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ABSTRACT

In this researclhthe development of a signal timing optimization modet dversaturatedurban
traffic networks withstochastic driver behavior and vehicle arrival headway is preseiiteel. model is
called Intelligent Dynamic Signal Timing Optimization Program or IDID?®PFORs formulated as a
dynamic optimization problenwhoseobjectiveis to maximiz the number ofweightedcompleted trips
in the network(weighted bythe length of the shortest route available for that tfipthe model aimat
managing transportation supply by optimizing signal timing parameters and simultaneously managing

transportation demand by redirecting vehicles to less congested routes

Solving IDSTOP is a very complicated task since it is a nonlinear optimization program with no
closed form formulation for the objective function in terms of the decision variables; and has an
extremely large decision space. Therefore, a metaristic algrithm is developed. It creates a
population of candidate solutions and improves their quality over different generations. To reduce the
runtime, a heuristic method was developed to create feasible solutions for the first population. The
feasibility of cadidate solutions was first checked using a macroscopic approach. A microscopic
approach was also used to check all the solutions that were marked feasihlleelbyacroscopic
approach. To account for stochastic driver behavior and vehicle arrival headaarakmicroscopic
simulation replications were made. The fittest individual of each population was chosen for traffic
assignment. Assigning traffic for the fittest individual not only significantly reduced the runtime, but also

insured not using inefficid signal timing parameters.

IDSTOP solutions were compared to DHECIRSIM solution using a realistic case study network
and four demand patterns covering both undersaturated and oversaturated conditions for symmetric
and asymmetric traffic demands. Bings indicated that IDSTOP solutions resulted in significantly more

efficient network performance than Dire@ORSIM solutions. IDSTOP solgtiocreased the number of



completed trips by 2.0% to 19.6% and at the same time reduced average delay by 80%%ofor
different demand patterns in the case study network. These figures indicated significant improvement in

the network performance.

dmple GA, Elitist simple GA, MieEditist GA selfadaptive ESand Elitist sefadaptive ESES+)
were used to stve IDSTOPN general, ES+ outperformed the rest of algorithms in reaching most
different levels of the uppebounds. In addition, ES+ was very efficient in oversaturated conditions
especially when demand was symmetric. Mi&itist GA was very quick @arly improvements in the
fithess value. However, in most of the cases it was outperformed by ES+ in reaching higher levels of

fitness value except for asymmetric undersaturated condgion

Using IDSTOP, Optimal Left Turn Management Program (OLTMP) vedspedv OLTMP
improves network performance by prohibiting the left turns at certain intersections of the network.
Numerical findings indicated that OLTMP had great potential to improve network performance
efficiency by optimizing the policies on the lafirns. When left turn volume was low (up to 7.5% of the
capacity of a lane), none of the left turns were prohibited sincetlefiers had enough opportunity to
make their turning maneuver in permitted phasaVhen left turn volume was very high (20% of the
capacity of a lane), none of the left turns were prohibited as well because doing so resulted in rerouting
too many vehicles and overcrowding other intersections. However, for moderate left turn volumes (10%

to 17.5% of the capacity of a lane) left tusmsre prohibited in one or two intersections of the network.

A method was proposed to determine the policy that resulted in a more efficient network
performance among variable cycles and common cycle policies. Our findings in a case study network
(symmetric oversaturateddemand pattern that was suitable for signal coordination indicated the
variable cycle length strategy has great potential to improve network performance compared to

common cycle strategy. The improvement is achieved by using more suitgb#d 8mingparameters



for each intersection and only coordinating them when needed. In the case study, variable cycle lengths
strategyreduced total delay by.5% and improved the number of completed trips by 1.68tnpared
to common cycldength stratey. Therefore, using variable cycle leng#ignificantly improved network

performance efficiency in symmetric oversaturated conditions.

IDSTOP was used to develop Optimal Network Metering Program (ONMP). ONMP improved
network performance by metering trafiat entry points of the network. ONMP was formulated and a
meta-heuristic algorithm was developed to solve it. The numerical findings showed that optimized
metering strategy reduced total delay by 10.6% and total travel time by 6.7% compared to no meterin
strategy. Therefore, optimal metering has significantly improved network performance in the case
study. In addition, optimized metering strategy reduced total delay by 4.5% and total travel time by
2.7% compared to the best uniform metering strategy.sTihdicated that ONMP solution significantly

improved network performance compared to the best uniform metering strategy.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Research Motivation

Traffic congestion in urban areas is a huge problem. In 2000, travel delayuihdiSareas was
4.0 billion hours, a total of 1.6 billion gallons of fuel was wasted, and congestion cost was $79 billion. In
2010, travel delay was increased to 4.8 billion hours, 1.9 billion gallons of fuel were wastetbtal
congestion cost was ineased to $101 billiofil]. In addition, traffic congestion is a major contributing
factor to greenhouse gas emissions and consequently environmental pollutants. Proper management of
traffic supply in urban areas could potentjateduce some of these costs (delay, fuel consumption, etc.)
and improve their livability, safety, and economic competitiveness. This can be achieved by optimizing

traffic signal timing parameters in these areas.

In fact, much research is devoted to reme traffic congestion in urban networks. Studies such
as[2], [3], [4], [5], [6], [7], and[8] developed signal control schemes for oversaturated conditiesing
fixedtime plans During oversaturated perioddraffic flow condition changesver time. Therefore, the
application of fixeetime signal timingplans to oversaturated condition resudtin suboptimal signal

timing, and consequently sutwptimal network performance.

The next step in urban traffic management was the introduction of-tiea signal strategies.
Using reatime approachcan overcomethe problem of fixeesignals.In a realtime method, signal
timing parameters change over time in response to a timdant demand Studies such afo], [10],
[11], [12], [13], [14], [15], [16], and [17] developed reatime signal plans for oversaturated condition.

However, these studies are either only applicable to very small and simplified networks or use simplified



traffic flow propagation models that are not capable of accurately addressing oveasaduconditions.

This may result in subptimal network performance.

These simplified traffic flow propagation models are deterministic while traffic related problems
are stochastic. Deterministic approaches cannot accurately model a stochastic problemstance,
YI ONRP&aO2LIAO Y2RSta yS3tSOi RAFTFSNBY(d RNADBSNEQ
deceleration, lane changes, etc. In fact, they implicitly assume that all drivers act identically, accelerate
and decelerate similarly, keep idécaél headways from their leader, travel with identical speeds, do not
change lanes, do not block the intersections, athese methods, provide valuable insights about the
problem, however due to their simplistic nature, complex system dynamics and rardtomar
behavioral tendency, along with the inherent-ikhaved nature of traffic related problems, their
prediction of the state of a transportation network may be significantly different than redhby.
instance, they may find relatively short queuadghs while queues are long enough to block upstream
intersections. As such, their application to signal timing optimization problem may result in finding sub

optimal solutions.

Adaptive signal control methods are known to be effective tools to contaffitrcongestion in
urban areas. They adjust signal timing parameters in response to avanant traffic demand.
Compared to fixedime methods, adaptive systems improve network performance especially in
undersaturated condition$18], [19], [20], [21], [22], [23]. However, in oversaturated conditions their

benefits are limited dugo the following reasons:

a) Adaptive methods use simplified traffic flow propagation models. These models are not

capable of accurately predicting traffic condition in oversaturated conditions.

b) Adaptive methods do not dynamically coordinate signaldadty user needs to specify the

corridors where signal coordination is needed.

(@]



c) Adaptive methods do not optimize signal timing parameters in combination to each other
since it significantly enlarges the decision space and complicates the processling fan globally

optimal solution in reatime.

d) Adaptive methods use several heuristics in the process of signal timing optimization that can

potentially result in finding subptimal solutions.
e) Adaptive methods do not assign traffic.

None of the a&isting signal timing optimization algorithms has all of the following capabilities

together:

1- accurately addressing oversaturated conditions

2- 1 002dzy GAYy3 F2N) 4G20KFAGAO0O RNAROSNI 6SKI @A 2NDa
3- being applicable to more realistic traffic flowa@anetwork geometric conditions

4- managing traffic supply and demand in combination to each other

5- dynamically optimizing signal timing parameters (cycle length, green splits, offsets) in

combination to each other

The main objective of this research is to deyea dynamic signal timing optimization program
that has all the abowenentioned capabilities. In order to be able to accurately address oversaturated
conditions, account for stochastic driver behavior and arrival headways, and be applicable to realistic
traffic flow and network geometric conditions, using microscopic traffic flow propagation models is
required. These capabilities are achieved at the expense of increasing the complexity of the problem.
When microscopic models are used, the structure of dgective function is unknown. As such, the
optimization techniques that rely on information on the structure of the objective function cannot be

used anymore.



In addition, managing traffic supply and demand togethard dynamically optimizing signal
timing parameters in combination to each other significantly enlarges the decision space of the problem.
The decision space is so large that traditional search techniques (e.g. exhaustive search) or methods

such as dynamiprogramming cannot be used.

As such, the second objective of this research is to devafogfficient solution technique to
solve the problem. For this purpose several decomposition techniques and heuristics will be used to find

near optimal solutionsni reasonable amount of time.

Finally, the third objective of this study is to use the developed method to optimize network
level policies on prohibiting or allowing left turrend on traffic metering.Optimizing thesdwo is not
possible without developg an efficient signal timing optimization algorithm. Both problems will be

formulated and solution techniques will be developed to solve them.

1.2 Research Objectives

The main goal of this research is to formulate and develop a fnetaistic algorithm to slve
dynamic signal timing optimizatigmroblemfor urban traffic network with oversaturated intersections.

The specific objectiveare as follows

a) Develop analytical formulation for dynamic signal timing optimization and system optimal
traffic assignmenalgorithms

b) Develop solution techniques for the proposed model

c) Compare the developedigorithm solutions taolutions of DirectCORSIM optimizer

d) Determine the most efficient algorithm in solving the problem among simple GA, Elitist
simple GA, MicrdelitistGA,selfadaptive ES, and Elitist salflaptive ES

e) Develop a program for optimal lefurn management in urban transportation networks



f) Study the effects of using a common cycle and variable cycles on network performance
efficiency

g) Develop a program fasptimal traffic metering strategy in urban transportation networks

1.3 Research Tasks

The following tasks were performed &xhievethe objectives:

a) Review the existing literature on
a. Signal timing optimization
b. Dynamic traffic assignment
c. Evolutionary algorithmgdifferent variations of GA and ES)
b) Formulate the Intelligent Dynamic Signal Timing Optimization Program (IDSTOP)
c) Develop the solution technique for IDSTOP
a. Develop code for different variations of GA and ES
b. Incorporate the code witmicroscopic traffic flav propagation models
d) Compare IDSTOP solutions to DFEQRSIM solutions on a realistic case study network
e) Study the effects of different optimization techniques in solving the problem
f) Develop a program for optimal lefurn management strategy to improveetwork
performance
g) Study the effects of using common cycle and variable cycles strategies on network
performance efficiency

h) Develop a program for optimal network metering strategy to improve network performance



1.4 Scope and Contributions of Research

This stidy developed an intelligent dynamic signal timing optimization program (IDSTOP) for
urban transportation networks with oversaturated intersections. IDSTOP was formudaigch new
objective function was introduced that wasaximizing the weighted numberf @ompleted trips. The
number of completed trips for each origin destination pair was multiplied by the length of shortest path
connecting the two pairs to distinguish longer trips from shorter ones. A set of constraints were
developed to ensure that theotutions are feasible/reasonable. Transportation supply was managed
simultaneously with transportation demand. This was done by including traffic assignment constraints in

the formulation of IDSTOP.

In this study, origin destination demand is given foe #ntire study period. IDSTOP does not
consider stochastic traffic demand. IDSTOP is not aimed at finding solutidime,do be implemented
in actual network. Instead, it creates difie solutions that can be used to study signal timing
optimization procedure S& LISOA It f & Ay 2@SNBEIFGdZNF GSR O2yRAGAZY
behaviors (in acceleration and deceleration rates, lane changes, joining the back of queue in an almost
full link) and stochastic vehicular arrival headways into accountibuigt designed to account for other

stochastic events such as traffic incidents, vehicle fai|uraffic signal failurg emergency vehicles, etc.
The main contributions of this research include:

1) The expansion of existing deterministic signal optiniatmodels to probabilistic case

2) Theexpansion of existingignal optimization models to more realistic network geometry,
and traffic conditions

3) Developing an efficient method to solve IDSTOP including the introduction of a new
objective function, neveonstraints and heuristics

4) Developing a program for optimal leiirn management to improve network performance



5) Developing a methodology to study the effects of common cycle to variable cycles policies
on network performance efficiency

6) Developing a prograrfor optimal network metering to improve network performance

As mentioned above, IDSTOP is not designed forwedt operation. In fact, its runtime does
not meet online application requirements; however, the outcome of IDSTOP can be used to improve
the performance of adaptive signal timing tools by reducing their search space, or providing them with
the best strategies (e.g. coordinating the signal, using long or short cycles) to be implemented for
recurrent conditions in transportation networks. Whexddtime signalplansare used in reaorld,
IDSTOP can find solutions for recurring traffic demamdhe network and its solutions can be
implemented. In addition, IDSTOP can be used for planning and design purposes. It can be used to
predict network grformance efficiency in (near or far) future by using forecasted traffic demands. For
planning purposes, it could be used to find out whether or not the current transportation supply is
enough to meet the demand by a more efficient supply managementgggal timing optimization), or
by a more efficient simultaneous demand and supply management (e.g. signal timing optimization and
traffic assignment), or by changes in network management policies (prohibiting or allowing left turns,
traffic metering, malkhg some streets ongvay). If none of these methods are sufficient, IDSTOP can be
used to find those locations in the network for which transportation supply needs to be increased (e.g.

adding a lane).

1.5 Thesis Organization

This document is divided int@0O chapters. Chapter 2 contains a critical review of relevant
literatures. Chapter 3 presents the mathematical formulation of the problem and explains the objective
function and constraints of the problem in details. Chapter 4 explains the proposed prog¢dSEOP)

to optimize signal timing parametersin the network. It also describesedelopment of Genetic



Algorithm and Evolution Strategynethods that will be used. apter 5 discussethe comparison
process of IDSTOP to Diréd®RSIM optimizer using a retti sample transportation network. Chapter
6 compares the efficiency different optimization methodto each other, determines the most efficient
one(s) and provides useful information on running each metit@thpter 7 describes the development
of a progam for optimal left turn management in transportation networkad Chapter &ompared
variable cycle lengths strategy to common cycle length stratégychapter 9 he development of
program for optimal traffic metering in urban transportation networksigplained. Finallychapter 10

contains the concluding remarks and recommendation for future studies.
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CHAPTER 2

BACKGROUND

In this chapter a critical review of the literature on urban traffic control and dynamic traffic
assignment is presented. The majority of the discussion is on urban traffic control which is divided into
three sections: a) fixetime signal timing, b) redlme signal timing, and ¢) adaptive traffic control. The
discussion is followed by reviewing the most relevant studies on system optimal dynamic traffic
assignmentwhich is divided into four sections: a) mathematical programming, b) optimal control

formulation, c) variational inequality, and d) simulatibased methods.

2.1 Urban Traffic Control

2.1.1 Fixed-Time Signal Timing

Much research is devoted to remedy traffic congestin urban networks. Many of the early
studies developed signal control schemes for oversaturated conditions usingtifixedignal timings.
This means that signal timing parameters were constant over time and did not change in response to a

time-variart demand.

Gazis was one of the pioneers to study signal control in oversaturated conditions. He proposed a
method to control two closely located oversaturated intersections and used service rates as control
variables and minimized delay. He did not consiéé turns in his study and determined service rates
based on the available green time between the two traffic directions. He proposestang8 traffic light
operation scheme to obtain the optimal control of the two intersections. At each stage theseate
of each approach was either at its maximum or minimiihe service rate was set to its other boundary
as soon as capacity reached demand. In the other word as soon as queue dissipated, green signal was

ended and switched to red. This strategy résd in no waste in green times that was important since
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any wasted green translated in some loss in transportation supply and consequently a drop in network
capacity. It is possible to extend this method to more than two intersections however, it insrézse

number of control variables that can cause some problems. This method is the first method that takes
the issue of queues in oversaturated condition into account however, does not explicitly use a constraint

for queue length in the analygi#] [2].

Michalopoulos and Stephanopoulos (1977) used control theory to propose a strategy to
minimize delay on a single, and on two oversaturated intersection(s) ofnayestreets. Their study
considered geue constraing, travel time between the two intersections, and turning movements. Their
objective was to find the optimal switchover point during the oversaturated period to switch the signals.
They found that in the oversaturated perigdhey had to dbcate the maximum green to the approach
with the highest traffic demandThis resulted in some queue build up in the minor street over time.
Therefore, atthe switchover point, they allocated the maximum greéuration to the approach with
the minimum trdfic demand(now with long queue)and the minimum greedurationto the approach
with the highest deman¢B].

5QFlya YR DIFITA& o6mdprtco S HdirfoyeRMBrRondliftedseciod. N 2 F
addition, instead of aimhited study period that was as long as a cycle length, they extended the study
period to more than one cycl@hey used fixed time signals and minimized the lost time by vehicles in
gueues over the entire study period. They stated that oversaturated ne¢ypooblems were dynamic
and complex optimization problems. The complexity was due to taking a larger number of control
variables into account. They found that solving oversaturation problems required optimum allocation of

routes to drivers, and optimumgnal switching at each intersection, simultaneoudly

Rathi (1986) developed a method to limit or prevent the occurrence of upstream or downstream

intersection blockages. He used the concept of spillback avoidance to rdshibefrequency and
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duration of queue spillback formed on crossing streéts. developed a model to finsolutions with
nearoptimal offsets and splits for the major arterials that facilitated traffic flow on csie=ets. There

were several assumptions ithis model: a) queue storage and receiving links must be known and
constant; b) the procedure is not dynamic, it uses historic traffic arrival data; and c) it assumes

continuous congested condition and does not work for uncongested condidns

GalTzur (1993) method metered entry traffic and adjusted that to the capacity of the critical
intersection.This method prevented blockages inside the network and enables the relocation of queues
to the links with higher capaciinside the network. As a result, the method converted an oversaturated
network to an undersaturated one. Then the available methods for undersaturated conditions were
used to solve the problem. This method however, might result in extremely large queut® at

boundaries of the network since those queues were not taken into acdéjint

Yuan et al. (2006) determined optimal signal timing in a network of three intersections for an
oversaturation period of ten minutes. They useell transmission model, and Genetic Algorithms (GA)
to find the optimal signal timing. They used a fixed cycle strategy where their algorithm determined the
cycle length, green splits, and the offset for each intersection. They found out that the besttgigng
with fixed cycle strategy has a cycle length that is less than the maximum cycle length. This finding was

not supporting the results of other studi€g).

Zhang et al. (2010) proposed an-biffe method to determinesignal timing for a préimed two-
way arterial of five oversaturated intersections. Their method determined fixed signal timing for their
study period. They also formulated a scendsased stochastic programming model to optimize signal
timing along an derial under dayto-day demand variations. They introduced a set of demand scenarios
and their corresponding probabilities of occurrence. They used cell transmission models and determined

A 2 4 A x

cycle length, green splits, phase sequence, and offsets to minimik& SELISOGSR RSt & AyO
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study arterial. They found their method working better against kighsequence demand scenarios

without losing optimaly in the average seng8].

When oversaturation occurs, traffic flow condition changes over time. As a result, the
application of a fixedime signal timing plan to oversaturated condition results in-spkimal signal
timing, and consequently a sutptimal network performance. In addition, all studies listed above used
deterministic approaches to model traffilow propagation inside the network which may result in sub

optimal performance in realvorld conditiors.

2.1.2 Real-Time Signal Timing

In reatltime methods, signal timing parameters change over time in response to aviinent
demand. This distributes queues spatially over different links of the network and also temporally over

different cycles of the study period.

Longley(1968) proposed a method that was only applicable to oversaturated and saturated
conditions. His method managed queues so that a minimum number of secondary intersections were
0f 201 SR® [2y3ftSeQa YSGK2R 2yfe RS f hut moh Witk O2y 3S
congestion in primary intersections. In the other words, it controlled blockage of secondary
intersections but not blockage of primary intersections. He used queue ratio as a performance criteria
FYR RSFTAYSR dalj dz§dzS dzy quede Irajfiolddviraion, laril assumefiSHatiaddé@t 2 F
intersections were coordinated (this was not an output of his algorithm). His algorithm worked by
changing the green split between a maximum and a minimum so that the queue unbalanced was
reduced to zero. BY dzf F A2y &GdzZRASA F2dzyR [2y3fSeQa |f3IA2NA

condition however, if any of the intersections became undersaturated, the algorithm would not be

applicable anymor¢9].
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Singh and Tamura (18Y used optimal control theory to control traffic in oversaturated
condition. They defined oversaturated period as a period of time when the queues remained at the
intersections after the end of green signal. They used explicit constraints to controltiomed queues
thus, prevened heavy congestion. Their method did not take the interference of downstream queues
with upstream discharge into account. This could be a reasonable assumption if the queue length were
short enough to prevent spillover. Theysamed that the offsets were known. This assumption could be
a limitation of their study since in oversaturated condition when queues were formed the interference
with the upstream signal was not avoidable.efdfore, the offsets should be changed based e

gueue lengthg10].

Michalopoulus and Stepahnopoulos (1978) developed atmea strategy and compared it to
their fixedtime strategy. They concluded that the rd@he timing resulted in a more efficient network

performance compared to the fixetime signal timing when the traffic volume was hijgh].

Pignataro et al. (1978) developed a method to manage traffic queue in oversaturated cosdition
by switching the green when queues reachedeaain threshold. It should be noted that the method

manages the queue rather than finding an optimal solufiby.

Abulebdeh and Benekohal (1999) developed a dynamic traffic signal control procedure for
oversaturated artedls. Their method produced retime signal timings that dynamically managed
gueue formation and dissipation. They assigned different priorities to arterial and-shests traffic
for a given queue management strategy. They formulated this problem wiheie objective function
was maximizing system throughput and penalized it by a disutility function that specified the relative
importance of an arterial and crossreets for a given queue management strategy. Their method took
both oneway and tweway aterials into account however, it was restricted to a single arterial, and only

two-phase signals. For a omey arterial, their method provided dynamic tirtependent traffic
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control. Offsets and green times were dynamically changed as a function of desandnqueue lengths.
They found similar results for a tweay arterial however, as expected, for the secondary direction their
algorithm could not provide all the capabilities associated with the primary direction. For the secondary

direction, it managedte queues so that the occurrence of queue spillback was mininfl33¢L4].

Girianna and Benekohal (2002) expanded pb8 6 RSK | yR . Sy S12KIfQ&a [ f 32
dynamic signal coordination models for oversaturated transportation networks. They formulated the
model as a dynamic optimization problem with the objective of masingithe total number of vehicles
released by the network and penalizing it by queue accumulation along the arterials and used genetic
algorithms to find the near optimal signal timing. They developed a cycle based, and a disceecte
based, network loadig model. In the cycle based model, they assumed equal cycle length for all
intersections of the network while in the discretiene based model they relaxed this assumption. They
used CORSIM to validate their model. They found that their model successéuiBged queues along
the coordinated arterials and also created opportunity for traffic progression in specified directions.
Their algorithm managed local queues by spatially distributing them over some signalized intersections
and by temporarily spreadiniipem over signal cycles. If a critical signal was located at an exit point, the
algorithm protected that signal from becoming excessively loaded. On the other hand, if a critical signal
was located at an entry point, the algorithm reduced the queues atrddream intersections and then

released the platoon from the critical intersection. This study did not take left turns into acfifnt

Chang and Sun (2003) proposeohethod to dynamically control an oversaturated traffic signal
network by using a bangang like model for oversaturated intersections, and TRANEYTor
undersaturated intersections. They called their method maximal progression probability algorithim. The
model had two different operating procedures one for saturated and one for undersaturated conditions.
They formulated the problem and proposed a heuristic method to find the signal timing. They suggested
that the most congested intersection had to beosken as the pivot intersection. At that cycle step, they
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set the cycle length of all oversaturated intersections equal to the cycle length of the pivot intersection
that was found by the banrbang like control model. Then they assigned the offsets to th&imal flow
rate approach at all intersections. After completing the cycle, a new pivot intersection was selected.
They tested their model in a network of 12 oversaturated intersections that were surrounded by 13
undersaturated intersections and they alled turning movements and compared it to TRANBN.T

They found that their method provided better results than TRANSYI6].

Lo and chow (2004) applied their Dynamic Intersection Signal Control Optimization (DISCO)
method to a oneway arterial of three intersections and compared three control strategies. These
strategies were: fixeaycle or fixeetime plan, variable green split in a fixed cycle, and varigbden
no-cycleplan. DISCO uses cell transmission model by Dag&af2@)(and simple genetic algorithms to
find the nearoptimal signal timing. They found out that the most flexible strategy plan, vargelen
no-cycle, did not necessarily result in the best answer under the limitations of solution heuristics,
especiallywhen there was no good initial solution. However, with good initial signal timing, this plan
2dz0 LISNF2NYSR 20KSNJ LI lyad ¢KSe& &dzLILR2NISR [2Qa OHJ
green no cycle plan is only a few percent better than theeottwo cycle timing plans. They stated that
the variablegreenno-cycle plan cannot contribute too much since most of the streets operated in a
state of de facto red. They concluded that a dynamic plan could only result in slightly better signal timing
if only used a good initial solution that was produced by a fizyle plan. They stated that the reason
was a larger feasible area for the dynamic plan compared to the static plan that made finding a high

quality solution much hardgi 7] [18].

Sun and Benekohal (2006) developed debel programming formulation and a heuristic
solution for traffic control in an oversaturated network with dynamic demand and stochastic route
choice. They formulatedhe problem for networks of onvay streets with turning movements with
two-phase signal plans. In their-level programming model, the upper level represented the signal
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optimization that was controlled by system manager. The lower level, modeled thg fra88 NQ& 0 SKI @A
They used genetic algorithms and a cell transmission based incremental logit assignment to solve the
problem and tested their method on two transportation networks. Using dynamic signal timing, reduced

the average link travel time by-&%and up to 14% compared to a static signal tin{it@j.

Putha et al. (2010) used ant colony optimization to solve signal coordination problem for an
oversaturated network. They formulated the problem and used ant colony te sbbnd compared its
results to simple genetic algorithms results. Their formulation and case study network was very similar
G2 DANRLFYYl YR .SyS12KIFIftQa ouHnnHO F2NXdzZ I GA2ya |
vehicles processed by networkighg the saturation period and used a disutility function to penalize the
occurrence of queues at the end of green signal. Similarly they used ideal offset, de facto red,
coordinated loops, queue storage capacity, network flows, and control variableragrist Their case
study network had 20 intersections and oenay arterials. They did not report much detail on the signal
timing that was found by ant colony and genetic algorithms however, they compared the performance
of these two methods by comparinge average value of fitness function over 30 runs. They found that
for most of the cases ant colony provided higher fithess compared to simple genetic algorithm except
for the case with 400 population size/ants and 50 generations/trials. Although theipadson showed
that ant colony optimization outperformed simple genetic algorithm in most of the cases, it did not
provide details on the output signal timing to show if it was reasonable or not. In addition, they did not

report any details on calibratioof simple genetic algorithm they usé¢2].

2.1.3 Adaptive Signal Control

Several adaptive signal control tools have been developed to optimize and coordinate signals in
realistic networks. These systems monitor traffic condition inside the network using vehicular detectors

and find signal timing in response to that. Consequerttie signal timing changes over time. Adaptive
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systems are either reactive, or proactive. Reactive systems react to the current traffic condition in the
network. On the other hand, proactive systems predict traffic condition in near feature and take

preventive actions to avoid traffic congestion.

Sydney Coordinated Adaptive Traffic System (SCATS) was developed in early 1970s in Australia.
SCATS utilizes a partially decentralized architecture and relies on detectors at stop bar locations to
predict downsteam arrival using vehicle departures and a platoon dispersion factor. SCATS finds signal
timings for background plans using the existing demands at critical intersections, and these set the base
for coordination with intersections belonging to a predefinsubsystem around it. However, the offsets
should be provided for SCATS to use them at later times. SCATS does not optimize the offsets. It uses a
feature known as marriage/divorce to dynamically group adjacent subsystems of intersections for
coordination each subsystem varying in size from one to ten intersections (NCHRP Report 340, 1991). At
LIS K2dz2NBRZ Oe0OftS tSyaitka Ay SIFOK adzzaegadsSy | NB
O22NRAYIFGA2Y FT2N) GKS RANBOI A 2ethodadbes Kot réskilSin fikding K S & (i
reasonable cycle length at saturation levEherefore, SCATS uses an upper bound to limit the value of
the cycle lengthAt off-peak hours, a cycle length is selected to provide better coordination for both
directions andhe objective is to minimize stops. In undersaturated conditions, the goal of SCATS is to
reduce stops and delay, and near saturation it maximizes throughput and controlled queues (Traffic

Detector Handbook, 200621].

Split, Cycle, Offset Optimization Technique (SCOOQT) is anothekmweslin adaptive (reactive)
signal control, developed by the Transport Research Laboratory (TRL) in the U.K. SCOOT is a centralized
traffic-responsive system that minimizes stops and delay bynupiing cycle, splits, and offsets. The
system uses detectors upstream from the intersections to predict vehicle arrivals downstream at the
stop bar, and update its predictions every few seconds. The optimization is performed using heuristics
from TRANSY Dusidering only small changes in the signal settings (given that the solution needs to be
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obtained in reatime), and also not to significantly disrupt coordination in a single step. However, this
limits the changes to gradual modifications over time thay be slower tharwhat isneeded under

unusual circumstances (e.g. incidents), and it indicates that the optimization is local ttadineglobal.

In addition, using TRANSYT for optimization can be a limitation since its solution is local as well. SCOOT

has been deployed in more than 200 cities worldw{i22], [23].

Optimized Policies for Adaptive Control (OPAC) minimizes a function of total intersection delay
and stops for predetermined time hodms. Fourversions of OPAC are available. OPAC | uses dynamic
LINEINF YYAY3T (G2 RSGSNXYAYS 3Ft2olfteée 2LIGAYFE aradayl ¢
second optimization algorithm that was developed, ORIAConsists of a simplification of thePAd
algorithm. It was designed to serve as a buildahack in the development of a distributed online
strategy. In OPAC Ill, signal timings are optimized using a rolling horizon (typically as long as an average
cycle) and a simplified dynamic progratimg approach based on detector data and predictive traffic
Y2RStaz odzi 2yfeé GKS aKSIFRé LRNIA2Y 2F (GKS LINBRAO
actual detector information (not on the predicted demand). The system can make decisiopsleme?
seconds, and phase sequencing is not free but based on the time of day, skipping phases if there is no
demand for such movements. It is noted tl@kphases are also constrained by maximum and minimum
green times. The OPAC IV (orHRACS) versiais intended to incorporate explicit coordination and
progression in urban networks and is known as the vitixald-cycle OPAC. The virtdated-cycle
restricts the changes in cycle lengths at intersections around a given primary signal, so thaarthey c
fluctuate only in small amounts to maintain coordination. This may result in finding a local optimal
solution rather than a global one. There are three control layers in the OPAC architecture: 1) local
control (using OPAC Ill), 2) coordination (offsptimaization), and 3) synchronization (netwernkde
virtual-fixed-cycle). TheipcomingOPAC V will include dynamic traffic assignment in the optimization of

the signal timing$24].
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Realtime Hierarchical Optimized DistributeBffective System (RHODES) developed at the
University of Arizona starting in 19925]. RHODES has three hierarchical levels: 1) intersection control,
2) network flow control, and 3) network loading. RHODES optimizes differeasures of effectiveness
such as delay, number of stops, or throughji2é] by using real time input from vehicle detectors. It
predicts traffic fluctuations in the short and medium terms to find the following phases and their
duration. At the intersection control level, an optimization is carried out with the dynamic programming
NRdziAyS &/ hté GKIFIG dzaSa | GNIFFAO Ft26 Y2RSt 060!l f
40 seconds). The solution for the firdhgse is implemented and the optimization is performed again
based on updated information. The network flow control uses a model called REALBAND to optimize the
movement of platoons identified and characterized by the system (based on size and speed}ek ar
decision tree with all potential platoon conflicts and finds the best solution using results from APRES
NET, which is a simplified model to simulate platoons through a subnet of intersections (similar to
PREDICT). The rolling horizon at this levigl the order of 20800 seconds. Finally, the network loading
focuses on the demand on a much longer prediction hori@orthe order of one hoyr Some of the
limitations of RHODES arise with oversaturated conditions, under which the queue estinmatignot
be properly handled by PREDICT. Also, the predictions consider signal timing plans for upstream
intersection, which may change at any point in time creating deviations between the estimated and
actual arrival times at the subject intersection. lasthere are several parameters used in the queue
predictions such as queue discharge speeds that should be calibrated to field conditions, and the fact

that an upper layer is used for network coordination demands additional infrastructure.

RealTime Traffic Adaptive Control Logic (RTACL) was derived from OPAC and specifically
designed for urban networks. This system uses macroscopic model to select the next phases. Most of
the logic is based on local control at the intersection level, amdpiedictions are found for the next

two cycles (short term), leading to recommendations for the current and the next phase, anteétang
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estimations for the following phases. These recommended actions (short and longttegeperate
estimates of demandhat are used at the network level by nearby intersections, which can adjust their
decisions based on the new predictig23]. RTACL may be more suitable for undersaturated conditions
since its macroscopic model may not bdeato properly handle oversaturated conditions. In addition,

its solution is local rather than global optimum.

t NEANI YYFGA2Y 5@yl YAldz$S o6twh5, b0 gFa RSGSt 2LISF
de Toulouse (CERT), France. PRODYN uses a rolling faritue optimization and predicts vehicle
arrivals and queues at each intersection every five seconds and for periods of 140 seconds. At the
intersection level, it minimizes delay by forward dynamic programming with minimum and maximum
green time constraits. At the network level it simulates and propagates the outputs to downstream
intersections for future forecastin28]. It has a centralized (PRODMNand a decentralized version
(PRODYID). PRODY¥N has shown better perfornmee, but due to its complexity is limited to a very
low number of intersections. PRODDNcomes in two versions: one with information exchange
between intersections (better suitable for networks), and one with information from the immediate

links.

Urban Taffic Optimization by Integrated Automation/Signal Progression Optimization
Technology (UTOPIA/SPOT) was developed by Mizar Automazione in lItaly. It has a module for
optimization of a given criteria (e.g. delay or stops) at the intersection level (SR@®ha module for
dealing with areawide coordination between intersections (UTOPIA), with the objective of improving
mobility for both public and private transport. Intersections with SPOT share signal strategy and platoon
information with their neighborgor better network operation, but UTOPIA is needed for an incréase
number of intersections linked together, allowing for awwale predictions and optimization. The
predictions at the network level (and the optimized control) are made for a horizon ofidStes, and
individual intersections compute their own predictions (for the next two minutes) using local data.
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Adjustments to the signal strategies can be made every three seconds. Deviations with the network
level predictions are sent to the centralrdooller so that better predictions for other intersections are

available[29].

Adaptive traffic control tools described above have the potential to improve sysiEia
performance and they use retime data for determining aontrol policy. Some of them have been
proved in field installations with successful results and have been distributed extensively around the
world. They are flexible in the sense that they can frequently change cycle times (or they are acyclic) and
have he capability to adjust the signal strategy based on predictions every few seconds. However, as it
has been pointed ouf30], they have some limitations in terms of uncertainty in the predictiohs
traffic flow and arrival tines, and their lack of evolving mechanisms for-adjisting or learning over
time. In addition, some of the current adaptive control systems (OPAC, PRODYN, and RHODES) use
recursions based on dynamic programming or enumeration of a reduced version avdiiable space
for a given rolling horizon, but with the shortcoming that the best solutions are based for the most part
on predicted traffic, which may not be accurate enough to obtain optimal behavior (it is also recalled
that the forward dynamic programing recursions find the optimal values and then move backward in
time to estimate the optimal policy, from the end of the horizon, which has the most uncertainty).
Overall, the adaptive system reviewed above, significantly improve network performanqgeacednto
previous systems however, they are not aimed at finding globally optimal signal timing for the network
due to their realtime constraints. In addition, they are not able to determine which movements to
coordinate. In fact, this is one of their inpdata. Moreover, they also do not optimize all decision
variables simultaneously and in combination with each other. In addition, these methods use models to
predict traffic condition in future that are very simplified (to reduce runtime) and are usuaily
capable of accurately modeling oversaturated conditions. Finally, adaptive models do not

simultaneously manage transportation supply and demadndhould also be noted that these adaptive
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methods minimized delay alone, or in combination with stop imimation or speed maximization. As
shown in different studies, in oversaturated conditions improving the capacity of the network is more

important than reducing delaj1] [32] [33] [13].

2.2 Dynamic Traffic Assignment

Staticdemand and deterministic user equilibrium and system optimal problems can be easily
solved by FrankVolf algorithm.However, complex system dynamicandom driver behaviorand the
inherent ilkbehaved nature of DTA problemgsults in complicatednodeling issues associated with
analytical method$34]. A lot of formulations and solution approaches have been introducea she
pioneering work of Merchant and Nemhauserl978 These works can be categorized into four groups

basedon their methodology:

1) Mathematical programming,

2) Optimal control formulation,

3) Variational inequality, and

4) Simulationbased methods

In the restof this chapter, these methods are briefly explained and their strengths and

drawbacks are highlighted.

2.2.1 Mathematical Programming

Mathematical programming DTA models discretize the time and formulate the problem in that
discretized timesetting. The firsattempt to formulate the DTA problem as a mathematical progfam
Merchant and Nemhauseryas limited to the deterministic, fixedemand, singlalestination, single
commodity, system optimal cag85] [36]. The model was based on link exit function to propagate

traffic, and a static link performance function to find travel cost as a function of link volume. The
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formulation was a flowbased, discrete time, neoonvex nonlinear mathematical programhis model
provided a proper generalization of the conventional static system optimum assignment problem, and
the global solution was obtained by solving a piecewise linear version of the model.iha880, Ho
proved that such global optimum could betdrmined by solving a sequence of at mést p linear

programs, whera) is the number of time period87].

Carey proved that the MerchaiMemhauser model satisfies the linear independence constraint
gualification because the proposed exit function was continuously differentidBR). Carey
manipulated the exit functions to obtain athematical and algorithmic advantages over the original
formulation and make it a webehaved convex nonlinear prograf@9]. This mathematical program
could be solved by regular mathematical programming software. The forionlavas extended to
handle multiple destinations instead of one. The formulation had the-canmvexity issues resulted from
Firstin-FirstOut (FIFO) property. This problem exists in all mathematical programming approaches for
both user equilibrium and stem optimum cases. The FIFO requirement can be easily satisfied in a
single destination DTA however, in general networks it requires adding additional constraints to the
formulation that results in a nowonvex feasible area. This roanvex feasible areaignificantly
increases the computational requirements to solve the problem and usually makes it impossible to get

reaktime results[40].

LY FTRRAGAZ2YIS Ay a2dh®OVE2WER¥ISE A5¢ f Aned kDA RRY B S
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Some of the issues relate to FIFO property, and holding back are presented by Carey and Subrahmanian

(2000)[41].

Laterin 1993 Birge and Ho extendellerchantNemhauser model to stochastic demand. They

relaxed the assumption that the-D is known for to entire study period by developing a multistage
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stochastic mathematical programming formulation that was neittinear nor convex. Their model
assumed a finite number of scenarios of random variable realizations. This formulation assumed that

current assignment decisions were independent of futur® {42].

Based on the cell transmission model (Daganzo, 1994), Ziliaskopoulus (2000) developed a linear
programming formulation for single destination system optimal DTA. Using cell transmission model, he
obtained link volumes and travel cost in each time stephaf study period. The model was more
sensitive to traffic realities and provided some insights on the DTA problem propertiagalsuiot an

operatioral model for realworld applicationg43].

Li et al. (1999) modeled system aptl dynamic assignment as a linear programming with
multi-origin multidestination. They used cedlansmission model and observed thBtFOconstraints

were generally satisfief#4].

Abdul Aziz and UWksuri (2011) proposed ai-level and a singkevel formulation to
simultaneously manage traffic supply and demand. Theyl gedl transmission model and solved the
singlelevel program They optimizedphase durationsand found system optimal traffic assignment.

They concludednat their model found a better solution than fixauine signalg45].

An issue in this part is the tradd#f mathematical tractability with traffic realisnizor example
to represent the FIFO property, nanonvex constraints are needed. Noanvexity in DTA results in loss
of analytical and computational tractability for deployment in general networks. In addition, this method
usually has problems related to: the usedliok performance/exit functions; tracking back of queues;
efficient solutions for reatime purposes in largecale networks; and a clear understanding of solution

properties for realistic scenarios.
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2.2.2 Optimal Control Formulation

In constrained optimal contd theory DTA formulations, it is assumed tf@&D demand are
known as a continuous function of time, and link flows are determined as continuous functions of time
as well.Constrains are similar to those for the mathematical programming; however, instédeing

defined for discrete time intervals, they are defined for continuous time setting.

Linkbased optimal control formulation for a single destination cased was introduced by Friesz et
al.in 1989. The model included both system optimal and useiildggium objectives and assumed that
adjustments from one state to another may occur concurrently as the network condition changes. The

system optimal model is a temporal extension of the static system optimal nj@lel

Ushg optimal control theory, Ran and Shimazaki (1989) developed-adsdd system optimal
model for urban transportation network with multiple origins and destinations. To reduce the
computational complexity of the problem, they used linear exit functiasd quadratic link
performance functions. Their model had two issues: a) unrealistic modeling of the congestion, and b)

not taking the FIFO constraint into accoy#t].

Optimal control theory was an attractive method to deberidynamic systems, however
negative factors still exist: 1) The lack of explicit constraints to ensure FIFO and holding of vehicle at
nodes 2) The lack of realistic modeling of congestion and-satration 3) The lack of solution

approach for general ne/orks.

2.2.3 Variational Inequality

Variational Inequality (VI) provides a general formulation platform for several classes of
problems in DTA context like: optimization, fixed point, and complementarity. VI handles more realistic
traffic scenarios and sensiitly analysis and extensions can be easily performed. This approach is more
general than other two approaches and provides greater analytical flexibility and convenience in
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addressing various DTA problemgl highlights the inability of the mathematical ggramming
approaches in addressing scenarios with asymmetric Jacobean matrices for the travel cost functions.
However, VI methods are more computationally intensive than other two methods. In addition, traffic

realism issue exists in these modé&sveraktudies have used the concept of VI for 048] [49].

2.2.4 Simulation -Based Methods

In contrast to analytical DTA models, simulation based DTA models use a traffic simulator to
capture the system dynamO | YR RNAOGSNBQ O0SKIFIGA2N 2y NRdziS OK
replicate the traffic propagation, holding back, congestion and physical queue impact, signal
coordination,andNJ Yy R2 Yy Sda 2F RNAGSNBQ 0SKI QA 2 NHdgredter Y dzf I (i A

acceptability for realvorld deployment due to its flexibility and fidelity.

In simulation based models, simulator is dedicated to determining the shortest path and search
for optimal solution, in addition to propagating theffic. Mahmassanand Peeta (50] [51] [52]) used
a mesoscopic traffic simulator, DYNASMART, as part of an iterative algorithm to solve System Optimal
(SO) and User Equilibrium (UE) solution of their DTA models. From a computational standpoint, further
modification is still required to deploy theideterministic DTA models to retime environment.
CONTRAM simulatof%3] [54] [55]) was implemented to address SO and UE DTA problems by Ghali and
Simith (1992)[56] and Smith (1994). Rolling horizon DTA models was developed by Peeta and
Mahmassani (1995) to improve computational efficiency. The rolling horizon DTA can use the current
information and neatterm forecast for a solution in gqsareattime situation. DynaMIT was introduced
by BenAkiva et al. (1997p7] to approximate real time traffic condition in a dynamic traffic assignment
system, which consists of two simulators, demand and supply simulatbiclge are moved in packets

in these mesoscopic simulators to reduce computational load. However, it is incapable of handling the
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intersection, and gapcceptance behaviqsimilar to the other simulation models mentioned abave)

2.3 Summary

In this chapter previous studies in the area of urban traffic control and dynamic traffic
assignment were reviewed. In summary, both fitede and realtime signal timmg optimization
approactes are based on deterministic and oversimplified models to represent traffic propagation in
transportation networks. These methods, provide valuable insights about the problem, however due to
their simplistic nature, complex systedynamics and random driver behavioral tendency, along with
the inherent iltbehaved nature of traffic related problems, their optimal solution may result in sub

optimal network performance in real world.

Adaptive traffic control overcomes some of thesesuiss; however, they are not capable of
finding an optimal solution since they do not optimize all signal timing parameters. In fact, since doing
SO requires extensive computations that usually exceed the-tiesd constraints, only some of the
signal timirg parameters are optimized. Use of simplified prediction models is another limitation of
adaptive models especially in oversaturated condition. In addition, none of the adaptive models manage
both traffic supply and demand simultaneously. Finally, adapixstems need to know the corridors

were signal coordination is desired as an input.

Based on the review of the state of the art in urban traffic control we identified lack of a signal
timing optimization method that simultaneously manages traffic supply demand, optimize all signal
timing parameters, considers complicat®that occur in oversaturated conditions, and account for
different driver behaviors and vehicle specifications. The main objective of this study is to formulate and

develop a solutiortechnique to solve such problem.

29



2.4

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

References

D. C. Gazis, "Optimum Control of a System of Oversaturated IntersecOpesgtion Researc
vol. 12, no. No. 6, pp. 848881, Nov- Dec. 1964.

D. C. Gazis and R. B. Potts, "The Oversaturated Intersecti@etamd International Symposi
on the Theory of Road Traffic FldRaris, 1965.

P. G. Michalopoulos and G. Stephanopoulos, "Oversaturated Signal System with Queu

Constraintdl," Transportation Researctiol. 11, pp. 413121, 1977.

G. C. D'Ans and D. C. Gazis, "Optimal Control of Oversaturateéh®ddrerward Transportatio
Networks, Transportation Scienceol. 10, no. 1, pp.-19, February 1976.

A. K. Rathi, "A Camti Scheme for High Traffic Density Sectofsdhsportation Research Bol.
22B, no. 2, pp. 8101, 1986.

A. GalTzur, D. Mahalel and N. Prashker, "Signal Design for Congested Networks B
Metering," Transportation Research Record No. 138111-118, 1993.

C. Yuan, X. Yang and F. Shen, "Fixed Cycle Strategy in Oversaturated Network Traffic C
the 6th World Congress on Intelligent Control and Automag696.

L. Zhang, Y. Yin and Y. Lou, "Robust Signal Timing for Artevgdds Dayto-Day Deman

Variations," inTransportation Research Boal¥ashington DC, 2010.

D. Longley, "A Control Strategy for a Congested Computer Controlled Traffic Ne
Transportation Researctol. 2, pp. 39408, 1968.

M. G. Singh and H. Tamura, "Modelling and Hierarchical Optimization for Oversaturatec

Road Networks,International Journal for Controlpl. 20, no. 6, pp. 91334, December 1974.

P. G. Michalopoulos and G. Stephanopoulos, "Optimal ContrOlvefsaturated Intersectior

30



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Theoritical and Practical Consideratiomraffic Engineering and Contrppy. 216221, 1978.

L. J. Pignataro, W. R. McShane, K. W. Crowley, B. Lee and T. W. Casey, "Traffic
Oversaturated Street Networks," NOMRReport 194, TRB< National, Research Cc
Washington, D.C., 1978.

G. AbuLebdeh and R. F. Benekohal, "Development of Traffic Control and Queue Man:
Procedures for Oversaturated Arterial3yansportation Research Recon. 1603, pp. 11927,
1997.

G. AbuLebdeh and R. F. Benekohal, "Genetic Algorithms for Traffic Signal Control ant
Management of Oversaturated Tweay Arterials, Transportation Research Recond, 1727, pf
61-67, 2000.

M. Girianna and R. f. Benekohalyhamic Signal Coordination for Networks with Oversatui

Intersections, Transportation Research Recand, 1811, pp. 12230, 2002.

T-H. Chang and &(. Sun, "Modeling and Optimization of an Oversaturated Signalized Net
Transportation Research Part®). 38, pp. 68707, 2004.

H. L. Lo and H. F. Chow, "Control Strategies for Oversaturated Tiftioyal of Transportatic
Engineering ASC#gl. 130, no. 4, pp. 464678, July/August 2004.

C. Daganzo, "The IC&ransmission Model. Part I: A Simple Dynamic Representation Of H
Traffic," Research Reports, California Partners for Advanced Transit and Highways (PATH
of Transportation Studies, UC Berkeley, Berkeley, CA, 1992.

D. Sun, R. F. Bekohal and S. T. Waller, “Bvel Programming Formulation and Heuristic Solt
Approach for Dynamic Traffic Signal Optimizatio@8mputerAided Civil and Infrastructu
Enginneringyol. 21, pp. 324333, 2006.

R. Putha, L. Quadrifoglio and Eciman, "Using Ant Colony Optimization for Solving Traffic ¢
Coordination in Oversaturated Networks," Tmansportation Research Boartashington D¢
2010.

31



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

U. Dutta and D. McAvoy, "Comparative Performance Evaluation of SCATS -tinte@r€ontrd

Systems," ifransportation Research Forug010.

C. S. Jhaveri, J. Perrin and P. Martin, "Scoot Adaptive Signal Control: An Evaluati
Effectiveness over Range of Congest ion IntensitiesTtansportation Research Board Anr
Meeting, Washington DC, 2003.

J. Perrin, P. Martin and B. G. Hansen, "Connecting SCOOT to CORSINmeR&ign:
Optimization Simulation,” INECONO1: The 27th Annual Conference of the IEEE In
Electronics Societ001.

N. Gartner, F. J. Pooran and C. Andrews, "Implementation of the OPAC adaptive control s

a traffic signal network," itntelligent Transportation Systems, 2001. Proceedings., |EEH.

D. E. Lucas, P. B. Mirchandani and K. L. Head, "Beimgpte Simulation to Evaluate R&aine
Traffic Control StrategiesJransportation Reserch Record 1723, 1615, 2000.

P. Mirchandani and L. Head, "A réiahe traffic signal control system: architecture, algorith
and analysis, TramsportationResearch Part C: Emerging Technologieis,9, no. 6, pp. 41832,
2001.

TurnerFairbank Highway Research Centdfederal Highway Administration, "Adaptive Cor
Software, Publication No. HR0&037," 2005.

R. Van Katwijk, Mukfhgent LookAhead Traffic Adaptive Control, Delft, The Netherlands:
thesis, Delft University of Technologu, 2008.

M. Van den Berg, A. Hegyi, B. De Schutter and J. Hellendoorn, "Integrated Traffic Control -
Urban and Freeway Netwirks: A Model Pcéde Control Approach,European Journal
Transport and Infrastructure Researgh|. 7, no. 3, pp. 22350, 2007.

C. Shao, Adaptive Control Strategy for Isolated Intersection and Traffic Network, Ph.D. TF
University og Akron, Ohio, 2009.

W. R. McShane and R. P. Roess, Traffic Engineering, 2 ed., New Jersey: Prentice Hall, 19¢

32



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Girianna and R. f. Benekohal, "Dynamic Signal Coordination for Networks with Oversi

Intersections, Transportation Research Recand, 1811, pp. 12230, 2002.

E. B. Lieberman, J. Chang and E. S. Prassas, "Formulation of-tem&eabntrol Policy fi
Oversaturated Arterial," 2000.

S. Peeta and A. Ziliaskopoulos, "Foundations of Dynamic Traffic Assignment: The Past, tr

and the Future,Networks and Spatial Economics, 1(3f#), 233266, 2001.

D. K. Merchant and G. L. Nemhauser, "A Model and an Algorithm for the Ryfaadffic
Assignment ProblemsTransportation Sciencpp. 183199, 1978a.

D. K. Merchant and G. L. Nemhauser, "Optimality Conditions for a Dynamic Traffic Ass

Model," Transportation scienc@p. 206207, 1978b.

J. K. Ho, "A successive Linear Optimization Approach to the Dynamic Traffic Assignment

Transportation Science 1gp. 295305, 1980.

M. Carey, "A Constraint Qualification for a Dynamic Traffic Assgnment Mdaahsporatiol

Science 2(hp.55-58, 1986.

M. Carey, "Optimal Time Varying Flows on Congested Netw@k&fation Research 35(19p.
5869, 1987.

M. Carey, "Nonconvexity of the Dynamic Assignment ProblErarisportation Researcyol. 26B
no. 2, pp. 127133, 1992.

M. Carey and E. Subrahmanian, "An Approach to Modeling-Vangng Flows on Conges
Networks, " Transportation Researchpl. 34B, no. 3, pp. 1583, 2000.

J. R. Birge and J. K. Ho, "Optimal Flows in Stochastic Dynamic Networks with Cat
Operation Research 41(pp. 128142, 1993.

A. K. Ziliaskopoulos, "A Linear Programming Model for the Single Destination System (

Dynamic Traffic Assignment Problemiransportation Science 34(pp. 3749, 2000.

33



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Y. Li, A. K. Ziliaskopoulos and S. Travis Waller, "Linear Programming Formulations fo
Optimum Dynamic Traffic Assignment with Arrival FBased and Departure TinBasel
Demands, Transportation Research Record 1667.,5259, 1999.

M. AbdulAzizm H and S. V. Ukkusuri, "An Analytical Framework for Vehicular Traffic Signa
Integrated with Dynamic Traffic Assignment using Cell Transmission ModbBdthiinternationa

IEEE conference on Intelligent Transportation Systéfashington OC. , 2011.

T. L. Friesz, D. Bernstein, J. Mehta N, L. Tobin R and S. Ganjalizadeh, "Dynamic Netw
Assignment Considered as a Continuous Time Optimal Control ProDleendtion Research 37(
pp. 893901, 1989.

B. Ran and T. ShimazakA General Model and Algorithm for the Dynamic Traffic Assigr
Problems," ifProceedings of the fifth World Conference on Transport Resd88.

B. W. Wie, R. L. Tobin, T. L. Friesz and D. Bernstein, "A Discrete Time, Nested Cos
Approach to the Dynamic Network User Equilibrium Probldmghsportation Science 29(1p.
7992, 1995.

B. Ran, R. W. Hall and D. E. Boyce, "A-Baskd Variational Inequality Model for Dyna
Departure Time/Route Choicd,fansportation ResearctoB(1),pp. 3146, 1996.

H. S. Mahmassani and S. Peeta, "System Optimal Dynamic Assignment for Electror
Guidance in a Congested Traffic Network,"Piroceedings of the Second International C

Seminar on Urban Traffic Network3apri, Italy1992.

H. Mahmassani and S. Peeta, "Network Performance Under System Optimal and User Ec
Dynamic Assignments: Implications for ATIBg@nsportation Research Record 1408, 8393,
1993.

H. S. Mahmassani and S. Peeta, "System Optimal Dynamic Assignment for Electror
Guidance in a Congested Networldtban Traffic Networks: Dynamic Flow Modeling and Co
pp. 227, 1995.

34



[53]

[54]

[55]

[56]

[57]

D. Leonard, P. Gower and N. B. Taylor, "CONTRAMtu&tro€ the Model," Transport and Rc
Research Laboratory, Crowthorne, United Kingdom, 1989.

N. Taylor, "An Enhanced Traffic Assignment Model," TRRL Research Report RR249, Tra
Road Research Laboratory, Crowthorne, United Kingdom, 1990.

N. B. Taylor, "CONTRAM Modeling in Rea ContextA Review and Prognosis," TRRL pr
report RR/TT/088/96, Transport and Road Research Laboratory, Crowthorne, United K
1996.

M. O. Gahli and M. J. Smith, "A Dynamic Traffic Assignmedel\ManPresented at the 71st T
Annual MeetingWashington D.C., 1992.

M. E. BerAkvia, H. N. Kousopoulus, R. Mishalani and Q. Yang, "Simulation Labora
Evaluation Dynamic Traffic Management SysterSCE Journal of Transportation Engimeg
123 (4),pp. 283289, 1997.

35



CHAPTER 3

IDSTOP FORMULATION

3.1 Introduction

Finding signal timing parameters that result in an efficient network performance can be
formulated as an optimization problem. The decision variables of this problem are sigriady
parameters (i.e. number of phases, cycle length, green splits, and offsets) and the objective function is
to optimize one or several Performance MeasureM) of the network (i.e. number of trips, network
throughput, vehiclemile travelled, averagespeed, delay, travel time, emissions, &tdn addition,
several constraints are needed to ensure that the solution is feasible and/or desired (e.g. a solution that
creates excessively long delays at a minor road may not be considered desired, a vecydbdength

of for example 10 seconds may not be considered feasible).

Network performance may be further optimized if drivers are dynamically routed to the paths
with lower traffic congestion. This can be achieved by dynamically assigning tralffecriettvork. There
are two major traffic assignment approaches: user equilibrium and system abt8mce the focus of
this study is to identify theptimal network performancgsystem optimal concept is used. In this case,
the entire problem of signal timg optimization and traffic assignment could be formulated in a single
level optimization program. The decision variables are signal timing parameters, and turning volumes at

each intersection over time.

In the rest of this chapter, the decision variablebjective functions, and the constraints of the
problem will be introducedAt the end a method to obtain an uppéound to IDSTOP objective function

is introduced.
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3.2 Decision Variables

The decision variables of the problem are signal timing parametesd| aftersections of the
network in each time interval. That is, number of phases (phase plan), the cycle lengths, green splits,
and start time of the first green of all intersections at each time interval. For traffic assignment purpose,
turning volumesat each intersection at each time interval are also decision variables. The list of all

decision variables and their notation is presented below:
n number of phases at intersectid@t time intervalo
0  cycle length of intersectioifat timeinterval 0
i 5 split for green for phas&of intersection@t time intervald (see Figure 3.1)
i £€") start time of the first phase of intersectid@t time intervald

W ; turning traffic volume at upstream intersectiof2moving towards downstream

intersection’@n a path from source nodeto a sink nodé at time stepo

Figure 31. Phases in an intersection
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3.3 Objective Function

The ultimate goal of signal timing optimization is to improve transportation network
performance. This can be achieved by selecting different network Performance Measures (PM) to be
optimized as the objective function of the problem. Proper selection of the objefttivaion (i.e. which
PM of the network to be optimized) is extremely important due to the following reasons: a) Optimizing
different objective functions may result in finding different solutions; b) Optimizing some objective
functions may require adding #& constraints to the problem; ¢) Optimizing some objective functions
may require a larger area of the network to be simulated which is computationally expensive; and d)
Different objective functions may have different convergence speeds. Some canditpetive

functions are:

1- Delay minimization (OB1),

2- Travel time minimization (OB2),

3- Throughput minus queue maximization (OB3),
4- Trip maximization (OB4), and

5- Weighted trips maximization (OB5).

3.3.1 Delay Minimization

For a specific trip, travel delay is the timéference between the actual travel time, and the
hypothetical ideal travel time (under free flow conditions and the absence of traffic control devices).
Therefore, travel delay minimization (i.e. reducing total travel delay for all vehicles for the ettie
duration), on the average reduces travel times and brings them closer to the ideal travel time. This is
desired however, to get the best results one needs to pay attention to the following point. When no
vehicle enters the study area (i.e. the netkiptravel delay is at its lowest level (i.e. zero). Therefore,

delay minimization may found solutions that keep many vehicles outside of the study area (i.e. where
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delays are not calculated) and let only a small number of them enter the network. Thits rieslower
travel delays inside the network at the expense of excessive delays at the boarders. This could be

prevented by:

a- Expanding the study area such that delay at the boarders of the network is taken into account. This
ensures that not too many veties are metered (for the purpose of improving interior network
performance). However, this method is computationally expensive especially in oversaturated
conditions. In these conditions, queues at the boarders may become too long (due to the large
traffic demand) and require substantial length of entry links to be modeled (computationally
expensive especially when microscopic models are used).

b- A set of constraints may be used to ensure that all traffic demand is entered the network. This
strategy will wak for undersaturated conditions where traffic demand is below network capacity.
However, in oversaturated conditions, it is not possible to process all traffic demand because
network does not have enough capacity to do so. Therefore one needs to decideniich of
traffic demand should be entered into the network which is a very challenging task and has

significant influence in the solution of the problem.

3.3.2 Travel Time Minimization

Another objective function that has great potential to improve network perfance is travel
time minimization that is minimizing total travel time for all vehicles in the network for the study period.
Travel time, is one of the most direct costs experienced by users of a transportation network. It simply is
equivalent to the tine needed to process a vehicle in the network. Therefore, when it is minimized, total
process time for vehicles is reduced and as such, the network performance is improved. However,
similar to delay minimization, not letting vehicles into the network resuitlowest possible total travel

time (i.e. zero). To prevent holding vehicles at the entry points, one needs to either expand the entry
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links of the network to more accurately estimate travel time (which is computationally expensive) or
need to add consaints to the problem to ensure all demand is satisfied (which is not possible in

oversaturated conditions).

3.3.3 Throughput -Minus -Queue Maximization

Throughput maximization increases the capacity of the system in processing more vijicles
[3], [4], [5], etc. When throughput (i.e. sum of vehicles released from each link of all intersections of the
network over the entire study periodhaximization is used, queues may grow in some certain cases
especially when a downstream intersection has less capacity than its upstream interséti®gueue
growth may create a gridlock which should always be avoided. To take care of this isstiesbébh
and Benekohal, and Girianna and Benekohal added a disutility function to their objective function that
penalized the value of throughput based on the queue lengths in different links. This penalty took care
of the issue of long queues in the networkheir studies indicated that throughpuatinusqueue
maximization was a very reasonable objective function in oversaturated conditions. However, when
system optimum traffic assignment is performed, maximizing throughput alone may result in circulating
vehicles inside the network since this circulation can increase the value of the objective function. This
circulation can be prevented by adding some constraints; however, adding such constraints introduces
more complexity to the problem. In addition, sindeetqueue length at entry links are also important, an
extended length of entry links may be needed to be modeled to accurately estimate queue lengths at
the boarders of the network. This is computationally expensive especially when a microscopic model is

used.

3.3.4 Trip Maximization

Another objective function that has benefits similar to throughpuhusqueue maximization

concept, but does not circulate vehicles inside the network is maximizing the number of completed trips
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hereafter we call it trip maximizatn. It ensures that vehicles have exited the network which is desired
since the more vehicles exit the network in a time interval, the more efficient the performance of the
network during that time. In addition, when system optimum traffic assignment rfopred, trip
maximization does not encourage vehicle circulation in the network since circulations delay the exit time
of vehicles from the system and as a result reduce the number of completed trips in a time interval. One
significant benefit of trip mamization concept is that it does not require modeling extended lengths of
entry and exit links. The reason is that the lengths of these links do not change the number of completed
trips inside the network which is the only parameter that determines thanhber of completed trips in

the system (since traffic is only controlled inside the network and not on entry and exit links). Therefore,
one only needs to model the interior of the network to solve the problem. This is computationally more

efficient than nodeling the network and extended portions of entry/exit links.

One drawback of trip maximization concept is that it does not distinguish between very short
and very long trips. Therefore, it may maximize the value of the objective function by processing t

many short trips and not many long ones. This is not desired.

3.3.5 Weighted Trip Maximization

As mentioned abovdrip maximization treats short and long trips equally (however, longer trips
produce more negative effects than what shorter trips do). Tovbis, each trip is weighted by the
length of shortest path (in terms of distance) from its origin to its destination and hereafter this
objective function is called weighted trip maximization. Note that the actual length of trips should not
be used sincé encourages using longer routes and potentially circulates vehicles inside the network.
Weighted trip maximization aims at improving the capacity of the network, gives more opportunity to

trips with longer shortest paths, and does not encourage incrngashe length of trips inside the
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network (since traveling in longer routes delays finishing the trips and consequently reduces the value of

objective function).

3.3.6 Choosing the Objective Function

The objective functions discussed above, can be categorizedvim groups: a) minimizing travel
cost in the network (i.e. travel delay and travel time minimization), and b) maximizing network capacity
(i.e. throughputminusqueue, trip, and weighted trip maximization). It is shown that in oversaturated
conditions,increasing system capacity to process more vehicles is more important than reducing travel
time or travel delay[1], [2], [3], [4]. Among the objective functions that aim at improving network

capacity, weighted trip maximization has the following benefits:

1- for a single trip, does not encourage longer routes and do not circulate vehicles in the network
2- gives more opportunity to trips with longer shortesath (i.e. trips that require travelling more
in the network),

3- does not require to model extended length of entry and exit links

As such, weighted trip maximization offers great potential for efficieetivork performance
especially in oversaturated conditions. To make sure that this is true, a simulation based method is used
that compares the effects of optimizing each objective function on network performdnca realistic
case study network for foudifferent demand patterns, signal timing optimization problem is solved
using each objective function (a total of v ¢ ToOptimization runs), see in Figure 3.Zhe four

different demand patterns are:

1- Symmetric undersaturated demand pattern (DP1)
2- Symmetricoversaturated demand pattern (DP2)
3- Asymmetric undersaturated demand pattern (DP3)

4- Asymmetric partially oversaturated demand pattern (DP4)
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Figure 32. Different cases for statistical analysis

After finishing each optimization run, the optimized signal timing parameters and turning
percentages were coded in microscopic traffic simulation edd@ORSIM) and 250 simulation runs with
different seeds were made to cover a wide range of vehicle arrival headways and driver behaviors and
to account for internal variability of CORSIM (details on the number of runs is available in Chapter 5).
Eight folowing PM were collected during the 250 microscopic replications of all 20 combinations of

different objective functions and demand patterns:

1

Travel delay inside the network

2- Travel time inside the network

3- Throughputminusqueue

4- Number of completed trips

5-  Weighted number of completed trips

6- Delay at the boarders
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7- Total delay (travel delay inside the network plus delay at the borders for each seed)

8- Average speed

For each demand pattern, for each PM, Least Significant Difference (LSD) test with 95%
significancelevel was performed across the five different objective functions to show any statistical
difference between the values of each PM for different objective functions (eight LSD tests for each
demand pattern, total ofp 1 © dests for all four demand pattes). The procedure of choosing the
most appropriate objective function is shown in Figure 3.3.08&ds set of all objective functions and

set'O Dis set of all demand patterns used to test different objective functions.

SetOF

!

-
Optimize signals and turning % based on fthe
chosen Objective Function

}

Code the signals and turning % in
microscopic traffic simulation model and
collect different PM for the case study)

!

( )

Determine PMs (average of 250 runs)
. 7

-
Choose the First Objective Function from]he

\.

Are all
Objective
Functions irOF
tested?

Select the next
Objective Functio
from the SetOF

demand pattern (run Least Significant

Perform statistical analysis for current
Difference, LSD, test)

Select the next
Demand Pattern
from the SeDP

Choose the most appropriate Objective Funcit
base on the statistical analysis on PM

Figure 33. Methodology of choosing IDSTOP objectiummction
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To choose the best objective function for each demand pattern, we looked at total delay in the
entire system (sum of delay inside the network and delay at its borders). The objective function tha
results in the lowest total delay is selected as the most appropriate objective function for each demand
pattern. If total delays happen to be similar, average speed is used as the second criteria. If both total

delay and average speed were similar, vistégl number of completed trips is used as the third criteria.
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Note that neither a set of constraints was used to ensure that all traffic demand is sal
(since it is not possible in owaturated condition) nor the lengths of entry links were extended dui
the optimization process (since significantly increases the runtime). In all four demand patter
expected, travel delay and travel time minimization objective functions resiitederall shorter delay:
and travel times inside the network, respectively; however, this was achieved at the expense of k
more vehicles at the boarders of the network (compared to methods who aimed at maximizin
capacity of the network). Thisag confirmed by looking at delays at the borders that were longer
number of completed trips that were lower for delay and travel time minimization objective funct

see in Figure 3.4-b.

In oversaturated conditions, for all four demand cases delayhe borders for throughput
minusqueue, trip, and weighted trip maximization objective functions were significantly less thar
for travel delay and travel time minimization objective functions. In fact, this resulted in statist
significantlylower total delay for the objective functions that aimed at maximizing network cap:
compared to those that aimed at reducing travel cost (except for asymmetric undersaturated cor
in which trip maximization and travel time minimization resultedimilar total delays), see in Table 3
This indicated the advantage of the objective functions that aimed at maximizing network capacit
those who aimed at reducing travel cost in oversaturated conditions. It should be noted that we ¢
that travel delay and travel time minimization objective functions found much more efficient solutic
extended length of entry links were modeled. However, we did not perform the optimization with

entry links since it was extremely computationally expe@si
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Table 31 Performance Measures for Different Objective Functions under Different Demand Patterns

Network Performance Measure (PM)
Demand Objective
Pattern Function i Throughput ) Weighted Delayat o Average
Delay Travel Time . Trips : the
Inside () Inside (h) Minus (veh) Tips | porger DAY Speed
Queue(veh) (veh) ) (h) (mph)
Min Delay 68.3 A 1238 A 12107 A 279CA 1494 A | 225 A  90.8A 133 A
Min Travel T | 702 B 122.4 B 11829 B 2754B 1484 B | 236B 938B 130 B
Symmetric
coraat, Max FQ 68.4 A 1239 A 12620 C 2875CD 1557 C | 209 C 89.3C 134 C
Max Trip 685 A 1232 C 12401 D 288CC 1562 D | 208 C 89.4C 133 D
Max W. Trip | 68.4 A 1233 C 12532 E 287CD 1632 E | 208 C 892C 135 C
Min Delay | 111.1A 170.6 A 10113 A 2991 A 1611 A | 657 A 1767A 102 A
Min Travel T | 11258 165.9 B 8463 B 279¢B 1491 B | 755B 188.0B 97 B
Sg\:';;’;'c Max FQ 1117 A 1740 CD 11928 C 3204C 1731 C | 493 C 161.0C 108 C
Max Trip 1114 A 1743 C 11856 C 324¢D 1757 D | 49.0 C 160.4C 108 D
Max W. Trip | 111.1A 173.7 D 11896 C 3206 C 1835 E | 47.3D 1585D 10.8 D
Min Delay 60.8 A 111.4 A 11593 A 2511 A 1408 A | 205 A 813A 136 A
Min Travel T | 61.4 B 1112 A 11488 A 2506 A 1415 B | 205A 818B 135 B
Asymmetr. Max FQ 61.0 AB 1121 B 12155 B 254CB 1422 C | 19.7B 80.7C 137 C
Undersat.
Max Trip 62.2 C 113.7 C 12024 B 2585 C 1459 D | 196 B 81.8B 136 A
Max Wt Trip | 62.5 C 1136 C 11473 A 255D 1524 E | 17.9C 799D 138 D
Min Delay 62.6 A 1108 A 10849 A 2477A 1312 A | 356 A 983A 130 A
Min Travel T | 645 B 109.9 B 9391 B 238CB 1276 B | 408 B 10528 124 B
Asymmetr.
Partially Max FQ 708 C 120.8 C 11822 C 2573 C 1363 C | 215C 923C 124 B
Oversat. Max Trip 701 D 1208 C 11310 AC 2694 D 1453 D | 232D 933D 126 C
Max Wt Trip | 65.2 E 117.2 D 11198 A 2662 E 1531 E | 174 E 826E 133 D

Min Delay: Obective Function is Delay Minimization
Min Travel T.: Objective Function is Travel Time Minimization
Max FQ: Objective Function is ThroughpMinus-Queue Maximization
Max Trip:  Objective Function is number of completed Trips Maximization
Max Wt. Trip: Objective Function is Number of Weighted Completed Trips Maximization

Among all objective functions, weighted trip maximization resulted in statistically lower total
delays in the system (except for symmetric undersaturated demand) compared to the other objective
functions. Therefore, for asymmetric undersaturated, symmetbicersaturated, and asymmetric
partially oversaturated demand patterns, weighted trip maximization resulted in the most efficient
network performance among other objective functions and is used as IDSTOP aobjective function. In
symmetric undersaturated cortibns, throughput minus queue, trip, and weighted trip maximization

objective functions yielded similar total delays in the entire system. However, the average speed, and
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the number of weighted completed trips for weighted trip maximization objective tfancwas
statistically significantly more than the other two objective functions. Therefore for symmetric
undersaturated demand pattern (similar to the other demand patterns) weighted trip maximization was

used as the objective function of IDSTOP.

Overal] weighted trips maximization resulted in shorter delays at the borders, shorter total
travel delays in the system, processing higher number of vehicles with longer shoatbstand faster

average speed inside the network. The objective function is ftatad as follows:

- AGEI EUA — .. h Jovy oP

PN N
number of completed trips from source nodeo sink node during time intervab
- length of the shortest distance path from source nad® sink nodd
“Y set of discrete time intervals (in the order of minutes)
'Y set ofsource nodes

"Y set ofsink nodes

3.4 Constraints

If no constraint is used in the problem formulation, the smn may not be desired or feasible.
For instance, a solution that creates long queues in the system is not desired while a solution that has a
very long cycle length is not feasible. All the constraints are introduced in the rest of this section. It
shoub be noted that some of the constraints should not be avoided in any circumstances. An example
for them is the gridlock constraints. A solution should not create a gridlock under any condition. On the
other hand, some of the constraints may be violatecc@ntain conditions. An example is -fecto red

constraints.
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3.4.1 Cycle Length Constraints

In each phase change, some part of the cycle length is wasted due to the yellow and all red
signals and also the delays incurs in acceleration and decelerations ofttletege This wasted amount
of time is called lost time. When the cycle length is short, the phases change more frequently and as a
result the lost time is more. Therefore, delay increases and a larger proportion of the green time is
wasted. This reduces tveork capacity and consequently results in less efficient network performance.
As a result very short cycle lengths should be avoided. On the other hand, when the cycle length is
longer, the phases change less frequently. Therefore, total lost time ishiassesults in reduction in
total delay (compared to shorter cycle length); however, when the cycle length is long, the duration of
red is also longer. This means that for a longer period of time the vehicles are not processed. As such,
gueue lengths mayonsiderably grow. Long queues increase the probability of queue spillovers, de
facto reds, and gridlocks. Therefore, they also should be avoided. In addition, excessively long red

signals result in driver frustration.

As a result the cycle length at damtersection at each time interval should be bounded by a

lower and an upper bound. This is shown in Equation 3.2 as follows:
64Qt 6 oO6adm !ovHQO o8,
0  cycle length of intersectioifat time intervalo

6 a QAT @& d & ® minimum and maximum allowed cycle length iatersection Qat time

interval o, respectively
‘O set of allintersections of the network

It is noted that in this study a minimum value of 40 seconds and a maximum value of 160

seconds were used for cycle length.
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3.4.2 Green Time Constraints

Split for green for each phase is the ratio of green time to the cycle length. As a result, the sum

of all glits for greens at an intersection in each time period follows Equation 3.3:
ir P b'_h L ON "YH O '@ oS

i 5 split for green associated with pha%gat intersectioriCat time periodod
0 set of all phases available at intersectitn

Equation 3.3 also indicates that the sum of splits for greens should be equal to the ratio of the
effective greens 6 0 to the total cycle lengthd . Green time associated with each phase is

obtained by multiplying the associated split for green by the cycle length as shown in the following

equation:
Q. ip6h JOoNHREQ 0h o8
"Q;  green duration for phas®) at intersectioriCat time periodod

Similar to cycle length, green times should also be bounded since too short and too long green

times resul in non-efficient network performance. This is shown by the following equation:

VG QE T QA dph 1oy YH T @ Oy 0 h o®

Q4 QEAT RG o minimum ad maximum green time associated with phdQeat

intersectionGt time periodo

It is noted that in this study, a minimum value of 20 seconds and a maximum value of 80
seconds were used for green durations of through movements. For the left turrnse tredues were 5
and 20 seconds, respectively. Whenever, the algorithm finds left turn green duration less than five
seconds, the left turn phase is omitted.
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At an isolated intersection, splits for greens of different phases are expected to be proportional
to the volumeto-saturatedflow-rate-ratio of the critical movements. In general, this strategy works in a

network as well. However, in some cases it mayseaextremely long queues, spillovers, and/or possibly

gridlocks.
by
’

i

Figure 35. A coordinated arterial

For instance, in the coordinated arterial shown in Figure 3.5, assigning green durations
proportional to the volumeo-saturaed-flow-rate-ratios of critical movements results in an edéstund
through green duration at intersection 2 that is longer than that at intersection 3 while the cycle lengths
are the same. Therefore, intersection 2 releases more vehicles than what camrooessed at
intersection 3. If this setting is maintained long enough, it yields long queues at intersection 3, and in
extreme cases, upstream intersection blockage (that should be avoided). As such, in general, setting the
green splits identical to theolume-to-saturatedflow-rate-ratio for critical movements of each phase
may result in norefficient network performance. On the other hand, optimizing them completely
regardless of volum#o-saturatedflow-rate-ratios of critical movements significantly larges the
feasibility area. Therefore, optimization algorithms require considerably longer time to findoptianal
splits for green. In addition, if not enough computational resources are available, the algorithms my find
sub-optimal splits for greensTherefore, for each phase, rather than assigning the splits for greens
proportional to volumeto-saturatedflow-rate-ratios, or completely regardless of them, an interval
centered in that ratio is used in which, splits for greens are optimized. EquatofoiBnulates these

constraints:
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If enough amount of computational resource is available, the valuecain be very close to its
upper bound, see Equation 3.6. This is equivalent to optimizing the splits for greens regardless of the
volumeto-saturatedflow-rate-ratios. In this case it is expected that after enough search, the
optimization algorithm find efficient green splits in each intersection in each time interval (provided
that the algorithm can avoid local optimums and find a global optimal or-opéimal solution).
However, when the computational resources are limited (in most cases) seartihiggh all possible
green split ratios is not efficient. The role pdrameter] is to narrow down the search for green split
ratios to an interval around volumm-saturatedflow-rate-ratios for the critical movements. It should

be noted that does nothave a unit.

To determine appropriate values for a series of sensitivity analysis performed Different
values forparametefi (0 to 0.5 with increments of 0.09re used andsignal timing parameters are
optimized in a case study network with fodifferent demand patterns (see Chapter 5 for details on the
case study)For all cases, the numbers of fitness function evaluations were identical (22500 fitness
function evaluations) to ensure that the same amount of computational resources are consémed.
value of zero fdr means that the splits are not optimized by the algorithm and were simply set equal to
the volumeto-saturatedflow-rate-ratios for critical movements. A value of 0.1 for(as an example)
means that the green splits are optimizedan interval with length of 0.1 centered on the ratio of

volumeto-saturatedflow-rates for critical movements (0.05 to the left and 0.05 to the right of the

52



ratio). Number of completed weighted trips for eacalue ofparametefl isshown in Figure 3.6sawell

the observed values for along with their average over 20 intersections of the case study network.
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Figure 36 Sensitivity analysis ot

As shown in Figure 3.6d4 for all demand patterns, as the specified value§ famcreased, the
range of observed values fprincreased; however, the observed ranges were always smaller than the
specified range. In addition, as the specified values fiocreased the difference between the observed
range and specified range enlarged as well (general trend). These two meaeviratthough the
algorithm was allowed to look for green split ratios in a wider range, it yielded green split ratios in a

much narrower range indicating that a wide range was not needed. In addition, the wider range resulted
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in reductions in the value abjective function meaning that the algorithm did not have enough amount

of computational resources to optimize the splits for greens.

In undersaturated conditions (see Figure 3.6 a and c), for\alues up to 0.25, the number of
weighted completed ips were similar and higher than those for larger valuds.dh addition, for
values up to 0.2, the observed ranges forwere always at most 0.1. As such, in undersaturated
condition, there is no need to provide a large range]faio optimize greersplits. In fact, setting the
green split ratios identical to volure-saturatedflow-rate-ratios for critical movements results in
solutions as efficient as using a value of up to 0.25 fofherefore, in our case study network, in
undersaturated condibns in both symmetric and asymmetric demand patterns, there is no need to
optimize the green splits throughout the optimization. Their ratios can simply be equal to vodime
saturatedflow-rate ratios for critical movements (this was expected) and th&aexomputational

resources can be allocated to optimizing other signal timing parameters.

In symmetric oversaturated demand conditiofis,values between 0.1 and 0.25 resulted in
similar number of weighted completed trips that were higher than thosetfar rest values fdr.
Wher ™ frd 6A 1 #& rthe observed range for was around 0.1 indicating that there was no
need to set the range bigger than 0.1. Not only the observed range was 0.1, a specified range of 0.1
resulted in the most efficienhetwork performance (similar to 1@ VA T #& jt As such, in our case
study, in symmetric oversaturated demand conditions, 1@ Tishould be used which was also

expected.

In asymmetric partially oversaturated conditiohsyalues between 0.15 and 0.2Bsulted in
similar number of completed trips that were higher than those for the rekst wdlues. When specifiéd

equaled 0.15, 0.2, and 0.25, the obseryedere 0.14, 0.19, and 0.19, respectively. Therefore, a range
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of 0.2 was needed to optimizegsials in our case study network for asymmetric partially oversaturated

conditions.

It is noted that findings for values fprare networkspecific and different values pfmay yield
more efficient performance in other networks. Conducting similar sensitivity analysis is suggested to find

the most appropriate values pffor other network.

3.4.3 Offset Constraints

At two consecutive signals, the offset between two coordinatedseisais the time difference
between the onsets of green signal for those phases. If the start time of the first phase of each
intersection (according to a reference clock), and the duration of the green times is known, the offsets
between each two movemenisan be found by Equation 3.7. Note that this is not a constraint. It is used
to find the offsets between two movements based on the green times, start of greens, and the phase

sequences. The equation is as follows:

i £ 0 &0 i £ QR lovHTR @A D o

i €D start of the first green at intersectioiat time intervalo
. number of coordinated phase at intersectian

. number ofcoordinated phase at intersectio®@

0 set of allintersections downstream 62

€ Qi offset between the phase of intersection "Q(upstream), and phase of

intersection& (downstrean)

The first phase at an intersection may $tarted when the reference clock is just started Tt
or any time later. However, it cannot be larger than the cycle length of that intersection because it
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simply shows that the first green is startédé ‘@ £°QB5 seconds later than the stadf reference

clock. This is shown in Equation 3.8 as follows:

moiEm bR lovH'Q O oR

3.4.4 Queue Length Constraints

In oversaturated conditions, due to excessive traffic demand, it is very likely that queues start to
grow at the intersections of the network. If the queues are not properly managed, they may block
upstream intersections. This reduces the capacity of titersections and consequently deteriorates
network performance. Therefore, the queue length should be controlled to be always shorter than the

capacity of the link, or to be more conservative, a proportion of that. This is shown in Equation 3.9.
g 1NRa@;h 1 1 pHoON YA Q @0 o

“Y set of discrete time steps (in the order of seconds)

Nr  queue length associated with pha%gat intersectioriat time periodo

nad @@ maximum allowed queue length associated with ph&3et intersection’Cat time

periodo

3.4.5 Gridlock Constraints

Gridlocks significantly reduce network performance efficiency and consequently, increase total
travel time. They have to be ahys avoided. A gridlock happens when in an immediate loop of several
I R2 OSy i AYyUGUSNESOGA2YAZ AY SAUGKSNI RANBOGAZ2YA AY
counterclockwise direction), the queue from each downstream intersection blocksigeream one,
see in Figure 3.7. When this occurs, none of the vehicles move and the gridlock may remain effective for
a significant amount of time. Therefore, if a solution creates long queues in all intersections of an

immediate loop of several intersaots along either directions of the loop it must be discarded.
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3.4.6

intersection to that link. This condition is defined asfdeto red since the signal is actually green but
performs as a red signal (due to lack of capacity at receiving linkadiered should be avoided since it
wastes the green time that could have been allocated to competing phases; however, in some cases i
may not be possible to prevent iEor example, assume an intersectiatnose allreceiving linksare
completely filled with vehiclesin this caseregardless of how green time is allocated,-fdeto red
occurs. In some cases that it is possible to adeifhcto red, doing so may not result in a more efficient

network performance. For example dacto red in a minor street should not be eliminated if doing so

‘ Queue

C

-
‘ -
Figure 37. Gridlock avoidance
ah Jov"YH'®6H Gy ci Qv phig oP T

N "Q queue length at intersectioffalong loop directioriQat time 0
a length of the link at intersectioffalong loop directioriQ
0 set of all intersedbns creating immediate loog@

@ set of allimmediate loops of the network

De-Facto Red Constraints

If during a green signal the receiving links is full, no vehicle can be discharged from the
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significantly deteriorates performance in a major arterial. Since in some certain cases itoinbg n
feasible, or it may not be beneficial to completely avoidfdeto red, we penalize the objective function
whenever defacto red occurs rather than discarding the solution. Equation 3.11 ensures the elimination

of de-facto red:

. . \ . o Q MR O e e
Q Qp €7QQ f Qp € "Q'Q HoN “YH Q@ '@ &
N D op p
f time neededfor the stopping shockwave in liri® & to reach intersectioriCfupstream)

from the end of queue at intersectial (downstream) associated with phase

To avoid défacto red, the effective green for upstream signal should be less than or equal to the
sum of effective green at the downstream intersection, the offset between the two movements, and the
time needed for the stopping shock wave to propagate upstream from the end of queue in the receiving
link. It should be noted that if the downstream regieig link is already full, the time for the shockwave
to reach upstream intersection is zero since the distance between the end of the queue and the

upstream intersection is zero.

3.4.7 Ideal Offset Constraints

If coordination between two particular movements of two consecutive intersections is desired,
the offset for those two movements has to be set equal to the ideal offset. If cars leaving the upstream
intersection arrive at the downstream intersection whehet tail of the queue at downstream
intersection is moving with the speed of arriving vehicles, the offset is ideal. Girianna and Benekohal
(2002) have described this concept in details. This constraint may not hold for all of the movements. For
example, im two-way arterial it is not always possible to have the ideal offset for both directions. Thus,

IDSTOP uses this constraint only if signal coordination is required over a path. Otherwise, it lets the
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optimization engine determinéhe offsets. These offses may be ideal or nofThe ideal offset constraint

is formulatedin Equation 3.12s follows:

£wQ T |

Q distance between intersectioiand a
N h gueue length associated with phase at intersectiond at time o
a average vehicle length

starting shockwave speed

t 5 time required for the first vehicle of the released platoon from intersecti@o join

the tail of platoon at intersectiod that is served by phase at timeo

| & time needed for the tail of queue associated with phase at intersectiond to start

moving at timed

3.4.8 Route Delay Constraints

A good solution should result in reasonable travel time in all routes of the network. Still there
might be long delays at samintersections but overall travel time should be reasonable. If such a
constraint is not used, a large number of vehicles may be processed by the network at the expense of
excessively increasing delay at some routes. To avoid such a condition, constnairasel time over
routes of the network should be used not to let extremely long travel times in the network as

formulated in Equation 3.13 as follows:
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Y hx delay on routs connecting source nodeto sink nodd , at timeo

Y& ¢ ay  maximum acceptable delayn routed connecting source nodeto sink nodd , at
time O

'Y set of source nodes

0 set of routes connecting sourc®dei to sink nodd

3.4.9 System Optimum Dynamic Traffic Assignment Constraints

The following constraints are formulated to ensure that oridéstination demand is met while

the traffic is assigned to routes such that thenmuer of trips generated in the network is maximized.

The number of vehicles that leave liifk "Qat time 6 on their way from source nodeto sink
nodei  j is equal to that in the previous time intervato ; , plus the number of vehicles
entered link’Q "Qfrom all predecessor nodes during the green sign@s, W [, Minus

those who have left link) "Gio the successor nodes during the green intervals at the previous time

intervd B v W f . These constraints are formulated in Equation 3.14 as follows:
©R ©F G o Gp R Lo YA YA [ Y ED
N @ YRYR o 1

1, when traffic signal at intersectiofassociated with the phase feeding no@Bhows

green signal at time stepp p, 0 otherwise

@ ;  number of vehicles that can travel from nodo node Cat time stepd p, associated

with source node , and sink nodé
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It is also needed to make sure that the number of vehicles leaving a link is not more that the
number of velicles that were present in the link. These constraints are formulated in Equation 3.15 as

follows:

G @ph  Lov VN YN Y ED @ a® v

In addition, the number of Jcles leaving a link cannot be greater than the capacity of the

receiving link. Equation 3.16 formulates these constraints:

wn 0 wgh 1ov YA QY @ YRYh o @

0  capacity of linkQ Q

In addition, the number of vehicles leaving a link cannot be more than the discharge capacity of

the intersection. These constraints are formulated in Equation 3.17 and 3.18 as follows:

wr O h Lov YA g oP X

wrp O h 1oy "YH'Q O oPpY
[ S I T |
Demand also has to be forced into the network by the following constraints:
O Op Q @rh 1oN"YHQYi Hinvh 0P w
Orp Qh JovYHQOiHIN™ o8] T
Finally it is needed to make sure that the demand from one source node is not met by another

source node:

O mh 1 ON"YAphAgN YA N "Yip ichi¢Qny 'Oh o8 p

61



‘O setofall links

At the end, it is needed to make sure that number of vehicles in the links, and the number of

vehicles moving from a link to the other one cannot be negative:
O TH Lon YN YN Y QR O o8 ¢

G T L ov YN YA YW Q@ O o0& o

3.4.10 Summary of Formulation

In summary, IDSTO®&rimulation can be represented as follows:
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CHAPTER 4

IDSTOP SOLUTION TECNIQUE

4.1 Introduction

There are two main complexities associated with solving IDSTOP. First, the decision space of the
problem is extremely large. Second, there is no cldsech formulation to represent the value of the

L 5 { & bhje@ive function in terms of its decision variables.

L5{¢ht Qa &az2fdziAzy aLIl OS F2fft2¢a | LRGSNI NSt G2
are w different possible decisions for each intersection at one time intersalytion space haso
components fom intersections. It is noted thadcan be as large as 1.8¥1f@r one intersection with
four phases for a single time interval. This number is obtained by multiplying the total number of
possible values each decision variable can takaimdmum of 15 seconds and a maximum of 80 seconds
for through traffic green signal duration (total di Tt p U p ¢ ¢@decision for each direction), a
minimum of 7 seconds and a maximum of 20 seconds for left turn arrow green signal duration (total of
¢ T X p p tdecision for each direction), and a minimum of zero and a maximum of 214 seconds
for offset (total of¢ p Tt T p ¢ p decision for the offset), results IPE Q@ Ep Zp Z¢ p U
p& p mdecisionsDueto this extremely large solution space, traditional methods such as exhaustive
search or dynamic programming will not lead to a reptimal solution in a reasonable amount of time

even when the fitness function evaluations requires a fraction of a second

In addition, IDSTOP is a nonlinear wwammvex optimization problem without a closéorm
formulation to represent its objective function in terms of the decision variables. Therefore, none of the
methods that rely on knowing detailed relations betwedmetdecision variables and the objective

function such as deepest descent can be used.
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These two together, extremely complicate the process of solving IDSTOP. The reason is that
there is no information available on the structure and the behavior of theailje function in terms of
decision variables that could be used to facilitate finding an optimal solution. In addition, the large size

of the decision space makes it impossible to exhaustively search the space.

All these, limit the optimization technigs to those that fall in the category of heuristic (i.e.
methods that aim at finding a feasible solution) and mbeauristic methods (i.e. methods that optimize
a problem by iteratively trying to improve a candidate solutions with respect to a measungatify)

among them, two families of evolutionary algorithms are chosen:

a) Genetic Algorithms (GA)

b) Evolution Strategies (ES)

Evolutionary Algorithms are population based méeuristic optimizations that utilize biology
inspired operators such as mutationfossover, selection, and survival of the fittest to improve the
guality of a set of solutions. One important advantage of evolutionary algorithms compared to other
2LIAYATFGAR2Y FfA2NRAGKYaA A& GKSANI a2 Ol fuutek aof | C
optimization process without knowing exact structure of the objective function based on the decision
variables. IDSTOP takes full advantage of this feature of evolutionary algorithms. In fact, evolutionary
algorithms only need to know the value dbjective function for a set of decision variables but not any
more information. This makes them a suitable pick for solving IDSTOP since it is possible to (accurately

enough) estimate the value of the objective function for a candidate solution. Thisibeca@one by

using a traffic simulation model.

Genetic Algorithms and specifically simple GA have been extensively used to optimize signal
timing in urban networkge.g. [1], [2], [3], [4], [5]). In this study, several variations of genetic

algorithm will be used to solve IDSTOP. These variations are as follows:
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a) Simple GA (as a benchmark)
b) Elitist GA

c) Micro-Elitist GA

Among different Evolution Strategy methods two of them that are widely accepted in other

fields of science are selected:

a) Selfadaptive ES

b) Selfadaptive elitist ES

In the rest of this chapter, each method is briefly described. The IDSTOP structure iseexplain
Later both signal timing optimization and dynamic traffic assignment modules are explained. The
discussion is followed by explaining how the constraints are taken into account and finally a summary of

the chapter is presented.

4.2 Genetic Algorithms

Geneic Algorithms (GA) are search techniques to find optimal or-opéimal solutions to an
optimization or a search problem. GA are global search heuristics and are known to be less likely
trapped in a local optimum. GA are a specific class of evolutiorlgorithms and use techniques

inspired by evolutionary biology like inheritance, selection, crossover, and mutation.

GA are implemented in a computer simulation environment where a population of candidate
solutions are created and evolved towards bettetusions over different generations. Unlike other
well-kknown optimization techniques that start the search with one feasible solution, GA start the search
with several candidate solutions, called population. The initial population can be created randdmly or
using some heuristics. Each population member is called an individual or a chromosome, and has a

fithess value that represents the value of the objective function for that individual. For example, if the
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objective function is to maximiZ&w w, the fitness of one of the individuals e®. o will

beo w Based on the fitness values, GA stochastically select some individuals of the population
where individuals with higher fithess values are more likely to be selected (for a maximization problem).
Theselected individuals form a mating pool where they are crossed over and mutated to form some
new individuals for the new population in the next generation. GA continue to select new individuals as
parents until enough individuals for the next generatiore @reated. As soon as a new individual is
created its fitness value is evaluated. It is noted that in this study, the feasibility of that individual is
checked before determining its fitness value (details available in chapter 5). The whole process of
sekction, crossover, and mutation is continued until the termination criteria are met. Usually a
maximum number of generations, or a threshold for the relative difference between the maximum

fitness value and average fithness value of a population are clesséme termination criterion.

Traditionally, binary coding was used to represent each feasible solution in GA; however, other
methods of coding exist such as realding. In binary coding each 0 or 1 of the chromosome is called a
genome. Several variatisrof GA exist. In this study three of them are used to solve IDSTOP: a) simple

GA, b) Elitist GA, and c) Mieditist GA. Comprehensive details on GA can be found in Goldberg (1989)

[6].

4.3 Evolution Strategies (ES)

Evolution Strategies (ES), genetic algorithms, and evolutionary programming are the main three
paradigms of Evolutionary Computation (EC). In general, these three methods are based on iterative
birth and death, variation, and selection. The first ES hdg oo rules: 1) slightly change all variables
at a time at random, 2) if this set of variables leads to better results keep them otherwise, keep the
original ones. As it is apparent from the rules, this ES worked with only two individuals per iteraton: o

old individual or parent, and one new individual or offspring. This ES was later call&Blmganing
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that out of a single parent, one offspring is generated and among these two individuals, the best is
chosen. The 1+ES with binomially distributed ntations on a two dimensional parabolic ridge was
studied bySchwefelin 1965[7]. The study showed that 1S is very likely to find a local optimal
answer rather than a global one. In this case, larger mutations were neededctape from this local
optimum. To solve this problem, instead of using discrete variables, using continuous variable with
Gaussian distributions was suggested. Rechenberg presented approximate analysep of@gheO"Y

with Gaussian mutation on two diffent functions (hyper sphere, and rectangular corridor models). He
found that the convergence was inversely proportional to the number of variables; linear convergence
might be obtained if the mutation step size was set to the proper order of magnitudettenoptimal
mutation strength was in the order of one fifth for both models. In addition, instead of using a single
parent, he used parents crossed them over, and generated one offspring. He concluded that this
method could speed up the evolution ii¢ speed was measured per generation; and the population
might learn by itself how to adjust the mutation step size. This method of ES wasicalled O "¥ince
amongt p individuals the best individuals were selected or in other words, the worst indinldis
extinct. Laterf p ‘O"Yvas expanded t¢ _ 'O7YIn this method instead of creating a single
offspring out of thg parents,_ descendants are createdchen among thesg _ individuals the
fittestt individuals are selected to form the next pdption. Another variation of ES with p
parents and_.  p descendants exists. In this method, after creating the nedescendantsall parents

are discarded. Out of the descendants, the fitteqt are chosen to form the next population. Thus,

has to be strictly larger than. This method is callegh. ‘O"YIn generalf _ ‘O™andth. O°Y
generate better results thap p O"Yandt p O"Ydo. Although intuitively it is believed

thatt _ ‘O Yenerates better results thaph_ 'O "does, br smallf and_ o ¢ t ratio,th. O°Y

generates better results. Whgnand_ 0 € { ratio increase, both algorithms perform similarly.
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All variations of ES with p parents and. p descendants have three different operators

that are recombinationmutation, and selection. ES has the following steps:

0) Initialization: the first population is generated randomly or by means of some heuristics
1) Regeneration: next population is produced

1-1) Recombination: randomly selett parents and recombine them to gendeaa new
offspring
1-2)Mutation: mutate the new offspring
1-3)Fitness function evaluation: evaluate the fitness of the generated offspring
2) {StSOGA2yY aStSO0 yS¢ LINByilda sAGK NBaLSOL G2
3) Termination criteria: stop if termination criteria are matherwise continue by going to step 1
ES could be se#fdaptive. This means that as the populations evolve, the strategy parameters
evolve as well. This is done by coupling endogenous strategy parameters with the objective parameters.
In other words, the dcision vector contains decision variables as well as endogenous strategy

parameters. This is shown in Equation 4.1.

Mo o ho Bho A H MBH =)
Where :0 dthe "Q component of decision variabjeand

“Y dthe 'Q component of endogenous strategy parameger

More information on ES could be foundSchwefel (1965).

4.4 |IDSTOP Architecture

IDSTOP, as mentioned before, is formulated as a signal timing optimization program that

dynamically finds signal timing parameters (i.e. phase plan, cycle length, splits, and the offsets) for an
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urban traffic network over the study period. It also dynarticeeroutes drivers to less congested routes

to further increase the number of completed trips by using its system optimal traffic assignment feature.

IDSTOP considers stochasticities that are involved in the car following and lane changing
behavior as wll as vehicle arrival to the network. Details on how it accounts for them are explained
later in this chapter. IDSTOP takes into account stochastic behavior of drivers in car following, in
speeding up after a red signal turns green, and in slowing dovetoto before a red signal, and also in
lane changing. In addition, it considers different types of vehicles in the network that significantly
changes acceleration and deceleration behavior. Also, it takes into account combinations of different
drivers andvehicles that bring more stochasticity into the problem. IDSTOP also considers different
distributions for vehicle arrival to the network and unlike deterministic models, does not assume that
vehicles keep constant headways from each other, have iderdimadleration and deceleration rates,
and drivers behave identically in accelerating, decelerating, and deciding to stop or to proceed for a
yellow signal, or join the back of queue when the receiving links is almost full. Modeling all these
stochasticitiesmakes the solution technique extremely more complicated but, enables IDSTOP to find
solutions that more accurately depict what happens in the real world. For example, based on the
constraints of the cell transmission model, it is assumed that no vehiitie fhe back of queue when
the receiving links is full; however, this does not happen in the real world as one driver may join the
back of qgueue and one may not. If cell transmission based solutions are usedhivoriehhpplication,
and a driver decide® join the back of queue in a link which is already filled with vehicles, upstream
signal may be blocked and gridlock may happen while IDSTOP finds a solution that prevents them. To
handle these stochasticities, IDSTOP runs microscopic simulation mitdeseveral replications with
different parameters to account for different scenarios that may occur inweald conditions. This will
be discussed later in this chapter. However, it should be noted that IDSTOP is not designed to handle

neither the uncetainties associated with origidestination (ed) demand (it needs to know the demand
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for the upcoming time interval up front) nor some other stochastic events such as accident occurrence,

vehicle break down, or traffic signal failure.

The main idea to dee the problem is to discretize the time period into smaller time intervals
and optimize signal timing and turning percentages in each interval. There are three main reasons for
this: 1) it significantly reduces the complexity of the problem; 2) it resuitmore efficient network

performance; 3) if the study period is long enough, eventually all vehicles will complete their trips.

The decision space is significantly smaller when the problem is solved sequentially. In fact,
instead of being the combinatioof the possible decision spaces of all time intervals, it is the summation
of the decision spaces of all time intervals. Therefore, it is computationally less expensive to solve the
problem.

L5{¢ht Qa 202SO0GABS Fdzy Ol A 2 yn 3d) nday rBsBIGIORBRPNG R A Y
vehicles in the network during one time interval and releasing them in another one. For instance assume
a study period of ten minutes with two-finute time intervals with a uniform traffic demand of 50
vehicles per each timenterval. The optimal policy that results in lowest delay and best network
performance is to process 50 vehicles in each time interval. In that case, the total number of completed
trips in the entire study period is 100 vehicles which is the maximum pestiilthe objective function is
to maximize the sum of completed trips in both time intervals together, processing 20 vehicles in the
first and 80 in the second time interval (as well as any combination of two numbers that summing up to
a hundred) is alsa valid solution. However, it is not as efficient as processing 50 vehicles in each time
interval, is not desired, and should be avoided. In fact, it is preferred to maximize the number of
completed trips in each time interval rather than in the whole styzeriod. In other word, instead of

solving a single nolinear problem for the entire study period, solve one Horear problem for each
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time interval is more desired. In that caggysmany nonlinear problems are solved. The new objective
function isshown in Equation 2.as follows:

- AQEI EUA- .. h lonv"y T8

[
number of completed trips from source nodedo sink nodd during time interval 0
- length of the shortest distance path from source nad® sink nodd
“Y set of discrete time intervals (in the order of minutes)
'Y set ofsource nodes
"Y set ofsink nodes

The time intervals are selected such that tmgin-destination demand in each is approximately
constant. Based on the constantdodemand in each time interval, fixed signal timing parameters and
system optimum traffic assignment for the network is found. It is noted that the signal timing ifdixed
an intersection in a time interval, but changes from one intersection to another within the same time
interval. In addition, for each intersection, signal timing parameters change from one time interval to
another in response to timgariant demand. Foeach aed pair, the routes are fixed for each time
interval, but they change from one time interval to another. Routes are assigned to vehicles when they
enter the system and they are not allowed to change their roatiedifferent intersections (since dloy
a2 aArAIYyAFAOLylGte SyflFNBSa L5{¢ht QXisasedadzhdigitidl & LJ OS
state of the time intervab p. The state of the system at a time is location (longitudinal and lateral),
speed, and acceleration/decelerati rates of all vehicles in the network as well as the state of the signal

at each approach of each intersection.

A metaheuristic algorithm is developed to find neaptimal signal timing parameters and

system optimum traffic assignment in each time mt&. As mentioned earlier, the state of the system
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at the end of current time interval is carried over as the initial state of the system in the next time
AYGSNBEEd ¢KS F2ftt26Ay3a aidSLIA NB GF1Sy G2 aArydz

inside the network:
Step 0) Initialization:

a) a set of feasible candidate solutions are generated either randomly or by using some
heuristics

b) the fitness of each individual is evaluated using microscopic simulation model

c) system optimum traffic assignmeig performed for the fittest individual,

d) link volumes and turning percentages are updaifeid step Oc fitness value was improved
Step 1) Regeneration:

a) selection: parents are selected
b) regeneration: new individuals are created using the selected passggming the link and
turning volumes obtained in the previous generation

c) evaluation: fitness function is evaluated for each new individual
Step 2) System Optimum Traffic assignment:

d) traffic is assigned for the fittest individual created in Step 1, ariddnd turning volumes
are obtained

e) link volumes and turning percentages are updated if in stapfithess value was improved
Step 3) termination criteria: if termination criteria are met stop; otherwise go to step 1.

As it is presented in the algorithnsignal timing optimization and system optimum traffic
assignment are not found in combination to each other. Finding them in combination to each other

significantly enlarges the solution space and makes finding a-om@anal solution almost impossible
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unless a deterministic approach is used to provide enough information about the structure of the
objective function (se¢8]). Instead of optimizing them in combination to each other, a ssaguential
method is used. In each geration of the proposed algorithm, first the signal timing parameters are
improved for all intersection for the current time interval. Then for the best solution available, system
optimal traffic assignment is performed to optimize link and turning volungdraffic assignment
improves the fithess value, new link and turning volumes are used for the next step of signal timing.
Otherwise old link and turning volumes are used in the next step. This new solution is added to the
individuals that were createth the most recent generation while the link and turning volumes for all
individuals are updated. Then in the next generation, similarly, first the signal timing and then vehicle

routes are optimized. This algorithm is shown in Figure 4.1.

The proposed atyrithm has the following advantages:

a) does not need to know the structure of the objective function to find a solution

b) extremely smaller decision space

c) flexibility to optimize different objective function

d) flexibility to use different forms of evolutionanjgorithms

e) flexibility to use different microscopic simulation models to obtain the fitness of each

individual
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Figure 41. Schematic IDSTG®Iution technique

76



4.4.1 Signal Timing Optimization

The discussion in this section is centered on the following four items in signal timing

optimization process:

1) Traffic flow propagation
2) Constraints satisfaction
3) Decision variables

4) Accounting for stochasticities

4.4.1.1 Traffic flow propagation

As previously mentioed, one of the objectives of this study is to develop a signal timing
optimization method that considers stochasticities associated with traffic flow propagation such as:
different driver behavior, different vehicles types, different headway distributi@ts. In order to have
the capability to take them into account, IDSTOP has to be able to model them to begin with. As a result,
IDSTOP simulation model has to be able to model different headway distributions, different driver
behavior (in car followingacceleration, deceleration, lane changes, joining back of queue, etc.),
different vehicle types, etc. Macroscopic and mesoscopic traffic simulation models are not capable of
modeling all these stochasticities. On the other hand, microscopic traffic sionlatodels are capable

of modeling these stochastic events.

Among the most widely used microscopic traffic simulation packages, two of them were tested
in this study. These two were CORISM developed by Federal Highway Administration, and VISSIM
developedby Planung Transport Verkehr AG in Germany. Both packages were capable of modeling
different network, traffic, and geometric conditions as well as modeling different driver behaviors,
vehicles characteristics, and entry headways. It is noted that CORSINnadel all details that is

needed in this study and is considerably faster (in terms of runtime) than VISSIM. Therefore, it is
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selected to propagate traffic flow inside the network. There was an option of developing a new
microscopic model for the purpesof this study. However, since the focus of the study was on the

optimization part, the widely accepted CORSIM was used.

4.4.1.2 Constraints Satisfaction

As previously mentioned, signal timing optimization process starts with generating a population
of potential solutions that are produced either randomly or by using some heuristics (e.g. optimal
solution of commercial software). These solutions are created such that they satisfy the constraints on
the minimum and maximum values of the decision variables. Howeavaking sure that the rest of the
constraints are satisfied requires complicated calculations. Eventually, all constraints are checked during
the microscopic simulation run when the fitness value of each solution is obtained. If a solution does not
satisfy any of the constraints it will be discarded. However, since running a microscopic simulation
model requires a significant amount of CPU time, it is extremely important to identify the infeasible
solutions before running the microscopic model. Thus, usirlgss computationally expensive model
(i.e. a macroscopic or a mesoscopic model), the infeasible solutions need to be identified. It should be
noted that it is still possible that some of the solutions that were identified as feasible using the faster
model, be infeasible when microscopic model is used. This may happen due to all simplifying
assumptions that exist in the fast (macroscopic) model. As a result, even when a faster modet for pre
scrutiny is used, all constraints will be rechecked when theasdmpic model is running. For the pre
scrutiny purpose a macroscopic model developed by Girianna and Benekohal (2002) is used. This model
uses shockwave theory to find the queue length in each link over f8BheUsing this model, queue
length constraints, déacto red constraints, ideal offset constraints, and gridlock constraints are
checked. If any of the solutions does not satisfy any of the constraints, the solution is discarded and a
new solution is createdThis prescrutiny part is continued until enough individuals are created. This

step is used in initialization step as well as the regeneration step. For each individual that satisfied all the
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constraints in this section, microscopic model is called. YDelanstraints in addition to all other
constraints are checked and if any constraint is violated, the solution is discarded. If the solution is

identified as feasible, its fithess value is obtained.

4.4.1.3 Signal Timing optimization Decision Variables

Theparameters that are associated with signal timing optimization are phase plan, cycle length,
green splits, and the offsets for all intersection in each time interval. IDSTOP optimizes cycle length,
green splits, and the offsets. The phase sequence is gathbased on the optimized green splits. This
means that if IDSTOP allocates a green duration of less than five second to a left turn movement, that
phase is omitted. Through movement phases are never omitted. IDSTOP allows a maximum of four
phases per ajle with the widely known Leadead LeffTurn Phase Sequence: lekedd left turn green
signal for direction one, through traffic green signal for direction one,-lead left turn green signal for
direction two, and through traffic green signal for ditiea two. As a result, the number of phases varies
between a minimum of two (when both left turns were omitted) and a maximum of four phases (when

none of the left turns were omitted). This sequence is shown in ring format if Figure 4.2.
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Figure 42. IDSTOP phase sequence
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components as follows:

1. Cycle length

2. Green split for phase one (left tumovement for direction one)
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3. Green split for phase two (through movement for direction one)
4. Green split for phase three (left turn movement for direction two)
5. The start time of the green of the first phase according to a time reference point
It should be oted that the green split for phase four is found based on the splits of the other

three phases, the cycle length, and the lost time as follows:

iph Jov"Yi Q@ &

0 .
Rk

Where:
i i green split associated with pha¥ at intersectioriCat time periodo
0 lost time atintersection"t time periodo

0 cycle length of intersectioifat time intervalo
“Y set of discrete time intervals

‘O set of allintersections of the network

The decision vector for all intersections consists of all decision vectors for each intersection of

the network followed by each other as follows:

Where:

"B IDSTOP signal timing decision variable at time intérval

i €0 start of the first green at intersectioit time intervalo
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4.4.1.4 Taking Stochasticities into Account

In order to be able to model stochastic events (eliver behavior in acceleration, deceleration,
lane change, and joining back of queue in an almost full link; and vehicle arrival headway to the
network) in traffic, a microscopic simulation model was needed. Each run of this model simulates a
certain setof stochastic events that occurred in the network. If the optimization is carried based on a
single simulation run, the optimal solution provides the best performance for awedt network only
if real drivers always behave identical to those in theusated network, headway between vehicles are
identical to the simulated network, and similarly all other parameters are identical. However, this is not
likely to happen. Instead of finding such a solution, IDSTOP finds a solution that provides an efficient
network performance under different driver behaviors, vehicle headways, etc. This is achieved by
making several simulation runs for a candidate solution and finding the fithess value by averaging the
fitness value for each run. It is noted that a certaged for each run needs to be used which has to be
different than the other seeds that are used in the other rufiis is to avoid creating identical
conditions. To find the fithess value of each individual a total of ten runs are made and the average
fitness value is obtained. Details on finding the number of replication are available in chapter 5. It is
noted that if any of the constraints are violated in any of these replications, the solution is discarded and

a new solution is created.

4.4.2 System Optimum Traffic Assignment

The main objective of this research is to develop dynamic stochastic signal timing optimization
algorithms for urban traffic network with oversaturated intersections. Optimizing transportation supply
and demand together has potential tiurther improve network performance. Sun and Benekohal
(2004), and Abdul Aziz and Ukkusuri (2011) developed algorithms for managing transportation demand
and supply at the same time based on deterministic models to move vehicles inside the nEtN8ik

In this research simultaneous demand and supply management is performed to further improve
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network performance. However, since the main focus of the study is to find optimal oropsianal
network performance, system optimum traffic assignment is used. Although system optimal flows are
not likely to be observed in the realorld conditions (since drivers choose their routes in order to
minimize their own travel cost rather than a total system costjll knowing the best performance
possible can be helpful in making decisions. For example, the traffic flows can be used in network design
or can be sought by introducing tolls on different links of the network to match user equilibrium and
system optinal flows. Two different System Optimum Dynamic Traffic Assignment (SODTA) methods are

considered. These methods are:

a)/ hw{LaQa ad8aidSY 2LIAYdzy GNIXFFAO FaaAradyyYSyi

b) Cell Transmission based SODTA developed by Li, Ziliaskopoulos, and Travis Wall@j (1999)

As mentioned previously, the study period is discretized with respectd@emand such that in
each time interval al demand variations are negligible. In each time interval, a static system optimum
traffic assignment is perfored except for method b where traffic assignment is dynamic within each

time interval as well. Each method is explained next.

4.4.2.1 CORSIM Syem Optimum Traffic Assignment

The least computationally expensive method was the one implemented in CORSIM. This
method used FrankVolf algorithm to find user optimal traffic assignment. Travel costs were estimated
based on using scalled BPR equations. The parameters of the BPRidunand number of iterations,
aswellasthe®® RSYlIYyR ¢gSNB (GKS Aylldzia G2 GKS GNFXFFAO
BPR function parameters were used ( m@&hd 181 and the number of iterations was set to the

maximum possible ofiterations.

The most important benefit of this model was its extremely short runtime. However, due to its

oversimplified method its solution may not always result in an improvement in the value of the
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objective function. The main reason is that its $iolo is aimed at reducing the travel time based on BPR
equations; however, these equations cannot accurately determine the travel time, and do not directly
take intersection delay into account. Thus, the solution of this approach, although finds shdgkr to
system travel time based on BPR equations, may not always reduce travel time and may not always
increase number of completed trips in CORSIM. If traffic assignment does not increase the number of

completed trips, the new link and turning volumes arscdirded and the old ones are used.

4.4.2.2 Cell-Transmission based SODTA

The cell transmission based DTA, as used by Li et al.,, models SODTA as a linear programming
that can be solved using different solvers. This method requires about two hours to find optiotadrso
for a network of 20 intersections and a study period of 15 minutes which is significantly longer than
previous approach and makes this approach less suitable for IDSTOP. Assuming that IDSTOP has a total
of 30 generations, total runtime for DTA whilé around 60 hours. This method is capable of finding
optimal solution in the network; however, has some limitations. First, it does not model any of the
stochastic effects that IDSTOP is designed to take them into account such as different vehicle types,
different drivers, and nofonstant headway. Second, it cannot consider more than one lane for each
street. Third, it cannot take permissive lfirns into account. Finally, since it uses a different logic to
move the vehicles than CORSIM, even if catiokathere is no guaranty the its optimal solution results
in less travel time and higher number of completed trips when the solution is used in CORSIM. Adding all

these to its long runtime makes the algorithm lessgtable for IDSTOP.

4.5 Summary

In this chgter IDSTOP solution technique was explained. The main idea to solve the problem
and account for the known timeariant demand was to discretize the study period to shorter time

interval in which ed demand is approximately constants. Then regtimal signal timing parameters as
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well as system optimal traffic assignment were found in each time interval. Two families of meta
heuristic approaches were explained and the reason of choosing a microscopic traffic simulation model
was discussed. Finally, takinget stochasticities into account was explained and two different traffic
assignment methods were discussed. In the following chapter, IDSTOP implementation, verification, and
validation, details on how the method is implemented, how constrains were chebk&dthe objective

function was evaluated, and how the algorithm was verified and validated will be discussed.
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CHAPTER 5

IDSTOPIMPLEMENTATION AND EERFORMANCE

5.1 Introduction

In this chapter details on IDSTOP implementation are discussed. The explanation starts with
introducing the case study network, the demand patterns, how IDSTOP is coded, how the constraints
are checkedand how the fitness function evaluation is performed to account for stoctiist. Upper
bounds on the number of completed trips for all demand patterns are determined; and discussion is
continued with explaining the performance of IDSTOP ascc@mparison to a statef-the practice

signal timing optimization package.

5.2 Case Study Network

IDSTOP was tested using several case study networks. All results presented in this chapter are
based on a realistic case study network that was adopted fromntimvn Springfield in lllinois. The
main idea was to test IDSTOP under a more diverse set of conditions, closer to real world operations.
The case study network h@® intersections and a combination of cmg&ay and tweway streets with
different number oflanes.It comprised the aredetween 8" and 11" street from west to east, and

between Jefferson and Capitstreets from north to south in Springfield, lllinois.

A few modifications were made to the real network in Springfield because of the higher
vehiailar demand used in the test case compared to the actual demand in the field: 1) most of the left
turn lanes in the network were shared by through movement, but this was changed by adding exclusive
left-turn pockets, 120ft in length; and 2) if there wa$aae drop or a lane addition on an arterial, the
model maintained the same number of lanes along the arterial. The test network is called modified

Springfield network, and is shown in Figure 5.1.
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In this area of downtown Springfield, actual traffic volsmare not high enough to create
oversaturated conditions. Since, we are interested in finding solutions for oversaturated conditions
traffic volumes at different links of the case study network were increased. In addition, all traffic signals
in the portion of downtown Springfield use only two phases. In the case study, the possibility of having

up to four phases was considered.

3054

Figure 51: Modified Springfieldnetwork

As mentioned before, at each intersection a minimum of two phases and a maximum of four
phases are allowed. When two om&y streets intersect, only two phases can be used. This was the
case for intersections number 1, 2,6,9, and 10 in the modified Springfield network, see in Figure 5.1.

When a oneway and a tweway street intersect, the number of phases is optimized by IDSTOP and it
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can be either two or three phases. This was the case for intersections number 3,437,184, 17, and
18 in Figure 5.1. Finally, when two tway streets intersect, the number of phases can be two, three,
or four which is optimized by IDSTOP. This was the case for intersections number 15, 16, 19, and 20, see

in Figure 5.1.

5.3 Demand Patterns

Four different fixeeddemand traffic pattern cases were used on the modified Springfield

network:

Casea) Undersaturated network with symmetric traffic demand (750 vphpl in each entry links)

Caseb) Oversaturated network with symmetric traffic demand (16@Mhpl in each entry links)

Casec) Undersaturated network with asymmetric traffic demand, high volume in -esest

streets (1000 vphpl), low volume in norfouth streets (500 vphpl)

Cased) Partially oversaturated network with asymmetric traffic demah@0 vphpl in corridors
P-Gand B-L7; 700 vphpl corridor&-M, RE andFQ; 600 vphpl in corridor®©-H and N-I; and 500 vphpl

in corridorsGKandD-J(see Figur®.1).

For each case, it is assumed that whenever possible, 10% of the traffic in thendghtane
makes a right turn, 10% of traffic in the laftost lane makes a left turn, and the remaining vehicles go
straight. For example, for a single lane street with possible left and right turns, 10% of traffic turns left,
10% turns right and 80% goedsasght. For a twelane street with possible right and left turns, 5% of the
total incoming traffic turns right, 5% turns left, and 90% goes straight. It is noted that whenever a left or
right turn is not possible the turning vehicles go straight. Theggirig percentages are only used when
traffic is not assigned. When traffic assignment feature is on, tdedemand is needed and is estimated

based on the turning percentages mentioned above. This is done to make sure the same test bed is used
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for future comparisons (traffic assignment versus no traffic assignment). To estimatedHeraach of
the four demand cases, all routes from each origin to each destination needed to be found. For each
route, based on the traffic demand and turning percentaghe, mumber of vehicles that reached each

destination node was calculated. Therefore, thd demand was found for all@ pairs.
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Figure 52. Demand changes over a study period of 60 minutes.

In addition to the fixeedemand trdfic pattern, a dynamiclemand traffic patterns is used. For
this case traffic demand gradually changes in increments of five minutes from symmetric
undersaturated to symmetric oversaturated, asymmetric partially oversaturated, and asymmetric

undersaturatel conditions in a 6@ninte study period. Demand changes are shown in Figure 5.2.

5.4 Coding IDSTOP

All algorithms (i.e. Simple GA, Elitist Simple GA, Matitst GA, ES, and ES+) were coded using
Matlab software. Code for simple GA was obtained from llli@#sLab and was modified to add elitism,
micro-elitism, and to put CORSIM and Traffic Assignment module in the loop. Code for ES and ES+ was

specifically developed for this study.
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IDSTOP flowchart is shown in Figure 518 dhe flowchart is divided intbwo sections: a)
initialization; and b) regeneration. In initialization, the first population is generated. After creating each
individual, the constraints were checked. If they were not satisfied, the solution was discarded,
otherwise, its fithess value ag obtained. This was done by generating an input file for CORSIM
containing the newly generated signal timing parameters. After making a certain number of replications
(to account for stochasticities), the output file was read and the value of fithesgifunwas obtained.

After generating the entire initial population, the fittest individual was selected. System optimal traffic
assignment was found for that individual. The fithess value was again determined after traffic
assignment. If the fitness valweas improved, the updated link and turning volumes were used for the
next generation by coding them into CORSIM input file. If the fithess value was not improved, the old
link and turning volumes were used. This process insured that at each iteratioitngnesfvalue can only

be improved. Entire process is shown in Figure 5.3.

The initial population is used to regenerate new populations using GA or ES operators. As soon
as a new individual is created, its feasibility is checked. If the new individaakiblg, its fithess value is
determined by creating a CORSIM input file and calling the software and making several replications. If
the new individual happens to be infeasible it is discarded and another individual is created. This process
is continued util the entire new population is created. Similarly, the fittest individual is selected for
traffic assignment and if traffic assignment yielded improvement in the fitness value, the new turning
percentages will be used for the next generation. Otherwise turning percentages will not be

updated. Similarly new generations are created until termination criteria are met.
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Figure 53 (cont. on next page)
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Figure 53. Schematioptimization process
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