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ABSTRACT 

In this research the development of a signal timing optimization model for oversaturated urban 

traffic networks with stochastic driver behavior and vehicle arrival headway is presented. The model is 

called Intelligent Dynamic Signal Timing Optimization Program or IDSTOP. IDSTOP is formulated as a 

dynamic optimization problem whose objective is to maximize the number of weighted completed trips 

in the network (weighted by the length of the shortest route available for that trip). The model aims at 

managing transportation supply by optimizing signal timing parameters and simultaneously managing 

transportation demand by redirecting vehicles to less congested routes.  

Solving IDSTOP is a very complicated task since it is a nonlinear optimization program with no 

closed form formulation for the objective function in terms of the decision variables; and has an 

extremely large decision space. Therefore, a meta-heuristic algorithm is developed. It creates a 

population of candidate solutions and improves their quality over different generations. To reduce the 

runtime, a heuristic method was developed to create feasible solutions for the first population. The 

feasibility of candidate solutions was first checked using a macroscopic approach. A microscopic 

approach was also used to check all the solutions that were marked feasible by the macroscopic 

approach. To account for stochastic driver behavior and vehicle arrival headway, several microscopic 

simulation replications were made. The fittest individual of each population was chosen for traffic 

assignment. Assigning traffic for the fittest individual not only significantly reduced the runtime, but also 

insured not using inefficient signal timing parameters.  

IDSTOP solutions were compared to Direct-CORSIM solution using a realistic case study network 

and four demand patterns covering both undersaturated and oversaturated conditions for symmetric 

and asymmetric traffic demands. Findings indicated that IDSTOP solutions resulted in significantly more 

efficient network performance than Direct-CORSIM solutions. IDSTOP solutions increased the number of 
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completed trips by 2.0% to 19.6% and at the same time reduced average delay by 8.9% to 30.8% for 

different demand patterns in the case study network. These figures indicated significant improvement in 

the network performance. 

Simple GA, Elitist simple GA, Micro-Elitist GA, self-adaptive ES, and Elitist self-adaptive ES (ES+) 

were used to solve IDSTOP. In general, ES+ outperformed the rest of algorithms in reaching most 

different levels of the upper-bounds. In addition, ES+ was very efficient in oversaturated conditions 

especially when demand was symmetric. Micro-Elitist GA was very quick in early improvements in the 

fitness value. However, in most of the cases it was outperformed by ES+ in reaching higher levels of 

fitness value except for asymmetric undersaturated conditions. 

Using IDSTOP, Optimal Left Turn Management Program (OLTMP) was developed. OLTMP 

improves network performance by prohibiting the left turns at certain intersections of the network. 

Numerical findings indicated that OLTMP had great potential to improve network performance 

efficiency by optimizing the policies on the left turns. When left turn volume was low (up to 7.5% of the 

capacity of a lane), none of the left turns were prohibited since left-turners had enough opportunity to 

make their turning maneuver in permitted phases. When left turn volume was very high (20% of the 

capacity of a lane), none of the left turns were prohibited as well because doing so resulted in rerouting 

too many vehicles and overcrowding other intersections. However, for moderate left turn volumes (10% 

to 17.5% of the capacity of a lane) left turns were prohibited in one or two intersections of the network. 

A method was proposed to determine the policy that resulted in a more efficient network 

performance among variable cycles and common cycle policies. Our findings in a case study network 

(symmetric oversaturated demand pattern) that was suitable for signal coordination indicated the 

variable cycle length strategy has great potential to improve network performance compared to 

common cycle strategy. The improvement is achieved by using more suitable signal timing parameters 
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for each intersection and only coordinating them when needed. In the case study, variable cycle lengths 

strategy reduced total delay by 7.5%, and improved the number of completed trips by 1.0% compared 

to common cycle length strategy. Therefore, using variable cycle lengths significantly improved network 

performance efficiency in symmetric oversaturated conditions. 

IDSTOP was used to develop Optimal Network Metering Program (ONMP). ONMP improved 

network performance by metering traffic at entry points of the network. ONMP was formulated and a 

meta-heuristic algorithm was developed to solve it. The numerical findings showed that optimized 

metering strategy reduced total delay by 10.6% and total travel time by 6.7% compared to no metering 

strategy. Therefore, optimal metering has significantly improved network performance in the case 

study. In addition, optimized metering strategy reduced total delay by 4.5% and total travel time by 

2.7% compared to the best uniform metering strategy. This indicated that ONMP solution significantly 

improved network performance compared to the best uniform metering strategy. 
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  CHAPTER 1

INTRODUCTION 

1.1 Problem Statement  and Research Motivation  

Traffic congestion in urban areas is a huge problem. In 2000, travel delay in US urban areas was 

4.0 billion hours, a total of 1.6 billion gallons of fuel was wasted, and congestion cost was $79 billion. In 

2010, travel delay was increased to 4.8 billion hours, 1.9 billion gallons of fuel were wasted, and total 

congestion cost was increased to $101 billion [1]. In addition, traffic congestion is a major contributing 

factor to greenhouse gas emissions and consequently environmental pollutants. Proper management of 

traffic supply in urban areas could potentially reduce some of these costs (delay, fuel consumption, etc.) 

and improve their livability, safety, and economic competitiveness. This can be achieved by optimizing 

traffic signal timing parameters in these areas.  

In fact, much research is devoted to remedy traffic congestion in urban networks. Studies such 

as [2], [3], [4], [5], [6], [7], and [8] developed signal control schemes for oversaturated conditions using 

fixed-time plans. During oversaturated periods, traffic flow condition changes over time. Therefore, the 

application of fixed-time signal timing plans to oversaturated condition results in sub-optimal signal 

timing, and consequently sub-optimal network performance.  

The next step in urban traffic management was the introduction of real-time signal strategies. 

Using real-time approach can overcome the problem of fixed-signals. In a real-time method, signal 

timing parameters change over time in response to a time-variant demand. Studies such as [9], [10], 

[11], [12], [13], [14], [15], [16], and [17] developed real-time signal plans for oversaturated condition. 

However, these studies are either only applicable to very small and simplified networks or use simplified 
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traffic flow propagation models that are not capable of accurately addressing oversaturated conditions. 

This may result in sub-optimal network performance.  

These simplified traffic flow propagation models are deterministic while traffic related problems 

are stochastic. Deterministic approaches cannot accurately model a stochastic problem. For instance, 

ƳŀŎǊƻǎŎƻǇƛŎ ƳƻŘŜƭǎ ƴŜƎƭŜŎǘ ŘƛŦŦŜǊŜƴǘ ŘǊƛǾŜǊǎΩ ōŜƘŀǾƛƻǊǎ ƛƴ ŦƻƭƭƻǿƛƴƎ ǘƘŜƛǊ ƭŜŀŘŜǊΣ ŀŎŎŜƭŜǊŀǘƛƻƴΣ 

deceleration, lane changes, etc. In fact, they implicitly assume that all drivers act identically, accelerate 

and decelerate similarly, keep identical headways from their leader, travel with identical speeds, do not 

change lanes, do not block the intersections, etc. These methods, provide valuable insights about the 

problem, however due to their simplistic nature, complex system dynamics and random driver 

behavioral tendency, along with the inherent ill-behaved nature of traffic related problems, their 

prediction of the state of a transportation network may be significantly different than reality. For 

instance, they may find relatively short queue lengths while queues are long enough to block upstream 

intersections. As such, their application to signal timing optimization problem may result in finding sub-

optimal solutions.  

Adaptive signal control methods are known to be effective tools to control traffic congestion in 

urban areas. They adjust signal timing parameters in response to a time-variant traffic demand. 

Compared to fixed-time methods, adaptive systems improve network performance especially in 

undersaturated conditions [18], [19], [20], [21], [22], [23]. However, in oversaturated conditions their 

benefits are limited due to the following reasons: 

a) Adaptive methods use simplified traffic flow propagation models. These models are not 

capable of accurately predicting traffic condition in oversaturated conditions. 

b) Adaptive methods do not dynamically coordinate signals. In fact, user needs to specify the 

corridors where signal coordination is needed.  
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c) Adaptive methods do not optimize signal timing parameters in combination to each other 

since it significantly enlarges the decision space and complicates the process of finding a globally 

optimal solution in real-time.  

d) Adaptive methods use several heuristics in the process of signal timing optimization that can 

potentially result in finding sub-optimal solutions.  

e) Adaptive methods do not assign traffic.  

None of the existing signal timing optimization algorithms has all of the following capabilities 

together: 

1- accurately addressing oversaturated conditions 

2- ŀŎŎƻǳƴǘƛƴƎ ŦƻǊ ǎǘƻŎƘŀǎǘƛŎ ŘǊƛǾŜǊ ōŜƘŀǾƛƻǊΩǎ ŀƴŘ ŀǊǊƛǾŀƭ ƘŜŀŘǿŀȅǎ 

3- being applicable to more realistic traffic flow and network geometric conditions 

4- managing traffic supply and demand in combination to each other 

5- dynamically optimizing signal timing parameters (cycle length, green splits, offsets) in 

combination to each other 

The main objective of this research is to develop a dynamic signal timing optimization program 

that has all the above-mentioned capabilities. In order to be able to accurately address oversaturated 

conditions, account for stochastic driver behavior and arrival headways, and be applicable to realistic 

traffic flow and network geometric conditions, using microscopic traffic flow propagation models is 

required. These capabilities are achieved at the expense of increasing the complexity of the problem. 

When microscopic models are used, the structure of the objective function is unknown. As such, the 

optimization techniques that rely on information on the structure of the objective function cannot be 

used anymore.  
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In addition, managing traffic supply and demand together, and dynamically optimizing signal 

timing parameters in combination to each other significantly enlarges the decision space of the problem. 

The decision space is so large that traditional search techniques (e.g. exhaustive search) or methods 

such as dynamic programming cannot be used.  

As such, the second objective of this research is to develop an efficient solution technique to 

solve the problem. For this purpose several decomposition techniques and heuristics will be used to find 

near optimal solutions in reasonable amount of time.  

Finally, the third objective of this study is to use the developed method to optimize network-

level policies on prohibiting or allowing left turns, and on traffic metering. Optimizing these two is not 

possible without developing an efficient signal timing optimization algorithm. Both problems will be 

formulated and solution techniques will be developed to solve them.  

1.2 Research Objectives 

The main goal of this research is to formulate and develop a meta-heuristic algorithm to solve 

dynamic signal timing optimization problem for urban traffic networks with oversaturated intersections. 

The specific objectives are as follows: 

a) Develop analytical formulation for dynamic signal timing optimization and system optimal 

traffic assignment algorithms 

b) Develop solution techniques for the proposed model 

c) Compare the developed algorithm solutions to solutions of Direct-CORSIM optimizer 

d) Determine the most efficient algorithm in solving the problem among simple GA, Elitist 

simple GA, Micro-Elitist GA, self-adaptive ES, and Elitist self-adaptive ES  

e) Develop a program for optimal left-turn management in urban transportation networks 
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f) Study the effects of using a common cycle and variable cycles on network performance 

efficiency  

g) Develop a program for optimal traffic metering strategy in urban transportation networks 

1.3 Research Tasks 

The following tasks were performed to achieve the objectives: 

a) Review the existing literature on 

a. Signal timing optimization 

b. Dynamic traffic assignment 

c. Evolutionary algorithms (different variations of GA and ES) 

b) Formulate the Intelligent Dynamic Signal Timing Optimization Program (IDSTOP) 

c) Develop the solution technique for IDSTOP 

a. Develop code for different variations of GA and ES 

b. Incorporate the code with microscopic traffic flow propagation models 

d) Compare IDSTOP solutions to Direct-CORSIM solutions on a realistic case study network 

e) Study the effects of different optimization techniques in solving the problem 

f) Develop a program for optimal left-turn management strategy to improve network 

performance 

g) Study the effects of using common cycle and variable cycles strategies on network 

performance efficiency  

h) Develop a program for optimal network metering strategy to improve network performance 
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1.4 Scope and Contributions of Research  

This study developed an intelligent dynamic signal timing optimization program (IDSTOP) for 

urban transportation networks with oversaturated intersections. IDSTOP was formulated and a new 

objective function was introduced that was maximizing the weighted number of completed trips. The 

number of completed trips for each origin destination pair was multiplied by the length of shortest path 

connecting the two pairs to distinguish longer trips from shorter ones. A set of constraints were 

developed to ensure that the solutions are feasible/reasonable. Transportation supply was managed 

simultaneously with transportation demand. This was done by including traffic assignment constraints in 

the formulation of IDSTOP.  

In this study, origin destination demand is given for the entire study period. IDSTOP does not 

consider stochastic traffic demand. IDSTOP is not aimed at finding solutions on-line, to be implemented 

in actual network. Instead, it creates off-line solutions that can be used to study signal timing 

optimization procedure ŜǎǇŜŎƛŀƭƭȅ ƛƴ ƻǾŜǊǎŀǘǳǊŀǘŜŘ ŎƻƴŘƛǘƛƻƴǎΦ L5{¢ht ǘŀƪŜǎ ǎǘƻŎƘŀǎǘƛŎ ŘǊƛǾŜǊǎΩ 

behaviors (in acceleration and deceleration rates, lane changes, joining the back of queue in an almost 

full link) and stochastic vehicular arrival headways into account but, is not designed to account for other 

stochastic events such as traffic incidents, vehicle failures, traffic signal failures, emergency vehicles, etc.  

The main contributions of this research include: 

1) The expansion of existing deterministic signal optimization models to probabilistic case 

2) The expansion of existing signal optimization models to more realistic network geometry, 

and traffic conditions 

3) Developing an efficient method to solve IDSTOP including the introduction of a new 

objective function, new constraints and heuristics 

4) Developing a program for optimal left-turn management to improve network performance 
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5) Developing a methodology to study the effects of common cycle to variable cycles policies 

on network performance efficiency 

6) Developing a program for optimal network metering to improve network performance 

As mentioned above, IDSTOP is not designed for real-world operation. In fact, its runtime does 

not meet on-line application requirements; however, the outcome of IDSTOP can be used to improve 

the performance of adaptive signal timing tools by reducing their search space, or providing them with 

the best strategies (e.g. coordinating the signal, using long or short cycles) to be implemented for 

recurrent conditions in transportation networks. When fixed-time signal plans are used in real-world, 

IDSTOP can find solutions for recurring traffic demand in the network and its solutions can be 

implemented. In addition, IDSTOP can be used for planning and design purposes. It can be used to 

predict network performance efficiency in (near or far) future by using forecasted traffic demands. For 

planning purposes, it could be used to find out whether or not the current transportation supply is 

enough to meet the demand by a more efficient supply management (e.g. signal timing optimization), or 

by a more efficient simultaneous demand and supply management (e.g. signal timing optimization and 

traffic assignment), or by changes in network management policies (prohibiting or allowing left turns, 

traffic metering, making some streets one-way). If none of these methods are sufficient, IDSTOP can be 

used to find those locations in the network for which transportation supply needs to be increased (e.g. 

adding a lane). 

1.5 Thesis Organization  

This document is divided into 10 chapters. Chapter 2 contains a critical review of relevant 

literatures. Chapter 3 presents the mathematical formulation of the problem and explains the objective 

function and constraints of the problem in details. Chapter 4 explains the proposed procedure (IDSTOP) 

to optimize signal timing parameters in the network. It also describes development of Genetic 
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Algorithm, and Evolution Strategy methods that will be used. Chapter 5 discusses the comparison 

process of IDSTOP to Direct-CORSIM optimizer using a realistic sample transportation network. Chapter 

6 compares the efficiency of different optimization method to each other, determines the most efficient 

one(s) and provides useful information on running each method. Chapter 7 describes the development 

of a program for optimal left turn management in transportation networks and Chapter 8 compared 

variable cycle lengths strategy to common cycle length strategy. In chapter 9 the development of 

program for optimal traffic metering in urban transportation networks is explained. Finally, chapter 10 

contains the concluding remarks and recommendation for future studies.  
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  CHAPTER 2

BACKGROUND 

In this chapter a critical review of the literature on urban traffic control and dynamic traffic 

assignment is presented. The majority of the discussion is on urban traffic control which is divided into 

three sections: a) fixed-time signal timing, b) real-time signal timing, and c) adaptive traffic control. The 

discussion is followed by reviewing the most relevant studies on system optimal dynamic traffic 

assignment which is divided into four sections: a) mathematical programming, b) optimal control 

formulation, c) variational inequality, and d) simulation-based methods. 

2.1 Urban Traffic  Control  

2.1.1 Fixed-Time Signal Timing  

Much research is devoted to remedy traffic congestion in urban networks. Many of the early 

studies developed signal control schemes for oversaturated conditions using fixed-time signal timings. 

This means that signal timing parameters were constant over time and did not change in response to a 

time-variant demand. 

Gazis was one of the pioneers to study signal control in oversaturated conditions. He proposed a 

method to control two closely located oversaturated intersections and used service rates as control 

variables and minimized delay. He did not consider left turns in his study and determined service rates 

based on the available green time between the two traffic directions. He proposed a 3-stage traffic light 

operation scheme to obtain the optimal control of the two intersections. At each stage the service rate 

of each approach was either at its maximum or minimum. The service rate was set to its other boundary 

as soon as capacity reached demand. In the other word as soon as queue dissipated, green signal was 

ended and switched to red. This strategy resulted in no waste in green times that was important since 
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any wasted green translated in some loss in transportation supply and consequently a drop in network 

capacity. It is possible to extend this method to more than two intersections however, it increases the 

number of control variables that can cause some problems. This method is the first method that takes 

the issue of queues in oversaturated condition into account however, does not explicitly use a constraint 

for queue length in the analysis [1] [2].  

Michalopoulos and Stephanopoulos (1977) used control theory to propose a strategy to 

minimize delay on a single, and on two oversaturated intersection(s) of one-way streets. Their study 

considered queue constraints, travel time between the two intersections, and turning movements. Their 

objective was to find the optimal switchover point during the oversaturated period to switch the signals. 

They found that in the oversaturated periods, they had to allocate the maximum green to the approach 

with the highest traffic demand. This resulted in some queue build up in the minor street over time. 

Therefore, at the switchover point, they allocated the maximum green duration to the approach with 

the minimum traffic demand (now with long queue), and the minimum green duration to the approach 

with the highest demand [3].  

5Ωŀƴǎ ŀƴŘ DŀȊƛǎ όмфтсύ ŜȄǘŜƴŘŜŘ ǘƘŜ ǿƻǊƪ ƻŦ DŀȊƛǎ όмфспύ to more than one intersection. In 

addition, instead of a limited study period that was as long as a cycle length, they extended the study 

period to more than one cycle. They used fixed time signals and minimized the lost time by vehicles in 

queues over the entire study period. They stated that oversaturated network problems were dynamic 

and complex optimization problems. The complexity was due to taking a larger number of control 

variables into account. They found that solving oversaturation problems required optimum allocation of 

routes to drivers, and optimum signal switching at each intersection, simultaneously [4]. 

Rathi (1986) developed a method to limit or prevent the occurrence of upstream or downstream 

intersection blockages. He used the concept of spillback avoidance to reduce both frequency and 
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duration of queue spillback formed on crossing streets. He developed a model to find solutions with 

near-optimal offsets and splits for the major arterials that facilitated traffic flow on cross-streets. There 

were several assumptions in this model: a) queue storage and receiving links must be known and 

constant; b) the procedure is not dynamic, it uses historic traffic arrival data; and c) it assumes 

continuous congested condition and does not work for uncongested conditions [5].  

Gal-Tzur (1993) method metered entry traffic and adjusted that to the capacity of the critical 

intersection. This method prevented blockages inside the network and enables the relocation of queues 

to the links with higher capacity inside the network. As a result, the method converted an oversaturated 

network to an undersaturated one. Then the available methods for undersaturated conditions were 

used to solve the problem. This method however, might result in extremely large queues at the 

boundaries of the network since those queues were not taken into account [6].  

Yuan et al. (2006) determined optimal signal timing in a network of three intersections for an 

oversaturation period of ten minutes. They used cell transmission model, and Genetic Algorithms (GA) 

to find the optimal signal timing. They used a fixed cycle strategy where their algorithm determined the 

cycle length, green splits, and the offset for each intersection. They found out that the best signal timing 

with fixed cycle strategy has a cycle length that is less than the maximum cycle length. This finding was 

not supporting the results of other studies [7].  

Zhang et al. (2010) proposed an off-line method to determine signal timing for a pre-timed two-

way arterial of five oversaturated intersections. Their method determined fixed signal timing for their 

study period. They also formulated a scenario-based stochastic programming model to optimize signal 

timing along an arterial under day-to-day demand variations. They introduced a set of demand scenarios 

and their corresponding probabilities of occurrence. They used cell transmission models and determined 

cycle length, green splits, phase sequence, and offsets to minimize ǘƘŜ ŜȄǇŜŎǘŜŘ ŘŜƭŀȅ ƛƴŎǳǊǊŜŘ ōȅ άƘƛƎƘ-
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ŎƻƴǎŜǉǳŜƴŎŜέ ŘŜƳŀƴŘ ǎŎŜƴŀǊƛƻǎΦ ¢ƘŜȅ ǳǎŜŘ ƎŜƴŜǘƛŎ ŀƭƎƻǊƛǘƘƳǎ ǘƻ ƻōǘŀƛƴ ǎƛƎƴŀƭ ǘƛƳƛƴƎ ƻƴ ǘƘŜƛǊ ŎŀǎŜ 

study arterial. They found their method working better against high-consequence demand scenarios 

without losing optimality in the average sense [8].  

When oversaturation occurs, traffic flow condition changes over time. As a result, the 

application of a fixed-time signal timing plan to oversaturated condition results in sub-optimal signal 

timing, and consequently a sub-optimal network performance. In addition, all studies listed above used 

deterministic approaches to model traffic flow propagation inside the network which may result in sub-

optimal performance in real-world conditions.  

2.1.2 Real-Time Signal Timing  

In real-time methods, signal timing parameters change over time in response to a time-variant 

demand. This distributes queues spatially over different links of the network and also temporally over 

different cycles of the study period. 

Longley (1968) proposed a method that was only applicable to oversaturated and saturated 

conditions. His method managed queues so that a minimum number of secondary intersections were 

ōƭƻŎƪŜŘΦ [ƻƴƎƭŜȅΩǎ ƳŜǘƘƻŘ ƻƴƭȅ ŘŜŀƭǘ ǿƛǘƘ ŎƻƴƎŜǎǘƛƻƴ ƛƴ ǎŜŎƻƴŘŀǊȅ ƛƴǘŜǊǎŜŎǘƛƻƴǎ but not with 

congestion in primary intersections. In the other words, it controlled blockage of secondary 

intersections but not blockage of primary intersections. He used queue ratio as a performance criteria 

ŀƴŘ ŘŜŦƛƴŜŘ άǉǳŜǳŜ ǳƴōŀƭŀƴŎŜŘέ ŀǎ ŀ ƳŜŀǎǳǊŜ ƻŦ queue ratio deviation, and assumed that adjacent 

intersections were coordinated (this was not an output of his algorithm). His algorithm worked by 

changing the green split between a maximum and a minimum so that the queue unbalanced was 

reduced to zero. SƛƳǳƭŀǘƛƻƴ ǎǘǳŘƛŜǎ ŦƻǳƴŘ [ƻƴƎƭŜȅΩǎ ŀƭƎƻǊƛǘƘƳ ŜŦŦŜŎǘƛǾŜ ƛƴ ǎŀǘǳǊŀǘŜŘ ƻǊ ƻǾŜǊǎŀǘǳǊŀǘŜŘ 

condition however, if any of the intersections became undersaturated, the algorithm would not be 

applicable anymore [9].  
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Singh and Tamura (1974) used optimal control theory to control traffic in oversaturated 

condition. They defined oversaturated period as a period of time when the queues remained at the 

intersections after the end of green signal. They used explicit constraints to control formation of queues 

thus, prevented heavy congestion. Their method did not take the interference of downstream queues 

with upstream discharge into account. This could be a reasonable assumption if the queue length were 

short enough to prevent spillover. They assumed that the offsets were known. This assumption could be 

a limitation of their study since in oversaturated condition when queues were formed the interference 

with the upstream signal was not avoidable. Therefore, the offsets should be changed based on the 

queue lengths [10].  

Michalopoulus and Stepahnopoulos (1978) developed a real-time strategy and compared it to 

their fixed-time strategy. They concluded that the real-time timing resulted in a more efficient network 

performance compared to the fixed-time signal timing when the traffic volume was high [11].  

Pignataro et al. (1978) developed a method to manage traffic queue in oversaturated conditions 

by switching the green when queues reached a certain threshold. It should be noted that the method 

manages the queue rather than finding an optimal solution [12].  

Abu-lebdeh and Benekohal (1999) developed a dynamic traffic signal control procedure for 

oversaturated arterials. Their method produced real-time signal timings that dynamically managed 

queue formation and dissipation. They assigned different priorities to arterial and cross-streets traffic 

for a given queue management strategy. They formulated this problem where their objective function 

was maximizing system throughput and penalized it by a disutility function that specified the relative 

importance of an arterial and cross-streets for a given queue management strategy. Their method took 

both one-way and two-way arterials into account however, it was restricted to a single arterial, and only 

two-phase signals. For a one-way arterial, their method provided dynamic time-dependent traffic 
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control. Offsets and green times were dynamically changed as a function of demand and queue lengths. 

They found similar results for a two-way arterial however, as expected, for the secondary direction their 

algorithm could not provide all the capabilities associated with the primary direction. For the secondary 

direction, it managed the queues so that the occurrence of queue spillback was minimized [13] [14].  

Girianna and Benekohal (2002) expanded Abu-[ŜōŘŜƘ ŀƴŘ .ŜƴŜƪƻƘŀƭΩǎ ŀƭƎƻǊƛǘƘƳ ŀƴŘ ǇǊƻǇƻǎŜŘ 

dynamic signal coordination models for oversaturated transportation networks. They formulated the 

model as a dynamic optimization problem with the objective of maximizing the total number of vehicles 

released by the network and penalizing it by queue accumulation along the arterials and used genetic 

algorithms to find the near optimal signal timing. They developed a cycle based, and a discrete-time 

based, network loading model. In the cycle based model, they assumed equal cycle length for all 

intersections of the network while in the discrete-time based model they relaxed this assumption. They 

used CORSIM to validate their model. They found that their model successfully managed queues along 

the coordinated arterials and also created opportunity for traffic progression in specified directions. 

Their algorithm managed local queues by spatially distributing them over some signalized intersections 

and by temporarily spreading them over signal cycles. If a critical signal was located at an exit point, the 

algorithm protected that signal from becoming excessively loaded. On the other hand, if a critical signal 

was located at an entry point, the algorithm reduced the queues at downstream intersections and then 

released the platoon from the critical intersection. This study did not take left turns into account [15].  

Chang and Sun (2003) proposed a method to dynamically control an oversaturated traffic signal 

network by using a bang-bang like model for oversaturated intersections, and TRANSYT-7F for 

undersaturated intersections. They called their method maximal progression probability algorithm. Their 

model had two different operating procedures one for saturated and one for undersaturated conditions. 

They formulated the problem and proposed a heuristic method to find the signal timing. They suggested 

that the most congested intersection had to be chosen as the pivot intersection. At that cycle step, they 
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set the cycle length of all oversaturated intersections equal to the cycle length of the pivot intersection 

that was found by the bang-bang like control model. Then they assigned the offsets to the maximal flow 

rate approach at all intersections. After completing the cycle, a new pivot intersection was selected. 

They tested their model in a network of 12 oversaturated intersections that were surrounded by 13 

undersaturated intersections and they allowed turning movements and compared it to TRANSYT-7F. 

They found that their method provided better results than TRANSYT-7F [16]. 

Lo and chow (2004) applied their Dynamic Intersection Signal Control Optimization (DISCO) 

method to a one-way arterial of three intersections and compared three control strategies. These 

strategies were: fixed-cycle or fixed-time plan, variable green split in a fixed cycle, and variable-green-

no-cycle-plan. DISCO uses cell transmission model by Daganzo (1992) and simple genetic algorithms to 

find the near-optimal signal timing. They found out that the most flexible strategy plan, variable-green-

no-cycle, did not necessarily result in the best answer under the limitations of solution heuristics, 

especially when there was no good initial solution. However, with good initial signal timing, this plan 

ƻǳǘǇŜǊŦƻǊƳŜŘ ƻǘƘŜǊ ǇƭŀƴǎΦ ¢ƘŜȅ ǎǳǇǇƻǊǘŜŘ [ƻΩǎ όнллмύ ǇǊŜǾƛƻǳǎ ŦƛƴŘƛƴƎǎ ǘƘŀǘ ǘƘŜ ǊŜǎǳƭǘǎ ƻŦ ŀ ǾŀǊƛŀōƭŜ 

green no cycle plan is only a few percent better than the other two cycle timing plans. They stated that 

the variable-green-no-cycle plan cannot contribute too much since most of the streets operated in a 

state of de facto red. They concluded that a dynamic plan could only result in slightly better signal timing 

if only used a good initial solution that was produced by a fixed-cycle plan. They stated that the reason 

was a larger feasible area for the dynamic plan compared to the static plan that made finding a high 

quality solution much harder [17] [18]. 

Sun and Benekohal (2006) developed a bi-level programming formulation and a heuristic 

solution for traffic control in an oversaturated network with dynamic demand and stochastic route 

choice. They formulated the problem for networks of one-way streets with turning movements with 

two-phase signal plans. In their bi-level programming model, the upper level represented the signal 
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optimization that was controlled by system manager. The lower level, modeled the travŜƭŜǊΩǎ ōŜƘŀǾƛƻǊΦ 

They used genetic algorithms and a cell transmission based incremental logit assignment to solve the 

problem and tested their method on two transportation networks. Using dynamic signal timing, reduced 

the average link travel time by 5-8% and up to 14% compared to a static signal timing [19].  

Putha et al. (2010) used ant colony optimization to solve signal coordination problem for an 

oversaturated network. They formulated the problem and used ant colony to solve it and compared its 

results to simple genetic algorithms results. Their formulation and case study network was very similar 

ǘƻ DƛǊƛŀƴƴŀ ŀƴŘ .ŜƴŜƪƻƘŀƭΩǎ όнллнύ ŦƻǊƳǳƭŀǘƛƻƴǎ ŀƴŘ ŎŀǎŜ ǎǘǳŘȅΦ ¢ƘŜȅ ƳŀȄƛƳƛȊŜŘ ǘƘŜ ǘƻǘŀƭ ƴǳƳōŜǊ ƻŦ 

vehicles processed by network during the saturation period and used a disutility function to penalize the 

occurrence of queues at the end of green signal. Similarly they used ideal offset, de facto red, 

coordinated loops, queue storage capacity, network flows, and control variable constraints. Their case 

study network had 20 intersections and one-way arterials. They did not report much detail on the signal 

timing that was found by ant colony and genetic algorithms however, they compared the performance 

of these two methods by comparing the average value of fitness function over 30 runs. They found that 

for most of the cases ant colony provided higher fitness compared to simple genetic algorithm except 

for the case with 400 population size/ants and 50 generations/trials. Although their comparison showed 

that ant colony optimization outperformed simple genetic algorithm in most of the cases, it did not 

provide details on the output signal timing to show if it was reasonable or not. In addition, they did not 

report any details on calibration of simple genetic algorithm they used [20].  

2.1.3 Adaptive Signal Control  

Several adaptive signal control tools have been developed to optimize and coordinate signals in 

realistic networks. These systems monitor traffic condition inside the network using vehicular detectors 

and find signal timing in response to that. Consequently, the signal timing changes over time. Adaptive 
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systems are either reactive, or proactive. Reactive systems react to the current traffic condition in the 

network. On the other hand, proactive systems predict traffic condition in near feature and take 

preventive actions to avoid traffic congestion.  

Sydney Coordinated Adaptive Traffic System (SCATS) was developed in early 1970s in Australia. 

SCATS utilizes a partially decentralized architecture and relies on detectors at stop bar locations to 

predict downstream arrival using vehicle departures and a platoon dispersion factor. SCATS finds signal 

timings for background plans using the existing demands at critical intersections, and these set the base 

for coordination with intersections belonging to a predefined subsystem around it. However, the offsets 

should be provided for SCATS to use them at later times. SCATS does not optimize the offsets. It uses a 

feature known as marriage/divorce to dynamically group adjacent subsystems of intersections for 

coordination, each subsystem varying in size from one to ten intersections (NCHRP Report 340, 1991). At 

ǇŜŀƪ ƘƻǳǊǎΣ ŎȅŎƭŜ ƭŜƴƎǘƘǎ ƛƴ ŜŀŎƘ ǎǳōǎȅǎǘŜƳ ŀǊŜ ŦƻǳƴŘ ǳǎƛƴƎ ²ŜōǎǘŜǊΩǎ ƳŜǘƘƻŘ ŀƴŘ ƻŦŦǎŜǘǎ ǇǊƻǾƛŘŜ 

ŎƻƻǊŘƛƴŀǘƛƻƴ ŦƻǊ ǘƘŜ ŘƛǊŜŎǘƛƻƴ ǿƛǘƘ ǘƘŜ ƘƛƎƘŜǎǘ ŘŜƳŀƴŘΦ ²ŜōǎǘŜǊΩǎ Ƴethod does not result in finding 

reasonable cycle length at saturation level. Therefore, SCATS uses an upper bound to limit the value of 

the cycle length. At off-peak hours, a cycle length is selected to provide better coordination for both 

directions and the objective is to minimize stops. In undersaturated conditions, the goal of SCATS is to 

reduce stops and delay, and near saturation it maximizes throughput and controlled queues (Traffic 

Detector Handbook, 2006) [21].  

Split, Cycle, Offset Optimization Technique (SCOOT) is another well-known adaptive (reactive) 

signal control, developed by the Transport Research Laboratory (TRL) in the U.K. SCOOT is a centralized 

traffic-responsive system that minimizes stops and delay by optimizing cycle, splits, and offsets. The 

system uses detectors upstream from the intersections to predict vehicle arrivals downstream at the 

stop bar, and update its predictions every few seconds. The optimization is performed using heuristics 

from TRANSYT considering only small changes in the signal settings (given that the solution needs to be 
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obtained in real-time), and also not to significantly disrupt coordination in a single step. However, this 

limits the changes to gradual modifications over time that may be slower than what is needed under 

unusual circumstances (e.g. incidents), and it indicates that the optimization is local rather than global. 

In addition, using TRANSYT for optimization can be a limitation since its solution is local as well. SCOOT 

has been deployed in more than 200 cities worldwide [22], [23].  

Optimized Policies for Adaptive Control (OPAC) minimizes a function of total intersection delay 

and stops for predetermined time horizons. Four versions of OPAC are available. OPAC I uses dynamic 

ǇǊƻƎǊŀƳƳƛƴƎ ǘƻ ŘŜǘŜǊƳƛƴŜ Ǝƭƻōŀƭƭȅ ƻǇǘƛƳŀƭ ǎƛƎƴŀƭ ǘƛƳƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŦƻǊ ŀ άǎƛƴƎƭŜέ ƛƴǘŜǊǎŜŎǘƛƻƴΦ ¢ƘŜ 

second optimization algorithm that was developed, OPAC II, consists of a simplification of the OPAC-I 

algorithm. It was designed to serve as a building-block in the development of a distributed online 

strategy. In OPAC III, signal timings are optimized using a rolling horizon (typically as long as an average 

cycle) and a simplified dynamic programming approach based on detector data and predictive traffic 

ƳƻŘŜƭǎΣ ōǳǘ ƻƴƭȅ ǘƘŜ άƘŜŀŘέ ǇƻǊǘƛƻƴ ƻŦ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴ ƛǎ ƛƳǇƭŜƳŜƴǘŜŘΦ ¢ƘŜ άƘŜŀŘέ ǇǊŜŘƛŎǘƛƻƴ ƛǎ ōŀǎŜŘ ƻƴ 

actual detector information (not on the predicted demand). The system can make decisions every 1 or 2 

seconds, and phase sequencing is not free but based on the time of day, skipping phases if there is no 

demand for such movements. It is noted that all phases are also constrained by maximum and minimum 

green times. The OPAC IV (or RT-TRACS) version is intended to incorporate explicit coordination and 

progression in urban networks and is known as the virtual-fixed-cycle OPAC. The virtual-fixed-cycle 

restricts the changes in cycle lengths at intersections around a given primary signal, so that they can 

fluctuate only in small amounts to maintain coordination. This may result in finding a local optimal 

solution rather than a global one. There are three control layers in the OPAC architecture: 1) local 

control (using OPAC III), 2) coordination (offset optimization), and 3) synchronization (network-wide 

virtual-fixed-cycle). The upcoming OPAC V will include dynamic traffic assignment in the optimization of 

the signal timings [24].  
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Real-time Hierarchical Optimized Distributed Effective System (RHODES) developed at the 

University of Arizona starting in 1991 [25]. RHODES has three hierarchical levels: 1) intersection control, 

2) network flow control, and 3) network loading. RHODES optimizes different measures of effectiveness 

such as delay, number of stops, or throughput [26] by using real time input from vehicle detectors. It 

predicts traffic fluctuations in the short and medium terms to find the following phases and their 

duration. At the intersection control level, an optimization is carried out with the dynamic programming 

ǊƻǳǘƛƴŜ ά/htέ ǘƘŀǘ ǳǎŜǎ ŀ ǘǊŀŦŦƛŎ Ŧƭƻǿ ƳƻŘŜƭ όŎŀƭƭŜŘ tw95L/¢ύ ŦƻǊ ŀ ƘƻǊƛȊƻƴ ǘƘŀǘ Ǌƻƭƭǎ ƻǾŜǊ ǘƛƳŜ όŜΦƎΦ нл ǘƻ 

40 seconds). The solution for the first phase is implemented and the optimization is performed again 

based on updated information. The network flow control uses a model called REALBAND to optimize the 

movement of platoons identified and characterized by the system (based on size and speed). It creates a 

decision tree with all potential platoon conflicts and finds the best solution using results from APRES-

NET, which is a simplified model to simulate platoons through a subnet of intersections (similar to 

PREDICT). The rolling horizon at this level is in the order of 200-300 seconds. Finally, the network loading 

focuses on the demand on a much longer prediction horizon (in the order of one hour). Some of the 

limitations of RHODES arise with oversaturated conditions, under which the queue estimations may not 

be properly handled by PREDICT. Also, the predictions consider signal timing plans for upstream 

intersection, which may change at any point in time creating deviations between the estimated and 

actual arrival times at the subject intersection. Lastly, there are several parameters used in the queue 

predictions such as queue discharge speeds that should be calibrated to field conditions, and the fact 

that an upper layer is used for network coordination demands additional infrastructure.   

Real-Time Traffic Adaptive Control Logic (RTACL) was derived from OPAC and specifically 

designed for urban networks. This system uses macroscopic model to select the next phases. Most of 

the logic is based on local control at the intersection level, and the predictions are found for the next 

two cycles (short term), leading to recommendations for the current and the next phase, and long-term 
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estimations for the following phases. These recommended actions (short and long term) to generate 

estimates of demand that are used at the network level by nearby intersections, which can adjust their 

decisions based on the new predictions [27]. RTACL may be more suitable for undersaturated conditions 

since its macroscopic model may not be able to properly handle oversaturated conditions. In addition, 

its solution is local rather than global optimum. 

tǊƻƎǊŀƳƳŀǘƛƻƴ 5ȅƴŀƳƛǉǳŜ όtwh5¸bύ ǿŀǎ ŘŜǾŜƭƻǇŜŘ ōȅ ǘƘŜ /ŜƴǘǊŜ ŘΩ9ǘǳŘŜǎ Ŝǘ ŘŜ wŜŎƘŜǊŎƘŜǎ 

de Toulouse (CERT), France. PRODYN uses a rolling horizon for the optimization and predicts vehicle 

arrivals and queues at each intersection every five seconds and for periods of 140 seconds. At the 

intersection level, it minimizes delay by forward dynamic programming with minimum and maximum 

green time constraints. At the network level it simulates and propagates the outputs to downstream 

intersections for future forecasting [28]. It has a centralized (PRODYN-H) and a decentralized version 

(PRODYN-D). PRODYN-H has shown better performance, but due to its complexity is limited to a very 

low number of intersections. PRODYN-D comes in two versions: one with information exchange 

between intersections (better suitable for networks), and one with information from the immediate 

links.  

Urban Traffic Optimization by Integrated Automation/Signal Progression Optimization 

Technology (UTOPIA/SPOT) was developed by Mizar Automazione in Italy. It has a module for 

optimization of a given criteria (e.g. delay or stops) at the intersection level (SPOT) and one module for 

dealing with area-wide coordination between intersections (UTOPIA), with the objective of improving 

mobility for both public and private transport. Intersections with SPOT share signal strategy and platoon 

information with their neighbors for better network operation, but UTOPIA is needed for an increased 

number of intersections linked together, allowing for area-wide predictions and optimization. The 

predictions at the network level (and the optimized control) are made for a horizon of 15 minutes, and 

individual intersections compute their own predictions (for the next two minutes) using local data. 
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Adjustments to the signal strategies can be made every three seconds. Deviations with the network-

level predictions are sent to the central controller so that better predictions for other intersections are 

available [29]. 

Adaptive traffic control tools described above have the potential to improve system-wide 

performance and they use real-time data for determining a control policy. Some of them have been 

proved in field installations with successful results and have been distributed extensively around the 

world. They are flexible in the sense that they can frequently change cycle times (or they are acyclic) and 

have the capability to adjust the signal strategy based on predictions every few seconds. However, as it 

has been pointed out [30], they have some limitations in terms of uncertainty in the predictions of 

traffic flow and arrival times, and their lack of evolving mechanisms for self-adjusting or learning over 

time. In addition, some of the current adaptive control systems (OPAC, PRODYN, and RHODES) use 

recursions based on dynamic programming or enumeration of a reduced version of the available space 

for a given rolling horizon, but with the shortcoming that the best solutions are based for the most part 

on predicted traffic, which may not be accurate enough to obtain optimal behavior (it is also recalled 

that the forward dynamic programming recursions find the optimal values and then move backward in 

time to estimate the optimal policy, from the end of the horizon, which has the most uncertainty). 

Overall, the adaptive system reviewed above, significantly improve network performance compared to 

previous systems however, they are not aimed at finding globally optimal signal timing for the network 

due to their real-time constraints. In addition, they are not able to determine which movements to 

coordinate. In fact, this is one of their input data. Moreover, they also do not optimize all decision 

variables simultaneously and in combination with each other. In addition, these methods use models to 

predict traffic condition in future that are very simplified (to reduce runtime) and are usually not 

capable of accurately modeling oversaturated conditions. Finally, adaptive models do not 

simultaneously manage transportation supply and demand. It should also be noted that these adaptive 
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methods minimized delay alone, or in combination with stop minimization or speed maximization. As 

shown in different studies, in oversaturated conditions improving the capacity of the network is more 

important than reducing delay [31] [32] [33] [13]. 

2.2 Dynamic Traffic  Assignment  

Static-demand and deterministic user equilibrium and system optimal problems can be easily 

solved by Frank-Wolf algorithm. However, complex system dynamics, random driver behavior, and the 

inherent ill-behaved nature of DTA problem, results in complicated modeling issues associated with 

analytical methods [34]. A lot of formulations and solution approaches have been introduced since the 

pioneering work of Merchant and Nemhauser in 1978. These works can be categorized into four groups 

based on their methodology: 

1) Mathematical programming,  

2) Optimal control formulation,  

3) Variational inequality, and  

4) Simulation-based methods  

In the rest of this chapter, these methods are briefly explained and their strengths and 

drawbacks are highlighted.  

2.2.1 Mathematical Programming  

Mathematical programming DTA models discretize the time and formulate the problem in that 

discretized time-setting. The first attempt to formulate the DTA problem as a mathematical program (by 

Merchant and Nemhauser) was limited to the deterministic, fixed-demand, single-destination, single-

commodity, system optimal case [35] [36]. The model was based on link exit function to propagate 

traffic, and a static link performance function to find travel cost as a function of link volume. The 
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formulation was a flow-based, discrete time, non-convex nonlinear mathematical program. This model 

provided a proper generalization of the conventional static system optimum assignment problem, and 

the global solution was obtained by solving a piecewise linear version of the model. Later, in 1980, Ho 

proved that such global optimum could be determined by solving a sequence of at most ὔ  ρ linear 

programs, where ὔ is the number of time periods [37]. 

Carey proved that the Merchant-Nemhauser model satisfies the linear independence constraint 

qualification because the proposed exit function was continuously differentiable [38]. Carey 

manipulated the exit functions to obtain mathematical and algorithmic advantages over the original 

formulation and make it a well-behaved convex nonlinear program [39]. This mathematical program 

could be solved by regular mathematical programming software. The formulation was extended to 

handle multiple destinations instead of one. The formulation had the non-convexity issues resulted from 

First-In-First-Out (FIFO) property. This problem exists in all mathematical programming approaches for 

both user equilibrium and system optimum cases. The FIFO requirement can be easily satisfied in a 

single destination DTA however, in general networks it requires adding additional constraints to the 

formulation that results in a non-convex feasible area. This non-convex feasible area significantly 

increases the computational requirements to solve the problem and usually makes it impossible to get 

real-time results [40].  

Lƴ ŀŘŘƛǘƛƻƴΣ ƛƴ ǎȅǎǘŜƳ ƻǇǘƛƳŀƭ 5¢!Σ άƘƻƭŘƛƴƎ-ōŀŎƪέ ƛǎǎǳŜ ƛǎ ƭƛƪŜƭȅ ǘƻ ōŜ ƻōǎŜǊǾŜŘΦ ¢Ƙƛs means that 

ǘƘŜ ǘǊŀŦŦƛŎ ƛƴ ƳƛƴƻǊ ǊƻŀŘǎ Ƴŀȅ ōŜ ƘƻƭŘ ŦƻǊ ǳƴǳǎǳŀƭƭȅ ƭƻƴƎ ǇŜǊƛƻŘǎ ƻŦ ǘƛƳŜ ǘƻ ǊŜŘǳŎŜ ǎȅǎǘŜƳΩǎ ǘƻǘŀƭ ŘŜƭŀȅΦ 

Some of the issues relate to FIFO property, and holding back are presented by Carey and Subrahmanian 

(2000) [41]. 

Later in 1993, Birge and Ho extended Merchant-Nemhauser model to stochastic demand. They 

relaxed the assumption that the O-D is known for to entire study period by developing a multistage 
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stochastic mathematical programming formulation that was neither linear nor convex. Their model 

assumed a finite number of scenarios of random variable realizations. This formulation assumed that 

current assignment decisions were independent of future O-D [42].  

Based on the cell transmission model (Daganzo, 1994), Ziliaskopoulus (2000) developed a linear 

programming formulation for single destination system optimal DTA. Using cell transmission model, he 

obtained link volumes and travel cost in each time step of the study period. The model was more 

sensitive to traffic realities and provided some insights on the DTA problem properties but was not an 

operational model for real-world applications [43].  

Li et al. (1999) modeled system optimal dynamic assignment as a linear programming with 

multi-origin multi-destination. They used cell-transmission model and observed that FIFO constraints 

were generally satisfied [44].  

Abdul Aziz and Ukkusuri (2011) proposed a bi-level and a single-level formulation to 

simultaneously manage traffic supply and demand. They used cell transmission model and solved the 

single-level program. They optimized phase durations and found system optimal traffic assignment. 

They concluded that their model found a better solution than fixed-time signals [45].  

An issue in this part is the trade-off mathematical tractability with traffic realism. For example, 

to represent the FIFO property, non-convex constraints are needed. Non-convexity in DTA results in loss 

of analytical and computational tractability for deployment in general networks. In addition, this method 

usually has problems related to: the used of link performance/exit functions; tracking back of queues; 

efficient solutions for real-time purposes in large-scale networks; and a clear understanding of solution 

properties for realistic scenarios. 
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2.2.2 Optimal Control Formulation  

In constrained optimal control theory DTA formulations, it is assumed that O-D demands are 

known as a continuous function of time, and link flows are determined as continuous functions of time 

as well. Constrains are similar to those for the mathematical programming; however, instead of being 

defined for discrete time intervals, they are defined for continuous time setting.  

Link-based optimal control formulation for a single destination cased was introduced by Friesz et 

al. in 1989. The model included both system optimal and user equilibrium objectives and assumed that 

adjustments from one state to another may occur concurrently as the network condition changes. The 

system optimal model is a temporal extension of the static system optimal model [46].  

Using optimal control theory, Ran and Shimazaki (1989) developed a link-based system optimal 

model for urban transportation network with multiple origins and destinations. To reduce the 

computational complexity of the problem, they used linear exit functions and quadratic link 

performance functions. Their model had two issues: a) unrealistic modeling of the congestion, and b) 

not taking the FIFO constraint into account [47].  

Optimal control theory was an attractive method to describe dynamic systems, however 

negative factors still exist: 1) The lack of explicit constraints to ensure FIFO and holding of vehicle at 

nodes 2) The lack of realistic modeling of congestion and over-saturation 3) The lack of solution 

approach for general networks.  

2.2.3 Variational Inequality  

Variational Inequality (VI) provides a general formulation platform for several classes of 

problems in DTA context like: optimization, fixed point, and complementarity. VI handles more realistic 

traffic scenarios and sensitivity analysis and extensions can be easily performed. This approach is more 

general than other two approaches and provides greater analytical flexibility and convenience in 
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addressing various DTA problems. VI highlights the inability of the mathematical programming 

approaches in addressing scenarios with asymmetric Jacobean matrices for the travel cost functions. 

However, VI methods are more computationally intensive than other two methods. In addition, traffic 

realism issue exists in these models. Several studies have used the concept of VI for DTA [48] [49].  

2.2.4 Simulation -Based Methods  

In contrast to analytical DTA models, simulation based DTA models use a traffic simulator to 

capture the system dynamƛŎ ŀƴŘ ŘǊƛǾŜǊǎΩ ōŜƘŀǾƛƻǊ ƻƴ ǊƻǳǘŜ ŎƘƻƛŎŜΦ ¢ǊŀŦŦƛŎ ǎƛƳǳƭŀǘƻǊ ƛǎ ŦƭŜȄƛōƭŜ ǘƻ 

replicate the traffic propagation, holding back, congestion and physical queue impact, signal 

coordination, and ǊŀƴŘƻƳƴŜǎǎ ƻŦ ŘǊƛǾŜǊǎΩ ōŜƘŀǾƛƻǊΦ {ƛƳǳƭŀǘƛƻƴ ōŀǎŜŘ 5¢! ƳƻŘŜƭ ƘŀǾŜ Ǝŀƛƴed greater 

acceptability for real-world deployment due to its flexibility and fidelity. 

In simulation based models, simulator is dedicated to determining the shortest path and search 

for optimal solution, in addition to propagating the traffic. Mahmassani and Peeta ( [50] [51] [52]) used 

a mesoscopic traffic simulator, DYNASMART, as part of an iterative algorithm to solve System Optimal 

(SO) and User Equilibrium (UE) solution of their DTA models. From a computational standpoint, further 

modification is still required to deploy their deterministic DTA models to real-time environment. 

CONTRAM simulator ( [53] [54] [55]) was implemented to address SO and UE DTA problems by Ghali and 

Simith (1992) [56] and Smith (1994). Rolling horizon DTA models was developed by Peeta and 

Mahmassani (1995) to improve computational efficiency. The rolling horizon DTA can use the current 

information and near-term forecast for a solution in quasi real-time situation. DynaMIT was introduced 

by Ben-Akiva et al. (1997) [57] to approximate real time traffic condition in a dynamic traffic assignment 

system, which consists of two simulators, demand and supply simulator. Vehicles are moved in packets 

in these mesoscopic simulators to reduce computational load. However, it is incapable of handling the 
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ǊŀƴŘƻƳƴŜǎǎ ƻŦ ŘǊƛǾŜǊΩǎ ōŜƘŀǾƛƻǊ ŀƴŘ ǾŜƘƛŎƭŜ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎΣ ǘƘŜ ƛƳǇŀŎǘ ƻŦ ǇƘȅǎƛŎŀƭ ǉǳŜǳŜ ŀǘ ǎƛƎƴŀƭƛȊŜŘ 

intersection, and gap acceptance behavior (similar to the other simulation models mentioned above).  

2.3 Summary  

In this chapter previous studies in the area of urban traffic control and dynamic traffic 

assignment were reviewed. In summary, both fixed-time and real-time signal timing optimization 

approaches are based on deterministic and oversimplified models to represent traffic propagation in 

transportation networks. These methods, provide valuable insights about the problem, however due to 

their simplistic nature, complex system dynamics and random driver behavioral tendency, along with 

the inherent ill-behaved nature of traffic related problems, their optimal solution may result in sub-

optimal network performance in real world.  

Adaptive traffic control overcomes some of these issues; however, they are not capable of 

finding an optimal solution since they do not optimize all signal timing parameters. In fact, since doing 

so requires extensive computations that usually exceed the real-time constraints, only some of the 

signal timing parameters are optimized. Use of simplified prediction models is another limitation of 

adaptive models especially in oversaturated condition. In addition, none of the adaptive models manage 

both traffic supply and demand simultaneously. Finally, adaptive systems need to know the corridors 

were signal coordination is desired as an input. 

Based on the review of the state of the art in urban traffic control we identified lack of a signal 

timing optimization method that simultaneously manages traffic supply and demand, optimize all signal 

timing parameters, considers complications that occur in oversaturated conditions, and account for 

different driver behaviors and vehicle specifications. The main objective of this study is to formulate and 

develop a solution technique to solve such problem.  
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  CHAPTER 3

IDSTOP FORMULATION 

3.1 Introduction  

Finding signal timing parameters that result in an efficient network performance can be 

formulated as an optimization problem. The decision variables of this problem are signal timing 

parameters (i.e. number of phases, cycle length, green splits, and offsets) and the objective function is 

to optimize one or several Performance Measures (PM) of the network (i.e. number of trips, network 

throughput, vehicle-mile travelled, average speed, delay, travel time, emissions, etc.). In addition, 

several constraints are needed to ensure that the solution is feasible and/or desired (e.g. a solution that 

creates excessively long delays at a minor road may not be considered desired, a very short cycle length 

of for example 10 seconds may not be considered feasible).  

Network performance may be further optimized if drivers are dynamically routed to the paths 

with lower traffic congestion. This can be achieved by dynamically assigning traffic in the network. There 

are two major traffic assignment approaches: user equilibrium and system optimal. Since the focus of 

this study is to identify the optimal network performance, system optimal concept is used. In this case, 

the entire problem of signal timing optimization and traffic assignment could be formulated in a single 

level optimization program. The decision variables are signal timing parameters, and turning volumes at 

each intersection over time. 

In the rest of this chapter, the decision variables, objective functions, and the constraints of the 

problem will be introduced. At the end a method to obtain an upper-bound to IDSTOP objective function 

is introduced. 
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3.2 Decision Variables  

The decision variables of the problem are signal timing parameters of all intersections of the 

network in each time interval. That is, number of phases (phase plan), the cycle lengths, green splits, 

and start time of the first green of all intersections at each time interval. For traffic assignment purpose, 

turning volumes at each intersection at each time interval are also decision variables. The list of all 

decision variables and their notation is presented below: 

ᶮ  number of phases at intersection Ὥ at time interval ὸ 

ὅ  cycle length of intersection Ὥ at time interval ὸ 

ίȟ  split for green for phase Ὧ of intersection Ὥ at time interval ὸ (see Figure 3.1)  

ίέὪὫ  start time of the first phase of intersection Ὥ at time interval ὸ  

ώ ȟ  turning traffic volume at upstream intersection Ὥ moving towards downstream 

intersection Ὦ on a path from source node ὶ to a sink node ί at time step ὸ 

 

Figure 3.1. Phases in an intersection 
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3.3 Objective Function  

The ultimate goal of signal timing optimization is to improve transportation network 

performance. This can be achieved by selecting different network Performance Measures (PM) to be 

optimized as the objective function of the problem. Proper selection of the objective function (i.e. which 

PM of the network to be optimized) is extremely important due to the following reasons: a) Optimizing 

different objective functions may result in finding different solutions; b) Optimizing some objective 

functions may require adding extra constraints to the problem; c) Optimizing some objective functions 

may require a larger area of the network to be simulated which is computationally expensive; and d) 

Different objective functions may have different convergence speeds. Some candidate objective 

functions are: 

1- Delay minimization (OB1), 

2- Travel time minimization (OB2),  

3- Throughput minus queue maximization (OB3), 

4- Trip maximization (OB4), and 

5- Weighted trips maximization (OB5). 

3.3.1 Delay Minimization  

For a specific trip, travel delay is the time difference between the actual travel time, and the 

hypothetical ideal travel time (under free flow conditions and the absence of traffic control devices). 

Therefore, travel delay minimization (i.e. reducing total travel delay for all vehicles for the entire study 

duration), on the average reduces travel times and brings them closer to the ideal travel time. This is 

desired however, to get the best results one needs to pay attention to the following point. When no 

vehicle enters the study area (i.e. the network) travel delay is at its lowest level (i.e. zero). Therefore, 

delay minimization may found solutions that keep many vehicles outside of the study area (i.e. where 
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delays are not calculated) and let only a small number of them enter the network. This results in lower 

travel delays inside the network at the expense of excessive delays at the boarders. This could be 

prevented by: 

a- Expanding the study area such that delay at the boarders of the network is taken into account. This 

ensures that not too many vehicles are metered (for the purpose of improving interior network 

performance). However, this method is computationally expensive especially in oversaturated 

conditions. In these conditions, queues at the boarders may become too long (due to the large 

traffic demand) and require substantial length of entry links to be modeled (computationally 

expensive especially when microscopic models are used).  

b- A set of constraints may be used to ensure that all traffic demand is entered the network. This 

strategy will work for undersaturated conditions where traffic demand is below network capacity. 

However, in oversaturated conditions, it is not possible to process all traffic demand because 

network does not have enough capacity to do so. Therefore one needs to decide how much of 

traffic demand should be entered into the network which is a very challenging task and has 

significant influence in the solution of the problem.  

3.3.2 Travel Time Minimization  

Another objective function that has great potential to improve network performance is travel 

time minimization that is minimizing total travel time for all vehicles in the network for the study period. 

Travel time, is one of the most direct costs experienced by users of a transportation network. It simply is 

equivalent to the time needed to process a vehicle in the network. Therefore, when it is minimized, total 

process time for vehicles is reduced and as such, the network performance is improved. However, 

similar to delay minimization, not letting vehicles into the network results in lowest possible total travel 

time (i.e. zero). To prevent holding vehicles at the entry points, one needs to either expand the entry 
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links of the network to more accurately estimate travel time (which is computationally expensive) or 

need to add constraints to the problem to ensure all demand is satisfied (which is not possible in 

oversaturated conditions).  

3.3.3 Throughput -Minus -Queue Maximization  

Throughput maximization increases the capacity of the system in processing more vehicles [2], 

[3], [4], [5], etc. When throughput (i.e. sum of vehicles released from each link of all intersections of the 

network over the entire study period) maximization is used, queues may grow in some certain cases 

especially when a downstream intersection has less capacity than its upstream intersection. This queue 

growth may create a gridlock which should always be avoided. To take care of this issue, Abu-Lebdeh 

and Benekohal, and Girianna and Benekohal added a disutility function to their objective function that 

penalized the value of throughput based on the queue lengths in different links. This penalty took care 

of the issue of long queues in the network. Their studies indicated that throughput-minus-queue 

maximization was a very reasonable objective function in oversaturated conditions. However, when 

system optimum traffic assignment is performed, maximizing throughput alone may result in circulating 

vehicles inside the network since this circulation can increase the value of the objective function. This 

circulation can be prevented by adding some constraints; however, adding such constraints introduces 

more complexity to the problem. In addition, since the queue length at entry links are also important, an 

extended length of entry links may be needed to be modeled to accurately estimate queue lengths at 

the boarders of the network. This is computationally expensive especially when a microscopic model is 

used.  

3.3.4 Trip Maximization  

Another objective function that has benefits similar to throughput-minus-queue maximization 

concept, but does not circulate vehicles inside the network is maximizing the number of completed trips 
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hereafter we call it trip maximization. It ensures that vehicles have exited the network which is desired 

since the more vehicles exit the network in a time interval, the more efficient the performance of the 

network during that time. In addition, when system optimum traffic assignment is performed, trip 

maximization does not encourage vehicle circulation in the network since circulations delay the exit time 

of vehicles from the system and as a result reduce the number of completed trips in a time interval. One 

significant benefit of trip maximization concept is that it does not require modeling extended lengths of 

entry and exit links. The reason is that the lengths of these links do not change the number of completed 

trips inside the network which is the only parameter that determines that number of completed trips in 

the system (since traffic is only controlled inside the network and not on entry and exit links). Therefore, 

one only needs to model the interior of the network to solve the problem. This is computationally more 

efficient than modeling the network and extended portions of entry/exit links.  

One drawback of trip maximization concept is that it does not distinguish between very short 

and very long trips. Therefore, it may maximize the value of the objective function by processing too 

many short trips and not many long ones. This is not desired.  

3.3.5 Weighted Trip Maximization  

As mentioned above, trip maximization treats short and long trips equally (however, longer trips 

produce more negative effects than what shorter trips do). To avoid this, each trip is weighted by the 

length of shortest path (in terms of distance) from its origin to its destination and hereafter this 

objective function is called weighted trip maximization. Note that the actual length of trips should not 

be used since it encourages using longer routes and potentially circulates vehicles inside the network. 

Weighted trip maximization aims at improving the capacity of the network, gives more opportunity to 

trips with longer shortest paths, and does not encourage increasing the length of trips inside the 
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network (since traveling in longer routes delays finishing the trips and consequently reduces the value of 

objective function). 

3.3.6 Choosing the Objective Function  

The objective functions discussed above, can be categorized into two groups: a) minimizing travel 

cost in the network (i.e. travel delay and travel time minimization), and b) maximizing network capacity 

(i.e. throughput-minus-queue, trip, and weighted trip maximization). It is shown that in oversaturated 

conditions, increasing system capacity to process more vehicles is more important than reducing travel 

time or travel delay [1], [2], [3], [4]. Among the objective functions that aim at improving network 

capacity, weighted trip maximization has the following benefits:  

1- for a single trip, does not encourage longer routes and do not circulate vehicles in the network  

2- gives more opportunity to trips with longer shortest-path (i.e. trips that require travelling more 

in the network),  

3- does not require to model extended length of entry and exit links 

As such, weighted trip maximization offers great potential for efficient network performance 

especially in oversaturated conditions. To make sure that this is true, a simulation based method is used 

that compares the effects of optimizing each objective function on network performance. In a realistic 

case study network for four different demand patterns, signal timing optimization problem is solved 

using each objective function (a total of τ υ ςπ optimization runs), see in Figure 3.2. The four 

different demand patterns are: 

1- Symmetric undersaturated demand pattern (DP1) 

2- Symmetric oversaturated demand pattern (DP2) 

3- Asymmetric undersaturated demand pattern (DP3)  

4- Asymmetric partially oversaturated demand pattern (DP4) 
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╓╟ ░: Demand Pattern ░ 
╞║ ░: Objective Function ░ 
╟╜ ░: Performance Measure ░ 

Figure 3.2. Different cases for statistical analysis 

After finishing each optimization run, the optimized signal timing parameters and turning 

percentages were coded in microscopic traffic simulation model (CORSIM) and 250 simulation runs with 

different seeds were made to cover a wide range of vehicle arrival headways and driver behaviors and 

to account for internal variability of CORSIM (details on the number of runs is available in Chapter 5). 

Eight following PM were collected during the 250 microscopic replications of all 20 combinations of 

different objective functions and demand patterns:  

1- Travel delay inside the network 

2- Travel time inside the network 

3- Throughput-minus-queue 

4- Number of completed trips 

5- Weighted number of completed trips 

6- Delay at the boarders 

LSD test 1 

LSD test 5 

Optimization 1 
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7- Total delay (travel delay inside the network plus delay at the borders for each seed) 

8- Average speed 

For each demand pattern, for each PM, Least Significant Difference (LSD) test with 95% 

significance level was performed across the five different objective functions to show any statistical 

difference between the values of each PM for different objective functions (eight LSD tests for each 

demand pattern, total of ψ τ σς tests for all four demand patterns). The procedure of choosing the 

most appropriate objective function is shown in Figure 3.3. Set ὕὊ is set of all objective functions and 

set Ὀὖ is set of all demand patterns used to test different objective functions.  

 

Figure 3.3. Methodology of choosing IDSTOP objective function 

Choose the First Objective Function from the 
Set OF

Optimize signals and turning % based on the 
chosen Objective Function

Code the signals and turning % in 
microscopic traffic simulation model and 
collect different PM for the case study

Determine PMs (average of 250 runs)

Select the next 
Objective Function 

from the Set OF

Are all 
Objective 

Functions in OF
tested?

Are all 
Demand 

Patterns in DP
tested?

Select the next 
Demand Pattern 
from the Set DP

Perform statistical analysis for current 
demand pattern (run Least Significant 

Difference, LSD, test)

Choose the most appropriate Objective Function 
base on the statistical analysis on PM

No

No

Yes

Yes
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To choose the best objective function for each demand pattern, we looked at total delay in the 

entire system (sum of delay inside the network and delay at its borders). The objective function that 

results in the lowest total delay is selected as the most appropriate objective function for each demand 

pattern. If total delays happen to be similar, average speed is used as the second criteria. If both total 

delay and average speed were similar, weighted number of completed trips is used as the third criteria.  

 

a) Delay (inside, at the borders, and in the entire system), travel time inside the network, and speed inside the network 

 

b) Throughput-minus-queue, number of completed trips, and number of weighted complted trips 

Figure 3.4. Network PM for each demand pattern and each objective function 
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Note that neither a set of constraints was used to ensure that all traffic demand is satisfied 

(since it is not possible in oversaturated condition) nor the lengths of entry links were extended during 

the optimization process (since significantly increases the runtime). In all four demand patterns, as 

expected, travel delay and travel time minimization objective functions resulted in overall shorter delays 

and travel times inside the network, respectively; however, this was achieved at the expense of keeping 

more vehicles at the boarders of the network (compared to methods who aimed at maximizing the 

capacity of the network). This was confirmed by looking at delays at the borders that were longer and 

number of completed trips that were lower for delay and travel time minimization objective functions, 

see in Figure 3.4 a-b.  

In oversaturated conditions, for all four demand cases delay at the borders for throughput-

minus-queue, trip, and weighted trip maximization objective functions were significantly less than that 

for travel delay and travel time minimization objective functions. In fact, this resulted in statistically 

significantly lower total delay for the objective functions that aimed at maximizing network capacity 

compared to those that aimed at reducing travel cost (except for asymmetric undersaturated condition 

in which trip maximization and travel time minimization resulted in similar total delays), see in Table 3.1. 

This indicated the advantage of the objective functions that aimed at maximizing network capacity over 

those who aimed at reducing travel cost in oversaturated conditions. It should be noted that we expect 

that travel delay and travel time minimization objective functions found much more efficient solutions if 

extended length of entry links were modeled. However, we did not perform the optimization with long 

entry links since it was extremely computationally expensive. 
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Table 3.1 Performance Measures for Different Objective Functions under Different Demand Patterns 

Demand 
Pattern 

Objective 
Function 

Network Performance Measure (PM) 

Delay 
Inside (h) 

Travel Time 
Inside (h) 

Throughput 
Minus 

Queue (veh) 

Trips 
(veh) 

Weighted 
Trips 
(veh) 

Delay at 
the 

Border 
(h) 

Total 
Delay 

(h) 

Average 
Speed 
(mph) 

Symmetric 
Undersat. 

Min Delay 68.3 A 123.8 A 12107 A 2790 A 1494 A 22.5 A 90.8 A 13.3 A 

Min Travel T. 70.2 B 122.4 B 11829 B 2754 B 1484 B 23.6 B 93.8 B 13.0 B 

Max T-Q 68.4 A 123.9 A 12620 C 2875 C,D 1557 C 20.9 C 89.3 C 13.4 C 

Max Trip 68.5 A 123.2 C 12401 D 2880 C 1562 D 20.8 C 89.4 C 13.3 D 

Max Wt. Trip 68.4 A 123.3 C 12532 E 2870 D 1632 E 20.8 C 89.2 C 13.5 C 

Symmetric 
Oversat. 

Min Delay 111.1 A 170.6 A 10113 A 2991 A 1611 A 65.7 A 176.7 A 10.2 A 

Min Travel T. 112.5 B 165.9 B 8463 B 2799 B 1491 B 75.5 B 188.0 B 9.7 B 

Max T-Q 111.7 A 174.0 C,D 11928 C 3204 C 1731 C 49.3 C 161.0 C 10.8 C 

Max Trip 111.4 A 174.3 C 11856 C 3249 D 1757 D 49.0 C 160.4 C 10.8 D 

Max Wt. Trip 111.1 A 173.7 D 11896 C 3206 C 1835 E 47.3 D 158.5 D 10.8 D 

Asymmetr. 
Undersat. 

Min Delay 60.8 A 111.4 A 11593 A 2511 A 1408 A 20.5 A 81.3 A 13.6 A 

Min Travel T. 61.4 B 111.2 A 11488 A 2506 A 1415 B 20.5 A 81.8 B 13.5 B 

Max T-Q 61.0 A,B 112.1 B 12155 B 2540 B 1422 C 19.7 B 80.7 C 13.7 C 

Max Trip 62.2 C 113.7 C 12024 B 2585 C 1459 D 19.6 B 81.8 B 13.6 A 

Max Wt. Trip 62.5 C 113.6 C 11473 A 2554 D 1524 E 17.9 C 79.9 D 13.8 D 

Asymmetr. 
Partially 
Oversat. 

Min Delay 62.6 A 110.8 A 10849 A 2477 A 1312 A 35.6 A 98.3 A 13.0 A 

Min Travel T. 64.5 B 109.9 B 9391 B 2380 B 1276 B 40.8 B 105.2 B 12.4 B 

Max T-Q 70.8 C 120.8 C 11822 C 2573 C 1363 C 21.5 C 92.3 C 12.4 B 

Max Trip 70.1 D 120.8 C 11310 A,C 2694 D 1453 D 23.2 D 93.3 D 12.6 C 

Max Wt. Trip 65.2 E 117.2 D 11198 A 2662 E 1531 E 17.4 E 82.6 E 13.3 D 

Min Delay: Objective Function is Delay Minimization 

Min Travel T.: Objective Function is Travel Time Minimization 
Max T-Q: Objective Function is Throughput-Minus-Queue Maximization 
Max Trip: Objective Function is number of completed Trips Maximization 

Max Wt. Trip: Objective Function is Number of Weighted Completed Trips Maximization 
  

Among all objective functions, weighted trip maximization resulted in statistically lower total 

delays in the system (except for symmetric undersaturated demand) compared to the other objective 

functions. Therefore, for asymmetric undersaturated, symmetric oversaturated, and asymmetric 

partially oversaturated demand patterns, weighted trip maximization resulted in the most efficient 

network performance among other objective functions and is used as IDSTOP objective function. In 

symmetric undersaturated conditions, throughput minus queue, trip, and weighted trip maximization 

objective functions yielded similar total delays in the entire system. However, the average speed, and 
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the number of weighted completed trips for weighted trip maximization objective function was 

statistically significantly more than the other two objective functions. Therefore for symmetric 

undersaturated demand pattern (similar to the other demand patterns) weighted trip maximization was 

used as the objective function of IDSTOP.  

Overall, weighted trips maximization resulted in shorter delays at the borders, shorter total 

travel delays in the system, processing higher number of vehicles with longer shortest-path, and faster 

average speed inside the network. The objective function is formulated as follows: 

-ÁØÉÍÉÚÅ – …

ᶪᶰᶪᶰᶪᶰ

ȟ        ᶅὸɴ Ὕ                                                                   σȢρ 

…  number of completed trips from source node ὶ to sink node ί during time interval ὸ 

–  length of the shortest distance path from source node ὶ to sink node ί 

Ὕ  set of discrete time intervals (in the order of minutes) 

Ὑ  set of source nodes 

Ὓ  set of sink nodes 

3.4 Constraints  

If no constraint is used in the problem formulation, the solution may not be desired or feasible. 

For instance, a solution that creates long queues in the system is not desired while a solution that has a 

very long cycle length is not feasible. All the constraints are introduced in the rest of this section. It 

should be noted that some of the constraints should not be avoided in any circumstances. An example 

for them is the gridlock constraints. A solution should not create a gridlock under any condition. On the 

other hand, some of the constraints may be violated in certain conditions. An example is de-facto red 

constraints.  
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3.4.1 Cycle Length Constraints  

In each phase change, some part of the cycle length is wasted due to the yellow and all red 

signals and also the delays incurs in acceleration and decelerations of the vehicles. This wasted amount 

of time is called lost time. When the cycle length is short, the phases change more frequently and as a 

result the lost time is more. Therefore, delay increases and a larger proportion of the green time is 

wasted. This reduces network capacity and consequently results in less efficient network performance. 

As a result very short cycle lengths should be avoided. On the other hand, when the cycle length is 

longer, the phases change less frequently. Therefore, total lost time is less that results in reduction in 

total delay (compared to shorter cycle length); however, when the cycle length is long, the duration of 

red is also longer. This means that for a longer period of time the vehicles are not processed. As such, 

queue lengths may considerably grow. Long queues increase the probability of queue spillovers, de-

facto reds, and gridlocks. Therefore, they also should be avoided. In addition, excessively long red 

signals result in driver frustration.  

As a result the cycle length at each intersection at each time interval should be bounded by a 

lower and an upper bound. This is shown in Equation 3.2 as follows: 

ὅάὭὲὅ ὅάὥὼȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅ                                                                    σȢς 

ὅ  cycle length of intersection Ὥ at time interval ὸ 

ὅάὭὲ ÁÎÄ ὅάὥὼ minimum and maximum allowed cycle length at intersection Ὥ at time 

interval ὸ, respectively 

Ὅ  set of all intersections of the network 

It is noted that in this study a minimum value of 40 seconds and a maximum value of 160 

seconds were used for cycle length.  
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3.4.2 Green Time Constraints  

Split for green for each phase is the ratio of green time to the cycle length. As a result, the sum 

of all splits for greens at an intersection in each time period follows Equation 3.3: 

ίȟ
ᶪᶰ

ρ
ὒ

ὅ
ȟ         ᶅὸɴ ὝȟᶅὭɴ Ὅȟ                                                                          σȢσ 

ίȟ  split for green associated with phase Ὧ, at intersection Ὥ at time period ὸ 

ὑ  set of all phases available at intersection Ὥ 

Equation 3.3 also indicates that the sum of splits for greens should be equal to the ratio of the 

effective greens ὅ ὒ  to the total cycle length ὅ . Green time associated with each phase is 

obtained by multiplying the associated split for green by the cycle length as shown in the following 

equation: 

Ὣȟ ίȟὅȟ          ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑȟ                                                                     σȢτ 

Ὣȟ  green duration for phase Ὧ, at intersection Ὥ at time period ὸ 

Similar to cycle length, green times should also be bounded since too short and too long green 

times result in non-efficient network performance. This is shown by the following equation: 

ὫάὭὲȟ  Ὣȟ  Ὣάὥὼȟȟ          ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑȟ                                         σȢυ  

ὫάὭὲȟ ÁÎÄ Ὣάὥὼȟ  minimum and maximum green time associated with phase Ὧ, at 

intersection Ὥ at time period ὸ 

It is noted that in this study, a minimum value of 20 seconds and a maximum value of 80 

seconds were used for green durations of through movements. For the left turns, these values were 5 

and 20 seconds, respectively. Whenever, the algorithm finds left turn green duration less than five 

seconds, the left turn phase is omitted. 
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At an isolated intersection, splits for greens of different phases are expected to be proportional 

to the volume-to-saturated-flow-rate-ratio of the critical movements. In general, this strategy works in a 

network as well. However, in some cases it may cause extremely long queues, spillovers, and/or possibly 

gridlocks.  

 

 

Figure 3.5. A coordinated arterial 

For instance, in the coordinated arterial shown in Figure 3.5, assigning green durations 

proportional to the volume-to-saturated-flow-rate-ratios of critical movements results in an east-bound 

through green duration at intersection 2 that is longer than that at intersection 3 while the cycle lengths 

are the same. Therefore, intersection 2 releases more vehicles than what can be processed at 

intersection 3. If this setting is maintained long enough, it yields long queues at intersection 3, and in 

extreme cases, upstream intersection blockage (that should be avoided). As such, in general, setting the 

green splits identical to the volume-to-saturated-flow-rate-ratio for critical movements of each phase 

may result in non-efficient network performance. On the other hand, optimizing them completely 

regardless of volume-to-saturated-flow-rate-ratios of critical movements significantly enlarges the 

feasibility area. Therefore, optimization algorithms require considerably longer time to find near-optimal 

splits for green. In addition, if not enough computational resources are available, the algorithms my find 

sub-optimal splits for greens. Therefore, for each phase, rather than assigning the splits for greens 

proportional to volume-to-saturated-flow-rate-ratios, or completely regardless of them, an interval 

centered in that ratio is used in which, splits for greens are optimized. Equation 3.6 formulates these 

constraints:  

 

 

V 

v 2v 

2 1 3 



52 
 

ὠȾὛὧὶȟ
В ὠȾὛὧὶȟᶪᶰ



ς
 
Ὣȟ

В Ὣȟᶪᶰ

 
ὠȾὛὧὶȟ

В ὠȾὛὧὶȟᶪᶰ  



ς
ȟ       ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑȟ  

π


ς
ÍÉÎ 

ὠȾὛὧὶȟ
В ὠȾὛὧὶȟᶪᶰ

ȟρ
ὠȾὛὧὶȟ

В ὠȾὛὧὶȟᶪᶰ

                                                 σȢφ 

ὠȾὛὧὶȟ  volume-to-saturated-flow-rate-ratio for phase Ὧ, at intersection Ὥ at time period ὸ 

If enough amount of computational resource is available, the value of  can be very close to its 

upper bound, see Equation 3.6. This is equivalent to optimizing the splits for greens regardless of the 

volume-to-saturated-flow-rate-ratios. In this case it is expected that after enough search, the 

optimization algorithm finds efficient green splits in each intersection in each time interval (provided 

that the algorithm can avoid local optimums and find a global optimal or near-optimal solution). 

However, when the computational resources are limited (in most cases) searching through all possible 

green split ratios is not efficient. The role of parameter  is to narrow down the search for green split 

ratios to an interval around volume-to-saturated-flow-rate-ratios for the critical movements. It should 

be noted that  does not have a unit.  

To determine appropriate values for  a series of sensitivity analysis is performed. Different 

values for parameter  (0 to 0.5 with increments of 0.05) are used and signal timing parameters are 

optimized in a case study network with four different demand patterns (see Chapter 5 for details on the 

case study). For all cases, the numbers of fitness function evaluations were identical (22500 fitness 

function evaluations) to ensure that the same amount of computational resources are consumed. A 

value of zero for  means that the splits are not optimized by the algorithm and were simply set equal to 

the volume-to-saturated-flow-rate-ratios for critical movements. A value of 0.1 for  (as an example) 

means that the green splits are optimized in an interval with length of 0.1 centered on the ratio of 

volume-to-saturated-flow-rates for critical movements (0.05 to the left and 0.05 to the right of the 
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ratio). Number of completed weighted trips for each value of parameter  is shown in Figure 3.6 as well 

the observed values for  along with their average over 20 intersections of the case study network. 

  

a) Symmetric undersaturated condition b) Symmetric oversaturated condition 

  
c) Asymmetric undersaturated condition d) Asymmetric partially oversaturated condition 

Figure 3.6 Sensitivity analysis on ♯ 

As shown in Figure 3.6 a-d, for all demand patterns, as the specified values for  increased, the 

range of observed values for  increased; however, the observed ranges were always smaller than the 

specified range. In addition, as the specified values for  increased the difference between the observed 

range and specified range enlarged as well (general trend). These two mean that even though the 

algorithm was allowed to look for green split ratios in a wider range, it yielded green split ratios in a 

much narrower range indicating that a wide range was not needed. In addition, the wider range resulted 
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in reductions in the value of objective function meaning that the algorithm did not have enough amount 

of computational resources to optimize the splits for greens.  

In undersaturated conditions (see Figure 3.6 a and c), for all  values up to 0.25, the number of 

weighted completed trips were similar and higher than those for larger values of . In addition, for 

values up to 0.2, the observed ranges for  were always at most 0.1. As such, in undersaturated 

condition, there is no need to provide a large range for  to optimize green splits. In fact, setting the 

green split ratios identical to volume-to-saturated-flow-rate-ratios for critical movements results in 

solutions as efficient as using a value of up to 0.25 for . Therefore, in our case study network, in 

undersaturated conditions in both symmetric and asymmetric demand patterns, there is no need to 

optimize the green splits throughout the optimization. Their ratios can simply be equal to volume-to-

saturated-flow-rate ratios for critical movements (this was expected) and the extra computational 

resources can be allocated to optimizing other signal timing parameters.  

In symmetric oversaturated demand conditions,  values between 0.1 and 0.25 resulted in 

similar number of weighted completed trips that were higher than those for the rest values for . 

When  πȢρπȟπȢρυȟÁÎÄ πȢςπ, the observed range for  was around 0.1 indicating that there was no 

need to set the range bigger than 0.1. Not only the observed range was 0.1, a specified range of 0.1 

resulted in the most efficient network performance (similar to  πȢρυ ÁÎÄ πȢςπ). As such, in our case 

study, in symmetric oversaturated demand conditions,  πȢρπ should be used which was also 

expected.  

In asymmetric partially oversaturated conditions,  values between 0.15 and 0.25 resulted in 

similar number of completed trips that were higher than those for the rest of  values. When specified  

equaled 0.15, 0.2, and 0.25, the observed  were 0.14, 0.19, and 0.19, respectively. Therefore, a range 
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of 0.2 was needed to optimize signals in our case study network for asymmetric partially oversaturated 

conditions.  

It is noted that findings for values for  are network-specific and different values of  may yield 

more efficient performance in other networks. Conducting similar sensitivity analysis is suggested to find 

the most appropriate values of  for other network.  

3.4.3 Offset Constraints  

At two consecutive signals, the offset between two coordinated phases is the time difference 

between the onsets of green signal for those phases. If the start time of the first phase of each 

intersection (according to a reference clock), and the duration of the green times is known, the offsets 

between each two movements can be found by Equation 3.7. Note that this is not a constraint. It is used 

to find the offsets between two movements based on the green times, start of greens, and the phase 

sequences. The equation is as follows: 

ίέὪὫ Ὣ έὪὪ ȟ ίέὪὫ Ὣ ȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅάᶰὓ                   σȢχ 

ίέὪὫ  start of the first green at intersection Ὥ at time interval ὸ 

•  number of coordinated phase at intersection ά 

•  number of coordinated phase at intersection Ὥ 

ὓ  set of all intersections downstream of Ὥ 

έὪὪ ȟ  offset between the phase • of intersection Ὥ (upstream), and phase •  of 

intersection ά (downstream) 

The first phase at an intersection may be started when the reference clock is just started ὸ π 

or any time later. However, it cannot be larger than the cycle length of that intersection because it 
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simply shows that the first green is started άέὨίέὪὫȟὅ  seconds later than the start of reference 

clock. This is shown in Equation 3.8 as follows: 

π ίέὪὫ ὅȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅ                                                                                 σȢψ 

3.4.4 Queue Length Constraints  

In oversaturated conditions, due to excessive traffic demand, it is very likely that queues start to 

grow at the intersections of the network. If the queues are not properly managed, they may block 

upstream intersections. This reduces the capacity of the intersections and consequently deteriorates 

network performance. Therefore, the queue length should be controlled to be always shorter than the 

capacity of the link, or to be more conservative, a proportion of that. This is shown in Equation 3.9.  

ήȟ ήάὥὼȟ ȟ           π  ρȟᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯᶰὑ                                     σȢω 

Ὕ  set of discrete time steps (in the order of seconds) 

ήȟ  queue length associated with phase Ὧ, at intersection Ὥ at time period ὸ 

ήάὥὼȟ  maximum allowed queue length associated with phase Ὧ, at intersection Ὥ at time 

period ὸ 

3.4.5 Gridlock Constraints  

Gridlocks significantly reduce network performance efficiency and consequently, increase total 

travel time. They have to be always avoided. A gridlock happens when in an immediate loop of several 

ŀŘƧŀŎŜƴǘ ƛƴǘŜǊǎŜŎǘƛƻƴǎΣ ƛƴ ŜƛǘƘŜǊ ŘƛǊŜŎǘƛƻƴǎ ƛƴ ǘƘŜ ƭƻƻǇ όάмέ ŘŜƴƻǘŜǎ ŎƭƻŎƪǿƛǎŜ ŘƛǊŜŎǘƛƻƴΣ άнέ ŘŜƴƻǘŜǎ 

counterclockwise direction), the queue from each downstream intersection blocks the upstream one, 

see in Figure 3.7. When this occurs, none of the vehicles move and the gridlock may remain effective for 

a significant amount of time. Therefore, if a solution creates long queues in all intersections of an 

immediate loop of several intersections along either directions of the loop it must be discarded.  
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Figure 3.7. Gridlock avoidance 

ήὫ ὰȟ        ᶅὸɴ ὝȟᶅὭɴ ὄȟᶅᾀɴ ὤȟᶅὯɴ ρȟς                                                    σȢρπ 

ήὫ  queue length at intersection Ὥ along loop direction Ὧ at time ὸ 

ὰ  length of the link at intersection Ὥ along loop direction Ὧ 

ὄ  set of all intersections creating immediate loop ᾀ 

ὤ  set of all immediate loops of the network  

3.4.6 De-Facto Red Constraints 

If during a green signal the receiving links is full, no vehicle can be discharged from the 

intersection to that link. This condition is defined as de-facto red since the signal is actually green but 

performs as a red signal (due to lack of capacity at receiving link). De-facto red should be avoided since it 

wastes the green time that could have been allocated to competing phases; however, in some cases it 

may not be possible to prevent it. For example, assume an intersection whose all receiving links are 

completely filled with vehicles. In this case, regardless of how green time is allocated, de-facto red 

occurs. In some cases that it is possible to avoid de-facto red, doing so may not result in a more efficient 

network performance. For example de-facto red in a minor street should not be eliminated if doing so 
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significantly deteriorates performance in a major arterial. Since in some certain cases it may not be 

feasible, or it may not be beneficial to completely avoid de-facto red, we penalize the objective function 

whenever de-facto red occurs rather than discarding the solution. Equation 3.11 ensures the elimination 

of de-facto red: 

Ὣȟ Ὣ ȟ έὪὪȟ  Ὣ ȟ έὪὪȟ
Ὠ ήȟ  ὰ

‗
ȟᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅά

ᶰὓ                                                                                                        σȢρρ 

  time needed for the stopping shockwave in link Ὥ ά to reach intersection Ὥ (upstream) 

from the end of queue at intersection ά (downstream) associated with phase •  

To avoid de-facto red, the effective green for upstream signal should be less than or equal to the 

sum of effective green at the downstream intersection, the offset between the two movements, and the 

time needed for the stopping shock wave to propagate upstream from the end of queue in the receiving 

link. It should be noted that if the downstream receiving link is already full, the time for the shockwave 

to reach upstream intersection is zero since the distance between the end of the queue and the 

upstream intersection is zero. 

3.4.7 Ideal Offset Constraints  

If coordination between two particular movements of two consecutive intersections is desired, 

the offset for those two movements has to be set equal to the ideal offset. If cars leaving the upstream 

intersection arrive at the downstream intersection when the tail of the queue at downstream 

intersection is moving with the speed of arriving vehicles, the offset is ideal. Girianna and Benekohal 

(2002) have described this concept in details. This constraint may not hold for all of the movements. For 

example, in a two-way arterial it is not always possible to have the ideal offset for both directions. Thus, 

IDSTOP uses this constraint only if signal coordination is required over a path. Otherwise, it lets the 
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optimization engine determine the offsets. These offsets may be ideal or not. The ideal offset constraint 

is formulated in Equation 3.12 as follows: 

έὪὪȟ  † ȟ   ȟ

Ὠ ήȟ  ὰ

ὺ ȟ

ήȟ  ὰ

‗

Ὠ

ὺ ȟ

ὺ ȟ ‗ὰ

‗ὺȟ

ήȟ  

‗
ȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅάᶰὓ                σȢρς 

Ὠ  distance between intersection Ὥ and ά 

ήȟ   queue length associated with phase •  at intersection ά at time ὸ 

ὰ  average vehicle length  

‗  starting shockwave speed 

† ȟ  time required for the first vehicle of the released platoon from intersection Ὥ to join 

the tail of platoon at intersection ά that is served by phase •  at time ὸ 

 ȟ  time needed for the tail of queue associated with phase •  at intersection ά to start 

moving at time ὸ 

3.4.8 Route Delay Constraints  

A good solution should result in reasonable travel time in all routes of the network. Still there 

might be long delays at some intersections but overall travel time should be reasonable. If such a 

constraint is not used, a large number of vehicles may be processed by the network at the expense of 

excessively increasing delay at some routes. To avoid such a condition, constraints on travel time over 

routes of the network should be used not to let extremely long travel times in the network as 

formulated in Equation 3.13 as follows: 

Ў ȟ Ўάὥὼȟ ȟ          ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅὰɴ ὒ                                               σȢρσ 
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Ў ȟὰ  delay on route ὰ, connecting source node ὶ to sink node ί, at time ὸ 

Ўάὥὼȟ  maximum acceptable delay on route ὰ, connecting source node ὶ to sink node ί, at 

time ὸ 

Ὑ  set of source nodes 

ὒ  set of routes connecting source node ὶ to sink node ί 

3.4.9 System Optimum Dynamic Traffic Assignment Constraints  

The following constraints are formulated to ensure that origin-destination demand is met while 

the traffic is assigned to routes such that the number of trips generated in the network is maximized.        

The number of vehicles that leave link Ὥ  Ὦ, at time ὸ on their way from source node ὶ to sink 

node ί ὼ ȟ  is equal to that in the previous time interval ὼ ȟ  , plus the number of vehicles 

entered link Ὥ  Ὦ from all predecessor nodes during the green signals В ꞉ ώ ȟᶰ , minus 

those who have left link Ὥ  Ὦ to the successor nodes during the green intervals at the previous time 

interval В ꞉ ώ ȟᶰ  . These constraints are formulated in Equation 3.14 as follows: 

ὼ ȟ ὼ ȟ ꞉ ώ ȟ

ᶰ

꞉ ώ ȟ

ᶰ

ȟ         ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ ὛȟᶅὭȟὮ

ᶰὍȾὙȟὛȟ                                                                                                   σȢρτ 

꞉  1, when traffic signal at intersection Ὧ associated with the phase feeding node Ὥ shows 

green signal at time step ὸ ρ, 0 otherwise 

ώ ȟ  number of vehicles that can travel from node Ὧ to node Ὥ at time step ὸ ρ, associated 

with source node ὶ, and sink node ί 
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It is also needed to make sure that the number of vehicles leaving a link is not more that the 

number of vehicles that were present in the link. These constraints are formulated in Equation 3.15 as 

follows: 

꞉ ώ ȟ

ᶰ

 ὼ ȟȟ          ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ ὛȟᶅὭȟὮɴ Ὅȟ                             σȢρυ 

In addition, the number of vehicles leaving a link cannot be greater than the capacity of the 

receiving link. Equation 3.16 formulates these constraints: 

꞉ ώ ȟ

ᶪᶰ

ὔ ὼ ȟ

ᶪᶰᶪᶰᶪᶰᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὭȟὮɴ ὍȾὙȟὛȟ                            σȢρφ 

ὔ  capacity of link Ὥ  Ὦ 

In addition, the number of vehicles leaving a link cannot be more than the discharge capacity of 

the intersection. These constraints are formulated in Equation 3.17 and 3.18 as follows: 

꞉ ώ ȟ

ᶪᶰᶪᶰ

ὗ

ᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὮɴ ὍȾὛȟ                                           σȢρχ 

꞉ ώ ȟ

ᶪᶰᶪᶰ

ὗ

ᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὭɴ ὍȾὛȟ                                            σȢρψ 

Demand also has to be forced into the network by the following constraints: 

ὼ ȟ ὼ ȟ Ὠ ώ ȟȟ       ᶅὸɴ ὝȟᶅὮɴ Ὓὶȟᶅὶɴ Ὑȟ                                  σȢρω 

ώ ȟ Ὠ ȟ        ᶅὸɴ ὝȟᶅὮɴ ὖίȟᶅίɴ Ὓȟ                                                                   σȢςπ 

Finally it is needed to make sure that the demand from one source node is not met by another 

source node: 

ώ ȟ πȟ        ᶅὸɴ Ὕȟὶρȟὶςɴ Ὑȟίɴ Ὓȟὶρ ὶςȟὶςὮᶰὉȟ                                σȢςρ 
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Ὁ  set of all links 

At the end, it is needed to make sure that number of vehicles in the links, and the number of 

vehicles moving from a link to the other one cannot be negative: 

ὼ ȟ πȟ       ᶅ ὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅ ὭὮɴ Ὁȟ                                                         σȢςς 

ώ ȟ πȟ       ᶅ ὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅ ὭὮɴ Ὁȟ                                                        σȢςσ 

3.4.10 Summary of Formulation  

In summary, IDSTOP formulation can be represented as follows:  

-ÁØÉÍÉÚÅ – …

ᶪᶰᶪᶰᶪᶰ

ȟ        ᶅὸɴ Ὕ                                                                   σȢρ 

s.t. 

ὅάὭὲὅ ὅάὥὼȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅ                                                                    σȢς 

ίȟ
ᶪᶰ

ρ
ὒ

ὅ
ȟ         ᶅὸɴ ὝȟᶅὭɴ Ὅȟ                                                                           σȢσ 

Ὣȟ ίȟὅȟ          ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑȟ                                                                     σȢτ 

ὫάὭὲȟ  Ὣȟ  Ὣάὥὼȟȟ          ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑȟ                                         σȢυ  

ρ ὠὧὶȟ
В ὠὧὶȟᶪᶰ

  
Ὣȟ

В Ὣȟᶪᶰ

 
ρ ὠὧὶȟ
В ὠὧὶȟᶪᶰ

ȟ       ᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯᶰὑ          σȢφ 

ίέὪὫ Ὣ έὪὪ ȟ ίέὪὫ Ὣ ȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅάᶰὓ                   σȢχ 

π ίέὪὫ ὅȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅ                                                                                σȢψ 

ήȟ ήάὥὼȟ ȟ           π  ρȟᶅὸɴ ὝȟᶅὭɴ ὍȟᶅὯɴ ὑ                                       σȢω 
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ήὫ ὰȟ        ᶅὭɴ ὄȟᶅᾀɴ ὤȟᶅὯɴ ρȟς                                                                    σȢρπ 

Ὣȟ Ὣ ȟ έὪὪȟ  Ὣ ȟ έὪὪȟ
Ὠ ήȟ  ὰ

‗
ȟᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅά

ᶰὓ                                                                                                              σȢρρ 

έὪὪȟ  † ȟ   ȟ

Ὠ ήȟ  ὰ

ὺ ȟ

ήȟ  ὰ

‗

Ὠ

ὺ ȟ

ὺ ȟ ‗ὰ

‗ὺȟ

ήȟ  

‗
ȟ          ᶅὸɴ ὝȟᶅὭɴ Ὅȟᶅάᶰὓ                  σȢρς 

Ў ȟ Ўάὥὼȟ ȟ          ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅὰɴ ὒ                                                σȢρσ 

ὼ ȟ ὼ ȟ ꞉ ώ ȟ

ᶰ

꞉ ώ ȟ

ᶰ

ȟ         ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ ὛȟᶅὭȟὮ

ᶰὍȾὙȟὛȟ                                                                                                   σȢρτ 

꞉ ώ ȟ

ᶰ

 ὼ ȟȟ          ᶅὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ ὛȟᶅὭȟὮɴ Ὅȟ                             σȢρυ 

꞉ ώ ȟ

ᶪᶰ

ὔ ὼ ȟ

ᶪᶰᶪᶰᶪᶰᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὭȟὮɴ ὍȾὙȟὛȟ                            σȢρφ 

꞉ ώ ȟ

ᶪᶰᶪᶰ

ὗ

ᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὮɴ ὍȾὛȟ                                           σȢρχ 

꞉ ώ ȟ

ᶪᶰᶪᶰ

ὗ

ᶪᶰ

ȟ        ᶅὸɴ ὝȟᶅὭɴ ὍȾὛȟ                                            σȢρψ 

ὼ ȟ ὼ ȟ Ὠ ώ ȟȟ       ᶅὸɴ ὝȟᶅὮɴ Ὓὶȟᶅὶɴ Ὑȟ                                   σȢρω 

ώ ȟ Ὠ ȟ        ᶅὸɴ ὝȟᶅὮɴ ὖίȟᶅίɴ Ὓȟ                                                                   σȢςπ 

ώ ȟ πȟ        ᶅὸɴ Ὕȟὶρȟὶςɴ Ὑȟίɴ Ὓȟὶρ ὶςȟὶςὮᶰὉȟ                                σȢςρ 

ὼ ȟ πȟ       ᶅ ὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅ ὭὮɴ Ὁȟ                                                         σȢςς 
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ȟ πȟ       ᶅ ὸɴ Ὕȟᶅὶɴ Ὑȟᶅίɴ Ὓȟᶅ ὭὮɴ Ὁȟ                                                         σȢςσ 
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  CHAPTER 4

IDSTOP SOLUTION TECHNIQUE 

4.1 Introduction  

There are two main complexities associated with solving IDSTOP. First, the decision space of the 

problem is extremely large. Second, there is no closed-form formulation to represent the value of the 

L5{¢htΩs objective function in terms of its decision variables.  

L5{¢htΩǎ ǎƻƭǳǘƛƻƴ ǎǇŀŎŜ Ŧƻƭƭƻǿǎ ŀ ǇƻǿŜǊ ǊŜƭŀǘƛƻƴǎƘƛǇ ǿƛǘƘ ǘƘŜ ƴǳƳōŜǊ ƻŦ ƛƴǘŜǊǎŜŎǘƛƻƴǎΦ LŦ ǘƘŜǊŜ 

are ὼ different possible decisions for each intersection at one time interval, solution space has ὼ  

components for n intersections. It is noted that ὼ can be as large as 1.8×108 for one intersection with 

four phases for a single time interval. This number is obtained by multiplying the total number of 

possible values each decision variable can take. A minimum of 15 seconds and a maximum of 80 seconds 

for through traffic green signal duration (total of ψπρυρ φφ decision for each direction), a 

minimum of 7 seconds and a maximum of 20 seconds for left turn arrow green signal duration (total of 

ςπχ ρ ρτ decision for each direction), and a minimum of zero and a maximum of 214 seconds 

for offset (total of ςρτπ ρ ςρυ decision for the offset), results in φφzφφzρτzρτzςρυ

ρȢψ ρπ decisions. Due to this extremely large solution space, traditional methods such as exhaustive 

search or dynamic programming will not lead to a near-optimal solution in a reasonable amount of time 

even when the fitness function evaluations requires a fraction of a second.  

In addition, IDSTOP is a nonlinear non-convex optimization problem without a closed-form 

formulation to represent its objective function in terms of the decision variables. Therefore, none of the 

methods that rely on knowing detailed relations between the decision variables and the objective 

function such as deepest descent can be used.  
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These two together, extremely complicate the process of solving IDSTOP. The reason is that 

there is no information available on the structure and the behavior of the objective function in terms of 

decision variables that could be used to facilitate finding an optimal solution. In addition, the large size 

of the decision space makes it impossible to exhaustively search the space.  

All these, limit the optimization techniques to those that fall in the category of heuristic (i.e. 

methods that aim at finding a feasible solution) and meta-heuristic methods (i.e. methods that optimize 

a problem by iteratively trying to improve a candidate solutions with respect to a measure of quality) 

among them, two families of evolutionary algorithms are chosen: 

a) Genetic Algorithms (GA) 

b) Evolution Strategies (ES) 

Evolutionary Algorithms are population based meta-heuristic optimizations that utilize biology-

inspired operators such as mutation, crossover, selection, and survival of the fittest to improve the 

quality of a set of solutions. One important advantage of evolutionary algorithms compared to other 

ƻǇǘƛƳƛȊŀǘƛƻƴ ŀƭƎƻǊƛǘƘƳǎ ƛǎ ǘƘŜƛǊ ǎƻ ŎŀƭƭŜŘ άōƭŀŎƪ ōƻȄέ ŦŜŀǘǳǊŜ ǘƘŀǘ ŜƴŀōƭŜǎ ǘƘŜƳ ǘƻ ŎŀǊǊȅ ƻut the 

optimization process without knowing exact structure of the objective function based on the decision 

variables. IDSTOP takes full advantage of this feature of evolutionary algorithms. In fact, evolutionary 

algorithms only need to know the value of objective function for a set of decision variables but not any 

more information. This makes them a suitable pick for solving IDSTOP since it is possible to (accurately 

enough) estimate the value of the objective function for a candidate solution. This is can be done by 

using a traffic simulation model. 

Genetic Algorithms and specifically simple GA have been extensively used to optimize signal 

timing in urban networks (e.g.  [1],  [2],  [3],  [4],  [5]). In this study, several variations of genetic 

algorithm will be used to solve IDSTOP. These variations are as follows: 
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a) Simple GA (as a benchmark) 

b) Elitist GA 

c) Micro-Elitist GA 

Among different Evolution Strategy methods two of them that are widely accepted in other 

fields of science are selected: 

a) Self-adaptive ES  

b) Self-adaptive elitist ES 

In the rest of this chapter, each method is briefly described. The IDSTOP structure is explained. 

Later both signal timing optimization and dynamic traffic assignment modules are explained. The 

discussion is followed by explaining how the constraints are taken into account and finally a summary of 

the chapter is presented.  

4.2 Genetic Algorithms  

Genetic Algorithms (GA) are search techniques to find optimal or near-optimal solutions to an 

optimization or a search problem. GA are global search heuristics and are known to be less likely 

trapped in a local optimum. GA are a specific class of evolutionary algorithms and use techniques 

inspired by evolutionary biology like inheritance, selection, crossover, and mutation.  

GA are implemented in a computer simulation environment where a population of candidate 

solutions are created and evolved towards better solutions over different generations. Unlike other 

well-known optimization techniques that start the search with one feasible solution, GA start the search 

with several candidate solutions, called population. The initial population can be created randomly or by 

using some heuristics. Each population member is called an individual or a chromosome, and has a 

fitness value that represents the value of the objective function for that individual. For example, if the 
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objective function is to maximize Ὢὼ ὼ, the fitness of one of the individuals e.g. ὼ σ will 

be σ ω. Based on the fitness values, GA stochastically select some individuals of the population 

where individuals with higher fitness values are more likely to be selected (for a maximization problem). 

The selected individuals form a mating pool where they are crossed over and mutated to form some 

new individuals for the new population in the next generation. GA continue to select new individuals as 

parents until enough individuals for the next generation are created. As soon as a new individual is 

created its fitness value is evaluated. It is noted that in this study, the feasibility of that individual is 

checked before determining its fitness value (details available in chapter 5). The whole process of 

selection, crossover, and mutation is continued until the termination criteria are met. Usually a 

maximum number of generations, or a threshold for the relative difference between the maximum 

fitness value and average fitness value of a population are chosen as the termination criterion.  

Traditionally, binary coding was used to represent each feasible solution in GA; however, other 

methods of coding exist such as real-coding. In binary coding each 0 or 1 of the chromosome is called a 

genome. Several variations of GA exist. In this study three of them are used to solve IDSTOP: a) simple 

GA, b) Elitist GA, and c) Micro-Elitist GA. Comprehensive details on GA can be found in Goldberg (1989) 

[6].  

4.3 Evolution Strategies (ES)  

Evolution Strategies (ES), genetic algorithms, and evolutionary programming are the main three 

paradigms of Evolutionary Computation (EC). In general, these three methods are based on iterative 

birth and death, variation, and selection. The first ES had only two rules: 1) slightly change all variables 

at a time at random, 2) if this set of variables leads to better results keep them otherwise, keep the 

original ones. As it is apparent from the rules, this ES worked with only two individuals per iteration: one 

old individual or parent, and one new individual or offspring. This ES was later called 1+1-ES meaning 
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that out of a single parent, one offspring is generated and among these two individuals, the best is 

chosen. The 1+1-ES with binomially distributed mutations on a two dimensional parabolic ridge was 

studied by Schwefel in 1965 [7]. The study showed that 1+1-ES is very likely to find a local optimal 

answer rather than a global one. In this case, larger mutations were needed to escape from this local 

optimum. To solve this problem, instead of using discrete variables, using continuous variable with 

Gaussian distributions was suggested. Rechenberg presented approximate analyses of the ρ ρ ὉὛ 

with Gaussian mutation on two different functions (hyper sphere, and rectangular corridor models). He 

found that the convergence was inversely proportional to the number of variables; linear convergence 

might be obtained if the mutation step size was set to the proper order of magnitude; and the optimal 

mutation strength was in the order of one fifth for both models. In addition, instead of using a single 

parent, he used ʈ parents, crossed them over, and generated one offspring. He concluded that this 

method could speed up the evolution if the speed was measured per generation; and the population 

might learn by itself how to adjust the mutation step size. This method of ES was called ʈ ρ ὉὛ since 

among ʈ ρ individuals the best ʈ individuals were selected or in other words, the worst individual is 

extinct. Later, ʈ ρ ὉὛ was expanded to ʈ ‗ ὉὛ. In this method instead of creating a single 

offspring out of the ʈ parents, ‗ descendants are created. Then among these ʈ ‗ individuals the 

fittest ʈ individuals are selected to form the next population. Another variation of ES with ʈ  ρ 

parents and ‗  ρ descendants exists. In this method, after creating the new ‗ descendants, all parents 

are discarded. Out of the ‗ descendants, the fittest ʈ are chosen to form the next population. Thus, ‗ 

has to be strictly larger than ʈ . This method is called ʈȟ‗ ὉὛ. In general, ʈ ‗ ὉὛ and ʈȟ‗ ὉὛ 

generate better results than ρ ρ ὉὛ and ʈ ρ ὉὛ do. Although intuitively it is believed 

that ʈ ‗ ὉὛ generates better results than ʈȟ‗ ὉὛ does, for small ʈ and ‗ ὸέʈ ratio, ʈȟ‗ ὉὛ 

generates better results. When ʈ and ‗ ὸέʈ ratio increase, both algorithms perform similarly.  
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All variations of ES with ʈ ρ parents and ‗ ρ descendants have three different operators 

that are recombination, mutation, and selection. ES has the following steps: 

0) Initialization: the first population is generated randomly or by means of some heuristics 

1) Regeneration: next population is produced 

1-1)  Recombination: randomly select ” parents and recombine them to generate a new 

offspring 

1-2) Mutation: mutate the new offspring 

1-3) Fitness function evaluation: evaluate the fitness of the generated offspring 

2) {ŜƭŜŎǘƛƻƴΥ ǎŜƭŜŎǘ ƴŜǿ ǇŀǊŜƴǘǎ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ άҌέ ƻǊ άΣέ ǎŎŜƴŀǊƛƻ 

3) Termination criteria: stop if termination criteria are met otherwise continue by going to step 1 

ES could be self-adaptive. This means that as the populations evolve, the strategy parameters 

evolve as well. This is done by coupling endogenous strategy parameters with the objective parameters. 

In other words, the decision vector contains decision variables as well as endogenous strategy 

parameters. This is shown in Equation 4.1. 

ὥᴆ ώ ȟώ ȟȣȟώ ȟί ȟί ȟȣȟί                                                           τȢρ 

Where : ώȡ the Ὥ  component of decision variable j, and  

 Ὓȡ the Ὥ  component of endogenous strategy parameter j.  

More information on ES could be found in Schwefel (1965). 

4.4 IDSTOP Architecture  

IDSTOP, as mentioned before, is formulated as a signal timing optimization program that 

dynamically finds signal timing parameters (i.e. phase plan, cycle length, splits, and the offsets) for an 
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urban traffic network over the study period. It also dynamically reroutes drivers to less congested routes 

to further increase the number of completed trips by using its system optimal traffic assignment feature.  

IDSTOP considers stochasticities that are involved in the car following and lane changing 

behavior as well as vehicle arrival to the network. Details on how it accounts for them are explained 

later in this chapter. IDSTOP takes into account stochastic behavior of drivers in car following, in 

speeding up after a red signal turns green, and in slowing down to stop before a red signal, and also in 

lane changing. In addition, it considers different types of vehicles in the network that significantly 

changes acceleration and deceleration behavior. Also, it takes into account combinations of different 

drivers and vehicles that bring more stochasticity into the problem. IDSTOP also considers different 

distributions for vehicle arrival to the network and unlike deterministic models, does not assume that 

vehicles keep constant headways from each other, have identical acceleration and deceleration rates, 

and drivers behave identically in accelerating, decelerating, and deciding to stop or to proceed for a 

yellow signal, or join the back of queue when the receiving links is almost full. Modeling all these 

stochasticities makes the solution technique extremely more complicated but, enables IDSTOP to find 

solutions that more accurately depict what happens in the real world. For example, based on the 

constraints of the cell transmission model, it is assumed that no vehicle joins the back of queue when 

the receiving links is full; however, this does not happen in the real world as one driver may join the 

back of queue and one may not. If cell transmission based solutions are used in real-world application, 

and a driver decides to join the back of queue in a link which is already filled with vehicles, upstream 

signal may be blocked and gridlock may happen while IDSTOP finds a solution that prevents them. To 

handle these stochasticities, IDSTOP runs microscopic simulation model with several replications with 

different parameters to account for different scenarios that may occur in real-world conditions. This will 

be discussed later in this chapter. However, it should be noted that IDSTOP is not designed to handle 

neither the uncertainties associated with origin-destination (o-d) demand (it needs to know the demand 
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for the upcoming time interval up front) nor some other stochastic events such as accident occurrence, 

vehicle break down, or traffic signal failure.  

The main idea to solve the problem is to discretize the time period into smaller time intervals 

and optimize signal timing and turning percentages in each interval. There are three main reasons for 

this: 1) it significantly reduces the complexity of the problem; 2) it results in more efficient network 

performance; 3) if the study period is long enough, eventually all vehicles will complete their trips. 

The decision space is significantly smaller when the problem is solved sequentially. In fact, 

instead of being the combination of the possible decision spaces of all time intervals, it is the summation 

of the decision spaces of all time intervals. Therefore, it is computationally less expensive to solve the 

problem.  

L5{¢htΩǎ ƻōƧŜŎǘƛǾŜ ŦǳƴŎǘƛƻƴ όŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ /ƘŀǇǘŜǊ о 9ǉǳŀǘƛƻn 3.1) may result in keeping 

vehicles in the network during one time interval and releasing them in another one. For instance assume 

a study period of ten minutes with two 5-minute time intervals with a uniform traffic demand of 50 

vehicles per each time interval. The optimal policy that results in lowest delay and best network 

performance is to process 50 vehicles in each time interval. In that case, the total number of completed 

trips in the entire study period is 100 vehicles which is the maximum possible. If the objective function is 

to maximize the sum of completed trips in both time intervals together, processing 20 vehicles in the 

first and 80 in the second time interval (as well as any combination of two numbers that summing up to 

a hundred) is also a valid solution. However, it is not as efficient as processing 50 vehicles in each time 

interval, is not desired, and should be avoided. In fact, it is preferred to maximize the number of 

completed trips in each time interval rather than in the whole study period. In other word, instead of 

solving a single non-linear problem for the entire study period, solve one non-linear problem for each 
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time interval is more desired. In that case, ȿὝȿ-many non-linear problems are solved. The new objective 

function is shown in Equation 4.2 as follows: 

-ÁØÉÍÉÚÅ– …

ᶪᶰᶪᶰ

ȟ        ᶅὸɴ Ὕ                                                                            τȢς 

…  number of completed trips from source node ὶ to sink node ί during time interval ὸ 

–  length of the shortest distance path from source node ὶ to sink node ί 

Ὕ  set of discrete time intervals (in the order of minutes) 

Ὑ  set of source nodes 

Ὓ  set of sink nodes 

The time intervals are selected such that the origin-destination demand in each is approximately 

constant. Based on the constant o-d demand in each time interval, fixed signal timing parameters and 

system optimum traffic assignment for the network is found. It is noted that the signal timing is fixed for 

an intersection in a time interval, but changes from one intersection to another within the same time 

interval. In addition, for each intersection, signal timing parameters change from one time interval to 

another in response to time-variant demand. For each o-d pair, the routes are fixed for each time 

interval, but they change from one time interval to another. Routes are assigned to vehicles when they 

enter the system and they are not allowed to change their routes at different intersections (since doing 

ǎƻ ǎƛƎƴƛŦƛŎŀƴǘƭȅ ŜƴƭŀǊƎŜǎ L5{¢htΩǎ ǎƻƭǳǘƛƻƴ ǎǇŀŎŜύΦ ¢ƘŜ Ŧƛƴŀƭ ǎǘŀǘŜ ƻŦ ǘƛƳŜ ƛƴǘŜǊǾŀƭ ὸ is used as the initial 

state of the time interval ὸ ρ. The state of the system at a time is location (longitudinal and lateral), 

speed, and acceleration/deceleration rates of all vehicles in the network as well as the state of the signal 

at each approach of each intersection.  

A meta-heuristic algorithm is developed to find near-optimal signal timing parameters and 

system optimum traffic assignment in each time interval. As mentioned earlier, the state of the system 
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at the end of current time interval is carried over as the initial state of the system in the next time 

ƛƴǘŜǊǾŀƭΦ ¢ƘŜ ŦƻƭƭƻǿƛƴƎ ǎǘŜǇǎ ŀǊŜ ǘŀƪŜƴ ǘƻ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ ƻǇǘƛƳƛȊŜ ǎƛƎƴŀƭ ǘƛƳƛƴƎ ŀƴŘ ŘǊƛǾŜǊǎΩ ǊƻǳǘŜǎ 

inside the network: 

Step 0) Initialization:  

a) a set of feasible candidate solutions are generated either randomly or by using some 

heuristics  

b) the fitness of each individual is evaluated using microscopic simulation model 

c) system optimum traffic assignment is performed for the fittest individual,  

d) link volumes and turning percentages are updated if in step 0-c fitness value was improved  

Step 1) Regeneration: 

a) selection: parents are selected 

b) regeneration: new individuals are created using the selected parents assuming the link and 

turning volumes obtained in the previous generation 

c) evaluation: fitness function is evaluated for each new individual 

Step 2) System Optimum Traffic assignment:  

d) traffic is assigned for the fittest individual created in Step 1, and link and turning volumes 

are obtained 

e) link volumes and turning percentages are updated if in step 2-a fitness value was improved 

Step 3) termination criteria: if termination criteria are met stop; otherwise go to step 1. 

As it is presented in the algorithm, signal timing optimization and system optimum traffic 

assignment are not found in combination to each other. Finding them in combination to each other 

significantly enlarges the solution space and makes finding a near-optimal solution almost impossible 
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unless a deterministic approach is used to provide enough information about the structure of the 

objective function (see [8]). Instead of optimizing them in combination to each other, a semi-sequential 

method is used. In each generation of the proposed algorithm, first the signal timing parameters are 

improved for all intersection for the current time interval. Then for the best solution available, system 

optimal traffic assignment is performed to optimize link and turning volumes. If traffic assignment 

improves the fitness value, new link and turning volumes are used for the next step of signal timing. 

Otherwise old link and turning volumes are used in the next step. This new solution is added to the 

individuals that were created in the most recent generation while the link and turning volumes for all 

individuals are updated. Then in the next generation, similarly, first the signal timing and then vehicle 

routes are optimized. This algorithm is shown in Figure 4.1. 

The proposed algorithm has the following advantages: 

a) does not need to know the structure of the objective function to find a solution 

b) extremely smaller decision space 

c) flexibility to optimize different objective function 

d) flexibility to use different forms of evolutionary algorithms 

e) flexibility to use different microscopic simulation models to obtain the fitness of each 

individual  
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Figure 4.1. Schematic IDSTOP solution technique 
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4.4.1 Signal Timing Optimization  

The discussion in this section is centered on the following four items in signal timing 

optimization process:  

1) Traffic flow propagation 

2) Constraints satisfaction 

3) Decision variables 

4) Accounting for stochasticities 

4.4.1.1 Traffic flow propagation  

As previously mentioned, one of the objectives of this study is to develop a signal timing 

optimization method that considers stochasticities associated with traffic flow propagation such as: 

different driver behavior, different vehicles types, different headway distributions, etc. In order to have 

the capability to take them into account, IDSTOP has to be able to model them to begin with. As a result, 

IDSTOP simulation model has to be able to model different headway distributions, different driver 

behavior (in car following, acceleration, deceleration, lane changes, joining back of queue, etc.), 

different vehicle types, etc. Macroscopic and mesoscopic traffic simulation models are not capable of 

modeling all these stochasticities. On the other hand, microscopic traffic simulation models are capable 

of modeling these stochastic events.  

 Among the most widely used microscopic traffic simulation packages, two of them were tested 

in this study. These two were CORISM developed by Federal Highway Administration, and VISSIM 

developed by Planung Transport Verkehr AG in Germany. Both packages were capable of modeling 

different network, traffic, and geometric conditions as well as modeling different driver behaviors, 

vehicles characteristics, and entry headways. It is noted that CORSIM can model all details that is 

needed in this study and is considerably faster (in terms of runtime) than VISSIM. Therefore, it is 
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selected to propagate traffic flow inside the network. There was an option of developing a new 

microscopic model for the purpose of this study. However, since the focus of the study was on the 

optimization part, the widely accepted CORSIM was used. 

4.4.1.2 Constraints Satisfaction  

As previously mentioned, signal timing optimization process starts with generating a population 

of potential solutions that are produced either randomly or by using some heuristics (e.g. optimal 

solution of commercial software). These solutions are created such that they satisfy the constraints on 

the minimum and maximum values of the decision variables. However, making sure that the rest of the 

constraints are satisfied requires complicated calculations. Eventually, all constraints are checked during 

the microscopic simulation run when the fitness value of each solution is obtained. If a solution does not 

satisfy any of the constraints it will be discarded. However, since running a microscopic simulation 

model requires a significant amount of CPU time, it is extremely important to identify the infeasible 

solutions before running the microscopic model. Thus, using a less computationally expensive model 

(i.e. a macroscopic or a mesoscopic model), the infeasible solutions need to be identified. It should be 

noted that it is still possible that some of the solutions that were identified as feasible using the faster 

model, be infeasible when microscopic model is used. This may happen due to all simplifying 

assumptions that exist in the fast (macroscopic) model. As a result, even when a faster model for pre-

scrutiny is used, all constraints will be rechecked when the microscopic model is running. For the pre-

scrutiny purpose a macroscopic model developed by Girianna and Benekohal (2002) is used. This model 

uses shockwave theory to find the queue length in each link over time [3]. Using this model, queue 

length constraints, de-facto red constraints, ideal offset constraints, and gridlock constraints are 

checked. If any of the solutions does not satisfy any of the constraints, the solution is discarded and a 

new solution is created. This pre-scrutiny part is continued until enough individuals are created. This 

step is used in initialization step as well as the regeneration step. For each individual that satisfied all the 
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constraints in this section, microscopic model is called. Delay constraints in addition to all other 

constraints are checked and if any constraint is violated, the solution is discarded. If the solution is 

identified as feasible, its fitness value is obtained.  

4.4.1.3 Signal Timing optimization Decision Variables  

The parameters that are associated with signal timing optimization are phase plan, cycle length, 

green splits, and the offsets for all intersection in each time interval. IDSTOP optimizes cycle length, 

green splits, and the offsets. The phase sequence is optimized based on the optimized green splits. This 

means that if IDSTOP allocates a green duration of less than five second to a left turn movement, that 

phase is omitted. Through movement phases are never omitted. IDSTOP allows a maximum of four 

phases per cycle with the widely known Lead-Lead Left-Turn Phase Sequence: lead-lead left turn green 

signal for direction one, through traffic green signal for direction one, lead-lead left turn green signal for 

direction two, and through traffic green signal for direction two. As a result, the number of phases varies 

between a minimum of two (when both left turns were omitted) and a maximum of four phases (when 

none of the left turns were omitted). This sequence is shown in ring format if Figure 4.2. 

 

Adopted from: Traffic Signal Timing Manual 

Figure 4.2. IDSTOP phase sequence 

L5{¢htΩǎ ŘŜŎƛǎƛƻƴ ǾŜŎǘƻǊ ŦƻǊ ǎƛƎƴŀƭ ǘƛƳƛƴƎ ƻǇǘƛƳƛȊŀǘƛƻƴ ŦƻǊ ŜŀŎƘ ƛƴǘŜǊǎŜŎǘƛƻƴ Ŏƻƴǎƛǎǘǎ ƻŦ ŦƛǾŜ 

components as follows: 

1. Cycle length 

2. Green split for phase one (left turn movement for direction one) 
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3. Green split for phase two (through movement for direction one) 

4. Green split for phase three (left turn movement for direction two) 

5. The start time of the green of the first phase according to a time reference point 

It should be noted that the green split for phase four is found based on the splits of the other 

three phases, the cycle length, and the lost time as follows: 

ίȟ ρ
ὒ

ὅ
  ίȟ

ȟȟ

ȟ         ᶅὸɴ ὝȟᶅὭɴ Ὅȟ                                                          τȢσ       

Where:  

ίȟ  green split associated with phase Ὧ, at intersection Ὥ at time period ὸ 

ὒ  lost time at intersection Ὥ at time period ὸ 

ὅ  cycle length of intersection Ὥ at time interval ὸ 

Ὕ  set of discrete time intervals 

Ὅ  set of all intersections of the network 

The decision vector for all intersections consists of all decision vectors for each intersection of 

the network followed by each other as follows: 

′ᴆ ὅȟίȟȟίȟ ȟίȟȟίέὪὫȟ  ὅȟίȟȟίȟ ȟίȟȟίέὪὫȟȢ  Ȣ  Ȣ     ȟὅȿȿȟίȿȿȟȟίȿȿȟ ȟίȿȿȟȟίέὪὫȿȿ   

                                                                                                                                  τȢτ 

Where:  

′ᴆ  IDSTOP signal timing decision variable at time interval ὸ 

ίέὪὫ  start of the first green at intersection Ὥ at time interval ὸ 
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4.4.1.4 Taking Stochasticities into Account  

In order to be able to model stochastic events (e.g. driver behavior in acceleration, deceleration, 

lane change, and joining back of queue in an almost full link; and vehicle arrival headway to the 

network) in traffic, a microscopic simulation model was needed. Each run of this model simulates a 

certain set of stochastic events that occurred in the network. If the optimization is carried based on a 

single simulation run, the optimal solution provides the best performance for a real-world network only 

if real drivers always behave identical to those in the simulated network, headway between vehicles are 

identical to the simulated network, and similarly all other parameters are identical. However, this is not 

likely to happen. Instead of finding such a solution, IDSTOP finds a solution that provides an efficient 

network performance under different driver behaviors, vehicle headways, etc. This is achieved by 

making several simulation runs for a candidate solution and finding the fitness value by averaging the 

fitness value for each run. It is noted that a certain seed for each run needs to be used which has to be 

different than the other seeds that are used in the other runs. This is to avoid creating identical 

conditions. To find the fitness value of each individual a total of ten runs are made and the average 

fitness value is obtained. Details on finding the number of replication are available in chapter 5. It is 

noted that if any of the constraints are violated in any of these replications, the solution is discarded and 

a new solution is created.  

4.4.2 System Optimum Traffic Assignment  

The main objective of this research is to develop dynamic stochastic signal timing optimization 

algorithms for urban traffic network with oversaturated intersections. Optimizing transportation supply 

and demand together has potential to further improve network performance. Sun and Benekohal 

(2004), and Abdul Aziz and Ukkusuri (2011) developed algorithms for managing transportation demand 

and supply at the same time based on deterministic models to move vehicles inside the network [4] [8]. 

In this research simultaneous demand and supply management is performed to further improve 
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network performance. However, since the main focus of the study is to find optimal or near-optimal 

network performance, system optimum traffic assignment is used. Although system optimal flows are 

not likely to be observed in the real-world conditions (since drivers choose their routes in order to 

minimize their own travel cost rather than a total system cost), still knowing the best performance 

possible can be helpful in making decisions. For example, the traffic flows can be used in network design 

or can be sought by introducing tolls on different links of the network to match user equilibrium and 

system optimal flows. Two different System Optimum Dynamic Traffic Assignment (SODTA) methods are 

considered. These methods are: 

a) /hw{LaΩǎ ǎȅǎǘŜƳ ƻǇǘƛƳǳƳ ǘǊŀŦŦƛŎ ŀǎǎƛƎƴƳŜƴǘ 

b) Cell Transmission based SODTA developed by Li, Ziliaskopoulos, and Travis Waller (1999) [9] 

As mentioned previously, the study period is discretized with respect to o-d demand such that in 

each time interval o-d demand variations are negligible. In each time interval, a static system optimum 

traffic assignment is performed except for method b where traffic assignment is dynamic within each 

time interval as well. Each method is explained next.  

4.4.2.1 CORSIM System Optimum Traffic Assignment  

 The least computationally expensive method was the one implemented in CORSIM. This 

method used Frank-Wolf algorithm to find user optimal traffic assignment. Travel costs were estimated 

based on using so-called BPR equations. The parameters of the BPR function, and number of iterations, 

as well as the o-Ř ŘŜƳŀƴŘ ǿŜǊŜ ǘƘŜ ƛƴǇǳǘǎ ǘƻ ǘƘŜ ǘǊŀŦŦƛŎ ŀǎǎƛƎƴƳŜƴǘ ƳƻŘǳƭŜΦ /hw{LaΩǎ ŘŜŦŀǳƭǘ ǾŀƭǳŜǎ ŦƻǊ 

BPR function parameters were used (ὥ  πȢφȟὦ  τȢπ) and the number of iterations was set to the 

maximum possible of 20 iterations.  

The most important benefit of this model was its extremely short runtime. However, due to its 

oversimplified method its solution may not always result in an improvement in the value of the 
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objective function. The main reason is that its solution is aimed at reducing the travel time based on BPR 

equations; however, these equations cannot accurately determine the travel time, and do not directly 

take intersection delay into account. Thus, the solution of this approach, although finds shorter total 

system travel time based on BPR equations, may not always reduce travel time and may not always 

increase number of completed trips in CORSIM. If traffic assignment does not increase the number of 

completed trips, the new link and turning volumes are discarded and the old ones are used. 

4.4.2.2 Cell-Transmission based SODTA 

The cell transmission based DTA, as used by Li et al., models SODTA as a linear programming 

that can be solved using different solvers. This method requires about two hours to find optimal solution 

for a network of 20 intersections and a study period of 15 minutes which is significantly longer than 

previous approach and makes this approach less suitable for IDSTOP. Assuming that IDSTOP has a total 

of 30 generations, total runtime for DTA will be around 60 hours. This method is capable of finding 

optimal solution in the network; however, has some limitations. First, it does not model any of the 

stochastic effects that IDSTOP is designed to take them into account such as different vehicle types, 

different drivers, and non-constant headway. Second, it cannot consider more than one lane for each 

street. Third, it cannot take permissive left-turns into account. Finally, since it uses a different logic to 

move the vehicles than CORSIM, even if calibrated, there is no guaranty the its optimal solution results 

in less travel time and higher number of completed trips when the solution is used in CORSIM. Adding all 

these to its long runtime makes the algorithm less-suitable for IDSTOP.  

4.5 Summary  

In this chapter IDSTOP solution technique was explained. The main idea to solve the problem 

and account for the known time-variant demand was to discretize the study period to shorter time 

interval in which o-d demand is approximately constants. Then near-optimal signal timing parameters as 
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well as system optimal traffic assignment were found in each time interval. Two families of meta-

heuristic approaches were explained and the reason of choosing a microscopic traffic simulation model 

was discussed. Finally, taking the stochasticities into account was explained and two different traffic 

assignment methods were discussed. In the following chapter, IDSTOP implementation, verification, and 

validation, details on how the method is implemented, how constrains were checked, how the objective 

function was evaluated, and how the algorithm was verified and validated will be discussed.  
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  CHAPTER 5

IDSTOP IMPLEMENTATION AND PERFORMANCE 

5.1 Introduction  

In this chapter, details on IDSTOP implementation are discussed. The explanation starts with 

introducing the case study network, the demand patterns, how IDSTOP is coded, how the constraints 

are checked, and how the fitness function evaluation is performed to account for stochasticities. Upper 

bounds on the number of completed trips for all demand patterns are determined; and discussion is 

continued with explaining the performance of IDSTOP and its comparison to a state-of-the practice 

signal timing optimization package.  

5.2 Case Study Network  

IDSTOP was tested using several case study networks. All results presented in this chapter are 

based on a realistic case study network that was adopted from downtown Springfield in Illinois. The 

main idea was to test IDSTOP under a more diverse set of conditions, closer to real world operations. 

The case study network has 20 intersections and a combination of one-way and two-way streets with 

different number of lanes. It comprised the area between 5th and 11th street from west to east, and 

between Jefferson and Capitol streets from north to south in Springfield, Illinois. 

A few modifications were made to the real network in Springfield because of the higher 

vehicular demand used in the test case compared to the actual demand in the field: 1) most of the left-

turn lanes in the network were shared by through movement, but this was changed by adding exclusive 

left-turn pockets, 120ft in length; and 2) if there was a lane drop or a lane addition on an arterial, the 

model maintained the same number of lanes along the arterial. The test network is called modified 

Springfield network, and is shown in Figure 5.1.  
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In this area of downtown Springfield, actual traffic volumes are not high enough to create 

oversaturated conditions. Since, we are interested in finding solutions for oversaturated conditions 

traffic volumes at different links of the case study network were increased. In addition, all traffic signals 

in the portion of downtown Springfield use only two phases. In the case study, the possibility of having 

up to four phases was considered.  

 

Figure 5.1: Modified Springfield network 

As mentioned before, at each intersection a minimum of two phases and a maximum of four 

phases are allowed. When two one-way streets intersect, only two phases can be used. This was the 

case for intersections number 1, 2, 5, 6, 9, and 10 in the modified Springfield network, see in Figure 5.1. 

When a one-way and a two-way street intersect, the number of phases is optimized by IDSTOP and it 
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can be either two or three phases. This was the case for intersections number 3, 4, 7, 8, 13, 14, 17, and 

18 in Figure 5.1. Finally, when two two-way streets intersect, the number of phases can be two, three, 

or four which is optimized by IDSTOP. This was the case for intersections number 15, 16, 19, and 20, see 

in Figure 5.1. 

5.3 Demand Patterns  

Four different fixed-demand traffic pattern cases were used on the modified Springfield 

network: 

Case-a) Undersaturated network with symmetric traffic demand (750 vphpl in each entry links) 

Case-b) Oversaturated network with symmetric traffic demand (1000 vphpl in each entry links) 

Case-c) Undersaturated network with asymmetric traffic demand, high volume in east-west 

streets (1000 vphpl), low volume in north-south streets (500 vphpl) 

Case-d) Partially oversaturated network with asymmetric traffic demand, 1000 vphpl in corridors 

P-G and B-L7; 700 vphpl corridors A-M, R-E, and F-Q; 600 vphpl in corridors O-H and N-I; and 500 vphpl 

in corridors C-K and D-J (see Figure 5.1). 

For each case, it is assumed that whenever possible, 10% of the traffic in the right-most lane 

makes a right turn, 10% of traffic in the left-most lane makes a left turn, and the remaining vehicles go 

straight. For example, for a single lane street with possible left and right turns, 10% of traffic turns left, 

10% turns right and 80% goes straight. For a two-lane street with possible right and left turns, 5% of the 

total incoming traffic turns right, 5% turns left, and 90% goes straight. It is noted that whenever a left or 

right turn is not possible the turning vehicles go straight. These turning percentages are only used when 

traffic is not assigned. When traffic assignment feature is on, the o-d demand is needed and is estimated 

based on the turning percentages mentioned above. This is done to make sure the same test bed is used 
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for future comparisons (traffic assignment versus no traffic assignment). To estimate the o-d for each of 

the four demand cases, all routes from each origin to each destination needed to be found. For each 

route, based on the traffic demand and turning percentages, the number of vehicles that reached each 

destination node was calculated. Therefore, the o-d demand was found for all o-d pairs.  

 

Figure 5.2. Demand changes over a study period of 60 minutes. 

In addition to the fixed-demand traffic pattern, a dynamic-demand traffic patterns is used. For 

this case traffic demand gradually changes in increments of five minutes from symmetric 

undersaturated to symmetric oversaturated, asymmetric partially oversaturated, and asymmetric 

undersaturated conditions in a 60-minte study period. Demand changes are shown in Figure 5.2. 

5.4 Coding IDSTOP 

All algorithms (i.e. Simple GA, Elitist Simple GA, Micro-Elitist GA, ES, and ES+) were coded using 

Matlab software. Code for simple GA was obtained from Illinois GA Lab and was modified to add elitism, 

micro-elitism, and to put CORSIM and Traffic Assignment module in the loop. Code for ES and ES+ was 

specifically developed for this study.  
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IDSTOP flowchart is shown in Figure 5.3 a-b. The flowchart is divided into two sections: a) 

initialization; and b) regeneration. In initialization, the first population is generated. After creating each 

individual, the constraints were checked. If they were not satisfied, the solution was discarded; 

otherwise, its fitness value was obtained. This was done by generating an input file for CORSIM 

containing the newly generated signal timing parameters. After making a certain number of replications 

(to account for stochasticities), the output file was read and the value of fitness function was obtained. 

After generating the entire initial population, the fittest individual was selected. System optimal traffic 

assignment was found for that individual. The fitness value was again determined after traffic 

assignment. If the fitness value was improved, the updated link and turning volumes were used for the 

next generation by coding them into CORSIM input file. If the fitness value was not improved, the old 

link and turning volumes were used. This process insured that at each iteration the fitness value can only 

be improved. Entire process is shown in Figure 5.3.  

The initial population is used to regenerate new populations using GA or ES operators. As soon 

as a new individual is created, its feasibility is checked. If the new individual is feasible, its fitness value is 

determined by creating a CORSIM input file and calling the software and making several replications. If 

the new individual happens to be infeasible it is discarded and another individual is created. This process 

is continued until the entire new population is created. Similarly, the fittest individual is selected for 

traffic assignment and if traffic assignment yielded improvement in the fitness value, the new turning 

percentages will be used for the next generation. Otherwise the turning percentages will not be 

updated. Similarly new generations are created until termination criteria are met. 
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a) Initialization process 

Figure 5.3 (cont. on next page)  
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b) Regeneration process 

Figure 5.3. Schematic optimization process  
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