaling. In order to prevent the membrane from being exposed to pressurized 

air, the water should not be concentrated to low volumes (less than 10 L). 

 

To allow ED to remove many of the inorganic ions while retaining NOM, sulfate should be 

added while running ED to flush out the other ions. Once those ions have been removed, sulfate 

can be removed to result in water with a high concentration of NOM but low salt content. In 

order for this to be possible for the tap water used in this study, pretreatment must occur to 

remove the calcium ions. 
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5.2 Future Work 

In order to remove the limitation of the amount of sulfate that can be added, and to avoid 

precipitation problems, calcium removal using an inorganic zeolite will be implemented before 

RO concentration. This should result in better TOC retention, as a higher concentration of sulfate 

can be added and will be able to flush out other inorganic anions, while being preferred over 

NOM in the anion exchange membranes. The presence of silica should also be monitored to 

ensure that silica precipitation will not occur. 

 

Other conditions to optimize are the pulsing frequency as well as the number of cell pairs in the 

ED stack. Once an appropriate concentration scheme is determined using Newmark tap water, 

treated water from Bloomington (before chlorination) will be used for the DBP studies. 
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APPENDIX A– Summary of Experimental Methods 

 

 

Date of 

experiment 

Experiment/ 

Appendix 

RO conditions ED conditions Protocol 

10/7/11 1 

B 

Qf = 9.56 Lpm 

Pin = 247 psi 

Pout = 240 psi 

Q = 1-1.5 Lpm 

Continuous 

Run RO and ED 

simultaneously the whole 

experiment 

10/31/11 2 

B 

 

 

Qf = 9.5-9.7 Lpm 

Pin = 253 psi 

Pout = 247 psi 

Q = 1-1.5 Lpm 

Continuous 

Run RO for whole 

experiment; introduce ED 

when conductivity is 

around 2 mS/cm 

11/20/11 3 

B 

Qf = 9.14 Lpm 

Pin = 147 psi 

Pout = 144 psi 

Q = 1-1.5 Lpm 

Pulsed 

Run RO for whole 

experiment; introduce ED 

when conductivity is 

around 2 mS/cm; pressure 

lowered to reduce fouling 

12/1/11 4 

B 

Qf = 9.5 Lpm 

Pin = 250 psi 

Pout = 244 psi 

Q = 1-1.5 Lpm 

Continuous 

Run RO for whole 

experiment; introduce ED 

when conductivity is 

around 2 mS/cm; higher 

pressure applied due to 

severe fouling 

12/12/11 5 

B 

Qf = 8.28 Lpm 

Pin = 123 psi 

Pout = 119 psi 

 Run RO only 

12/20/11 6 

B 

Qf = 9.24 Lpm 

Pin = 149 psi 

Pout = 144 psi 

Q = 1-1.5 Lpm 

Continuous 

Run RO for whole 

experiment, keeping pH 

around 7; introduce ED 

when conductivity is 

around 1 mS/cm 

12/22/11 7 

B 

Qf = 8.8 Lpm 

Pin = 154 psi 

Pout = 148 psi 

Q = 1-1.5 Lpm 

Pulsed 

Run RO to concentrate 5 

times, keeping pH around 

7; stop RO and introduce 

ED 

1/12/12 8 

D 

Qf = 9.6 Lpm 

Pin = 156 psi 

Pout = 152 psi 

Q = 0.85 Lpm 

Continuous 

One pass 

concentrate 

(from now on) 

Run RO to concentrate 5 

times, keeping pH around 

7; add 8.5 g/L (168 g) NaCl 

and run ED; keep adding 

NaCl to keep conductivity 

high 

2/27/12 9 

D 

Qf = 9.1 Lpm 

Pin = 156 psi 

Pout = 153 psi 

Q = 0.85 Lpm 

Pulsed 

Sulfate form 

Run RO to concentrate 5 

times, keeping pH around 

7; add 0.5 g/L (12 g) 

Na2SO4; keep adding 

Na2SO4 to keep conduct-
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ivity around 2.5 mS/cm 

3/14/12 10 

D 

Qf = 9.1 Lpm 

Pin = 159 psi 

Pout = 154 psi 

Q = 0.85 Lpm 

Pulsed 

Chloride form 

Run RO to concentrate 5 

times, keeping pH around 

7; add 1.7 g/L (40.1 g) 

Na2SO4; keep adding 

Na2SO4 to keep 

conductivity around 3.9 

mS/cm (total 18.92 g 

Na2SO4 added in 4.5 hours) 

3/19/12 11 

D 

Qf = 9.1 Lpm 

Pin = 159 psi 

Pout = 155 psi 

Q = 0.85 Lpm 

Pulsed 

Chloride form 

Add 1.8 g/L (212 g) 

Na2SO4; run RO and ED 

simultaneously with no 

further salt addition 

3/21/12 12 

D 

Qf = 9.1 Lpm 

Pin = 158 psi 

Pout = 154 psi 

Q = 0.85 Lpm 

Pulsed 

Sulfate form 

Run RO to concentrate 5 

times, keeping pH around 

7; add 1.7 g/L (40.3 g) 

Na2SO4; keep adding 

Na2SO4 to keep 

conductivity around 3.9 

mS/cm (total 10.87 g 

Na2SO4 added in 4 hours) 

3/23/12 13 

D 

Qf = 9.1 Lpm 

Pin = 160 psi 

Pout = 155 psi 

Q = 0.85 Lpm 

Pulsed 

Chloride form 

Run RO to concentrate 5 

times, keeping pH around 

7; add 1.6 g/L (32.9 g) 

NaCl; keep adding NaCl to 

keep conductivity around 

6.5 mS/cm (total 31 g NaCl 

added in 4 hours) 

3/30/12-

4/6/12 

14 

D 

Qf = 9.2 Lpm 

Pin = 164 psi 

Pout = 160 psi 

Q = 0.85 Lpm 

Pulsed 

Chloride form 

Run RO to concentrate 

until just below calcium 

sulfate solubility limit. Add 

8.1 g/L (160 g) NaCl, run 

ED. Refill tank, concentrate 

a total of around 21.5 

times. Run ED. 
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APPENDIX B – Tap Water Experiments 

 

 

 

Date 10/7/11  

Protocol: Run RO and ED simultaneously the whole experiment. Conductivity was kept around 

0.3 mS/cm.  

 

Time (min) 

Diluate TOC 
concentration 
(mg/L) 

Concentrate TOC 
concentration 
(mg/L) 

Permeate TOC 
concentration 
(mg/L) 

Permeate 

volume* (L) 

TOC 
concentration 
factor 

Water 
concentration 

factor* 

0 1.657     0 1.00 1.00

25 1.377 3.959 0.2384 12 0.83 1.12

55 1.262 2.827 0.3335 27 0.76 1.30

96 1.334 4.165 0.6269 47 0.81 1.67

125 1.075 4.385 0.4769 61 0.65 2.09

156 1.519 4.766 0.4715 76 0.92 2.86

181 3.041 9.705 0.4367 88 1.84 4.08

200 18.49 10 0.499 98 11.16 6.02

 *Values are approximate

1 
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Date 10/31/11 

Protocol: RO concentration. Introduce ED when conductivity is around 2 mS/cm, and run ED to 

keep conductivity at this value. ED is continuous (not pulsed). 

 

Actual 
time 

Time 
(min) 

Diluate* 
TOC 
(mg/L) 

Concen-
trate 
TOC 
(mg/L) 

Perm-
eate 
TOC 
(mg/L) 

Perm-
eate 
volume 
(L) 

% 
water 
remain-
ing 

Volume 
remain-
ing (L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remain-
ing 

1:00 0 2.937     0 100.0 118 1.00 1.00 1.00 

2:00 60 1.84   0.312 24.546 79.2 93.454 0.63 1.26 0.50 

2:30 90 3.2   0.26 36.726 68.9 81.274 1.09 1.45 0.75 

3:00 120 2.81   0 48.636 58.8 69.364 0.96 1.70 0.56 

3:30 150 3.1   0.12 60.316 48.9 57.684 1.06 2.05 0.52 

4:00 180 4.4   0.74 71.866 39.1 46.134 1.50 2.56 0.59 

4:30 210 5.4   0.26 83.696 29.1 34.304 1.84 3.44 0.53 

5:00 240 8.9   0.18 95.496 19.1 22.504 3.03 5.24 0.58 

5:30 270 17.7 0.43 0.61 106.646 9.6 11.354 6.03 10.39 0.58 

6:00 300 52.1 24.3 0.88 111.816 5.2 6.184 17.74 19.08 0.93 

Final 330 140.1 30   116.236 1.5 1.764 47.70 66.89 0.71 

  

*RO reject/ED diluate 

2 
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Date 11/20/11 

Protocol: RO concentration. Introduce ED when conductivity is around 2 mS/cm, and run ED to 

keep conductivity at this value. ED is pulsed. RO was run with decreased feed pressure to reduce 

fouling. 

 

Actual 
time 

Time 
(min) 

Diluate 
TOC 
(mg/L) 

Concen-
trate 
TOC 
(mg/L) 

Perm-
eate 
TOC 
(mg/L) 

Perm-
eate 
volume 
(L) 

% water 
remain-
ing 

Volume 
remain-
ing (L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Frac-
tion of 
TOC 
remain-
ing 

10:14 0 1.062     0 100.0 118.52 1.00 1.00 1.00 

11:44 90 1.454   0.222 16.17 86.4 102.35 1.37 1.16 1.18 

13:04 170 1.424   0.1996 29.995 74.7 88.525 1.34 1.34 1.00 

14:14 240 2.05   0.1704 42.175 64.4 76.345 1.93 1.55 1.24 

15:24 310 2.108   0.2569 54.456 54.1 64.064 1.98 1.85 1.07 

16:34 380 2.714   0.2742 66.561 43.8 51.959 2.56 2.28 1.12 

17:44 450 2.963   0.2315 78.201 34.0 40.319 2.79 2.94 0.95 

18:54 520 4.054   0.3359 89.381 24.6 29.139 3.82 4.07 0.94 

20:24 610 6.455   0.3314 101.876 14.0 16.644 6.08 7.12 0.85 

21:30 670 9.296   0.3059 107.246 9.5 11.274 8.75 10.51 0.83 

22:55 760 10.91 0.8549 0.4531 113.856 3.9 4.664 10.27 25.41 0.40 

Final   23.26 4.059   116.916 1.4 1.604 21.90 73.89 0.30 

3 
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Date 12/01/11 

Protocol: RO concentration. Introduce ED when conductivity is around 2 mS/cm, and run ED to 

keep conductivity at this value. ED is continuous (not pulsed). 

 

Actual 
time 

Time 
(min) 

Diluate 
TOC 
(mg/L) 

Concen-
trate 
TOC 
(mg/L) 

Perm-
eate 
TOC 
(mg/L) 

Perm-
eate 
volume 
(L) 

% 
water 
remain-
ing 

Volume 
remain-
ing (L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remain-
ing 

10:04 0 1.043     0 100.0 119.19 1.00 1.00 1.00 

11:00 60 1.282   0.1111 11.33 90.5 107.86 1.23 1.11 1.11 

12:00 120 1.253   0.1248 22 81.5 97.19 1.20 1.23 0.98 

13:00 180 1.383   0.09754 32.66 72.6 86.53 1.33 1.38 0.96 

14:13 253 1.708   0.1146 45.32 62.0 73.87 1.64 1.61 1.01 

15:23 323 1.817   0.07924 57.79 51.5 61.4 1.74 1.94 0.90 

16:33 393 2.278   0.106 70.34 41.0 48.85 2.18 2.44 0.90 

17:53 473 2.956   0.0865 83.06 30.3 36.13 2.83 3.30 0.86 

19:23 563 4.43   0.1471 95.62 19.8 23.57 4.25 5.06 0.84 

21:13 673 7.826   0.2524 106.52 10.6 12.67 7.50 9.41 0.80 

23:20 800 13.41 4.841 0.513 112.53 5.6 6.66 12.86 17.90 0.72 

2:20 1160 21.73 6.916   118.54 0.5 0.65 20.83 183.37 0.11 

 

Notes: Fouling caused extremely low flux

4 
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Date 12/12/11 

Protocol: Concentrate about 9 times with RO. 

 

Actual 
time 

Diluate 
TOC 
(mg/L) 

 
 
pH 

Permeate 
TOC 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remaining 

3:25 1.018    0 100.0 119.89 1.00 1.00 1.00 

4:17 1.164 8.64 0.2481 12.58 89.5 107.31 1.14 1.12 1.02 

5:07 1.318 8.63 0.2054 25.44 78.8 94.45 1.29 1.27 1.02 

5:57 1.514 8.69 0.1789 38.52 67.9 81.37 1.49 1.47 1.01 

10:30 1.86 8.71 0.1365 51.675 56.9 68.215 1.83 1.76 1.04 

11:21 2.205 8.76 0.1635 64.525 46.2 55.365 2.17 2.17 1.00 

12:12 2.771 8.84 0.1685 77.355 35.5 42.535 2.72 2.82 0.97 

1:03 3.927 8.84 0.1724 89.905 25.0 29.985 3.86 4.00 0.96 

1:57 1.625 8.84 0.1706 103.4 13.8 16.49 1.60 7.27 0.22 

2:12 4.265 8.87   106.85 10.9 13.04 4.19 9.19 0.46 

  

5 
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Date 12/20/11 

Protocol: RO concentration, maintaining a pH of 7. Introduce ED when conductivity is around 1 

mS/cm, and run ED to keep conductivity at this value. 

 

Actual 
time 

Diluate 
TOC 
(mg/L) 

Concen-
trate 
TOC 
(mg/L) 

Perm-
eate 
TOC 
(mg/L) 

Perm-
eate 
volume 
(L) 

% water 
remain-
ing 

Volume 
remain-
ing (L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remain-
ing 

2:47 1.291     0 100.0 119.24 1.00 1.00 1.00 

3:25 1.376   0.3364 12.55 89.5 106.69 1.07 1.12 0.95 

4:05 1.585   0.3424 26.72 77.6 92.52 1.23 1.29 0.95 

4:45 1.835   0.2943 40.205 66.3 79.035 1.42 1.51 0.94 

5:20 2.087   0.301 52.455 56.0 66.785 1.62 1.79 0.91 

6:00 2.626   0.2643 65.805 44.8 53.435 2.03 2.23 0.91 

10:15 3.439   0.2961 79.155 33.6 40.085 2.66 2.97 0.90 

10:55 5.525   0.2981 92.325 22.6 26.915 4.28 4.43 0.97 

11:35 7.164 6.68 0.2982 105.02 11.9 14.22 5.55 8.39 0.66 

12:13 14.73 8.367   116.53 2.3 2.71 11.41 44.00 0.26 
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Date 12/22/11 

Protocol: RO concentration, maintaining a pH of 7. Run ED. Concentrate stream was 

recirculated. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

9:23 1.119   0 100.0 117.84 1.00 1.00 1.00 

10:03 1.297 0.09266 12.49 89.4 105.35 1.16 1.12 1.04 

10:43 1.448 0.08128 25.545 78.3 92.295 1.29 1.28 1.01 

11:23 1.698 0.08554 39.3 66.6 78.54 1.52 1.50 1.01 

12:03 1.996 0.1009 52.445 55.5 65.395 1.78 1.80 0.99 

12:43 2.511 0.09252 66.385 43.7 51.455 2.24 2.29 0.98 

1:23 3.392 0.08806 79.76 32.3 38.08 3.03 3.09 0.98 

2:06 5.414 0.09784 94.76 19.6 23.08 4.84 5.11 0.95 

 

ED: 

Time 
(min) 

Volts 
applied 

TOC 
concentration 
(mg/L) 

Conductivity 
(mS/cm) 

TOC 
concentration 
factor 

Water 
concentration 
factor 

Fraction of 
TOC 
remaining 

Fraction of 
TOC not 
removed 
by ED 

0 20 5.414 1.75 4.84 5.11 0.95 1.00 

30 20 5.257 1.66 4.70 5.11 0.92 0.97 

60 20 4.918 1.64 4.39 5.11 0.86 0.91 

90 40 4.112 1.3 3.67 5.11 0.72 0.76 

120 40 3.153 0.85 2.82 5.11 0.55 0.58 

150 40 2.414 0.5 2.16 5.11 0.42 0.45 
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APPENDIX C – Ion Exchange Experiments 

 

 

Salt Cleaning Experiment 

Protocol: In both diluate and concentrate streams: 30g/L, 40g/L, 50g/L, 60g/L, 70g/L NaCl 

(same 4 L batch of water, 2 hours between additions) 

 

NaCl 
(g/L) 

Diluate 
TOC 
(mg/L) 

Concentrate 
TOC (mg/L) 

Diluate 
Ca++ 
(mg/L) 

Concentrate 
Ca++ 
(mg/L) 

Diluate 
SO4= 
(mol/L) 

Concentrate 
SO4= 
(mol/L) 

30 9.184 9.373 61.0 57.1 0.004121 0.003648 

40 12.32 13.2 81.4 80.5 0.004812 0.004232 

50 14.96 16.41 99.1 86.8 0.005318 0.005129 

60 20.51 22.65 122.5 108.2 0.006711  - 

70 22.22 25.92 139.4 122.5 0.006956 0.006699 

 

 

Determining Sulfate vs. Chloride Selectivity 

Protocol: Add 4 g/L Na2SO4 to both 6 L of diluate and concentrate streams. After 2 hours, add 6 

g Na2SO4 to each tank. 

 

  
Na2SO4 
(mg/L) 

NaCl 
(mg/L) 

SO4= 
(mol/L) 

Cl- 
(mol/L) 

Diluate initial (4 g/L Na2SO4) 3440 56 0.0242 0.0010 

Concentrate initial (4 g/L Na2SO4) 4320 41 0.0304 0.0007 

Diluate after 2 hours 2180 1817 0.0154 0.0311 

Concentrate after 2 hours 2127 1815 0.0150 0.0311 

Diluate for 2 hours after adding 1 g/L Na2SO4  3121 1961 0.0220 0.0336 

Concentrate for 2 hours after adding 1 g/L Na2SO4 3058 1943 0.0215 0.0333 
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APPENDIX D – Tap Water with Salt Addition Experiments 

 

 

 

Date 1/12/12 

Protocol: RO concentration, maintaining a pH of 7. Add 168 g NaCl (8.5 g/L), run ED with 

subsequent NaCl addition. ED was in mixed form. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remaining 

10:20 0.8788   0 100.0 117.66 1.00 1.00 1.00 

10:58 1.0150 0.1735 13.03 88.9 104.63 1.15 1.12 1.03 

11:34 1.1896 0.1930 26.22 77.7 91.44 1.35 1.29 1.05 

12:12 1.3652 0.1765 39.48 66.4 78.18 1.55 1.50 1.03 

12:51 1.6211 0.1329 53.39 54.6 64.27 1.84 1.83 1.01 

1:41 2.3016 0.1267 70.97 39.7 46.69 2.62 2.52 1.04 

2:19 3.1259 0.1014 84.85 27.9 32.81 3.56 3.59 0.99 

2:56 5.0950 0.0973 97.83 16.9 19.83 5.80 5.93 0.98 

 

ED: 

Time 
(min) 

Volts 
applied 

TOC 
concentration 
(mg/L) 

Conductivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

0 20 5.05 18.77 86.6 0.00216 

30 20 11.77 18.25 88.8 0.00222 

60 20 13.30 17.99 92.8 0.00232 

90 20 14.15 17.9 80.8 0.00202 

120 20 14.83 18.1 76.6 0.00191 

120 20 15.67 18.5 76.4 0.00191 

180 20 17.77 17.35 69.1 0.00173 

240 20 18.11 17.5 61.7 0.00154 

300 20 17.81 16.3 53.2 0.00133 

360 20 17.06 15.1 44.0 0.00110 

420 20 16.53 15.27 37.7 0.00094 

420 20 15.43 18.4 49.0 0.00123 

450 20 16.86 17.9 38.8 0.00097 

495 20 17.58 17.7 43.2 0.00108 

540 20 17.92 18 40.8 0.00102 

600 20 18.53 18.1 41.3 0.00103 

600 15 18.43 18.43 44.0 0.00110 

660 15 19.47 19.47 47.9 0.00120 

720 15 19.35 19.35 47.6 0.00119 

780 15 19.87 19.87 45.3 0.00113 
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 Date 2/27/12 

Protocol: RO concentration, maintaining a pH of 7. Add 12.0 g Na2SO4 (0.5 g/L), run ED with 

subsequent Na2SO4 addition. ED originally in sulfate form. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

10:00 1.3125   0 100.0 117.87 1.00 1.00 1.00 

10:32 1.4745 0.2466 13.145 88.8 104.725 1.12 1.13 1.00 

11:15 1.6475 0.2169 27.095 77.0 90.775 1.26 1.30 0.97 

11:50 1.8815 0.2182 40.275 65.8 77.595 1.43 1.52 0.94 

12:30 2.1895 0.2614 53.51 54.6 64.36 1.67 1.83 0.91 

1:10 2.6945 0.2597 67.89 42.4 49.98 2.05 2.36 0.87 

1:50 3.516 0.2574 81.43 30.9 36.44 2.68 3.23 0.83 

2:25 5.094 0.258 94.285 20.0 23.585 3.88 5.00 0.78 

 

ED: 

Time 
(min) Volts  

TOC 
concen-
tration 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

Cl- 
(mol/L) 

SO4= 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
not re-
moved 
by ED 

0 15 5.179 2.5 72.4 0.00181 0.01026 0.00487 3.95 5.00 1.00 

30 15 4.4165 2.5 50.6 0.001265 0.00814 0.00662 3.36 5.00 0.85 

60 15 3.7985 2.5 34.8 0.00087 0.00695 0.00729 2.89 5.00 0.73 

90 15 3.391 2.5 22.5 0.000563 0.00601 0.00811 2.58 5.00 0.65 

120 15 3.1 2.5 14.4 0.00036 0.00527 0.00852 2.36 5.00 0.60 

120 15 3.189 2.5 13.3 0.000333 0.00529 0.00867 2.43 5.00 0.62 

150 15 3.2675 2.5 8 0.0002 0.00507 0.00860 2.49 5.00 0.63 

180 15 3.369 2.5 6.32 0.000158 0.00464 0.00875 2.57 5.00 0.65 

210 15 3.095 2.5 2.72 0.000068 0.00419 0.00887 2.36 5.00 0.60 

240 15 3.1225 2.5 2.52 0.000063 0.00383 0.00884 2.38 5.00 0.60 
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Date 3/14/12 

Protocol: RO concentration, maintaining a pH of 7. Add 40.1 g Na2SO4 (1.7 g/L), run ED with 

subsequent Na2SO4 addition. ED originally in chloride form. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

9:45 1.1192   0 100.0 118.26 1.00 1.00 1.00 

10:25 1.4990 0.3991 13.16 88.9 105.1 1.34 1.13 1.19 

11:05 1.7771 0.3861 26.65 77.5 91.61 1.59 1.29 1.23 

11:45 2.1040 0.3924 39.79 66.4 78.47 1.88 1.51 1.25 

12:30 2.5764 0.4601 53.39 54.9 64.87 2.30 1.82 1.26 

1:15 2.9203 0.3993 67.89 42.6 50.37 2.61 2.35 1.11 

2:00 4.1223 0.4840 82.38 30.3 35.88 3.68 3.30 1.12 

2:25 6.0282 0.5004 95.29 19.4 22.97 5.39 5.15 1.05 

 

ED (18.9 g Na2SO4 added over time): 

Time 
(min) Volts  

TOC 
concen-
tration 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

Cl- 
(mol/L) 

SO4= 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
not re-
moved 
by ED 

0 15 5.8870 3.96 75.4 0.001885 0.00677 0.01361 5.26 5.15 1.00 

30 15 5.4450 3.93 52.0 0.0013 0.01378 0.01016 4.87 5.15 0.92 

60 15 5.0709 3.93 36.4 0.00091 0.01500 0.00924 4.53 5.15 0.86 

90 15 5.0343 3.93 26.6 0.000665 0.01483 0.00943 4.50 5.15 0.86 

120 15 4.6699 3.93 20.8 0.00052 0.01407 0.00985 4.17 5.15 0.79 

150 15 4.6041 3.93 16.0 0.0004 0.01320 0.01040 4.11 5.15 0.78 

180 15 4.5039 3.93 11.1 0.000277 0.01224 0.01120 4.02 5.15 0.77 

180 15 4.5082 3.93 11.6 0.000291 0.01229 0.01121 4.03 5.15 0.77 

210 15 4.3788 3.93 9.6 0.000239 0.01146 0.01151 3.91 5.15 0.74 

240 15 4.2549 3.93 6.9 0.000173 0.01073 0.01204 3.80 5.15 0.72 

270 15 4.2732 3.93 6.9 0.000173 0.01005 0.01255 3.82 5.15 0.73 
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Date 3/19/12 

Protocol: Add 212.3 g Na2SO4 (1.8 g/L) to tap water. Run RO and ED simultaneously. pH varies 

from 7.6 to 8.3. ED originally in chloride form. 

 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

10:15 1.147   0 100.0 118.66 1.00 1.00 1.00 

11:00 1.29 0.2623 13.31 88.8 105.35 1.12 1.13 1.00 

11:45 1.4775 0.2738 26.64 77.5 92.02 1.29 1.29 1.00 

12:35 1.684 0.2395 40.31 66.0 78.35 1.47 1.51 0.97 

1:20 1.946 0.2342 53.38 55.0 65.28 1.70 1.82 0.93 

2:10 2.283 0.2583 66.82 43.7 51.84 1.99 2.29 0.87 

3:00 2.9275 0.2848 81.29 31.5 37.37 2.55 3.18 0.80 

3:57 4.329 0.2829 95.53 19.5 23.13 3.77 5.13 0.74 

 
Actual 
time 

Volts 
applied 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

Cl- 
(mol/L) 

SO4= 
(mol/L) 

Conductivity 
(mS/cm) 

10:15 15 14.2 0.000355 0.001667 0.013863 2.78 

11:00 15 15.8 0.000395 0.00277 0.014291 3.13 

11:45 20 15.6 0.00039 0.003663 0.015356 3.43 

12:35 25 15.4 0.000385 0.00421 0.017028 3.80 

1:20 27.5 15.8 0.000395 0.004724 0.018946 4.02 

2:10 30 15.4 0.000385 0.005431 0.021272 4.08 

3:00 30 16.6 0.000415 0.006587 0.025077 4.02 

3:57 35 16.6 0.000415 0.008501 0.031615 3.91 
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Date 3/21/12 

Protocol: RO concentration, maintaining a pH of 7. Add 40.3 g Na2SO4 (1.7 g/L), run ED with 

subsequent Na2SO4 addition (10.9 g over 4 hours). ED originally in sulfate form. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

10:40 1.0435   0 100.0 118.26 1.00 1.00 1.00 

11:15 1.1075 0.2328 13.765 88.4 104.495 1.06 1.13 0.94 

11:55 1.257 0.2584 27.665 76.6 90.595 1.20 1.31 0.92 

12:40 1.4545 0.2166 40.99 65.3 77.27 1.39 1.53 0.91 

1:30 1.8045 0.1918 56.51 52.2 61.75 1.73 1.92 0.90 

2:10 2.205 0.1946 69.79 41.0 48.47 2.11 2.44 0.87 

2:55 3.1195 0.2019 83.525 29.4 34.735 2.99 3.40 0.88 

3:30 4.4505 0.1966 95.17 19.5 23.09 4.26 5.12 0.83 

 

ED (10.9 g Na2SO4 added over time): 

Time 
(min) Volts 

TOC 
concen-
tration 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

Cl- 
(mol/L) 

SO4= 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
not re-
moved 
by ED 

0 15 4.6677 3.67 62.8 0.00157 0.00432 0.01405 4.47 5.12 1.00 

30 15 4.178 3.85 47.2 0.00118 0.00368 0.01670 4.00 5.12 0.90 

60 15 3.73 3.96 32 0.0008 0.00335 0.01717 3.57 5.12 0.80 

90 15 3.557 4.00 25.8 0.000645 0.00324 0.01818 3.41 5.12 0.76 

120 15 3.2068 3.94 20.2 0.000505 0.00297 0.01755 3.07 5.12 0.69 

150 15 3.1 3.80 16.6 0.000415 0.00269 0.01649 2.97 5.12 0.66 

180 15 2.97 3.68 13.2 0.00033 0.00247 0.01577 2.85 5.12 0.64 

210 15 2.7677 3.56 11.8 0.000295 0.00233 0.01547 2.65 5.12 0.59 

240 15 2.8225 3.42 9 0.000225 0.00210 0.01467 2.70 5.12 0.60 

 

RO concentration after ED: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

11:40 5.246   105.31 11.0 12.95 5.03 9.13 0.55 

12:48 7.204   109.49 7.4 8.77 6.90 13.48 0.51 

12:51 8.176   110.23 6.8 8.03 7.84 14.73 0.53 
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Date 3/23/12 

Protocol: RO concentration, maintaining a pH of 7. Add 32.9 g NaCl (1.6 g/L), run ED with 

subsequent NaCl addition (31.0 g over 4 hours). ED originally in chloride form. 

 

RO concentration: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume (L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

10:20 1.210511   0 100.0 118.26 1.00 1.00 1.00 

11:05 1.3286 0.1922 14.365 87.9 103.895 1.10 1.14 0.96 

11:50 1.5358 0.1334 27.775 76.5 90.485 1.27 1.31 0.97 

12:30 1.6154 0.1471 40.725 65.6 77.535 1.33 1.53 0.87 

1:15 1.8592 0.1611 53.865 54.5 64.395 1.54 1.84 0.84 

5:50 2.416 0.1374 69.835 40.9 48.425 2.00 2.44 0.82 

6:35 3.312 0.1813 84.185 28.8 34.075 2.74 3.47 0.79 

7:20 4.926 0.1274 97.295 17.7 20.965 4.07 5.64 0.72 

 

ED (31.0 g NaCl added over 4 hours): 

Time 
(min) Volts  

TOC 
concen-
tration 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

Cl- 
(mol/L) 

SO4= 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
not re-
moved 
by ED 

0 15 5.548 6.4 74.0 0.00185 0.04423 0.00231 4.58 5.64 1.00 

30 15 4.414 7.5 47.5 0.001188 0.05606 0.00219 3.65 5.64 0.80 

60 15 3.756 7.23 32.8 0.000819 0.05488 0.00193 3.10 5.64 0.68 

90 15 3.61 6.92 24.0 0.0006 0.05259 0.00174 2.98 5.64 0.65 

120 15 3.194 6.53 17.3 0.000432 0.04978 0.00152 2.64 5.64 0.58 

150 15 3.07 6.31 11.3 0.000281 0.04759 0.00136 2.54 5.64 0.55 

180 15 2.776 6.37 7.5 0.000188 0.04799 0.00130 2.29 5.64 0.50 

210 15 2.64 6.32 6.0 0.00015 0.04843 0.00118 2.18 5.64 0.48 

240 15 2.444 6.3 4.8 0.000119 0.04939 0.00128 2.02 5.64 0.44 

 

RO concentration after ED: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume 
(L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction 
of TOC 
remaining 

6:20 2.6875 0.161 104.995 11.2 13.265 2.22 8.92 0.25 

6:40 6.9705   108.545 8.2 9.715 5.76 12.17 0.47 
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Date 3/30/12 – 4/5/12 

Protocol: Concentrate 2 tanks around 11.5 times with RO, maintaining a pH around 7. Add 160 g 

NaCl, run ED. Refill tank, concentrate a total of around 21.5 times. Run ED. 

 

RO concentration tank 1: 

Actual 
time 

TOC 
concen-
tration 
(mg/L) 

Permeate 
TOC 
concen-
tration 
(mg/L) 

Permeate 
volume 
(L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

2:30 1.0635   0 100.0 118.09 1.00 1.00 1.00 

3:15 1.4945 0.2592 13.35 88.7 104.74 1.41 1.13 1.25 

4:05 1.7855 0.2319 27.67 76.6 90.42 1.68 1.31 1.29 

4:55 2.1745 0.2984 42.745 63.8 75.345 2.04 1.57 1.30 

5:45 2.7825 0.2076 58.065 50.8 60.025 2.62 1.97 1.33 

6:30 3.4365 0.1748 72.145 38.9 45.945 3.23 2.57 1.26 

7:15 4.857 0.2544 86.24 27.0 31.85 4.57 3.71 1.23 

8:00 8.115 0.3234 99.925 15.4 18.165 7.63 6.50 1.17 

8:20 11.965   105.185 10.9 12.905 11.25 9.15 1.23 

Vtotal = 118 L 

 

RO concentration tank 2: 

Actual 
time 

TOC 
concentration* 
(mg/L) 

Permeate 
volume 
(L) 

% 
water 
remain-
ing 

Volume 
remaining 
(L) 

TOC 
concentration 
factor 

Water 
concentration 
factor 

Fraction 
of TOC 
remaining 

2:50 1.99 105.185 53.0 118.815 1.87 1.89 0.99 

3:35 - 119.395 46.7 104.605 - 2.14 - 

4:25 2.63 133.585 40.4 90.415 2.47 2.48 1.00 

5:15 - 148.13 33.9 75.87 - 2.95 - 

6:05 3.7 162.21 27.6 61.79 3.48 3.63 0.96 

10:05 - 176.135 21.4 47.865 - 4.68 - 

10:55 6.94 190.465 15.0 33.535 6.53 6.68 0.98 

11:45 11.7 204.365 8.8 19.635 11.00 11.41 0.96 

Vtotal = 224 L 

 

ED: 

Time 
(min) 

Volts 
applied 

TOC 
concen-
tration* 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

Fraction 
of TOC 
not 
removed 
by ED 

0 15 11.7 19.2 156 0.0039 11.00 11.41 0.96 1.00 

30 15 10.53 19.6 116 0.0029 9.90 11.41 0.87 0.90 

60 15 10.23 19.5 95.2 0.00238 9.62 11.41 0.84 0.87 

90 15 10.23 19.5 81.6 0.00204 9.62 11.41 0.84 0.87 

150 15 9.33 19 65.6 0.00164 8.77 11.41 0.77 0.80 

240 15 8.91 18.7 52.8 0.00132 8.38 11.41 0.73 0.76 

14 
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RO concentration tank 3: 

Actual 
time 

TOC 
concentration* 
(mg/L) 

Permeate 
volume 
(L) 

% water 
remaining 

Volume 
remaining 
(L) 

TOC 
concentration 
factor 

Water 
concentration 
factor 

Fraction of 
TOC 
remaining 

9:10 2.15 204.365 36.5 117.635 2.02 2.74 0.74 

10:05 - 218.81 32.0 103.19 - 3.12 - 

11:05 3.12 234.035 27.3 87.965 2.93 3.66 0.80 

12:05 - 248.625 22.8 73.375 - 4.39 - 

1:05 4.6 262.75 18.4 59.25 4.33 5.43 0.80 

2:15 - 277.73 13.7 44.27 - 7.27 - 

3:25 9.24 293.815 8.8 28.185 8.69 11.42 0.76 

5:00 17.61 307.135 4.6 14.865 16.56 21.66 0.76 

Vtotal = 322 L 

 

ED: 

Time 
(min) 

Volts 
applied 

TOC 
concen-
tration* 
(mg/L) 

Conduct-
ivity 
(mS/cm) 

Ca++ 
(mg/L) 

Ca++ 
(mol/L) 

TOC 
concen-
tration 
factor 

Water 
concen-
tration 
factor 

Fraction of 
TOC 
remaining 

Fraction 
of TOC 
not 
removed 
by ED 

0 15 17.61 20.2 132 0.0033 16.56 21.66 0.76 1.00 

30 15 15.99 19.7 140 0.0035 15.04 21.66 0.69 0.91 

60 15 16.23 20 126.4 0.00316 15.26 21.66 0.70 0.92 

120 15 15.6 20.6 106.4 0.00266 14.67 21.66 0.68 0.89 

180 15 14.43 19.4 96 0.0024 13.57 21.66 0.63 0.82 

240 15 14.04 18.3 76 0.0019 13.20 21.66 0.61 0.80 
 

*Samples were analyzed by the Illinois State Water Survey (Tekmar Dohrmann Apollo 9000 HS 

carbon analyzer) 

 


